JP4120014B2 - Method for producing particulate composition - Google Patents
Method for producing particulate composition Download PDFInfo
- Publication number
- JP4120014B2 JP4120014B2 JP23476296A JP23476296A JP4120014B2 JP 4120014 B2 JP4120014 B2 JP 4120014B2 JP 23476296 A JP23476296 A JP 23476296A JP 23476296 A JP23476296 A JP 23476296A JP 4120014 B2 JP4120014 B2 JP 4120014B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- lithium
- particulate composition
- nickel oxyhydroxide
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池の正極用材料として用いることができる粒子状組成物の新規な製造方法に関する。
【0002】
【従来の技術】
リチウムニッケル複合酸化物は、高出力、高エネルギー密度電池として、例えば、ノート型パソコン、PHS、携帯電話等に使用されているリチウムイオン二次電池に使用する正極活物質として近年注目されている材料の1つである。このものは、例えば、「超音波噴霧熱分解法による球状LiCoO2微粉体の合成とリチウム二次電池用活物質への応用」〔荻原隆、斉藤善彦、柳川昭明、小形信男、吉田幸吉、高島正之、米沢晋、水野泰晴、永田憲史、小川賢治著;ジャーナル・オブ・ザ・セラミック・ソサイエティー・オブ・ジャパン(Journal of the Ceramic Society of Japan)101巻、1159〜1163頁(1993年)(以下、「文献1」という。)〕に記載されているように、LiMO2(式中、Mは、Cr、Mn、Ni、Fe、Co又はVである。)で表される一群の化合物にあって、LiCoO2と同様にとりわけ充放電電圧が高いので、正極活物質として極めて好適である。
【0003】
このようなリチウムニッケル複合酸化物をリチウムイオン二次電池の正極活物質として使用するに際して、その性能を高めるために、リチウムニッケル複合酸化物の組成を変化させたものや、リチウムニッケル複合酸化物の物理的性質を改善したものが提案されている。
【0004】
リチウムニッケル複合酸化物の組成を変化させたものとしては、特開平4−328278号公報には、LixMO2(Mは遷移金属、0.05≦x<1.10)でLiCO3含有量が0.5〜15重量%であるものが開示されている。また、特開平6−150929号公報には、Na、Kのうち少なくとも1種を含むLiNiO2が開示されている。特開昭62−256371号公報、特開平5−36411号公報、特開平7−307150号公報には、Co、V、Cr、Fe、P、B、Si、Mo、W等の元素を含むLiNiO2が開示されている。
【0005】
リチウムニッケル複合酸化物の物理的性質を改善したものとして、特開平7−183047号公報には、一次粒子が凝集した塊状の二次粒子からなるLiNiO2 粒子が開示されている。特開平7−105950号公報には、一次粒子が1μm以下の二次以上の集合粒子からなるLiNiO2粒子が開示されている。
【0006】
ところで、リチウムイオン二次電池の正極活物質として粉体を使用する場合には、例えば、文献1の1159頁に記載されているように、負極に対する安定性や内部抵抗、感度、充放電中の応答速度等の特性に対して、高い信頼性と再現性とを得るために、粒度分布が狭く、均一組成である粉体を高密度充填する必要がある。特に、実用電池においては、粉体を充填できる容積は一定である。従って、正極活物質の単位重量当たりの電池性能に差がないとすると、充填性が高く、かつ、粉体の比表面積が大きいほど、多くの電気量を取り出すことができる。このため、充填性が高く、比表面積が大きい粉体であることが、諸特性に対して高い信頼性と再現性とを有し、かつ、高出力のリチウムイオン二次電池を製造するうえで極めて重要である。
【0007】
しかしながら、上述のリチウムニッケル複合酸化物は、いずれも、炭酸リチウム、水酸化リチウム、過酸化リチウム、硝酸リチウム等のリチウム源と、炭酸ニッケル、水酸化ニッケル、酸化ニッケル、硝酸ニッケル等のニッケル源とを高温で固相反応させることにより合成したものであるので、組成が均一になりにくく、また、比表面積の大きなものを得ることが困難であった。更に、一次粒子同士が互いに融着しているので、二次電池の正極活物質として使用する場合には、正極用ペーストの作製に適した分散性のよい粉末とするために粉砕処理を行う必要があり、このような粉砕処理により粒度分布の広い粉末となるので、粒度分布を狭くすることは困難であった。
【0008】
【発明が解決しようとする課題】
本発明は、上記に鑑み、リチウムイオン二次電池用の正極活物質用粉体として好適な、粒度分布が狭く、比表面積が大きく、かつ、均一組成である粒子状組成物の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、オキシ水酸化ニッケルからなる粒子状組成物を、水酸化リチウム水溶液中に分散させた後、100〜374℃の温度で、耐圧容器を使用して、得られた分散液の加熱処理を行うことを特徴とするリチウムニッケル複合酸化物からなる粒子状組成物の製造方法である。
以下に本発明を詳述する。
【0010】
本発明の製造方法により得られる粒子状組成物は、下記一般式(1):
LiNi 1−x A x O y (1)
(式中、xは、0〜0.25の有理数を表す。yは、1.875〜2.25の有理数を表す。Aは、V、Fe、Co、Cu、Nb、Ru及びTaからなる群より選択される少なくとも1種の元素を表す。)で表されるリチウムニッケル複合酸化物よりなるものである。yはA元素の価数により、また、xの値により上記範囲の値をとるものである。
【0011】
本発明の製造方法により得られる粒子状組成物は、上記一般式(1)において、x=0、y=2に相当するLiNiO2で表される組成を有するリチウムニッケル複合酸化物からなるものであってもよく、上記一般式(1)において、0<x≦0.25、かつ、1.875≦y≦2.25に相当する組成を有するリチウムニッケル複合酸化物からなるものであってもよい。
【0012】
上記一般式(1)において、0<x≦0.25、かつ、1.875≦y≦2.25に相当する組成を有するリチウムニッケル複合酸化物からなるものである場合、本発明の製造方法により得られる粒子状組成物は、Ni原子以外に、V、Fe、Co、Cu、Nb、Ru及びTaからなる群より選択される少なくとも1種の原子を含むことができる。
【0013】
上記一般式(1)において、0<x≦0.25、かつ、1.875≦y≦2.25に相当する組成を有するリチウムニッケル複合酸化物としては、例えば、LiNi 0.9 Co 0.1 O 2 、LiNi 0.95 V 0.05 O 2.05 、LiNi 0.98 V 0.02 O 2.02 、LiNi 0.97 Cu 0.03 O 1.985 、LiNi 0.80 Fe 0.20 O 2 、LiNi 0.99 Ta 0.01 O 2.01 等を挙げることができる。
【0014】
上記リチウムニッケル複合酸化物の結晶構造は、層状岩塩型を基本としたα−NaFeO2型であり、そのX線回折パターンは、ASTM:No.9−63のLiNiO2と同様である。
【0015】
本発明の製造方法により得られる粒子状組成物は、上記一次粒子の平均粒子径が、1μmより大きい。上記一次粒子の平均粒子径が1μm以下であると、上記二次粒子の比表面積が大きくなりすぎ、その結果、電解液を分解するおそれがあるので、上記範囲に限定される。好ましくは1〜10μmであり、より好ましくは1〜5μmである。
【0016】
本発明の製造方法により得られる粒子状組成物は、上記一次粒子が集合してなる上記二次粒子の平均粒子径が、3〜100μmであり、上記二次粒子の比表面積が、0.01〜100m2/gである。上記二次粒子の平均粒子径が3μm未満であると、リチウムイオン二次電池の正極活物質として用いた場合、充填率が低く、従って電池の単位容積当たりの電気容量が低くなる。上記二次粒子の平均粒子径が100μmを超えると、その粒子がポリプロピレン等の高分子フィルムからなる負極と正極のセパレーターを貫通し、短絡を生じる恐れがあるので上記範囲に限定される。好ましくは3〜50μmであり、より好ましくは5〜30μmである。
【0017】
上記二次粒子の比表面積が100m2/gを超えると、安定性、安全性に問題が生じる恐れがあるので上記範囲に限定される。好ましくは50m2/g以下であり、より好ましくは30m2/g以下である。
【0018】
本発明の製造方法により得られる粒子状組成物は、上記一次粒子の平均粒子径が上記範囲内にあるので、リチウムイオン二次電池の正極活物質として使用した際の負極に対する安定性、内部抵抗、感度、充放電中の応答速度等の特性に対して高い信頼性と再現性とを得ることができる。また、上記二次粒子の平均粒子径が上記範囲内にあるので、リチウムイオン二次電池の正極活物質として使用した場合、高充填を実現でき、高い単位容積当たりの電気容量の電池を得ることができ、上記二次粒子の比表面積が上記範囲内にあるので、リチウムイオン二次電池の正極活物質として使用した場合、安定して多くの電気量を取り出すことができる。
【0019】
本発明においては、オキシ水酸化ニッケルからなる粒子状組成物を、水酸化リチウム水溶液中に分散させた後、加熱処理を行うことによりリチウムニッケル複合酸化物からなる粒子状組成物を製造することができる。本発明に使用される上記オキシ水酸化ニッケルとしては特に限定されず、オキシ水酸化ニッケルであればよく、好適には一次粒子が1μmより大きく、上記一次粒子が集合してなる二次粒子が3〜100μmである下記一般式(2);
Ni1−xAxOyH (2)
(式中、xは、0〜0.25の有理数を表す。yは、1.875〜2.25の有理数を表す。Aは、V、Fe、Co、Cu、Nb、Ru及びTaからなる群より選択される少なくとも1種の元素を表す。)で表されるものである。ここで定義するオキシ水酸化ニッケルとは、x=0の場合、NiOOHで表されるが、これはNi2O3・H2Oのことを指す。即ち、オキシ水酸化ニッケルは、一般に三二酸化ニッケル(Ni2O3)に一分子の水分子を有しているものを指すが、水分子は1未満でも1以上でも、もちろん本発明でいうオキシ水酸化ニッケルに相当する。x<0≦0.25の場合も同様である。
【0020】
上記一般式(2)では、オキシ水酸化ニッケルの代表として水分子1分子を有する場合を表記しているが、上記理由からこれに限定されるものではない。上記オキシ水酸化ニッケルは、例えば、硝酸ニッケル、塩化ニッケル、硫酸ニッケル等の2価のニッケルを有する化合物をアルカリで中和したものを次亜塩素酸ソーダ、過硫酸ソーダ、オゾン、塩素、臭素等の酸化剤で酸化することにより得ることができる。また、上記オキシ水酸化ニッケルの製造方法としては、特に限定されないが、例えば、上記2価のニッケル化合物の水溶液、又は、2価のニッケル化合物とA元素化合物の混合物水溶液をアンモニウムイオン存在下、アルカリで連続的に中和することにより得られる。
【0021】
本発明においては、上記オキシ水酸化ニッケルを上記水酸化リチウム水溶液中に分散させる。上記水酸化リチウム水溶液は、水溶液中にリチウムイオンと水酸イオンとを含有するものである。このものは、水溶液中でリチウムイオンと水酸イオンを生成することができる化合物、例えば、水酸化リチウム、酸化リチウム、金属リチウム等を水に溶解して調製することができる。本明細書中、「水酸化リチウム水溶液」とは、上記水溶液中でリチウムイオンと水酸イオンとを生成することができる化合物を水に溶解して調製したものを意味する。本発明においては、リチウム源として、上記水溶液中でリチウムイオンと水酸化物イオンとを生成することができる化合物を使用する。
【0022】
上記オキシ水酸化ニッケルの分散液中の濃度は、特に限定されるものではないが、通常、0.05〜10モル/Lが好ましい。製造工程における操作性や経済性の点から、より好ましくは、0.1〜5モル/Lである。
【0023】
上記オキシ水酸化ニッケルと、上記水酸化リチウム水溶液とのモル比は、反応後、残余のリチウム源を回収することができるので、(水酸化リチウム)/(オキシ水酸化ニッケル)≧1であればよい。製造工程における操作性や経済性の点から、好ましくは、(水酸化リチウム)/(オキシ水酸化ニッケル)=1/1〜50/1であり、より好ましくは、(水酸化リチウム)/(オキシ水酸化ニッケル)=1/1〜20/1であり、更に好ましくは、(水酸化リチウム)/(オキシ水酸化ニッケル)=1/1〜10/1である。
【0024】
本発明の製造方法においては、上記オキシ水酸化ニッケルと、上記水酸化リチウム水溶液とのモル比が、(水酸化リチウム)/(オキシ水酸化ニッケル)<1であると、得られる粒子状組成物中のニッケルとA元素の合計の含有量をリチウムの含有量よりも多くすることができる。
【0025】
本発明の製造方法においては、上記分散液に、更に、V、Fe、Co、Cu、Nb、Ru及びTaからなる群より選択される少なくとも1種の元素からなる化合物を分散させることにより、上記一般式(1)において、0<x≦0.25に相当する組成を有する粒子状組成物を得ることができる。上記化合物としては特に限定されず、例えば、上記元素の単体、水酸化物、酸化物等を挙げることができる。これらは単独で使用しても、2種以上を併用してもよい。上記化合物の添加量は、分散液中、原子比で、ニッケル原子と上記化合物中の上記元素の原子との和に対して、上記元素の原子の割合が0.25以下となる量とすることができる。
【0026】
本発明の製造方法においては、上記分散液中の水酸イオンの濃度が高いほうが反応性がよいので、更に水酸イオンを生成することができる化合物を上記分散液に添加してもよい。上記水酸イオンを生成することができる化合物としては特に限定されず、例えば、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム等を挙げることができる。
【0027】
本発明においては、上記粒子状組成物は、オキシ水酸化ニッケル粒子粉末を水酸化リチウム水溶液中に分散させた後、加熱処理を行うことによって製造することができるが、上記加熱処理における加熱温度は、60〜500℃が好ましい。60℃未満であると、反応が完結するまでに長時間を要し、500℃を超えると、水蒸気圧が極めて高くなり、反応容器の耐圧性を保たなければならず、装置コストの点から経済性に問題がある。製造工程における操作性や経済性の点から、より好ましくは、100〜374℃である。加熱温度が100℃を超える場合には、耐圧容器を反応容器として使用し、上記水分散液の沸騰を抑制する必要がある。更に好ましくは150〜300℃である。上記加熱処理における反応時間は、加熱温度により異なるが、数分〜数日である。上記加熱処理は、分散液を攪拌しながら行ってもよい。
【0028】
本発明の製造方法においては、上記加熱処理後、分離操作が可能である温度まで反応液を冷却し、濾過等の分離方法を用いて沈澱を分離し、充分に水洗、乾燥することにより、目的の粒子状組成物の粉末を得ることができる。また、目的により、水洗せずに乾燥させることもできる。上記乾燥の温度は、粒子状組成物の吸着水分を充分除去することができれば特に限定されない。
【0029】
また、必要に応じて、乾燥後の生成物に乾式の加熱処理を施してもよい。上記乾式の加熱処理により、得られる粒子状組成物の結晶化度を更に高めることができ、また、一次粒子の大きさや二次粒子の大きさを調整することができるので、所望の電池特性に合致した粒子状組成物を得ることができる。上記乾式の加熱処理は、乾燥後、得られる粒子状組成物を回収した後に行ってもよく、乾燥工程と同時に行ってもよい。また、上記加熱処理は空気中、酸素中等、任意にコントロールされた酸素濃度雰囲気中で行ってもよい。上記濾過等により分離された液相は、回収して再利用することができる。また、処理後に廃棄することもできる。
【0030】
本発明の製造方法は、粒子状組成物を製造するのに従来用いられている高温での固相反応とは異なり、粒子が融着することがなく、また、大きさのよく揃った粒子状組成物を製造することができる。このため、従来行われていた粒子の粉砕処理の必要がなく、粒径分布の狭い粒子状組成物を得ることができる。
【0031】
本発明の製造方法により、組成が均一であり、結晶構造の均一性に優れた粒子状組成物を得ることができる。上記粒子状組成物は、固相法に比して低温で、しかも分散媒体中での反応で製造されるため、その比表面積が高く保たれる。また、本発明の製造方法で使用される上記オキシ水酸化ニッケルとしては、好適には一次粒子が1μmより大きく、上記一次粒子が集合してなる二次粒子が3〜100μmである上記一般式(2)で表されるものを原料とすれば、リチウムイオン二次電池の正極活物質として優れたリチウムニッケル複合酸化物を得ることができる。
【0039】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0040】
実施例1
1モル/Lの硫酸ニッケル水溶液1Lに、2モル/Lの水酸化ナトリウム水溶液1.1Lを攪拌しつつ滴下し、水酸化ニッケル沈殿のスラリーを得た。このスラリーに1モル/Lの過硫酸ナトリウム水溶液1Lを攪拌しつつ滴下し、黒色の沈殿を得た。これを濾過、水洗し、オキシ水酸化ニッケルのケーキを得た。次に、得られたオキシ水酸化ニッケルのケーキに水酸化リチウム5モルを混合し、この混合物にイオン交換水を加えて全量を1Lとした。このスラリーをオートクレーブに仕込み、加熱処理温度100℃、加熱処理時間20時間で水熱処理した。反応終了後、スラリーを濾過、水洗し、100℃で乾燥させた後、得られた粉末のX線回折パターンを測定したところ、リチウムニッケル複合酸化物(ニッケル酸リチウム、LiNiO2)であることが確認された。
【0041】
実施例2
1モル/Lの硫酸ニッケル溶液0.8Lと、1モル/Lの硫酸コバルト水溶液0.2Lとを混合し、これに2モル/Lの水酸化ナトリウム水溶液1.1Lを攪拌しつつ滴下し、沈殿スラリーを得た。このスラリーに攪拌しつつオゾンガスを吹き込み黒色の沈殿を得た。これを濾過、水洗し、オキシ水酸化ニッケルのケーキを得た。次に、得られたオキシ水酸化ニッケルのケーキに水酸化リチウム5モルを混合し、この混合物にイオン交換水を加えて全量を1Lとした。このスラリーをオートクレーブに仕込み、加熱処理温度150℃、加熱処理時間8時間で水熱処理した。反応終了後、スラリーを濾過、水洗し、100℃で乾燥させた後、得られた粉末のX線回折パターンを測定したところ、リチウムニッケル複合酸化物と同様のパターンであることが確認された。
【0042】
実施例3
1モル/Lの硝酸ニッケル水溶液0.98Lと1モル/Lの硝酸第1鉄水溶液0.02Lを混合し、これに2モル/Lの水酸化ナトリウム水溶液1.1Lを攪拌しつつ滴下し、沈殿スラリーを得た。このスラリーに1.5モル/Lの次亜塩素酸ナトリウム水溶液1Lを攪拌しつつ滴下し、黒色の沈殿を得た。これを濾過、水洗し、オキシ水酸化ニッケルのケーキを得た。次に、得られたオキシ水酸化ニッケルのケーキに水酸化リチウム5モルを混合し、この混合物にイオン交換水を加えて全量を1Lとした。このスラリーをオートクレーブに仕込み、加熱処理温度200℃、加熱処理時間4時間で水熱処理した。反応終了後、スラリーを濾過、水洗し、100℃で乾燥させた後、得られた粉末のX線回折パターンを測定したところ、リチウムニッケル複合酸化物と同様のパターンであることが確認された。
【0043】
実施例4
1モル/Lの塩化ニッケル溶液0.99Lと1モル/Lの塩化第一銅水溶液0.01Lを混合し、これに2モル/Lの水酸化ナトリウム水溶液1.1Lを攪拌しつつ滴下し、沈殿スラリーを得た。このスラリーに水酸化カリウム270g、臭素64ml、水2Lの混合水溶液を滴々と添加し、黒色の沈殿を得た。これを濾過、水洗し、オキシ水酸化ニッケルのケーキを得た。次に、得られたオキシ水酸化ニッケルのケーキに水酸化リチウム5モルを混合し、この混合物にイオン交換水を加えて全量を1Lとした。このスラリーをオートクレーブに仕込み、加熱処理温度250℃、加熱処理時間3時間で水熱処理した。反応終了後、スラリーを濾過、水洗し、100℃で乾燥させた後、得られた粉末のX線回折パターンを測定したところ、リチウムニッケル複合酸化物と同様のパターンであることが確認された。
【0044】
実施例5
1モルの塩化ニッケル水溶液0.95Lと1モル/Lの塩化第一バナジウム水溶液0.05Lを混合し、これに2モル/Lの水酸化ナトリウム水溶液1.1Lを攪拌しつつ滴下し、沈殿スラリーを得た。このスラリーに1モル/Lの過硫酸カリウム水溶液1Lを添加し、黒色の沈殿を得た。これを濾過、水洗し、オキシ水酸化ニッケルのケーキを得た。次に、得られたオキシ水酸化ニッケルのケーキに水酸化リチウム5モルを混合し、この混合物にイオン交換水を加えて全量を1Lとした。このスラリーをオートクレーブに仕込み、加熱処理温度300℃、加熱処理時間2時間で水熱処理した。反応終了後、スラリーを濾過、水洗し、100℃で乾燥させた後、得られた粉末のX線回折パターンを測定したところ、リチウムニッケル複合酸化物と同様のパターンであることが確認された。
【0045】
実施例6
硫酸ニッケル水溶液に、アンモニウムイオン存在下、水酸化ナトリウムを連続的に添加、中和して得られた一次粒子が集合して二次粒子を形成した実質的に球状の水酸化ニッケルを水スラリー中、過硫酸ナトリウムで酸化してオキシ水酸化ニッケルを得た。このオキシ水酸化ニッケルは―次粒子の平均粒子径は1.1μm、二次粒子の平均粒子径は5μmであった。該オキシ水酸化ニッケル0.1モルに水酸化リチウム5モルを混合し、この混合物にイオン交換水を加えて全量を1Lとした。このスラリーをオートクレーブに仕込み、加熱処理温度200℃、加熱処理時間4時間で水熱処理した。反応終了後、スラリーを濾過、水洗し、100℃で乾燥させた後、得られた粉末のX線回折パターンを測定したところ、リチウムニッケル複合酸化物と同様のパターンであることが確認された。
【0046】
実施例10
硫酸ニッケルと硫酸コバルトをモル比で0.85:0.15の比率で混合した水溶液を用いる他は実施例6と同様の方法でオキシ水酸化ニッケル(Ni0.85Co0.15OOH)を得た。得られたオキシ水酸化ニッケルは一次粒子が集合した実質的に球状の二次粒子であった。一次粒子の平均粒子径は2μmであり、これが集合した二次粒子の平均粒子径は10μmであった。該オキシ水酸化ニッケル2モルに水酸化リチウム6モルを混合し、混合物にイオン交換水を加えて全量で1Lとした。このスラリーをオートクレーブに仕込み、加熱処理温度200℃、加熱処理時間4時間で水熱処理した。反応終了後、スラリーを濾過、水洗し、100℃で乾燥させた後、得られた粉末のX線回折パターンを測定したところ、リチウムニッケル複合酸化物と同様のパターンであることが確認された。
【0047】
【表1】
【0048】
【表2】
【0049】
実施例10で得られたリチウムニッケル複合酸化物の電子顕微鏡写真を図1に示した。また、実施例10で得られたリチウムニッケル複合酸化物のX線回折チャートを図2に示した。
【0050】
【発明の効果】
本発明は上述のとおりであるので、粒度分布が狭く、比表面積が大きく、かつ、均一組成であり、リチウムイオン二次電池の正極活物質として好適に使用することができる粒子状組成物を効率よく得ることができる。
【図面の簡単な説明】
【図1】実施例6の粒子状組成物の電子顕微鏡写真である。
【図2】実施例6の粒子状組成物のX線回折チャートである。縦軸は、X線強度(cps)であり、横軸は、回折角(2θ)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel method of manufacturing a particulate composition can be used as a positive electrode material of a lithium ion secondary battery.
[0002]
[Prior art]
Lithium nickel composite oxide is a material that has recently attracted attention as a positive electrode active material for use in high power, high energy density batteries, for example, lithium ion secondary batteries used in notebook personal computers, PHS, mobile phones and the like. It is one of. This is, for example, “Synthesis of spherical LiCoO 2 fine powder by ultrasonic spray pyrolysis method and application to active material for lithium secondary battery” [Takashi Sugawara, Yoshihiko Saito, Akiaki Yanagawa, Nobuo Kogata, Yukiyoshi Yoshida, Takashima Masayuki, Satoshi Yonezawa, Yasuharu Mizuno, Kenji Nagata, Kenji Ogawa; Journal of the Ceramic Society of Japan 101, 1159-1163 (1993) (hereinafter hereafter) (hereinafter referred to as “The Journal of the Ceramic Society of Japan”) , “Reference 1”))], a group of compounds represented by LiMO 2 (wherein M is Cr, Mn, Ni, Fe, Co, or V). In addition, like LiCoO 2 , the charge / discharge voltage is particularly high, so that it is extremely suitable as a positive electrode active material.
[0003]
When such a lithium nickel composite oxide is used as a positive electrode active material of a lithium ion secondary battery, in order to improve its performance, a lithium nickel composite oxide having a changed composition or a lithium nickel composite oxide Improvements in physical properties have been proposed.
[0004]
Japanese Patent Application Laid-Open No. 4-328278 discloses that the composition of the lithium nickel composite oxide is changed. Li x MO 2 (M is a transition metal, 0.05 ≦ x <1.10) and LiCO 3 content In which 0.5 to 15% by weight is disclosed. Japanese Patent Laid-Open No. 6-150929 discloses LiNiO 2 containing at least one of Na and K. JP-A-62-256371, JP-A-5-36411, and JP-A-7-307150 disclose LiNiO containing elements such as Co, V, Cr, Fe, P, B, Si, Mo, and W. 2 is disclosed.
[0005]
As an improvement of the physical properties of the lithium-nickel composite oxide, Japanese Patent Laid-Open No. 7-183047 discloses LiNiO 2 particles composed of massive secondary particles in which primary particles are aggregated. Japanese Patent Application Laid-Open No. 7-105950 discloses LiNiO 2 particles composed of secondary or higher aggregate particles whose primary particles are 1 μm or less.
[0006]
By the way, when using a powder as a positive electrode active material of a lithium ion secondary battery, for example, as described in page 1159 of Document 1, stability to the negative electrode, internal resistance, sensitivity, during charging and discharging. In order to obtain high reliability and reproducibility for characteristics such as response speed, it is necessary to densely fill a powder having a narrow particle size distribution and a uniform composition. In particular, in practical batteries, the volume that can be filled with powder is constant. Therefore, if there is no difference in battery performance per unit weight of the positive electrode active material, more electricity can be taken out as the filling property is higher and the specific surface area of the powder is larger. For this reason, a powder having a high filling property and a large specific surface area has high reliability and reproducibility with respect to various characteristics, and in producing a high-power lithium ion secondary battery. Very important.
[0007]
However, the above lithium nickel composite oxides are all lithium sources such as lithium carbonate, lithium hydroxide, lithium peroxide, and lithium nitrate; and nickel sources such as nickel carbonate, nickel hydroxide, nickel oxide, and nickel nitrate; Was synthesized by a solid phase reaction at a high temperature, so that it was difficult to obtain a composition having a large specific surface area. Furthermore, since the primary particles are fused with each other, when used as a positive electrode active material of a secondary battery, it is necessary to perform a pulverization process to obtain a highly dispersible powder suitable for the preparation of a positive electrode paste. Since such a pulverization process results in a powder having a wide particle size distribution, it is difficult to narrow the particle size distribution.
[0008]
[Problems to be solved by the invention]
In view of the above, suitable as a positive electrode active material powder for the lithium ion secondary battery, a narrow particle size distribution, specific surface area is large and, producing how the uniform composition particulate composition an object of the present invention is to provide.
[0009]
[Means for Solving the Problems]
In the present invention, a particulate composition composed of nickel oxyhydroxide is dispersed in an aqueous lithium hydroxide solution, and then heat treatment is performed on the obtained dispersion using a pressure vessel at a temperature of 100 to 374 ° C. Is a method for producing a particulate composition comprising a lithium-nickel composite oxide .
The present invention will be described in detail below.
[0010]
The particulate composition obtained by the production method of the present invention has the following general formula (1):
LiNi 1-x A x O y (1)
(In the formula, x represents a rational number from 0 to 0.25. Y represents a rational number from 1.875 to 2.25. A consists of V, Fe, Co, Cu, Nb, Ru, and Ta. Represents at least one element selected from the group). y takes the value of the said range with the valence of A element, and the value of x.
[0011]
The particulate composition obtained by the production method of the present invention comprises a lithium nickel composite oxide having a composition represented by LiNiO 2 corresponding to x = 0 and y = 2 in the general formula (1). In the general formula (1), the lithium nickel composite oxide may have a composition corresponding to 0 <x ≦ 0.25 and 1.875 ≦ y ≦ 2.25. Good.
[0012]
In the general formula (1), when the lithium nickel composite oxide has a composition corresponding to 0 <x ≦ 0.25 and 1.875 ≦ y ≦ 2.25, the production method of the present invention In addition to the Ni atom, the particulate composition obtained by (1) can contain at least one atom selected from the group consisting of V, Fe, Co, Cu, Nb, Ru, and Ta .
[0013]
In the above general formula (1), as the lithium nickel composite oxide having a composition corresponding to 0 <x ≦ 0.25 and 1.875 ≦ y ≦ 2.25, for example, LiNi 0.9 Co 0. 1 O 2 , LiNi 0.95 V 0.05 O 2.05 , LiNi 0.98 V 0.02 O 2.02 , LiNi 0.97 Cu 0.03 O 1.985 , LiNi 0.80 Fe 0. 20 O 2 , LiNi 0.99 Ta 0.01 O 2.01, and the like.
[0014]
The crystal structure of the lithium nickel composite oxide is a basic the alpha-NaFeO 2 type of layered rock-salt, its X-ray diffraction pattern, ASTM: No. Similar to 9-63 LiNiO 2 .
[0015]
In the particulate composition obtained by the production method of the present invention, the average particle diameter of the primary particles is larger than 1 μm. When the average particle diameter of the primary particles is 1 μm or less, the specific surface area of the secondary particles becomes too large, and as a result, the electrolyte solution may be decomposed. Preferably it is 1-10 micrometers, More preferably, it is 1-5 micrometers.
[0016]
In the particulate composition obtained by the production method of the present invention, the average particle diameter of the secondary particles formed by the aggregation of the primary particles is 3 to 100 μm, and the specific surface area of the secondary particles is 0.01. ˜100 m 2 / g. When the average particle diameter of the secondary particles is less than 3 μm, when used as a positive electrode active material of a lithium ion secondary battery, the filling rate is low, and thus the electric capacity per unit volume of the battery is low. If the average particle diameter of the secondary particles exceeds 100 μm, the particles may pass through a negative electrode / positive electrode separator made of a polymer film such as polypropylene and may cause a short circuit, so the range is limited to the above range. Preferably it is 3-50 micrometers, More preferably, it is 5-30 micrometers.
[0017]
If the specific surface area of the secondary particles exceeds 100 m 2 / g, there is a risk of problems in stability and safety, so the range is limited to the above range. Preferably it is 50 m < 2 > / g or less, More preferably, it is 30 m < 2 > / g or less.
[0018]
Since the particulate composition obtained by the production method of the present invention has an average particle diameter of the primary particles in the above range, the stability to the negative electrode when used as the positive electrode active material of the lithium ion secondary battery, the internal resistance High reliability and reproducibility can be obtained for characteristics such as sensitivity and response speed during charging and discharging. Further, since the average particle diameter of the secondary particles is within the above range, when used as a positive electrode active material of a lithium ion secondary battery, high filling can be realized and a battery having a high electric capacity per unit volume can be obtained. Since the specific surface area of the secondary particles is within the above range, when used as a positive electrode active material for a lithium ion secondary battery, a large amount of electricity can be taken out stably.
[0019]
In the present invention, a particulate composition composed of nickel nickel oxyhydroxide is dispersed in a lithium hydroxide aqueous solution, followed by heat treatment to produce a particulate composition composed of a lithium nickel composite oxide. it can. The nickel oxyhydroxide used in the present invention is not particularly limited and may be any nickel oxyhydroxide. Preferably, the primary particles are larger than 1 μm, and the secondary particles formed by aggregating the primary particles are 3 The following general formula (2) which is ˜100 μm;
Ni 1-x A x O y H (2)
(In the formula, x represents a rational number of 0 to 0.25. Y represents a rational number of 1.875 to 2.25. A consists of V, Fe, Co, Cu, Nb, Ru, and Ta. Represents at least one element selected from the group). The nickel oxyhydroxide as defined herein, in the case of x = 0, is represented by NiOOH, which refers to a Ni 2 O 3 · H 2 O . That is, nickel oxyhydroxide generally refers to nickel sesquioxide (Ni 2 O 3 ) having one molecule of water, but the number of water molecules is less than 1 or more than 1, and of course the oxy Corresponds to nickel hydroxide. The same applies to the case of x <0 ≦ 0.25.
[0020]
In the general formula (2), the case of having one molecule of water molecule as a representative of nickel oxyhydroxide is described, but it is not limited to this for the above reason. The nickel oxyhydroxide is, for example, sodium hypochlorite, sodium persulfate, ozone, chlorine, bromine, etc. obtained by neutralizing a divalent nickel compound such as nickel nitrate, nickel chloride, nickel sulfate with an alkali. It can be obtained by oxidizing with an oxidizing agent. The method for producing the nickel oxyhydroxide is not particularly limited. For example, an aqueous solution of the divalent nickel compound or a mixed aqueous solution of the divalent nickel compound and the A element compound is added in the presence of ammonium ions in the presence of an alkali. Can be obtained by continuous neutralization.
[0021]
In the present invention, the nickel oxyhydroxide is dispersed in the lithium hydroxide aqueous solution. The lithium hydroxide aqueous solution contains lithium ions and hydroxide ions in the aqueous solution. This can be prepared by dissolving a compound capable of generating lithium ions and hydroxide ions in an aqueous solution, for example, lithium hydroxide, lithium oxide, lithium metal, etc. in water. In the present specification, the “aqueous lithium hydroxide solution” means a solution prepared by dissolving a compound capable of generating lithium ions and hydroxide ions in water in the above aqueous solution. In the present invention, a compound capable of generating lithium ions and hydroxide ions in the aqueous solution is used as the lithium source.
[0022]
The concentration of the nickel oxyhydroxide dispersion in the dispersion is not particularly limited, but is usually preferably 0.05 to 10 mol / L. More preferably, it is 0.1-5 mol / L from the point of operativity in a manufacturing process, or economical efficiency.
[0023]
The molar ratio of the nickel oxyhydroxide to the lithium hydroxide aqueous solution can recover the remaining lithium source after the reaction, so that (lithium hydroxide) / (nickel oxyhydroxide) ≧ 1 Good. From the viewpoint of operability and economical efficiency in the production process, preferably (lithium hydroxide) / (nickel oxyhydroxide) = 1/1 to 50/1, more preferably (lithium hydroxide) / (oxy). Nickel hydroxide) = 1/1 to 20/1, more preferably (lithium hydroxide) / (nickel oxyhydroxide) = 1/1 to 10/1.
[0024]
In the production method of the present invention, when the molar ratio of the nickel oxyhydroxide to the lithium hydroxide aqueous solution is (lithium hydroxide) / (nickel oxyhydroxide) <1, the resulting particulate composition The total content of nickel and element A in the inside can be made larger than the content of lithium.
[0025]
In the production method of the present invention, the dispersion is further dispersed with a compound comprising at least one element selected from the group consisting of V, Fe, Co, Cu, Nb, Ru and Ta. In the general formula (1), a particulate composition having a composition corresponding to 0 <x ≦ 0.25 can be obtained. The compound is not particularly limited, and examples thereof include a single element, a hydroxide, and an oxide of the above element. These may be used alone or in combination of two or more. The amount of the compound added is such that the atomic ratio of the element in the dispersion is 0.25 or less with respect to the sum of the nickel atom and the atom of the element in the compound. Can do.
[0026]
In the production method of the present invention, the higher the hydroxide ion concentration in the dispersion, the better the reactivity. Therefore, a compound capable of generating hydroxide ions may be added to the dispersion. The compound capable of generating the hydroxide ion is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, and ammonium hydroxide.
[0027]
In the present invention, the particulate composition can be produced by performing a heat treatment after dispersing the nickel oxyhydroxide particle powder in a lithium hydroxide aqueous solution. 60 to 500 ° C is preferable. When the temperature is lower than 60 ° C., it takes a long time to complete the reaction. When the temperature exceeds 500 ° C., the water vapor pressure becomes extremely high, and the pressure resistance of the reaction vessel must be maintained. There is a problem with economy. More preferably, it is 100-374 degreeC from the point of operativity in a manufacturing process, or economical efficiency. When heating temperature exceeds 100 degreeC, it is necessary to use a pressure-resistant container as a reaction container and to suppress the boiling of the said aqueous dispersion. More preferably, it is 150-300 degreeC. Although the reaction time in the said heat processing changes with heating temperature, it is several minutes-several days. The heat treatment may be performed while stirring the dispersion.
[0028]
In the production method of the present invention, after the above heat treatment, the reaction solution is cooled to a temperature at which separation is possible, the precipitate is separated using a separation method such as filtration, sufficiently washed with water, and dried. A powder of the particulate composition can be obtained. Moreover, it can also be made to dry without washing with water depending on the purpose. The drying temperature is not particularly limited as long as the adsorbed moisture of the particulate composition can be sufficiently removed.
[0029]
Moreover, you may perform a dry-type heat processing to the product after drying as needed. The dry-type heat treatment can further increase the crystallinity of the obtained particulate composition, and the primary particle size and secondary particle size can be adjusted, so that the desired battery characteristics can be obtained. A matched particulate composition can be obtained. The dry heat treatment may be performed after the drying and after collecting the particulate composition obtained, or may be performed simultaneously with the drying step. Further, the heat treatment may be performed in an arbitrarily controlled oxygen concentration atmosphere such as air or oxygen. The liquid phase separated by the filtration or the like can be recovered and reused. It can also be discarded after processing.
[0030]
The production method of the present invention is different from the high-temperature solid-phase reaction conventionally used for producing a particulate composition, and the particles are not fused, and the particles are well-aligned. A composition can be produced. For this reason, there is no need for conventional pulverization of particles, and a particulate composition having a narrow particle size distribution can be obtained.
[0031]
By the production method of the present invention, a particulate composition having a uniform composition and excellent crystal structure uniformity can be obtained. Since the particulate composition is produced by a reaction in a dispersion medium at a lower temperature than in the solid phase method, the specific surface area is kept high. Moreover, as said nickel oxyhydroxide used with the manufacturing method of this invention, a primary particle is larger than 1 micrometer suitably, and the said general formula (3-100 micrometer which the secondary particle formed by the said primary particle aggregates is 3-100 micrometers) If what is represented by 2) is used as a raw material, an excellent lithium nickel composite oxide can be obtained as a positive electrode active material of a lithium ion secondary battery.
[0039]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0040]
Example 1
To 1 L of 1 mol / L nickel sulfate aqueous solution, 1.1 L of 2 mol / L sodium hydroxide aqueous solution was added dropwise with stirring to obtain a slurry of nickel hydroxide precipitate. To this slurry, 1 L of a 1 mol / L sodium persulfate aqueous solution was added dropwise with stirring to obtain a black precipitate. This was filtered and washed with water to obtain a nickel oxyhydroxide cake. Next, 5 mol of lithium hydroxide was mixed with the obtained nickel oxyhydroxide cake, and ion-exchanged water was added to this mixture to make the total volume 1 L. This slurry was charged into an autoclave and hydrothermally treated at a heat treatment temperature of 100 ° C. and a heat treatment time of 20 hours. After completion of the reaction, the slurry was filtered, washed with water, dried at 100 ° C., and the X-ray diffraction pattern of the obtained powder was measured. As a result, it was found to be a lithium nickel composite oxide (lithium nickelate, LiNiO 2 ). confirmed.
[0041]
Example 2
1 mol / L nickel sulfate solution 0.8 L and 1 mol / L cobalt sulfate aqueous solution 0.2 L were mixed, and 2 mol / L sodium hydroxide aqueous solution 1.1 L was added dropwise with stirring to this, A precipitated slurry was obtained. While stirring the slurry, ozone gas was blown to obtain a black precipitate. This was filtered and washed with water to obtain a nickel oxyhydroxide cake. Next, 5 mol of lithium hydroxide was mixed with the obtained nickel oxyhydroxide cake, and ion-exchanged water was added to this mixture to make the total volume 1 L. This slurry was charged into an autoclave and hydrothermally treated with a heat treatment temperature of 150 ° C. and a heat treatment time of 8 hours. After completion of the reaction, the slurry was filtered, washed with water, dried at 100 ° C., and then the X-ray diffraction pattern of the obtained powder was measured. As a result, it was confirmed that the pattern was the same as that of the lithium nickel composite oxide.
[0042]
Example 3
0.98 L of 1 mol / L nickel nitrate aqueous solution and 0.02 L of 1 mol / L ferrous nitrate aqueous solution were mixed, and 1.1 L of 2 mol / L sodium hydroxide aqueous solution was added dropwise thereto while stirring. A precipitated slurry was obtained. To this slurry, 1 L of a 1.5 mol / L sodium hypochlorite aqueous solution was added dropwise with stirring to obtain a black precipitate. This was filtered and washed with water to obtain a nickel oxyhydroxide cake. Next, 5 mol of lithium hydroxide was mixed with the obtained nickel oxyhydroxide cake, and ion-exchanged water was added to this mixture to make the total volume 1 L. This slurry was charged into an autoclave and hydrothermally treated with a heat treatment temperature of 200 ° C. and a heat treatment time of 4 hours. After completion of the reaction, the slurry was filtered, washed with water, dried at 100 ° C., and then the X-ray diffraction pattern of the obtained powder was measured. As a result, it was confirmed that the pattern was the same as that of the lithium nickel composite oxide.
[0043]
Example 4
0.99 L of 1 mol / L nickel chloride solution and 0.01 L of 1 mol / L cuprous chloride aqueous solution were mixed, and 1.1 L of 2 mol / L sodium hydroxide aqueous solution was added dropwise thereto while stirring. A precipitated slurry was obtained. To this slurry, a mixed aqueous solution of 270 g of potassium hydroxide, 64 ml of bromine and 2 L of water was added dropwise to obtain a black precipitate. This was filtered and washed with water to obtain a nickel oxyhydroxide cake. Next, 5 mol of lithium hydroxide was mixed with the obtained nickel oxyhydroxide cake, and ion-exchanged water was added to this mixture to make the total volume 1 L. This slurry was charged into an autoclave and hydrothermally treated with a heat treatment temperature of 250 ° C. and a heat treatment time of 3 hours. After completion of the reaction, the slurry was filtered, washed with water, dried at 100 ° C., and then the X-ray diffraction pattern of the obtained powder was measured. As a result, it was confirmed that the pattern was the same as that of the lithium nickel composite oxide.
[0044]
Example 5
0.95 L of 1 mol nickel chloride aqueous solution and 0.05 L of 1 mol / L first vanadium chloride aqueous solution were mixed, and 1.1 L of 2 mol / L sodium hydroxide aqueous solution was added dropwise with stirring to the precipitated slurry. Got. 1 L of 1 mol / L potassium persulfate aqueous solution was added to the slurry to obtain a black precipitate. This was filtered and washed with water to obtain a nickel oxyhydroxide cake. Next, 5 mol of lithium hydroxide was mixed with the obtained nickel oxyhydroxide cake, and ion-exchanged water was added to this mixture to make the total volume 1 L. This slurry was charged into an autoclave and hydrothermally treated at a heat treatment temperature of 300 ° C. and a heat treatment time of 2 hours. After completion of the reaction, the slurry was filtered, washed with water, dried at 100 ° C., and then the X-ray diffraction pattern of the obtained powder was measured. As a result, it was confirmed that the pattern was the same as that of the lithium nickel composite oxide.
[0045]
Example 6
In a water slurry, substantially spherical nickel hydroxide formed by secondary particles formed by the aggregation of primary particles obtained by continuously adding and neutralizing sodium hydroxide in the presence of ammonium ions to an aqueous nickel sulfate solution It was oxidized with sodium persulfate to obtain nickel oxyhydroxide. This nickel oxyhydroxide had an average primary particle size of 1.1 μm and an average secondary particle size of 5 μm. 5 mol of lithium hydroxide was mixed with 0.1 mol of the nickel oxyhydroxide, and ion-exchanged water was added to the mixture to make the total volume 1 L. This slurry was charged into an autoclave and hydrothermally treated with a heat treatment temperature of 200 ° C. and a heat treatment time of 4 hours. After completion of the reaction, the slurry was filtered, washed with water, dried at 100 ° C., and then the X-ray diffraction pattern of the obtained powder was measured. As a result, it was confirmed that the pattern was the same as that of the lithium nickel composite oxide.
[0046]
Example 10
Nickel oxyhydroxide (Ni 0.85 Co 0.15 OOH) was prepared in the same manner as in Example 6 except that an aqueous solution in which nickel sulfate and cobalt sulfate were mixed at a molar ratio of 0.85: 0.15 was used. Obtained. The obtained nickel oxyhydroxide was substantially spherical secondary particles in which primary particles were aggregated. The average particle diameter of the primary particles was 2 μm, and the average particle diameter of the secondary particles assembled with this was 10 μm. 6 mol of lithium hydroxide was mixed with 2 mol of the nickel oxyhydroxide, and ion-exchanged water was added to the mixture to make 1 L in total. This slurry was charged into an autoclave and hydrothermally treated with a heat treatment temperature of 200 ° C. and a heat treatment time of 4 hours. After completion of the reaction, the slurry was filtered, washed with water, dried at 100 ° C., and then the X-ray diffraction pattern of the obtained powder was measured. As a result, it was confirmed that the pattern was the same as that of the lithium nickel composite oxide.
[0047]
[Table 1]
[0048]
[Table 2]
[0049]
An electron micrograph of the lithium nickel composite oxide obtained in Example 10 is shown in FIG. An X-ray diffraction chart of the lithium nickel composite oxide obtained in Example 10 is shown in FIG.
[0050]
【The invention's effect】
Since the present invention is as described above, a particulate composition having a narrow particle size distribution, a large specific surface area, and a uniform composition, which can be suitably used as a positive electrode active material of a lithium ion secondary battery, is efficiently produced. Can get well .
[Brief description of the drawings]
1 is an electron micrograph of a particulate composition of Example 6. FIG.
2 is an X-ray diffraction chart of the particulate composition of Example 6. FIG. The vertical axis represents the X-ray intensity (cps), and the horizontal axis represents the diffraction angle (2θ).
Claims (4)
V、Fe、Co、Cu、Nb、Ru及びTaからなる群より選択される少なくとも1種の元素を、ニッケル1g原子に対し、0〜1/3g原子含有するものである請求項1記載の粒子状組成物の製造方法。The particulate composition composed of nickel oxyhydroxide is a particulate composition composed of secondary particles in which primary particles are aggregated,
2. The particle according to claim 1, wherein at least one element selected from the group consisting of V, Fe, Co, Cu, Nb, Ru and Ta contains 0 to 1/3 g atom with respect to 1 g atom of nickel. A method for producing a composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23476296A JP4120014B2 (en) | 1996-08-16 | 1996-08-16 | Method for producing particulate composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23476296A JP4120014B2 (en) | 1996-08-16 | 1996-08-16 | Method for producing particulate composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1059725A JPH1059725A (en) | 1998-03-03 |
JP4120014B2 true JP4120014B2 (en) | 2008-07-16 |
Family
ID=16975967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23476296A Expired - Fee Related JP4120014B2 (en) | 1996-08-16 | 1996-08-16 | Method for producing particulate composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4120014B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4410315B2 (en) * | 1997-05-27 | 2010-02-03 | Tdk株式会社 | Non-aqueous electrolyte battery electrode |
JP3524762B2 (en) * | 1998-03-19 | 2004-05-10 | 三洋電機株式会社 | Lithium secondary battery |
JP4682388B2 (en) * | 1999-11-05 | 2011-05-11 | 三菱化学株式会社 | Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same |
JP4622014B2 (en) * | 1999-11-24 | 2011-02-02 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
JP4656349B2 (en) * | 2000-02-28 | 2011-03-23 | 株式会社豊田中央研究所 | Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery, its production method and lithium secondary battery using the same |
JP5030123B2 (en) * | 2000-02-29 | 2012-09-19 | 株式会社豊田中央研究所 | Lithium secondary battery |
JP4678457B2 (en) * | 2000-10-24 | 2011-04-27 | 株式会社豊田中央研究所 | Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same |
JP4697504B2 (en) * | 2001-01-10 | 2011-06-08 | 株式会社豊田中央研究所 | Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and method for producing the same |
DE102004008397B4 (en) * | 2004-02-20 | 2008-11-13 | Ferro Gmbh | Positive active electrode material, process for producing a positive electrode active material and lithium secondary cell |
US7879489B2 (en) * | 2005-01-26 | 2011-02-01 | Panasonic Corporation | Non-aqueous electrolyte secondary battery |
JP4994725B2 (en) * | 2006-07-10 | 2012-08-08 | 独立行政法人産業技術総合研究所 | Method for producing lithium composite metal oxide |
US8980475B2 (en) * | 2010-06-25 | 2015-03-17 | Basf Se | Process for preparing lithium mixed metal oxides and their use as cathode material |
WO2012124242A1 (en) * | 2011-03-14 | 2012-09-20 | 株式会社豊田自動織機 | Cathode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery using same |
DE112013004425T5 (en) | 2012-09-11 | 2015-07-02 | Gs Yuasa International Ltd. | Accumulator with an anhydrous electrolyte |
JP5625028B2 (en) * | 2012-11-01 | 2014-11-12 | 株式会社日立製作所 | Non-aqueous secondary battery |
US10141566B2 (en) | 2014-08-15 | 2018-11-27 | Samsung Electronics Co., Ltd. | Lithium secondary battery including a coated cathode material and solid electrolyte, and method of preparing the same |
-
1996
- 1996-08-16 JP JP23476296A patent/JP4120014B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1059725A (en) | 1998-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2870741B2 (en) | Lithium manganate particulate composition, method for producing the same, and lithium ion secondary battery | |
Chen et al. | A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations | |
JP4120014B2 (en) | Method for producing particulate composition | |
TWI322526B (en) | ||
JPH101316A (en) | Lithium-cobalt multiple oxide and production thereof, and lithium ion secondary battery | |
JP6708326B2 (en) | Positive electrode material for sodium secondary batteries | |
JP4268392B2 (en) | Positive electrode active material for lithium secondary battery and method for producing the same | |
JP4353808B2 (en) | Particulate cathode active material for lithium secondary battery | |
JP4276442B2 (en) | Positive electrode active material powder for lithium secondary battery | |
JP4167654B2 (en) | Method for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery | |
JP5144108B2 (en) | Method for producing electrode material, electrode material and battery | |
JP3974420B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP3606290B2 (en) | Method for producing cobalt-containing lithium nickelate for positive electrode active material of non-aqueous battery | |
KR20050121727A (en) | Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these | |
WO2022206910A1 (en) | Cobalt-free high-nickel positive electrode material, preparation method therefor and use thereof | |
WO2004082046A1 (en) | Positive electrode active material powder for lithium secondary battery | |
JP4268613B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP4066472B2 (en) | Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material | |
JP3974396B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP7307123B2 (en) | Nickel-based composite positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same | |
JP4441678B2 (en) | Method for producing orthorhombic lithium manganese composite oxide particulate composition represented by LiMnO 2 | |
JP2005314152A (en) | Layered manganese dioxide nanobelt and method of manufacturing the same | |
JP7515738B2 (en) | Positive electrode material for lithium-ion secondary battery and method for preparing same | |
JPH10316432A (en) | Production of nickel oxyhydroxide and nonaqueous electrolytic battery | |
JP4246283B2 (en) | Lithium-containing composite metal oxide, its production method and use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070731 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080401 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080414 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110509 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110509 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120509 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120509 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120509 Year of fee payment: 4 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120509 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120509 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130509 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130509 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140509 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |