[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4122900B2 - Hydrodynamic bearing device and spindle motor using the same - Google Patents

Hydrodynamic bearing device and spindle motor using the same Download PDF

Info

Publication number
JP4122900B2
JP4122900B2 JP2002248289A JP2002248289A JP4122900B2 JP 4122900 B2 JP4122900 B2 JP 4122900B2 JP 2002248289 A JP2002248289 A JP 2002248289A JP 2002248289 A JP2002248289 A JP 2002248289A JP 4122900 B2 JP4122900 B2 JP 4122900B2
Authority
JP
Japan
Prior art keywords
lubricant
shaft
bearing device
hydrodynamic bearing
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002248289A
Other languages
Japanese (ja)
Other versions
JP2004084839A (en
Inventor
勝志 平田
孝範 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002248289A priority Critical patent/JP4122900B2/en
Publication of JP2004084839A publication Critical patent/JP2004084839A/en
Application granted granted Critical
Publication of JP4122900B2 publication Critical patent/JP4122900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/109Lubricant compositions or properties, e.g. viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ディスク装置等の回転体装置に用いられる動圧型の流体軸受装置及びそれを用いたスピンドルモータに関するものであり、特に、軸受トルクやモータ消費電流を低減する手段に特徴を有するものである。
【0002】
【従来の技術】
流体軸受装置は、軸とこの軸を受ける軸受とからなり、両者の対向する隙間に介在させた潤滑剤が、回転に伴い軸もしくは軸受に形成された動圧発生溝によってかき集められ、圧力を発生し、非接触で支持される。
これら流体軸受装置を搭載したスピンドルモータは、媒体の記録密度の向上に不可欠な回転精度、さらに耐衝撃性や静粛性に優れているため、磁気ディスク装置に代表される情報機器や音響・映像機器の主流になってきている。
そのスピンドルモータには、近年、機器の小型化、省エネ化の観点から、モータ消費電流の低減、中でも大部分を占める流体軸受装置のトルク低減が強く求められている。流体軸受装置のトルクは充填される潤滑剤の粘度に比例するため、より低粘度な潤滑剤が必要とされている。そのため、潤滑剤の主成分である基油として、ネオペンチルグリコールと炭素数6〜12の一価脂肪酸及び/又はその誘導体とから得られるエステルがある(例えば特許文献1参照。)。また、モノエステルなどを用いた流体軸受装置が提案されている(例えば特許文献2参照。)。
【0003】
【特許文献1】
特開2001−316687号公報(第3−6項)
【0004】
【特許文献2】
特開2000−63860号公報(第2−4項)
【0005】
【発明が解決しようとする課題】
しかし、これらの潤滑剤を用いた従来の流体軸受装置では、小型化における軸受寸法の制約もあり、要望されているトルク低減を十分にできないという課題がある。
また、モノエステル系の潤滑剤を用いれば、軸受の低トルク化が可能であるが、それらは通常、流動点が高いため、0℃さらに−20℃以下の低温域では流動性を失い、固化する恐れがある。そのため、それらの潤滑剤を携帯用機器や車載用機器の流体軸受装置に使用する場合、必要とされている−40℃以下の環境下では、軸受のトルクが非常に大きくなり、回転起動できないという課題が生じ、使用温度範囲が制限される。
本発明は、前記課題を解決し、低トルクで、極低温域でも回転起動可能な流体軸受装置及びそれを用いたスピンドルモータを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の流体軸受装置及びそれを用いたスピンドルモータは、潤滑剤が3−メチル−1,5−ペンタンジオールとn−ヘプタン酸及び/またはn−オクタン酸とから得られるエステルを基油とすることを特徴とする。
本発明によれば、低粘度で、低温流動性の優れたエステルを潤滑剤の基油とするため、低トルクで、さらに−40℃以下の極低温域でも回転起動可能な流体軸受装置及びそれを用いたスピンドルモータを実現できる。
【0007】
【発明の実施の形態】
本発明の請求項1に記載の流体軸受装置は、軸とスリーブの少なくとも一方に動圧発生溝を有し、前記軸と前記スリーブが対向する隙間に潤滑剤が存在する流体軸受装置において、前記潤滑剤は、3−メチル−1,5−ペンタンジオールとn−ヘプタン酸及び/またはn−オクタン酸とから得られるエステルが基油であることを特徴とする。本発明の構成によると、潤滑剤の基油は、低粘度で、低温流動性も優れるため、−40℃といった極低温域でも固化しなく、低トルクで極低温域でも回転可能となる磁気ディスク装置用流体軸受装置を実現できる。
また、潤滑剤の基油は、分子構造が異なる2種以上のエステル化合物であるため、単一構造のエステルより結晶性がなくなり、より低温流動性を向上させることができ、−40℃以下の極低温域でも容易に回転起動が可能である。
本発明の請求項2に記載のスピンドルモータは、請求項1の磁気ディスク装置用流体軸受装置を備えることを特徴とする。本発明の構成によると、モータの消費電流が低く、極低温域でも回転可能なスピンドルモータを実現できる。
【0008】
(実施の形態1)
以下、請求項1に記載の本発明の流体軸受装置について、図2を用いて説明する。
外周面にヘリングボーン形状のラジアル動圧発生溝2a、2bが形成された軸2の一端にスラストフランジ3が固定され軸部が構成されており、軸2の他端はベース1aに圧入固定される。軸部はスリーブ4の軸受孔に挿入されており、スリーブ4には一方の軸受孔をふさぐように、スラストフランジ3に対向してスラストプレート9が取り付けられている。また、スラストプレート9と対向するスラストフランジ3の表面には、スパイラル形状のスラスト動圧発生溝3aが形成されている。これら軸受孔と軸部の隙間には潤滑剤8が充填されている。回転に伴い、潤滑剤8は軸2に形成されたラジアル動圧発生溝2a、2bによってかき集められ、軸2とスリーブ4のラジアル隙間10において圧力を発生するため、スリーブ4は軸2に対してラジアル方向に非接触で支持される。また、スラスト方向は、スラスト動圧発生溝3aによって、潤滑剤8がかき集められ、圧力を発生するため、スラストプレート9は浮上し、スラストフランジ3に対し、非接触で支持される。潤滑剤8の基油としては、3−メチル−1,5−ペンタンジオールとn−ヘプタン酸及び/またはn−オクタン酸とから得られるエステルを用いる。その結果、従来と比較してより低トルクで回転できる。
基油となるエステルの合成は、所定のアルコール成分と酸成分を触媒存在下もしくは無触媒下で、公知のエステル化反応により行うことができる。
アルコール成分であるγ位に1つのアルキル側鎖を有する1,5−ペンタンジオールは、アルキル側鎖として、メチル基、エチル基、プロピル基などの低級アルキル基が好ましく、中でもメチル基がより好ましい。1つのメチル基の側鎖を有するペンタンジオールは、分子量が小さいため、より低粘度で、軸受トルクを低減することが可能である。具体的には、2−メチル−1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオールが挙げられ、より低トルクで耐熱性が優れる点で、後者の方が好ましい。
酸成分であるn−ヘプタン酸及び/またはn−オクタン酸は、不飽和結合を含まないため、熱及び酸化安定性が高く、高温環境下や高速回転下でも劣化が起こりにくく、装置の寿命が長くなるため、不飽和1価脂肪酸より好ましい。また、炭素数が4以下の場合、軸受はより低トルクとなる反面、耐熱性は低いため、装置の長期信頼性が得られない。また、炭素数が9以上の場合、粘度が大きくなり、軸受のトルク低減の効果は期待できない上、−30℃付近で固化するため、−40℃では回転起動できない。
なお、これらの酸成分は、直鎖型でも分岐型でもよい。中でも、直鎖型は、分岐型と比較して、より低粘度で、粘度温度変化が小さく抑制でき、潤滑性能も良好であるため、軸受トルク及びトルクの温度変化が小さく、軸受の摩擦や摩耗量も抑制でき、好ましい。具体的には、耐熱性の面で、n−ヘプタン酸、n−オクタン酸がより好ましい。
また、本発明の潤滑剤8の基油は、3−メチル−1,5−ペンタンジオールとn−ヘプタン酸及び/またはn−オクタン酸とから得られるエステルの2種以上の混合物とすると、低温流動性が向上するため、好ましい。具体的には、1種のアルコール成分と1種の酸成分とから合成した単一構造のエステルを2種類以上混合すると得られる。また、1種のアルコール成分と2種の酸成分とから合成すると、エステル1分子中に1種の酸成分のみが結合した単一構造のエステルが2種、エステル1分子中に2種の酸成分が結合した混合構造のエステルが1種、合計3種類のエステル混合物が得られる。
また、本発明の潤滑剤8の基油は、3−メチル−1,5−ペンタンジオールとn−ヘプタン酸及び/またはn−オクタン酸とから得られるエステルに、さらに、添加基油として他の種類の基油を混合させることができる。添加基油は、粘度をさらに低減する、別の性能を付加、補完する等の目的に応じて、適宜選択できる。具体的には、鉱物油、ポリαオレフィン、アルキル芳香族、ポリグリコール、フェニルエーテル、ポリオールエステル、ジエステル、リン酸エステルなど既知の化合物が挙げられる。これら添加基油は、1種もしくは2種以上を混合することができる。中でも、ポリオールエステル及びジエステルは、低粘度が得られやすく、低温流動性に優れ、耐熱性も高いため好ましい。そのポリオールエステルの中でも、アルコール成分がネオペンチルグリコールで、酸成分が炭素数6〜10の飽和1価脂肪酸を用いたエステルは、より低トルクとなり、低温流動性も優れる。また、ジエステルの中では、アジピン酸ジ(2−エチルヘキシル)、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アゼライン酸ジ(2−エチルヘキシル)、セバシン酸ジ(2−エチルヘキシル)が、より低粘度で汎用性も高いため、軸受トルクが小さくでき、コスト低減の点でも好ましい。また、逆にポリオールエステルやジエステルに、添加基油として3−メチル−1,5−ペンタンジオールとn−ヘプタン酸及び/またはn−オクタン酸とから得られるエステルを混合しても良い。
また、潤滑剤8には、これら基油に加え、添加剤を配合できる。添加剤は、基油の性能を向上、補完する目的で、公知の化合物を選択することができる。具体的には、酸化防止剤、防錆剤、金属不活性剤、油性剤、極圧剤、摩擦調整剤、摩耗防止剤、粘度指数向上剤、流動点降下剤、消泡剤、導電性付与剤、清浄分散剤の1種もしくは2種以上を配合することができる。添加剤は、劣化に伴いガス発生や変質を引き起こし、軸受及び装置の性能を低下させるため、配合総量を必要最小限にとどめるべきである。
また、軸2とスリーブ4のラジアル隙間10は1〜5μmの場合に、より好ましくは1.5μm〜4μmの場合に、軸受は本発明における潤滑剤8の低粘度化の効果を十分発揮できる。トルクは隙間の逆数に比例し、剛性は隙間のn乗の逆数に比例するため、潤滑剤の粘度に応じた隙間が必要であり、前記範囲であれば、低トルクかつ軸受に必要な剛性が容易に得られる。ラジアル隙間が1μm未満であれば、本発明における潤滑剤8を用いても、隙間の影響が大きく、軸受のトルク低減の効果は得られない。また、混入異物や起動停止時に発生する摩耗粉の影響によって、軸受のロックを非常に引き起こしやすくなるため、装置の信頼性が低下する。さらに、軸やスリーブの高い加工精度と組立精度が必要であるため、コストアップの要因となる。また、ラジアル隙間が5μmより大きければ、本発明に用いる潤滑剤8の低粘度化の効果が生かされる反面、隙間の影響が大きくなり、軸受剛性が低下するため、実用上の使用に耐えない。また、軸の偏心率が大きくなるため、軸もしくは軸受に取り付けられる記録媒体の面振れが大きくなり、記録再生位置の精度低下や信号強度にばらつきが生じ、機器の性能を満たせない。さらに、潤滑剤と空気との接触面積が大きくなるため、潤滑剤の酸化劣化が促進され、軸受寿命が短くなるため不適切である。
また、軸2は、直径2〜4mmの、より好ましくは直径2.5〜3.5mmのマルテンサイト系ステンレス鋼であり、他の金属と比べ、エステル合成時の未反応物である酸等による軸の腐食がない。また、マルテンサイト系は、ステンレス鋼の中でもフェライト系やオーステナイト系と比べ硬いため、表面保護膜作用の小さい低粘度な本発明の潤滑剤8の場合でも摩耗発生量が少ない。具体的には、SUS403系、SUS410系、SUS420系、SUS429系、SUS440系が挙げられる。軸直径が2mm未満の場合、軸受の剛性を大きく上げる必要があり、隙間を大幅に小さくし、軸も長くしなければならないが、隙間を小さくすれば前述の課題があり、軸長さは小型化のため制限が大きく、必要な性能を満たせない。また、軸直径が4mmより大きい場合は、剛性は上がるが、トルクロスが大きくなるため、潤滑剤8の基油の効果が発揮できない。
また、本発明における潤滑剤8は、軸2とスリーブ4が対向する最小隙間であるラジアル隙間10より大きい異物の混入が1000個以下になるよう濾過処理され軸受に充填されている。この異物は、鉄、銅、アルミニウム、珪素、酸素等の成分を含む微粒子や繊維であり、トルクの増大や変動の要因となるだけでなく、軸やスリーブに固着し、軸受のロックを招く恐れがあるため、可能な限り少なくすることが好ましい。濾過処理は、最小隙間寸法以下の孔径のフイルターで加圧もしくは減圧濾過にて行う。
なお、スリーブ4には、銅合金、ステンレス鋼、セラミックス、樹脂等の酸に腐食されにくい材料を使用することが好ましい。さらに、耐摩耗性、加工性、コストの点から、銅合金、ステンレス鋼がより好ましい。なお、スリーブ材料の一部表面または全表面に、メッキ法、物理蒸着法、化学蒸着法、拡散被膜法などによって表面改質を行ってもよい。
なお、ラジアル動圧発生溝は、軸の外周に形成したが、スリーブの軸受孔面でもよく、あるいは軸の外周面及びスリーブの軸受孔面の両方に形成しても良い。また、スラスト動圧発生溝は、スラストプレートと対向するスラストフランジの表面のみ、あるいは、スラストフランジに対向するスラストプレート側の表面のみ、あるいは、スラストフランジの裏面のみ、もしくは前記3箇所のうちの2箇所以上に形成しても良い。
また、ラジアル及びスラスト動圧発生溝は、ヘリングボーン形状、スパイラル形状のどちらの形状も同様の効果が得られる。
なお、本発明の実施の形態は、軸部を片端固定としたが、両端固定の場合、スリーブの軸受孔を両端開放した場合でも同様の効果が得られる。
【0009】
(実施の形態2)
請求項に記載の本発明の流体軸受装置を備えたスピンドルモータについて図1を用いて説明する。なお、実施の形態1に記載した図2の流体軸受装置と同様の構成をなすものには同一の符号を付けて説明する。具体的には、軸固定を軸回転方式にした点及びスラスト動圧発生溝をへリングボーン形状にした点で、図1の流体軸受装置とは異なる。
外周面にヘリングボーン形状のラジアル動圧発生溝2a、2bが形成された軸2の一端にスラストフランジ3が固定され、他端に磁気ディスク等を取り付ける為のハブ5が圧入され、回転部が形成されている。一方、回転部を受けるスリーブ4は、ベース1に圧入されており、その一端にはスラストプレート9が取り付けられて固定部が形成されている。そして、スラストプレート9とスラストフランジ3とが対向するようにスリーブ4の軸受孔に軸部が挿入されており、スラストプレート9と対向するスラストフランジ3の表面には、へリングボーン形状のスラスト動圧発生溝3aが形成されている。これら軸受孔と軸部の隙間には潤滑剤8が充填され軸受装置が形成される。
また、ベース1に形成された壁にはステータコイル7が設けられ、ハブ5の内周面にステータコイル7と対向してロータマグネット6が取り付けられて、モータ駆動部が構成される。
このモータ駆動部により回転部が回転駆動すると、ラジアル方向、スラスト方向とも実施の形態1と同様に潤滑剤8に動圧が発生し、回転部と固定部とが非接触で回転支持される。
【0010】
【実施例】
次に、本発明のスピンドルモータについて、実施例及び比較例を用いて、さらに詳細に説明する。
【0011】
(実施例1)
3−メチル−1,5−ペンタンジオールとn−ヘプタン酸とから得られるエステルを基油とした
(実施例2)
3−メチル−1,5−ペンタンジオールとn−オクタン酸とから得られるエステルを基油とした
(実施例3)
3−メチル−1,5−ペンタンジオールとn−ヘプタン酸/n−オクタン酸(モル比20:80)とから得られる3種類のエステル混合物を基油とした
(実施例4)
3−メチル−1,5−ペンタンジオールとn−オクタン酸とから得られるエステル及び、ジエステルであるアジピン酸ジ(2−エチルヘキシル)の2種類のエステルを重量比80:20で混合し、基油とした
(比較例1)
ネオペンチルグリコールとn−オクタン酸/n−デカン酸(モル比50:50)とから得られ3種類のポリオールエステル混合物を基油とした
(比較例2)
ジエステルであるセバシン酸ジ(2−エチルヘキシル)を基油とした
(比較例3)
モノエステルであるパルミチン酸オクチルを基油とした
(比較例4)
3−メチル−1,5−ペンタンジオールとn−ヘプタン酸/n−オクタン酸(モル比20:80)とから得られる3種類のエステル混合物を基油とした(濾過未処理)。
前記の実施例及び比較例の基油を含む潤滑剤が充填され、軸とスリーブのラジアル隙間を3μm、軸を直径3mmのマルテンサイト系ステンレス鋼、スリーブを銅合金とした流体軸受装置を備えたスピンドルモータを構成し、0℃及び20℃の環境下にて、回転数4200rpmのモータ消費電流を測定した。なお、比較例1の20℃のモータ消費電流値を100として、各例のモータ消費電流値を示した。その測定結果を表1に示す。さらに、−40℃及び−50℃の環境下にて、それぞれのスピンドルモータにおいて回転起動の可否を評価した。また、充填する潤滑剤は比較例4のみ濾過未処理で、それ以外は孔径3μm以下のフイルターで濾過処理を行った。
【0012】
【表1】

Figure 0004122900
【0013】
表1から明らかなように、実施例1〜実施例4はいずれの場合においても、比例1及び比較例2に比べ、モータ消費電流が低減されており、さらに、−40℃の極低温域でも、回転起動可能であった。また、単一エステルである実施例2の場合は、−50℃では回転起動できなかったが、本発明のエステル混合物を基油とした実施例3及び実施例4では、回転起動可能であった。一方、比較例3はモータ消費電流こそ、実施例よりも低い場合があるものの−40℃以下では全く回転起動できなかった。
また、比較例4は、モータ消費電流、回転起動の可否とも、実施例3と同等であったが、トルク変動が生じた。
一方、実施例1から実施例4及び比較例1から比較例4と同様に構成し、回転起動させていないスピンドルモータから潤滑剤を回収し、3μm以上の異物の個数をあらかじめカウントしておいた。その結果、比較例4の場合の異物は明らかに1000個以上あったが、その他はいずれも1000個以下に濾過されていた。これらから異物の個数とトルク変動には関連があることがわかる。
以上のことから、本発明の流体軸受装置及びスピンドルモータでは、低トルクかつ−40℃でも回転起動可能で、トルクの変動もない。
【0014】
【発明の効果】
以上のように本発明によれば、流体軸受装置の潤滑剤として、3−メチル−1,5−ペンタンジオールとn−ヘプタン酸及び/またはn−オクタン酸とから得られるエステルを基油とするため、従来と比べより低トルクとなる流体軸受装置を実現できる。さらに、−40℃以下の極低温域でも容易に回転起動が可能となり、装置の使用温度範囲が拡大できる。
【図面の簡単な説明】
【図1】本発明の実施の形態2における流体軸受装置を有するスピンドルモータの断面図
【図2】本発明の実施の形態1における流体軸受装置の断面図
【符号の説明】
1、1a ベース
2 軸
2a、2b ラジアル動圧発生溝
3 スラストフランジ
3a スラスト動圧発生溝
4 スリーブ
5 ハブ
6 ロータマグネット
7 ステータコイル
8 潤滑剤
9 スラストプレート
10 ラジアル隙間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodynamic bearing device used in a rotating body device such as a magnetic disk device and a spindle motor using the same, and particularly has a feature in means for reducing bearing torque and motor current consumption. It is.
[0002]
[Prior art]
A hydrodynamic bearing device is composed of a shaft and a bearing that receives the shaft. Lubricant interposed in a gap facing each other is collected by a dynamic pressure generating groove formed in the shaft or the bearing as it rotates to generate pressure. And supported in a non-contact manner.
Spindle motors equipped with these hydrodynamic bearing devices have excellent rotational accuracy, shock resistance, and quietness, which are indispensable for improving the recording density of media. Is becoming mainstream.
In recent years, spindle motors are strongly demanded to reduce motor current consumption, and in particular, to reduce torque of hydrodynamic bearing devices that occupy most of them, from the viewpoint of miniaturization of equipment and energy saving. Since the torque of the hydrodynamic bearing device is proportional to the viscosity of the lubricant to be filled, a lubricant having a lower viscosity is required. Therefore, as a base oil that is a main component of the lubricant, there is an ester obtained from neopentyl glycol and a monovalent fatty acid having 6 to 12 carbon atoms and / or a derivative thereof (see, for example, Patent Document 1). Further, a hydrodynamic bearing device using monoester or the like has been proposed (for example, see Patent Document 2).
[0003]
[Patent Document 1]
JP 2001-316687 A (Section 3-6)
[0004]
[Patent Document 2]
Japanese Unexamined Patent Publication No. 2000-63860 (Section 2-4)
[0005]
[Problems to be solved by the invention]
However, the conventional hydrodynamic bearing device using these lubricants has a problem in that the required torque cannot be sufficiently reduced due to the limitation of the bearing size in miniaturization.
Also, if monoester lubricants are used, it is possible to reduce the torque of the bearings. However, since they usually have a high pour point, they lose fluidity and solidify in a low temperature range of 0 ° C. and −20 ° C. or lower. There is a fear. Therefore, when these lubricants are used in a fluid bearing device for portable equipment or in-vehicle equipment, the bearing torque becomes very large under the required environment of -40 ° C. or less, and the rotation cannot be started. A problem arises and the operating temperature range is limited.
An object of the present invention is to solve the above-mentioned problems, and to provide a hydrodynamic bearing device that can be rotated and started even in a cryogenic temperature range and a spindle motor using the same.
[0006]
[Means for Solving the Problems]
In the hydrodynamic bearing device of the present invention and the spindle motor using the same, the lubricant is based on an ester obtained from 3-methyl- 1,5-pentanediol and n-heptanoic acid and / or n-octanoic acid. It is characterized by that.
According to the present invention, an ester having low viscosity and excellent low-temperature fluidity is used as a lubricant base oil. A spindle motor using can be realized.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The hydrodynamic bearing device according to claim 1 of the present invention is the hydrodynamic bearing device in which a dynamic pressure generating groove is provided in at least one of the shaft and the sleeve, and a lubricant is present in a gap between the shaft and the sleeve. The lubricant is characterized in that an ester obtained from 3-methyl- 1,5-pentanediol and n-heptanoic acid and / or n-octanoic acid is a base oil. According to the configuration of the present invention, the lubricant base oil has a low viscosity and excellent low-temperature fluidity. Therefore, the magnetic disk does not solidify even at an extremely low temperature range of −40 ° C. , and can rotate at a low torque and an extremely low temperature range. A fluid bearing device for a device can be realized.
Further, since the base oil of the lubricant is two or more ester compounds having different molecular structures, the crystallinity is lost as compared with the ester having a single structure, and the low temperature fluidity can be improved. Rotation can be easily started even at extremely low temperatures.
The spindle motor according to claim 2 of the present invention is characterized by comprising a fluid bearing device for a magnetic disk apparatus according to claim 1. According to the configuration of the present invention, the current consumption of the motor is rather low, can be realized rotatable spindle motor even at an extremely low temperature region.
[0008]
(Embodiment 1)
Hereinafter, the hydrodynamic bearing device according to the first aspect of the present invention will be described with reference to FIG.
A thrust flange 3 is fixed to one end of the shaft 2 in which the herringbone-shaped radial dynamic pressure generating grooves 2a and 2b are formed on the outer peripheral surface to form a shaft portion, and the other end of the shaft 2 is press-fitted and fixed to the base 1a. The The shaft portion is inserted into the bearing hole of the sleeve 4, and a thrust plate 9 is attached to the sleeve 4 so as to face the thrust flange 3 so as to block one bearing hole. Further, on the surface of the thrust flange 3 facing the thrust plate 9, a spiral-shaped thrust dynamic pressure generating groove 3a is formed. A gap between the bearing hole and the shaft portion is filled with a lubricant 8. With rotation, the lubricant 8 is collected by the radial dynamic pressure generating grooves 2 a and 2 b formed in the shaft 2, and pressure is generated in the radial gap 10 between the shaft 2 and the sleeve 4. It is supported without contact in the radial direction. Further, in the thrust direction, the lubricant 8 is collected by the thrust dynamic pressure generating groove 3 a and generates pressure, so that the thrust plate 9 floats and is supported without contact with the thrust flange 3. As the base oil of the lubricant 8, an ester obtained from 3-methyl- 1,5-pentanediol and n-heptanoic acid and / or n-octanoic acid is used. As a result, it can rotate with a lower torque than in the conventional case.
The synthesis of the ester serving as the base oil can be carried out by a known esterification reaction with a predetermined alcohol component and an acid component in the presence or absence of a catalyst.
The 1,5-pentanediol having one alkyl side chain at the γ-position which is an alcohol component is preferably a lower alkyl group such as a methyl group, an ethyl group or a propyl group as the alkyl side chain, and more preferably a methyl group. Since pentanediol having one methyl group side chain has a low molecular weight, it has a lower viscosity and can reduce bearing torque. Specific examples include 2-methyl-1,5-pentanediol and 3-methyl-1,5-pentanediol, and the latter is preferable in terms of lower torque and excellent heat resistance.
Since the acid component n-heptanoic acid and / or n-octanoic acid does not contain an unsaturated bond, it has high thermal and oxidative stability, hardly deteriorates even in a high-temperature environment or high-speed rotation, and the life of the apparatus is long. Since it becomes long, it is more preferable than unsaturated monovalent fatty acid. Further, when the number of carbon atoms is 4 or less, the bearing has a lower torque, but the heat resistance is low, so the long-term reliability of the device cannot be obtained. In addition, when the number of carbon atoms is 9 or more, the viscosity increases, and the effect of reducing the torque of the bearing cannot be expected. Further, since the solidification occurs around −30 ° C., rotation cannot be started at −40 ° C.
These acid components may be linear or branched. Above all, the linear type has a lower viscosity than the branched type, the viscosity temperature change can be suppressed to a small level, and the lubrication performance is good, so the bearing torque and torque temperature change are small, and the friction and wear of the bearing The amount can also be suppressed, which is preferable. Specifically, n-heptanoic acid and n-octanoic acid are more preferable in terms of heat resistance.
When the base oil of the lubricant 8 of the present invention is a mixture of two or more esters obtained from 3-methyl- 1,5-pentanediol and n-heptanoic acid and / or n-octanoic acid, Since fluidity improves, it is preferable. Specifically, it can be obtained by mixing two or more kinds of single structure esters synthesized from one kind of alcohol component and one kind of acid component. In addition, when synthesized from one alcohol component and two acid components, there are two single-structure esters in which only one acid component is bonded in one ester molecule, and two acids in one ester molecule. One type of ester having a mixed structure in which components are combined is obtained, resulting in a total of three types of ester mixtures.
In addition, the base oil of the lubricant 8 of the present invention includes an ester obtained from 3-methyl- 1,5-pentanediol and n-heptanoic acid and / or n-octanoic acid, Different types of base oils can be mixed. The added base oil can be appropriately selected according to the purpose of further reducing the viscosity, adding or supplementing another performance. Specific examples include known compounds such as mineral oil, poly α-olefin, alkyl aromatic, polyglycol, phenyl ether, polyol ester, diester, and phosphate ester. These additive base oils can be used alone or in combination of two or more. Among these, polyol esters and diesters are preferable because low viscosity is easily obtained, excellent low-temperature fluidity, and high heat resistance. Among the polyol esters, an ester in which the alcohol component is neopentyl glycol and the acid component is a saturated monovalent fatty acid having 6 to 10 carbon atoms has lower torque and excellent low-temperature fluidity. Among diesters, di (2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, di (2-ethylhexyl) azelate, and di (2-ethylhexyl) sebacate have lower viscosity and versatility. Since it is high, the bearing torque can be reduced, which is preferable in terms of cost reduction. Conversely, an ester obtained from 3-methyl- 1,5-pentanediol and n-heptanoic acid and / or n-octanoic acid as an additive base oil may be mixed with the polyol ester or diester.
In addition to these base oils, additives can be added to the lubricant 8. As the additive, a known compound can be selected for the purpose of improving and complementing the performance of the base oil. Specifically, antioxidants, rust inhibitors, metal deactivators, oily agents, extreme pressure agents, friction modifiers, antiwear agents, viscosity index improvers, pour point depressants, antifoaming agents, imparting electrical conductivity 1 type, or 2 or more types of an agent and a cleaning dispersing agent can be mix | blended. Additives cause gas generation and deterioration with deterioration, and reduce the performance of bearings and equipment. Therefore, the total amount of additives should be kept to a minimum.
When the radial gap 10 between the shaft 2 and the sleeve 4 is 1 to 5 μm, more preferably 1.5 to 4 μm, the bearing can sufficiently exhibit the effect of reducing the viscosity of the lubricant 8 in the present invention. Since the torque is proportional to the reciprocal of the gap and the rigidity is proportional to the reciprocal of the nth power of the gap, a gap corresponding to the viscosity of the lubricant is required. Easy to get. If the radial gap is less than 1 μm, even if the lubricant 8 in the present invention is used, the influence of the gap is large and the effect of reducing the torque of the bearing cannot be obtained. In addition, the bearings are very easily locked by the influence of mixed foreign substances and wear powder generated at the time of starting and stopping, so that the reliability of the apparatus is lowered. Furthermore, high machining accuracy and assembly accuracy of the shaft and sleeve are necessary, which increases the cost. On the other hand, if the radial gap is larger than 5 μm, the effect of lowering the viscosity of the lubricant 8 used in the present invention is utilized, but the influence of the gap is increased, and the bearing rigidity is lowered. Further, since the eccentricity of the shaft is increased, the surface deflection of the recording medium attached to the shaft or the bearing is increased, the accuracy of the recording / reproducing position is lowered and the signal intensity is varied, and the performance of the apparatus cannot be satisfied. Furthermore, since the contact area between the lubricant and air is increased, the oxidative deterioration of the lubricant is promoted and the bearing life is shortened.
The shaft 2 is a martensitic stainless steel having a diameter of 2 to 4 mm, more preferably a diameter of 2.5 to 3.5 mm, and is based on an unreacted acid or the like during ester synthesis compared to other metals. There is no shaft corrosion. Further, since the martensite system is harder than the ferritic and austenitic systems among the stainless steels, even in the case of the low-viscosity lubricant 8 of the present invention having a small surface protective film action, the amount of wear is small. Specific examples include SUS403 series, SUS410 series, SUS420 series, SUS429 series, and SUS440 series. If the shaft diameter is less than 2 mm, it is necessary to greatly increase the rigidity of the bearing, and the gap must be greatly reduced and the shaft must be lengthened. However, if the gap is reduced, the above-mentioned problems occur and the shaft length is small. The limit is large due to the increase in size and the required performance cannot be met. Further, when the shaft diameter is larger than 4 mm, the rigidity is increased, but because the torque cross becomes large, the effect of the base oil of the lubricant 8 cannot be exhibited.
Further, the lubricant 8 in the present invention is filtered and filled in the bearing so that the number of foreign matters larger than the radial gap 10 which is the minimum gap where the shaft 2 and the sleeve 4 face each other is 1000 or less. These foreign substances are fine particles and fibers containing components such as iron, copper, aluminum, silicon, oxygen, etc., which not only increase torque and cause fluctuations, but also adhere to the shaft and sleeve and may cause bearing locking. Therefore, it is preferable to reduce it as much as possible. The filtration process is performed by pressure or vacuum filtration with a filter having a pore size equal to or smaller than the minimum gap size.
The sleeve 4 is preferably made of a material that is not easily corroded by acids such as copper alloy, stainless steel, ceramics, and resin. Furthermore, copper alloy and stainless steel are more preferable from the viewpoint of wear resistance, workability, and cost. Note that surface modification may be performed on a part or all of the sleeve material by plating, physical vapor deposition, chemical vapor deposition, diffusion coating, or the like.
Although the radial dynamic pressure generating grooves are formed on the outer periphery of the shaft, they may be formed on the bearing hole surface of the sleeve or on both the outer peripheral surface of the shaft and the bearing hole surface of the sleeve. Further, the thrust dynamic pressure generating groove is formed only on the surface of the thrust flange facing the thrust plate, only the surface of the thrust plate facing the thrust flange, only the back surface of the thrust flange, or two of the three locations. You may form more than a location.
In addition, the radial and thrust dynamic pressure generating grooves can obtain the same effect in both the herringbone shape and the spiral shape.
In the embodiment of the present invention, the shaft portion is fixed at one end. However, when both ends are fixed, the same effect can be obtained even when both ends of the bearing hole of the sleeve are opened.
[0009]
(Embodiment 2)
A spindle motor provided with the hydrodynamic bearing device according to the second aspect of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected and demonstrated to what makes the structure similar to the hydrodynamic bearing apparatus of FIG. 2 described in Embodiment 1. FIG. Specifically, it differs from the hydrodynamic bearing device of FIG. 1 in that the shaft is fixed to a shaft rotation type and the thrust dynamic pressure generating groove is in a herringbone shape.
A thrust flange 3 is fixed to one end of the shaft 2 in which the herringbone-shaped radial dynamic pressure generating grooves 2a and 2b are formed on the outer peripheral surface, and a hub 5 for attaching a magnetic disk or the like is press-fitted to the other end. Is formed. On the other hand, the sleeve 4 that receives the rotating portion is press-fitted into the base 1, and a thrust plate 9 is attached to one end of the sleeve 4 to form a fixed portion. A shaft portion is inserted into the bearing hole of the sleeve 4 so that the thrust plate 9 and the thrust flange 3 face each other, and the surface of the thrust flange 3 facing the thrust plate 9 has a herringbone-shaped thrust motion. A pressure generating groove 3a is formed. A gap between the bearing hole and the shaft portion is filled with a lubricant 8 to form a bearing device.
A stator coil 7 is provided on the wall formed on the base 1, and a rotor magnet 6 is attached to the inner peripheral surface of the hub 5 so as to face the stator coil 7, thereby constituting a motor drive unit.
When the rotating part is driven to rotate by this motor driving part, dynamic pressure is generated in the lubricant 8 in both the radial direction and the thrust direction, and the rotating part and the fixed part are supported in rotation without contact.
[0010]
【Example】
Next, the spindle motor of the present invention will be described in more detail using examples and comparative examples.
[0011]
(Example 1)
An ester obtained from 3-methyl-1,5-pentanediol and n-heptanoic acid was used as a base oil (Example 2).
An ester obtained from 3-methyl-1,5-pentanediol and n-octanoic acid was used as a base oil (Example 3).
Three ester mixtures obtained from 3-methyl-1,5-pentanediol and n-heptanoic acid / n-octanoic acid (molar ratio 20:80) were used as the base oil (Example 4).
An ester obtained from 3-methyl-1,5-pentanediol and n-octanoic acid and two esters of di (2-ethylhexyl) adipate, which is a diester, are mixed at a weight ratio of 80:20 to obtain a base oil (Comparative Example 1)
(Comparative Example 2) Three kinds of polyol ester mixtures obtained from neopentyl glycol and n-octanoic acid / n-decanoic acid (molar ratio 50:50) were used as the base oil.
Diester sebacate di (2-ethylhexyl) as a base oil (Comparative Example 3)
A monoester octyl palmitate was used as a base oil (Comparative Example 4)
Three types of ester mixtures obtained from 3-methyl-1,5-pentanediol and n-heptanoic acid / n-octanoic acid (molar ratio 20:80) were used as a base oil (unfiltered).
A hydrodynamic bearing device is provided which is filled with a lubricant containing the base oils of the above-described examples and comparative examples, wherein the radial gap between the shaft and the sleeve is 3 μm, the shaft is a martensitic stainless steel having a diameter of 3 mm, and the sleeve is a copper alloy. A spindle motor was configured, and the motor current consumption at a rotational speed of 4200 rpm was measured in an environment of 0 ° C. and 20 ° C. In addition, the motor consumption current value of each example was shown by setting the motor consumption current value of 20 ° C. of Comparative Example 1 to 100. The measurement results are shown in Table 1. Furthermore, whether or not rotation start was possible in each spindle motor was evaluated in an environment of −40 ° C. and −50 ° C. In addition, the lubricant to be filled was not subjected to filtration only in Comparative Example 4, and other than that, filtration was performed with a filter having a pore diameter of 3 μm or less.
[0012]
[Table 1]
Figure 0004122900
[0013]
As can be seen from Table 1, in each of Examples 1 to 4, the motor current consumption is reduced as compared with proportional 1 and comparative example 2, and even in an extremely low temperature range of −40 ° C. It was possible to start rotating. Moreover, in the case of Example 2 which is a single ester, the rotation could not be started at −50 ° C., but in Example 3 and Example 4 using the ester mixture of the present invention as a base oil, rotation could be started. . On the other hand, in Comparative Example 3, the motor current consumption may be lower than that of the example, but rotation could not be started at -40 ° C. or lower.
In Comparative Example 4, the motor current consumption and the availability of rotation start were the same as in Example 3, but torque fluctuations occurred.
On the other hand, the configuration was the same as in Examples 1 to 4 and Comparative Examples 1 to 4, and the lubricant was collected from the spindle motor that had not been rotationally activated, and the number of foreign matters of 3 μm or more was counted in advance. . As a result, in the case of Comparative Example 4, the number of foreign matters was clearly 1000 or more, but the others were all filtered to 1000 or less. From these, it can be seen that there is a relationship between the number of foreign matter and torque fluctuation.
From the above, the hydrodynamic bearing device and the spindle motor of the present invention can be rotated and started even at a low torque of −40 ° C., and there is no fluctuation in torque.
[0014]
【The invention's effect】
As described above, according to the present invention, as a lubricant for a hydrodynamic bearing device, an ester obtained from 3-methyl- 1,5-pentanediol and n-heptanoic acid and / or n-octanoic acid is used as a base oil. Therefore, it is possible to realize a hydrodynamic bearing device that has a lower torque than conventional ones. Furthermore, the rotation can be easily started even in an extremely low temperature range of −40 ° C. or lower, and the operating temperature range of the apparatus can be expanded.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a spindle motor having a hydrodynamic bearing device according to a second embodiment of the present invention. FIG. 2 is a cross-sectional view of a hydrodynamic bearing device according to a first embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1, 1a Base 2 Shaft 2a, 2b Radial dynamic pressure generating groove 3 Thrust flange 3a Thrust dynamic pressure generating groove 4 Sleeve 5 Hub 6 Rotor magnet 7 Stator coil 8 Lubricant 9 Thrust plate 10 Radial gap

Claims (2)

軸とスリーブの少なくとも一方に動圧発生溝を有し、前記軸と前記スリーブが対向する隙間に潤滑剤が存在する流体軸受装置において、前記潤滑剤は、3−メチル−1,5−ペンタンジオールとn−ヘプタン酸及び/またはn−オクタン酸とから得られるエステルが基油であることを特徴とする磁気ディスク装置用流体軸受装置。In the hydrodynamic bearing device having a dynamic pressure generating groove in at least one of the shaft and the sleeve, and the lubricant is present in a gap where the shaft and the sleeve face each other, the lubricant is 3-methyl- 1,5-pentanediol. A hydrodynamic bearing device for a magnetic disk drive , wherein an ester obtained from n-heptanoic acid and / or n-octanoic acid is a base oil. 請求項1に記載の磁気ディスク装置用流体軸受装置を備えたスピンドルモータ A spindle motor comprising the fluid dynamic bearing device for a magnetic disk device according to claim 1.
JP2002248289A 2002-08-28 2002-08-28 Hydrodynamic bearing device and spindle motor using the same Expired - Fee Related JP4122900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248289A JP4122900B2 (en) 2002-08-28 2002-08-28 Hydrodynamic bearing device and spindle motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248289A JP4122900B2 (en) 2002-08-28 2002-08-28 Hydrodynamic bearing device and spindle motor using the same

Publications (2)

Publication Number Publication Date
JP2004084839A JP2004084839A (en) 2004-03-18
JP4122900B2 true JP4122900B2 (en) 2008-07-23

Family

ID=32055708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248289A Expired - Fee Related JP4122900B2 (en) 2002-08-28 2002-08-28 Hydrodynamic bearing device and spindle motor using the same

Country Status (1)

Country Link
JP (1) JP4122900B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282713A1 (en) * 2004-03-31 2005-12-22 Matsushita Electric Industrial Co., Ltd. Hydrodynamic bearing device and spindle motor using the same
JP5640315B2 (en) * 2009-02-06 2014-12-17 新日本理化株式会社 Lubricating oil composition for hydrodynamic bearings or sintered oil-impregnated bearings
JP5998869B2 (en) * 2011-12-08 2016-09-28 新日本理化株式会社 Lubricating base oil for fluid bearings and spindle motor
WO2013183463A1 (en) 2012-06-07 2013-12-12 新日本理化株式会社 Lubricant base oil for fluid bearing
JP7335514B2 (en) 2018-12-20 2023-08-30 新日本理化株式会社 Lubricating base oil for fluid bearings

Also Published As

Publication number Publication date
JP2004084839A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
US7947635B2 (en) Hydrodynamic bearing device and spindle motor using the same
US7776802B2 (en) Hydrodynamic bearing device, and spindle motor and information device using the same
JP2006105207A (en) Fluid bearing device, spindle motor using the same, and disk driving device using the spindle motor
JP4122900B2 (en) Hydrodynamic bearing device and spindle motor using the same
US7459416B2 (en) Fluid bearing unit and spindle motor using the same
JP3889915B2 (en) Lubricating oil for fluid bearing and fluid bearing using the same
JP2005290256A (en) Fluid bearing apparatus and spindle motor using the same
US7846883B2 (en) Hydrodynamic bearing device, and spindle motor and information device using the same
JP2006096849A (en) Lubricating oil, lubricating oil for fluid bearing and fluid bearing using the same
JP2006064151A (en) Fluid bearing, spindle motor using it, and magnetic disc unit
JP2006193723A (en) Liquid bearing device, spindle motor given by using the same, and information device
JP4162507B2 (en) Lubricating oil for fluid bearing and fluid bearing using the same
JP4282289B2 (en) Lubricating oil for fluid bearing and fluid bearing using the same
JP2005291332A (en) Fluid bearing device and spindle motor using it
JP2002195252A (en) Fluid bearing device and scanner motor for image forming apparatus using bearing device
JP5298903B2 (en) Hydrodynamic bearing device
JP2010037490A (en) Lubricating oil composition for hydrodynamic bearing device, and fluid bearing device using the same
JP2010106083A (en) Ionic liquid-containing lubricating oil composition
JP3573125B2 (en) Motor and motor built-in device
JP2006083321A (en) Lubricating oil composition, kinetic liquid bearing and motor loading liquid bearing using the same composition
JP4751151B2 (en) Lubricating oil for fluid bearing motor and bearing motor using the same
JP2007120653A (en) Hydrodynamic bearing device, and spindle motor and information device using the same
JP2003171685A (en) Lubricant composition for fluid bearing and fluid bearing device
JP2010138316A (en) Bearing lubricant, bearing and disc driving unit
JP3917388B2 (en) Lubricating oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R151 Written notification of patent or utility model registration

Ref document number: 4122900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees