[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4121424B2 - Dual polarized antenna - Google Patents

Dual polarized antenna Download PDF

Info

Publication number
JP4121424B2
JP4121424B2 JP2003181607A JP2003181607A JP4121424B2 JP 4121424 B2 JP4121424 B2 JP 4121424B2 JP 2003181607 A JP2003181607 A JP 2003181607A JP 2003181607 A JP2003181607 A JP 2003181607A JP 4121424 B2 JP4121424 B2 JP 4121424B2
Authority
JP
Japan
Prior art keywords
antenna
polarized antenna
linearly polarized
frequency
patch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003181607A
Other languages
Japanese (ja)
Other versions
JP2005020301A (en
Inventor
徹 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maspro Denkoh Corp
Original Assignee
Maspro Denkoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maspro Denkoh Corp filed Critical Maspro Denkoh Corp
Priority to JP2003181607A priority Critical patent/JP4121424B2/en
Publication of JP2005020301A publication Critical patent/JP2005020301A/en
Application granted granted Critical
Publication of JP4121424B2 publication Critical patent/JP4121424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,主にマイクロ波帯の衛星通信や無線通信に用いられる2偏波共用アンテナに関し,詳しくはそのアンテナ構造に関する。
【0002】
【従来の技術】
従来の円偏波と直線偏波の2偏波共用アンテナとして,円偏波用アンテナのパッチと直線偏波用アンテナのエレメントとを共通の接地導体に対して同じ厚さの誘電体上に並べて配置したマイクロストリップアンテナや,それぞれの偏波を受信する2つのマイクロストリップアンテナを並べて構成されたものがあった。(例えば特許文献1(図1),(図6)参照)
【0003】
【特許文献】
特開平5−291816号公報
【0004】
【発明が解決しようとする課題】
自動車などの移動体8で,衛星23から送信される放送の電波を受信する場合において,衛星23から送信された電波がビル28やトンネルなどにより遮られる地域ではその電波を受信できなくなる。この対策として,衛星23からの電波を地上無線設備24で受信して地上無線設備24から再送信したり,衛星23からの電波を地上無線設備24で受信して周波数変換等の処理後,再送信するギャップフィラーのシステムが開発されている。
【0005】
次にこのシステムの一例について述べる。衛星23は2.6GHz帯の円偏波の電波と,12GHz帯の直線偏波の電波の2種類の電波を送信している。
地上無線設備24では,衛星から送信された2.6GHz帯の円偏波の電波を受信して増幅をした後,2.6GHz帯の垂直偏波で再送信したり,衛星23から送信された12GHz帯の直線偏波の電波を受信して増幅,周波数変換その他の信号処理をした後,2.6GHz帯の垂直偏波で再送信する。
このようなシステムでは,移動体8は衛星23から直接送信される2.6GHz帯の電波と地上無線設備24から再送信される2.6GHz帯の垂直偏波の電波の両方を受信できるアンテナが必要となる。
しかし前記従来例のアンテナでは,直線偏波用のアンテナの放射エレメントの電界方向が接地導体に平行であるため垂直偏波の信号の受信が不能となる方向があった。また,円偏波用,垂直偏波用それぞれのアンテナを別々に設けると,アンテナの占める面積が増え,小型化ができないという問題もあった。
【0006】
本発明は,こうした問題点に鑑みなされたものであり,その目的は,上空の高い位置にある衛星から送信される円偏波の電波と,衛星に比べて低い位置に複数設置される地上無線設備から送信される垂直偏波の電波を効率良く受信することができる2偏波共用アンテナを提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するためになされた本発明は,第1の円偏波用のアンテナと第2の直線偏波用のアンテナとを備えた2偏波共用アンテナにおいて,
前記第1の円偏波用のアンテナは,パッチと接地導体が第2の直線偏波用のアンテナの給電線の外部導体で接続されたマイクロストリップアンテナで構成され,
前記第2の直線偏波用のアンテナは,前記第1の円偏波用のアンテナの接地導体に対して略垂直に立設され,2つ以上の異なる周波数帯で動作する放射エレメントで構成され,
しかも,該放射エレメントが動作する一つの周波数帯は,前記第1の円偏波用のアンテナの周波数帯と同一であることを特徴とする。
【0012】
【発明の実施の形態】
以下に,本発明を具体化した実施形態の1例を,図面を基に詳細に説明する。
図1は本発明の前提となる参考例の2偏波共用アンテナ1の斜視図を示し,図2はその断面図である。
本参考例の2偏波共用アンテナ1は,接地導体4,誘電体15,パッチ2から成る第1の円偏波用のマイクロストリップアンテナ101と,前記パッチ2と接地導体4が,第2の直線偏波用のアンテナ102の給電線19の外部導体5で接続されている第2の直線偏波用のアンテナ102とで構成される。
【0013】
第1の円偏波用のマイクロストリップアンテナ101においては,前記パッチ2における高周波信号の電圧分布は前記パッチ2の中央付近が最も小さくこの部分は電圧分布の節になっている。このため,前記パッチ2の中央付近は接地導体に短絡させても前記第1のマイクロストリップアンテナ101の特性には影響を与えない。この性質を利用して,本発明では前記パッチ2の中央付近と接地導体を第2の直線偏波用のアンテナ102の給電線19の外部導体5で接続している。
直線偏波用のアンテナ102の給電線19の中心導体7には前記第2の直線偏波用アンテナ102の放射エレメント3が接続されている。このような構造により,前記第2の直線偏波用アンテナ102は前記パッチ2を接地導体の一部として利用している。
【0014】
第1の円偏波用アンテナ101について述べる。衛星23から送信された2.6GHz帯の円偏波の電波は,接地導体4,誘電体15,パッチ2で構成される第1の円偏波用アンテナ101で受信され,給電線18で移動体8に備えられた車載機(図示されていない)に接続される。
第1の円偏波用アンテナ101は円偏波を受信できるように,略円形のパッチ2の外周には電流分布の位相を調整するための縮退素子を形成する2つの切り欠き部14が設けられている。また,第1のアンテナ101の給電点9は,パッチ2の中央から離れたところに設けられている。なお,パッチ2の直径は受信周波数の略1/2波長である。また,接地導体4は,パッチ2の直径より大きい直径の略円形である。このような構成の円偏波受信用アンテナ101はパッチ2の面と垂直な方向に略円形の指向性11を持つので,図3(a)に示すように自動車などの移動体8の屋根などに取付けて,上方にある衛星23からの電波を効率良く受信する。
【0015】
次に第2の直線偏波用アンテナ102について述べる。
ビル28の屋上などに設置されて,受信アンテナ25,の信号処理装置26,再送信アンテナ27で構成される地上無線設備24は,衛星23から送信された2.6GHz帯の円偏波の電波を受信して地上無線設備の信号処理装置26で増幅し,同じ周波数の電波を垂直偏波で再送信する。また,地上無線設備24は,衛星から送信された12GHz帯の直線偏波の電波を受信して2.6GHz帯の信号に変換したものを垂直偏波で再送信する場合もある。
【0016】
第2の直線偏波用アンテナ102はこのように地上無線設備24から再送信された垂直偏波の電波を受信するためのものである。
第2の直線偏波用のアンテナ102の給電線19の外部導体5は,第1の円偏波用アンテナ101のパッチ2と接地導体4を接地導体の中央部分で接続されていて,第2の直線偏波用のアンテナ102の給電線19の中心導体には略1/4波長の長さの線状の放射エレメント3が第1の円偏波用アンテナ101のパッチ2と略垂直な位置関係で接続されている。
第2の直線偏波用アンテナ102で受信した信号は,給電線19により移動体8に備えられた車載機(図示されていない)に伝送される。
このように,第2の直線偏波用アンテナは,図3(c)の破線で示すように水平面の指向性は無指向性で,図3(b)の破線で示すように垂直面の指向性は低い打上角を有するため,衛星23に比べて低い位置に複数配置された地上無線設備24から再送信される垂直偏波の電波を効率よく受信できる。
【0017】
なお,図1に示すように第1の円偏波用アンテナ101の放射エレメントであるパッチ2と第2の直線偏波用アンテナ102の放射エレメント3がそれぞれ独立して構成されているため,円偏波のみの受信,直線偏波のみの受信,円偏波と直線偏波を同時に受信する場合のいずれの場合でもそれぞれのアンテナの性能が損なわれることは無い。そのため,移動体8の受信状況に応じて円偏波,直線偏波を選択して受信するダイバシティー方式に使用することも可能である。
なお,第1の円偏波用アンテナ101のパッチ2の寸法,及び第2の直線偏波用アンテナ102の放射エレメント3の寸法は,受信する周波数にそれぞれ任意に設計できるので,第1の円偏波用アンテナ101で受信する周波数帯域と第2の直線偏波用アンテナ102で受信する周波数帯域は同一でも良いし,異なっていても良い。
【0018】
第1の円偏波用アンテナ101で受信する周波数帯域と第2の直線偏波用アンテナ102で受信する周波数帯域が同一の例として,2.6GHz帯の周波数帯域による前記ギャップフィラーのシステムが上げられる。
次に,第1の円偏波用アンテナ101で受信する周波数帯域と第2の直線偏波用アンテナ102で受信する周波数帯域が異なる一例を示す。第1の円偏波用アンテナ101で受信する周波数帯域を1.5GHz帯に設計し,第2の直線偏波用アンテナ102で受信する周波数帯域を1.2GHz帯に設計することにより,衛星による測位システム(GPS)の衛星から送信される電波の受信用と,地上で交信されるアマチュア無線用の両用アンテナとして使用できる。
【0019】
一方,図4(a)は,本発明が適用された実施形態の2偏波共用アンテナ1を表す。
本実施形態の2偏波共用アンテナ1は,第2の直線偏波用のアンテナ102を2周波共用のアンテナにしたものである。
この第2の直線偏波用のアンテナ102は,放射エレメントの途中に設けられたトラップコイル20により,第1の周波数f1では,図4(a)のように第1の放射エレメント16のみで共振する。破線は第1の周波数の高周波電流の分布21を示す
また,第1の周波数f1より周波数の低い第2の周波数f2では,図4(b)のように第1の放射エレメント16とトラップコイル20と第2の放射エレメント17により共振する。破線は第2の周波数の高周波電流の分布22を示す。
このように,第2の直線偏波用のアンテナ102は異なる複数の周波数帯域で使用できる。例えば,前記第1の周波数f1を2.6GHz帯とし,前記第2の周波数f2を1.5GHz帯に設計すれば,前記ギャップフィラーシステムとデジタルMCA陸上移動通信システムの両方に使用できる。
上記の説明は2つの周波数帯で使用する例を述べたが,同様に放射エレメントの途中にトラップコイルを設けることにより,更に周波数帯の数を増やすことも可能である。また,トラップコイルの代わりに同様の働きをする他の素子(例えばコイルとコンデンサの並列回路など)を用いても良い。
図1,図2,図4(a),図4(b)では第1の円偏波用アンテナ101において,マイクロストリップアンテナの誘電体を空気とした例で示したが,誘電率が2から4程度の誘電体を有するプリント基板を用いても良い。この場合は,誘電体の誘電率と厚さによって決まる電気長でパッチ2の寸法が設計される。
また,図1では第1の円偏波用アンテナ101は,略円形のパッチで構成された例を示したが,パッチ2の形状は略円形に限らず,矩形や他の形状でも良い。尚,これまでの説明では第2の直線偏波用のアンテナ102をモノポールアンテナを例に述べたが,多段のコリニアアンテナなどの他のアンテナでも良い。
また,防水及び機械的な保護のため,本発明に係る2偏波共用アンテナ1を電波を透過する材料で覆って使用しても良い。
【0020】
尚,本発明は上記実施の形態に限定されるものではなく,本発明の趣旨を逸脱しない範囲で各部の寸法並びに構成を適宜に変更して実施することも可能である。
【0021】
【発明の効果】
以上詳述したように,本発明の2偏波共用アンテナによれば第1の円偏波用アンテナのパッチ2を第2の直線偏用アンテナの接地導体の一部として使用しているため,アンテナの面積は,円偏波用アンテナと直線偏用アンテナの2つのアンテナをそれぞれ単独に設置する場合に比べて約半分で済み,アンテナの小型化が可能となる。
【0022】
また,第2の直線偏波用アンテナは接地導体に対して略垂直な方向に放射エレメントを備えているので,垂直面の指向性において打上角が低くなり,地上無線設備から再送信された電波を効率良く受信することができる。
【0023】
また,第1の円偏波用アンテナのパッチと第2の直線偏波用アンテナの放射エレメントはそれぞれ独立しているので,それぞれの偏波のアンテナの性能を損なうことが無く,2つのアンテナの周波数帯を同一の帯域にでも,異なる帯域にでも,任意に設定できる。
【0025】
そして,特に本発明では,第2の直線偏波用アンテナは2つ以上の異なる周波数帯で動作し,そのうちの一つの周波数帯域は第1の円偏波用アンテナの周波数帯と同一にしているので,例えば,衛星から送信された円偏波の電波と,衛星からの電波を受信して垂直偏波で再送信するギャップフィラーシステムからの電波と,デジタルMCA陸上移動通信システム等の他の地上無線設備から送信された直線偏波の電波を,それぞれ受信する共用アンテナとして使用できる。
【図面の簡単な説明】
【図1】本発明の前提となる参考例の2偏波共用アンテナの構成を表す斜視図である。
【図2】参考例の2偏波共用アンテナの断面図である。
【図3】参考例の2偏波共用アンテナの指向性を表す説明図であり,(a)は第1の円偏波用アンテナの垂直面の指向性を示し,(b)は第2の直線偏波用アンテナの垂直面の指向性を示し,(c)は直線偏波用アンテナの水平面の指向性を示す。
【図4】本発明が適用された実施形態の2偏波共用アンテナの構成を表す斜視図であり,(a)は第1の周波数の高周波電流の分布を示し,(b)は第2の周波数の高周波電流の分布を示す。
【図5】ギャップフィラーのシステム例を示す。
【符号の説明】
1…2偏波共用アンテナ,2…パッチ,3…直線偏波用アンテナの放射エレメント,4…接地導体,5…直線偏波用アンテナの給電線の外部導体,6…円偏波用アンテナの給電線の内部導体,7…直線偏波用アンテナの給電線の内部導体,8…移動体,9…円偏波用アンテナの給電点,10…直線偏波用アンテナの打上角,11…円偏波用アンテナの垂直面の指向性,12…直線偏波用アンテナの垂直面の指向性,13…直線偏波用アンテナの水平面の指向性,14…切り欠き部,15…誘電体,16…第1の放射エレメント,17…第2の放射エレメント,18…第1の円偏波用アンテナの給電線,19…第2の直線偏波用アンテナの給電線,20…トラップコイル,21…第1の周波数の高周波電流の分布,22…第2の周波数の高周波電流の分布,23…衛星,24…地上無線設備,25…地上無線設備の受信アンテナ,26…地上無線設備の信号処理装置,27…地上無線設備の再送信アンテナ,28…ビル,101…第1の円偏波用アンテナ,102…第2の直線偏波用アンテナ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dual-polarized antenna used mainly for microwave band satellite communication and wireless communication, and more particularly to the antenna structure.
[0002]
[Prior art]
As a conventional dual-polarization antenna for circular and linear polarization, a circularly polarized antenna patch and a linearly polarized antenna element are arranged on a dielectric with the same thickness against a common ground conductor. There was a configuration in which arranged microstrip antennas and two microstrip antennas that receive respective polarized waves were arranged side by side. (For example, see Patent Document 1 (FIG. 1), (FIG. 6))
[0003]
[Patent Literature]
JP-A-5-291816 [0004]
[Problems to be solved by the invention]
When the mobile 8 such as an automobile receives a broadcast radio wave transmitted from the satellite 23, the radio wave cannot be received in an area where the radio wave transmitted from the satellite 23 is blocked by a building 28 or a tunnel. As countermeasures, the radio wave from the satellite 23 is received by the terrestrial radio equipment 24 and retransmitted from the terrestrial radio equipment 24, or the radio wave from the satellite 23 is received by the terrestrial radio equipment 24 and subjected to processing such as frequency conversion. Transmission gap filler systems have been developed.
[0005]
Next, an example of this system will be described. The satellite 23 transmits two types of radio waves, a circularly polarized radio wave in the 2.6 GHz band and a linearly polarized radio wave in the 12 GHz band.
The terrestrial radio equipment 24 receives and amplifies the 2.6 GHz band circularly polarized radio wave transmitted from the satellite and then retransmits it with the 2.6 GHz band vertically polarized wave or transmits it from the satellite 23. After receiving 12 GHz band linearly polarized radio waves and performing amplification, frequency conversion and other signal processing, it retransmits with 2.6 GHz vertical polarization.
In such a system, the mobile unit 8 has an antenna capable of receiving both a 2.6 GHz band radio wave directly transmitted from the satellite 23 and a 2.6 GHz band vertically polarized radio wave retransmitted from the ground radio equipment 24. Necessary.
However, in the antenna of the conventional example, there is a direction in which reception of the vertically polarized signal is impossible because the electric field direction of the radiation element of the antenna for linear polarization is parallel to the ground conductor. In addition, if antennas for circular polarization and vertical polarization are provided separately, the area occupied by the antenna increases, and there is a problem that miniaturization cannot be achieved.
[0006]
The present invention has been made in view of these problems , and its object is to provide a circularly polarized radio wave transmitted from a satellite at a high position in the sky and a plurality of terrestrial radios installed at positions lower than the satellite. to provide a 2-polarization shared antenna can efficiently receive radio waves vertical polarization sent equipment or al.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a dual-polarized antenna comprising a first circularly polarized antenna and a second linearly polarized antenna,
The first circularly polarized antenna includes a microstrip antenna in which a patch and a ground conductor are connected by an outer conductor of a second linearly polarized antenna feed line;
The second linearly polarized antenna is formed of a radiating element that is erected substantially perpendicular to the ground conductor of the first circularly polarized antenna and operates in two or more different frequency bands. ,
Moreover, one frequency band in which the radiating element operates is the same as the frequency band of the first circularly polarized antenna.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment embodying the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a perspective view of a dual-polarization antenna 1 of a reference example which is a premise of the present invention , and FIG. 2 is a cross-sectional view thereof.
2 Dual-polarized antenna 1 of this reference example, a ground conductor 4, the dielectric 15, the first micro-strip antenna 101 for circularly polarized waves comprising a patch 2, the patch 2 and the ground conductor 4, the second The second linearly polarized antenna 102 is connected to the outer conductor 5 of the feed line 19 of the linearly polarized antenna 102.
[0013]
In the first circularly polarized microstrip antenna 101, the voltage distribution of the high frequency signal in the patch 2 is the smallest near the center of the patch 2, and this portion is a node of the voltage distribution. Therefore, even if the vicinity of the center of the patch 2 is short-circuited to a ground conductor, the characteristics of the first microstrip antenna 101 are not affected. Utilizing this property, in the present invention, the vicinity of the center of the patch 2 and the ground conductor are connected by the outer conductor 5 of the feed line 19 of the second linearly polarized antenna 102.
The radiating element 3 of the second linearly polarized antenna 102 is connected to the central conductor 7 of the feed line 19 of the linearly polarized antenna 102. With this structure, the second linearly polarized antenna 102 uses the patch 2 as a part of the ground conductor.
[0014]
The first circularly polarized wave antenna 101 will be described. A 2.6 GHz-band circularly polarized radio wave transmitted from the satellite 23 is received by the first circularly polarized antenna 101 composed of the ground conductor 4, the dielectric 15, and the patch 2, and moves on the feeder line 18. It is connected to an in-vehicle device (not shown) provided in the body 8.
The first circularly polarized wave antenna 101 is provided with two notches 14 forming a degenerate element for adjusting the phase of the current distribution on the outer periphery of the substantially circular patch 2 so that the circularly polarized wave 2 can be received. It has been. Further, the feeding point 9 of the first antenna 101 is provided at a position away from the center of the patch 2. Note that the diameter of the patch 2 is approximately ½ wavelength of the reception frequency. The ground conductor 4 is substantially circular with a diameter larger than that of the patch 2. Since the circularly polarized wave receiving antenna 101 having such a configuration has a substantially circular directivity 11 in a direction perpendicular to the surface of the patch 2, as shown in FIG. To efficiently receive radio waves from the satellite 23 above.
[0015]
Next, the second linearly polarized antenna 102 will be described.
The terrestrial radio equipment 24 installed on the roof of the building 28 and including the signal processing device 26 of the receiving antenna 25 and the re-transmission antenna 27 is a 2.6 GHz band circularly polarized radio wave transmitted from the satellite 23. Is amplified by the signal processing device 26 of the terrestrial radio equipment, and radio waves of the same frequency are retransmitted with vertical polarization. In addition, the terrestrial radio equipment 24 may retransmit the 12 GHz band linearly polarized radio wave transmitted from the satellite and converted into a 2.6 GHz band signal with vertical polarization.
[0016]
The second linearly polarized wave antenna 102 is for receiving vertically polarized radio waves retransmitted from the ground radio equipment 24 in this way.
The outer conductor 5 of the feed line 19 of the second linearly polarized antenna 102 is formed by connecting the patch 2 of the first circularly polarized antenna 101 and the ground conductor 4 at the center portion of the ground conductor. A linear radiating element 3 having a length of approximately ¼ wavelength is positioned substantially perpendicular to the patch 2 of the first circularly polarized antenna 101 at the center conductor of the feeder line 19 of the linearly polarized antenna 102. Connected in a relationship.
A signal received by the second linearly polarized antenna 102 is transmitted to a vehicle-mounted device (not shown) provided in the moving body 8 through the feeder line 19.
In this way, the second linearly polarized antenna has a non-directional directivity on the horizontal plane as indicated by the broken line in FIG. 3C, and a directivity on the vertical plane as indicated by the broken line in FIG. Therefore, it is possible to efficiently receive vertically polarized radio waves retransmitted from a plurality of terrestrial radio equipment 24 arranged at a lower position than the satellite 23.
[0017]
As shown in FIG. 1, since the patch 2 that is the radiating element of the first circularly polarized antenna 101 and the radiating element 3 of the second linearly polarized antenna 102 are configured independently, The performance of each antenna is not impaired in any case of receiving only polarization, receiving only linear polarization, or receiving both circular polarization and linear polarization simultaneously. Therefore, it is also possible to use it for a diversity system that selects and receives circularly polarized waves or linearly polarized waves according to the reception status of the mobile unit 8.
Note that the dimensions of the patch 2 of the first circularly polarized antenna 101 and the dimensions of the radiating element 3 of the second linearly polarized antenna 102 can be arbitrarily designed according to the frequency to be received. The frequency band received by the polarization antenna 101 and the frequency band received by the second linear polarization antenna 102 may be the same or different.
[0018]
As an example in which the frequency band received by the first circularly polarized antenna 101 and the frequency band received by the second linearly polarized antenna 102 are the same, the gap filler system using the frequency band of 2.6 GHz is raised. It is done.
Next, an example in which the frequency band received by the first circularly polarized antenna 101 is different from the frequency band received by the second linearly polarized antenna 102 will be described. By designing the frequency band received by the first circularly polarized antenna 101 to 1.5 GHz band and designing the frequency band received by the second linearly polarized antenna 102 to 1.2 GHz band, It can be used as a dual antenna for receiving radio waves transmitted from a positioning system (GPS) satellite and for amateur radio communicating on the ground.
[0019]
On the other hand, FIG. 4A shows the dual-polarized antenna 1 according to the embodiment to which the present invention is applied.
The dual-polarized antenna 1 of the present embodiment is one in which the second linearly polarized antenna 102 is a dual-frequency antenna .
The second antenna 102 for linearly polarized waves, the trap coil 20 provided in the middle of the radiating elements, the first frequency f1, only the first radiation element 16 as shown in FIGS. 4 (a) Resonates. A broken line indicates a high-frequency current distribution 21 of the first frequency .
In the first lower frequency than the frequency f1 of the second frequency f2, it resonates with the first radiating element 16 and the trap coil 20 and the second radiation element 17 as in Figure 4 (b). A broken line shows the distribution 22 of the high frequency current of the second frequency.
Thus, the second linearly polarized antenna 102 can be used in a plurality of different frequency bands. For example, if the first frequency f1 is set to 2.6 GHz band and the second frequency f2 is designed to 1.5 GHz band, it can be used for both the gap filler system and the digital MCA land mobile communication system.
In the above description, an example in which two frequency bands are used has been described. Similarly, the number of frequency bands can be further increased by providing a trap coil in the middle of the radiating element. Other elements (for example, a parallel circuit of a coil and a capacitor) may be used instead of the trap coil.
1, FIG. 2, FIG. 4 (a), and FIG. 4 (b) show an example in which the dielectric of the microstrip antenna is air in the first circularly polarized antenna 101. A printed circuit board having about 4 dielectrics may be used. In this case, the dimensions of the patch 2 are designed with an electrical length determined by the dielectric constant and thickness of the dielectric.
Further, FIG. 1 shows an example in which the first circularly polarized antenna 101 is configured by a substantially circular patch, but the shape of the patch 2 is not limited to a substantially circular shape, and may be a rectangle or other shapes. In the above description, the second linearly polarized antenna 102 has been described as an example of a monopole antenna, but other antennas such as a multi-stage collinear antenna may be used.
Further, for waterproofing and mechanical protection, the dual-polarized antenna 1 according to the present invention may be covered with a material that transmits radio waves.
[0020]
It should be noted that the present invention is not limited to the above-described embodiment, and can be carried out by appropriately changing the size and configuration of each part without departing from the spirit of the present invention.
[0021]
【The invention's effect】
As described above in detail, according to the two dual-polarized antenna of the present invention, using a patch 2 of the first circular antenna for polarized waves as part of the second linear polarized for antenna grounding conductors and for that, the area of the antenna is seen already at about half as compared with the case of installing the two antennas of circular polarization antenna and a linearly polarized antenna alone respectively, it is possible to downsize the antenna.
[0022]
The second antenna for linearly polarized waves than has a radiation elementary bets in a direction substantially perpendicular against the ground conductors, launch angle becomes low in directivity of the vertical plane, or terrestrial radio equipment Thus, the retransmitted radio wave can be received efficiently.
[0023]
In addition, the radiation element in the patch and antenna for the second linearly polarized wave of the first circle antenna for polarized waves are independent, without compromising the performance of the respective polarization of the antenna the frequency bands of the two antennas, even in the same band, even in the different bands can be set arbitrarily.
[0025]
Then, especially in the present invention, the second antenna for linearly polarized waves is operated in two or more different frequency bands, one frequency band of which is the same as the frequency band of the antenna for the first circular polarization Therefore, for example, circularly polarized radio waves transmitted from satellites, radio waves from gap filler systems that receive radio waves from satellites and retransmit them in vertical polarization, digital MCA land mobile communication systems, etc. Can be used as a shared antenna to receive linearly polarized radio waves transmitted from terrestrial radio equipment.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the configuration of a dual-polarized antenna according to a reference example as a premise of the present invention .
FIG. 2 is a cross-sectional view of a dual-polarized antenna according to a reference example .
[Figure 3] is a schematic diagram of the 2-directional polarization shared antenna in Reference Example, (a) shows the shows the directivity of the vertical plane of the first circular polarization antenna, (b) second shows the directivity of the vertical plane of the linearly polarized wave antenna, (c) shows the horizontal plane directivity for linearly polarized antenna.
Figure 4 is a perspective view showing a second polarized wave shared antenna configuration of the embodiment the present invention is applied, (a) shows the shows the distribution of the high frequency current of a first frequency, (b) second The distribution of the high-frequency current of the frequency is shown.
FIG. 5 shows an example of a gap filler system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Dual polarized-wave antenna, 2 ... Patch, 3 ... Radiation element of linearly polarized antenna, 4 ... Ground conductor, 5 ... External conductor of feeding wire of linearly polarized antenna, 6 ... Circularly polarized antenna Inner conductor of feeder line, 7 ... Inner conductor of feeder line of linearly polarized antenna, 8 ... Moving body, 9 ... Feeding point of antenna for circularly polarized wave, 10 ... Launch angle of antenna for linearly polarized wave, 11 ... Circle Directivity of vertical plane of polarization antenna, 12: Directivity of vertical plane of linear polarization antenna, 13: Directivity of horizontal plane of linear polarization antenna, 14 ... Notch, 15 ... Dielectric, 16 DESCRIPTION OF SYMBOLS 1st radiating element, 17 ... 2nd radiating element, 18 ... Feed line of 1st circularly polarized antenna, 19 ... Feed line of 2nd linearly polarized antenna, 20 ... Trap coil, 21 ... Distribution of the high frequency current of the first frequency, 22 ... the high frequency of the second frequency Flow distribution, 23 ... Satellite, 24 ... Terrestrial radio equipment, 25 ... Terrestrial radio equipment reception antenna, 26 ... Terrestrial radio equipment signal processing device, 27 ... Terrestrial radio equipment retransmission antenna, 28 ... Building, 101 ... 1 circularly polarized antenna, 102... Second linearly polarized antenna.

Claims (1)

第1の円偏波用のアンテナと第2の直線偏波用のアンテナとを備えた2偏波共用アンテナにおいて,
前記第1の円偏波用のアンテナは,パッチと接地導体が第2の直線偏波用のアンテナの給電線の外部導体で接続されたマイクロストリップアンテナで構成され,
前記第2の直線偏波用のアンテナは,前記第1の円偏波用のアンテナの接地導体に対して略垂直に立設され,2つ以上の異なる周波数帯で動作する放射エレメントで構成され,
しかも,該放射エレメントが動作する一つの周波数帯は,前記第1の円偏波用のアンテナの周波数帯と同一であることを特徴とする2偏波共用アンテナ。
In a dual-polarized antenna having a first circularly polarized antenna and a second linearly polarized antenna,
The first circular antenna for polarized waves, the patch and the ground conductor consists of a microstrip antenna connected with the outer conductor of the second antenna feed line for the linearly polarized waves,
The second linearly polarized antenna is formed of a radiating element that is erected substantially perpendicular to the ground conductor of the first circularly polarized antenna and operates in two or more different frequency bands. ,
In addition, the dual-polarized antenna according to claim 1, wherein one frequency band in which the radiating element operates is the same as the frequency band of the first circularly polarized antenna.
JP2003181607A 2003-06-25 2003-06-25 Dual polarized antenna Expired - Fee Related JP4121424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181607A JP4121424B2 (en) 2003-06-25 2003-06-25 Dual polarized antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181607A JP4121424B2 (en) 2003-06-25 2003-06-25 Dual polarized antenna

Publications (2)

Publication Number Publication Date
JP2005020301A JP2005020301A (en) 2005-01-20
JP4121424B2 true JP4121424B2 (en) 2008-07-23

Family

ID=34182268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181607A Expired - Fee Related JP4121424B2 (en) 2003-06-25 2003-06-25 Dual polarized antenna

Country Status (1)

Country Link
JP (1) JP4121424B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
WO2011099014A2 (en) 2010-02-15 2011-08-18 Arothron Ltd. Underwater energy storage system and power station powered therewith
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710861A1 (en) * 2005-04-07 2006-10-11 Sony Ericsson Mobile Communications AB Antenna Arrangement
JP2007235762A (en) * 2006-03-02 2007-09-13 Fujitsu Ltd Antenna for multi-input/multi-output communication
JP4944719B2 (en) * 2007-09-19 2012-06-06 小島プレス工業株式会社 Vehicle antenna device
WO2010087170A1 (en) * 2009-02-02 2010-08-05 パナソニック株式会社 Antenna and reception apparatus provided with antenna
JP2015139210A (en) * 2014-01-24 2015-07-30 株式会社フジクラ integrated antenna device
JP2018019228A (en) * 2016-07-27 2018-02-01 マスプロ電工株式会社 Antenna device
CN106299669A (en) * 2016-09-30 2017-01-04 上海安费诺永亿通讯电子有限公司 The satellite digital broadcasting antenna of directional diagram tuning
JP7028212B2 (en) 2019-03-26 2022-03-02 株式会社Soken Antenna device
JP7243416B2 (en) 2019-04-26 2023-03-22 株式会社Soken Position determination system
CN113890582B (en) * 2021-11-03 2023-09-29 上海航天测控通信研究所 Self-organizing directional network system and communication method thereof

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8209974B2 (en) 2008-04-09 2012-07-03 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8713929B2 (en) 2008-04-09 2014-05-06 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8627658B2 (en) 2008-04-09 2014-01-14 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8763390B2 (en) 2008-04-09 2014-07-01 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8733094B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8122718B2 (en) 2009-01-20 2012-02-28 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8234862B2 (en) 2009-01-20 2012-08-07 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8479502B2 (en) 2009-06-04 2013-07-09 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8468815B2 (en) 2009-09-11 2013-06-25 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8109085B2 (en) 2009-09-11 2012-02-07 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
WO2011099014A2 (en) 2010-02-15 2011-08-18 Arothron Ltd. Underwater energy storage system and power station powered therewith
US8245508B2 (en) 2010-04-08 2012-08-21 Sustainx, Inc. Improving efficiency of liquid heat exchange in compressed-gas energy storage systems
US8661808B2 (en) 2010-04-08 2014-03-04 Sustainx, Inc. High-efficiency heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8806866B2 (en) 2011-05-17 2014-08-19 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems

Also Published As

Publication number Publication date
JP2005020301A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4121424B2 (en) Dual polarized antenna
EP2342830B1 (en) Multi-band wireless repeaters
US6697019B1 (en) Low-profile dual-antenna system
US6759990B2 (en) Compact antenna with circular polarization
US10727589B2 (en) Antenna device
WO2002084800A2 (en) Crossed slot cavity antenna
JP2004343531A (en) Compound antenna
KR102181319B1 (en) Internal antenna
US8089410B2 (en) Dual-band antenna
US20170237174A1 (en) Broad Band Diversity Antenna System
JP2011091557A (en) Antenna device
US20120019425A1 (en) Antenna For Increasing Beamwidth Of An Antenna Radiation Pattern
US9935372B2 (en) Integrated antenna, and manufacturing method thereof
US6819288B2 (en) Singular feed broadband aperture coupled circularly polarized patch antenna
JP2008278414A (en) Antenna apparatus
JP2005260567A (en) Integrated antenna
JP3923847B2 (en) Polarization diversity antenna
JP3258819B2 (en) Composite antenna
JP3923329B2 (en) Compound antenna
JP4389863B2 (en) Integrated antenna
US10243269B2 (en) Antenna
JP5232577B2 (en) Broadband antenna
Teo et al. Maltese-cross coaxial balun-fed antenna for GPS and DCS1800 mobile communication
JP4008701B2 (en) Dual-wave antenna device
JP2006014152A (en) Plane antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4121424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees