[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4119411B2 - Photothermal conversion measuring apparatus and method - Google Patents

Photothermal conversion measuring apparatus and method Download PDF

Info

Publication number
JP4119411B2
JP4119411B2 JP2004272005A JP2004272005A JP4119411B2 JP 4119411 B2 JP4119411 B2 JP 4119411B2 JP 2004272005 A JP2004272005 A JP 2004272005A JP 2004272005 A JP2004272005 A JP 2004272005A JP 4119411 B2 JP4119411 B2 JP 4119411B2
Authority
JP
Japan
Prior art keywords
light
measurement
sample
measuring
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004272005A
Other languages
Japanese (ja)
Other versions
JP2006084431A (en
Inventor
将人 甘中
弘行 高松
敏洋 釘宮
裕史 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004272005A priority Critical patent/JP4119411B2/en
Publication of JP2006084431A publication Critical patent/JP2006084431A/en
Application granted granted Critical
Publication of JP4119411B2 publication Critical patent/JP4119411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は,試料の含有物質等を分析する際に用いられ,励起光を試料に照射したときの光熱効果により試料に生じる屈折率変化に基づく特性変化を測定する光熱変換測定装置及びその方法に関するものである。   The present invention relates to a photothermal conversion measuring apparatus and method for measuring a characteristic change based on a refractive index change generated in a sample due to a photothermal effect when the sample is irradiated with a sample and the like and irradiated with excitation light. Is.

各種試料の含有物質等の分析において,分析感度の向上は,試薬の量の低減や試料の濃縮処理の簡素化,分析の効率化及び低コスト化を図る上で重要である。
ところで,試料に励起光を照射すると,その照射部は励起光を吸収することにより発熱し,これを光熱効果という。また,この発熱を測定することを光熱変換測定という。
従来,この光熱変換測定による試料の高感度分析法として,光熱効果により試料に形成される熱レンズ効果を用いた手法(以下,熱レンズ法という)が知られている。
熱レンズ法による分析装置(光熱変換分光分析装置)は,例えば,特許文献1に示されている。
図5は,特許文献1に示される熱レンズ法による試料の分析装置の構成図である(特許文献1の図1を引用)。なお,図5中の符号の一部は,後に説明する図1〜4における符号と重複する場合があるが,これらは異なる対象を指すものである。
図5に示されるように,励起光源10からの励起光Aは,チョッパ11で断続光に変換(即ち,周期的に強度変調)され,ビームエクスパンダ12,位置制御ミラー31,32,レンズ34及び顕微鏡35を介して試料40に照射される。これにより,試料40は励起光を吸収して発熱し,その屈折率が変化する。
この屈折率の変化は,検出光源20からの検出光B(測定光)により検出される。
検出光源20からの検出光Bは,ビームエクスパンダ22を介して励起光Aと同軸経路となって位置制御ミラー31,32で反射し,さらにレンズ34,顕微鏡35を介して試料40に照射される。そして,試料40を通過した検出光Bは,集光レンズ50により集光され,開口部51A(ピンホール)を通過して検出器53により受光され,その光強度が検出される。ここで,試料40の屈折率変化により検出光Bの試料40中の集光状態が変化するため,ピンホールを通過して得られる検出光の強度は,試料の屈折率の変化(即ち,試料の含有物質等に応じた光吸収量)に応じて変化する。この検出光Bの強度変化を測定することにより,試料の屈折率の変化を測定でき,その測定結果により試料の含有物質の量等を評価することができる。
特許文献1では,検出光Bの強度変化を高いS/N比(信号対雑音比)で検出するために,ロックインアンプ61によって励起光Aのチョッパによる断続周波数成分(強度変調周期の周波数成分)のみを検出している。
特開平10−232210号公報
In the analysis of substances contained in various samples, improvement of analysis sensitivity is important in order to reduce the amount of reagents, simplify the sample concentration process, increase the efficiency of analysis, and reduce costs.
By the way, when the sample is irradiated with excitation light, the irradiated portion generates heat by absorbing the excitation light, which is called a photothermal effect. Measuring this heat generation is called photothermal conversion measurement.
Conventionally, a method using a thermal lens effect formed on a sample by a photothermal effect (hereinafter referred to as a thermal lens method) is known as a high-sensitivity analysis method for a sample by this photothermal conversion measurement.
An analysis apparatus (photothermal conversion spectroscopic analysis apparatus) using a thermal lens method is disclosed in Patent Document 1, for example.
FIG. 5 is a configuration diagram of a sample analyzer using the thermal lens method disclosed in Patent Document 1 (see FIG. 1 of Patent Document 1). Note that some of the reference numerals in FIG. 5 may overlap with reference numerals in FIGS. 1 to 4 described later, but these indicate different objects.
As shown in FIG. 5, the excitation light A from the excitation light source 10 is converted into intermittent light (that is, intensity modulated periodically) by the chopper 11, and the beam expander 12, the position control mirrors 31 and 32, and the lens 34. The sample 40 is irradiated through the microscope 35. Thereby, the sample 40 absorbs excitation light and generates heat, and its refractive index changes.
This change in refractive index is detected by the detection light B (measurement light) from the detection light source 20.
The detection light B from the detection light source 20 becomes a coaxial path with the excitation light A via the beam expander 22 and is reflected by the position control mirrors 31 and 32, and further irradiated to the sample 40 via the lens 34 and the microscope 35. The Then, the detection light B that has passed through the sample 40 is condensed by the condenser lens 50, passes through the opening 51A (pinhole), and is received by the detector 53, and its light intensity is detected. Here, since the condensing state of the detection light B in the sample 40 changes due to the change in the refractive index of the sample 40, the intensity of the detection light obtained through the pinhole is a change in the refractive index of the sample (that is, the sample The amount of light absorption varies according to the contained material and the like. By measuring the intensity change of the detection light B, the change in the refractive index of the sample can be measured, and the amount of the substance contained in the sample can be evaluated based on the measurement result.
In Patent Document 1, in order to detect an intensity change of the detection light B with a high S / N ratio (signal-to-noise ratio), an intermittent frequency component (frequency component of the intensity modulation period) of the excitation light A by the chopper by the lock-in amplifier 61 is used. ) Only detected.
Japanese Patent Laid-Open No. 10-232210

しかしながら,前記熱レンズ法による試料の分析は,試料の発熱による屈折率変化を,測定光(検出光)の集光状態の変化による光強度(検出信号の強度)の変化によって検出するものであり,この光強度(検出信号強度)の変化は,試料の屈折率変化だけでなく,検出器53(光電変換手段)の受光位置や測定光の強度及びその強度分布等にも依存する。このため,再現性良く(安定的に)試料を分析(屈折率変化を測定)することが難しいという問題点があった。
また,測定感度を高めるためには,励起光の強度を増大させる,或いは試料通過後の測定光を通過させるピンホールの径を小さくする必要があるが,励起光強度の増大化は消費電力の増加,高コスト化を招き,ピンホールの小口径化は検出器での受光光量が減少によるS/N比の低下や測定時間の長時間化を招くという問題点もあった。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,試料の光熱効果による特性変化を,安定的に高精度で測定でき,さらに,消費電力の増加や高コスト化,S/N比の低下,測定時間の長時間化を防止しながら高感度で測定できる光熱変換測定装置及びその方法を提供することにある。
However, the analysis of a sample by the thermal lens method detects a change in refractive index due to heat generation of the sample by a change in light intensity (intensity of detection signal) due to a change in the focusing state of measurement light (detection light). The change in the light intensity (detection signal intensity) depends not only on the change in the refractive index of the sample but also on the light receiving position of the detector 53 (photoelectric conversion means), the intensity of the measurement light, its intensity distribution, and the like. For this reason, there is a problem that it is difficult to analyze the sample (measure the refractive index change) with good reproducibility (stable).
In order to increase the measurement sensitivity, it is necessary to increase the intensity of the excitation light or to reduce the diameter of the pinhole through which the measurement light after passing through the sample is passed. The increase in the cost and the increase in the cost of the pinhole have also caused problems such as a decrease in the S / N ratio due to a decrease in the amount of light received by the detector and a longer measurement time.
Accordingly, the present invention has been made in view of the above circumstances, and the object of the present invention is to be able to stably and accurately measure changes in characteristics due to the photothermal effect of a sample, and to increase power consumption and cost. An object of the present invention is to provide a photothermal conversion measuring apparatus and method capable of performing high-sensitivity measurement while preventing the increase in the measurement time, the decrease in the S / N ratio, and the increase in the measurement time.

上記目的を達成するために本発明は,励起光が照射された試料の光熱効果により生じる試料の屈折率変化を測定する光熱変換測定装置又は光熱変換測定方法に適用されるものであり,容器に収容された前記試料に対し第1の方向から所定の測定光照射手段により測定光を照射して該測定光を前記試料の測定部に通過させるとともに,前記容器に収容された前記試料に対し前記第1の方向と異なる第2の方向から所定の励起光照射手段により周期的に強度変調された励起光を照射することにより,該励起光を前記容器における前記測定光の通過部とは異なる部分に通過させつつ前記測定光が通過する前記試料の測定部に通過させ,前記試料の測定部を通過後の前記測定光における,前記励起光の強度変調周期と同周期成分の位相変化を光干渉法により測定する装置又は方法である。
このように,試料の光熱効果による屈折率変化(試料の温度上昇により生じる屈折率変化)の検出を,光干渉法を用いて,試料の測定部を通過(透過)させた測定光における位相変化(励起光の照射による位相変化)を測定することにより,即ち,参照光と測定光との位相差を測定することにより行えば,高精度で試料を分析することが可能となる。
例えば,装置ごとに光検出器(光電変換手段)の位置や測定光の強度及びその強度分布等が異なっても,測定中に変化さえしなければ,これらに依存することなく再現性高く(安定的に),しかも光学的に高精度で試料の屈折率変化(特性変化)を測定することが可能となる。
しかも,前記測定光及び前記励起光の測定部に対する照射方向が異なるので,前記励起光が,前記試料の測定部に至るまでの間に,その励起光によって発熱する等の特性変化が生じる物(前記容器の壁等,以下,通過物という)を通過する場合であっても,前記測定光が前記通過物の特性変化が生じる部分を通過しないよう構成でき,前記励起光通過物の特性変化が雑音となって測定精度が悪化することを防止できる
To accomplish the above object, which the excitation light is applied to the photothermal conversion measuring instrument or photothermal conversion measuring method for measuring the refractive index change of the sample caused by the photothermal effect of the sample is irradiated, the container The measurement light is irradiated to the stored sample from a first direction by a predetermined measurement light irradiation means to pass the measurement light through the measurement unit of the sample, and the sample stored in the container is By irradiating excitation light whose intensity is periodically modulated by a predetermined excitation light irradiation means from a second direction different from the first direction, the excitation light is different from the measurement light passing portion in the container. The phase change of the same period component as the intensity modulation period of the excitation light in the measurement light after passing through the measurement part of the sample and passing through the measurement part of the sample. Law Is a device or method to more measured.
In this way, the change in the refractive index due to the photothermal effect of the sample (the change in the refractive index caused by the temperature rise of the sample) is detected, and the phase change in the measurement light that has passed (transmitted) through the measurement part of the sample using optical interferometry. If the measurement is performed by measuring (the phase change due to the irradiation of the excitation light), that is, by measuring the phase difference between the reference light and the measurement light, the sample can be analyzed with high accuracy.
For example, even if the position of the photodetector (photoelectric conversion means), the intensity of the measurement light, and its intensity distribution differ from device to device, if it does not change during measurement, it does not depend on them and is highly reproducible (stable In addition, it is possible to measure the refractive index change (characteristic change) of the sample optically with high accuracy.
In addition, since the irradiation directions of the measurement light and the excitation light to the measurement unit are different, the excitation light generates a change in characteristics such as heat generation by the excitation light before reaching the measurement unit of the sample ( Even when passing through a wall of the container ( hereinafter referred to as a passing material), the measurement light can be configured not to pass through a portion where the characteristic change of the passing material occurs. It is possible to prevent measurement accuracy from deteriorating due to noise .

また,前記第2の方向が,前記容器の表面に対して略垂直な方向であれば,前記容器が前記励起光によって加熱されて屈折率が変化し,試料の測定部に対する前記励起光の照射角度(照射方向)が微妙に変化して測定精度が悪化することを防止できるのでなお好適である。
また,一般に,試料を収容するセル(容器)は直方体を形成している場合が多いので,前記第1の方向と前記第2の方向とが略直交する方向であれば,前記測定光と前記励起光との各々をセルの壁の表面に対して垂直入射させることができ,前記測定光や前記励起光がセルの壁を通過する際の屈折率を考慮する必要がない。従って,セルの壁が前記励起光によって加熱されて屈折率が変化し,測定精度が悪化することを防止できるので好適である。
Further, the second direction is, if the direction substantially perpendicular to the surface of the container, said container refractive index is heated is changed by the excitation light, the irradiation of the excitation light to the measurement of the sample This is still preferable because it can prevent the angle (irradiation direction) from changing slightly and the measurement accuracy from deteriorating.
In general, since a cell (container) for storing a sample often forms a rectangular parallelepiped, if the first direction and the second direction are substantially orthogonal, the measurement light and the Each of the excitation light can be perpendicularly incident on the surface of the cell wall, and there is no need to consider the refractive index when the measurement light or the excitation light passes through the cell wall . Therefore, it is preferable that the cell wall is heated by the excitation light to prevent the refractive index from changing and the measurement accuracy from deteriorating.

また,前記試料の前記測定光の照射面の反対面側に前記測定光を反射する裏面側光反射手段を設け,前記測定光が前記裏面側光反射手段に反射して前記試料の測定部を往復通過した後の前記測定光の位相変化を測定するものであれば,測定光が試料の励起部分を複数回通過するので,励起光の出力増大やS/N比の低下を伴うことなく,高感度で屈折率変化を測定することが可能となる。
また,前記測定光の位相変化を前記励起光の強度変調周期と同周期成分について測定するため,前記励起光の周波数成分を有しないノイズの影響を除去しつつ試料の屈折率変化のみを測定できる。これにより,前記位相変化の測定のS/N比が向上する。
また,前記励起光が波長ごとに異なる周期で強度変調された光の多重光であり,前記測定光の位相変化を前記励起光の各波長の強度変調周期と同周期成分それぞれについて測定するものが考えられる。
光熱効果による測定光の屈折率変化は,励起光の波長によっても異なり,試料の含有物質の種類によって各波長の励起光に対する光熱効果及び光熱効果による試料の屈折率変化も異なる。
従って,前記多重光を用いれば,1回の測定によって複数波長の測定光についての試料の屈折率変化を測定できるので,複数の異なる波長の励起光をそれぞれ照射して測定する場合に比べ,時間や手間の面で効率的な測定が可能となる。
Further, a back surface side light reflecting means for reflecting the measurement light is provided on the opposite side of the measurement light irradiation surface of the sample, and the measurement light is reflected by the back surface side light reflecting means so that the measurement portion of the sample is If the phase change of the measurement light after reciprocating is to be measured, the measurement light passes through the excitation part of the sample a plurality of times, without increasing the output of the excitation light and decreasing the S / N ratio. It becomes possible to measure the refractive index change with high sensitivity.
To measure the phase variation of the previous SL measuring light for intensity modulation period and the periodic component of the excitation light, measuring only the refractive index change of the sample while eliminating the influence of no noise frequency components of the excitation light it can. Thereby, the S / N ratio in the measurement of the phase change is improved.
Further, the excitation light is a multiplexed light of intensity-modulated light with a different period for each wavelength, and the phase change of the measurement light is measured for each of the same period components as the intensity modulation period of each wavelength of the excitation light. Conceivable.
The change in the refractive index of the measurement light due to the photothermal effect also varies depending on the wavelength of the excitation light, and the photothermal effect for the excitation light of each wavelength and the change in the refractive index of the sample due to the photothermal effect also differ depending on the type of substance contained in the sample.
Accordingly, if the multiplexed light is used, the change in the refractive index of the sample with respect to the measurement light of a plurality of wavelengths can be measured by one measurement. In addition, efficient measurement is possible in terms of time and effort.

また,前記位相変化を測定する手段として,前記測定光とその測定光とは光周波数が異なる所定の参照光との干渉光の強度を光電変換する光電変換手段と,前記光電変換手段により得られた前記干渉光の強度信号に基づいて前記測定光の位相変化を算出する位相変化算出手段とを具備するものが考えられる。
このようにして得られる電気信号(干渉光の強度信号)は,光周波数が電気信号に変換された信号となり,その位相成分は,FM復調等により抽出できる。この抽出された位相成分には,試料の発熱による屈折率変化の信号が含まれる。また,参照光と測定光との位相変化を測定するので,光検出器(光電変換手段)の位置や測定光の強度及びその強度分布等に依存することなく再現性高く(安定的に),しかも光学的に高精度で試料の屈折率変化を測定することが可能となる。
Further, as the means for measuring the phase change, the measurement light and the measurement light are obtained by the photoelectric conversion means for photoelectrically converting the intensity of interference light between the measurement light and a predetermined reference light having a different optical frequency, and the photoelectric conversion means. Further, it may be possible to include a phase change calculating means for calculating the phase change of the measurement light based on the intensity signal of the interference light.
The electric signal (interference light intensity signal) obtained in this way becomes a signal whose optical frequency is converted into an electric signal, and its phase component can be extracted by FM demodulation or the like. The extracted phase component includes a signal of refractive index change due to heat generation of the sample. In addition, since the phase change between the reference beam and the measurement beam is measured, it is highly reproducible (stable) without depending on the position of the photodetector (photoelectric conversion means), the intensity of the measurement beam, its intensity distribution, etc. In addition, it is possible to measure the refractive index change of the sample optically with high accuracy.

本発明によれば,試料の光熱効果による屈折率変化の検出が,光干渉法を用いて,試料の測定部を通過(透過)させた測定光における位相変化(励起光の照射による位相変化)を測定することにより,即ち,参照光と測定光との位相差を測定することにより行われるので,例えば,装置ごとに光検出器(光電変換手段)の位置や測定光の強度及びその強度分布等が異なっても,測定中に変化さえしなければ,これらに依存することなく安定的に,しかも光学的に高精度で試料の屈折率変化を測定することが可能となる。
しかも,前記測定光と前記励起光の照射方向が異なるので,前記励起光が,前記試料の測定部に至るまでの間に,その励起光によって発熱する等の特性変化が生じる物を通過する場合であっても,前記測定光が前記通過物の特性変化が生じる部分を通過しないよう構成でき,前記励起光通過物の特性変化が測定光に対する雑音となって測定精度が悪化することを防止できる。
さらに,測定光を光反射手段(ミラー等)で反射させるという簡易な構成によって,測定光を試料に往復通過させることにより,励起光の出力増大(即ち,消費電力の増加や高コスト化)やS/N比の低下を招くことなく高感度で試料の屈折率変化を測定できる。
以上の結果,安定的かつ高感度な試料分析を行うことが可能となる。
According to the present invention, the change in the refractive index due to the photothermal effect of the sample is detected by the phase change in the measurement light that has passed (transmitted) through the measurement part of the sample using the optical interferometry (the phase change due to the irradiation of excitation light). Is measured, that is, by measuring the phase difference between the reference light and the measurement light. For example, the position of the photodetector (photoelectric conversion means), the intensity of the measurement light, and the intensity distribution thereof for each apparatus. Even if they are different, it is possible to measure the change in the refractive index of the sample stably and optically with high accuracy without depending on these as long as they do not change during measurement.
In addition, since the irradiation directions of the measurement light and the excitation light are different, the excitation light passes through an object that undergoes a characteristic change such as heat generated by the excitation light before reaching the measurement portion of the sample. Even so, it can be configured so that the measurement light does not pass through the portion where the characteristic change of the passing material occurs, and it can be prevented that the characteristic change of the excitation light passing material becomes noise with respect to the measurement light and the measurement accuracy deteriorates. .
Furthermore, the output of the excitation light (that is, increased power consumption and cost) can be increased by passing the measurement light back and forth through the sample with a simple configuration in which the measurement light is reflected by a light reflecting means (mirror, etc.). The change in the refractive index of the sample can be measured with high sensitivity without causing a decrease in the S / N ratio.
As a result, stable and highly sensitive sample analysis can be performed.

以下添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る光熱変換測定装置Xの概略構成図,図2はセルに収容された試料の測定部に測定光及び励起光が入射される状態を3パターンの入射状態について表す図,図3は試料を収容するセルの構造の一例を表す図,図4は本発明の実施例に係る光熱変換測定装置における測定光を試料の表面と裏面との間で多重反射させる構成の概略断面図,図5は従来の光熱変換測定装置(光熱変換分光分析装置)の概略構成図である。
Hereinafter, embodiments and examples of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. It should be noted that the following embodiments and examples are examples embodying the present invention, and do not limit the technical scope of the present invention.
Here, FIG. 1 is a schematic configuration diagram of the photothermal conversion measuring device X according to the embodiment of the present invention, and FIG. 2 is a diagram showing three patterns in which measurement light and excitation light are incident on a measurement unit of a sample accommodated in a cell. FIG. 3 is a diagram illustrating an example of the structure of a cell that accommodates a sample, and FIG. 4 is a diagram illustrating the measurement light in the photothermal conversion measuring device according to the embodiment of the present invention between the front surface and the back surface of the sample. FIG. 5 is a schematic sectional view of a conventional photothermal conversion measuring device (photothermal conversion spectroscopic analyzer).

以下,図1を用いて,本発明の実施の形態に係る光熱変換測定装置Xについて説明する。この光熱変換測定装置Xは,励起光が照射された試料の光熱効果により生じるその試料の特性変化を測定する装置である。
所定の励起光源1(例えば,波長533nm,出力100mWのレーザ(YAG倍波))から出力された励起光P3は,チョッパ2により所定周期の断続光(断続周波数:f)に変換(即ち,周期的に強度変調)され,これがレンズ3を通過して試料5に照射される。これにより,試料5が励起光P3を吸収して発熱し(光熱効果),その温度変化(上昇)によって試料5の屈折率が変化する。
一方,試料5の屈折率変化を測定するための測定光を出力するレーザ光源7(例えば,出力1mWのHe−Neレーザ)から出力された測定光は,1/2波長板8で偏波面が調節され,さらに偏光ビームスプリッタ(PBS)9によって互いに直交する2偏波(P1,P2)に分光される。
各偏波P1,P2は,各々音響光学変調機(AOM)10,11によって光周波数がシフト(周波数変換)され,ミラー12,13で反射された後,偏光ビームスプリッタ14によて合成される。これら直交する2偏波P1,P2の周波数差fbは,例えば,30MHz等とする。
合成された測定光の一方の前記偏波P2は,偏光ビームスプリッタ15を通過(透過)してミラー18に反射することにより,再度,偏光ビームスプリッタ15に戻る。ここで,偏光ビームスプリッタ15に戻ってきた前記偏波P2は,その偏光ビームスプリッタ15とミラー18との間に配置された1/4波長板16を往復通過することによってその偏波面が90°回転しているため,今度は偏光ビームスプリッタ15に反射して光検出器20の方向へ向かう。
Hereinafter, the photothermal conversion measuring apparatus X according to the embodiment of the present invention will be described with reference to FIG. This photothermal conversion measuring device X is a device that measures a change in characteristics of a sample caused by the photothermal effect of the sample irradiated with excitation light.
The pumping light P3 output from a predetermined pumping light source 1 (for example, a laser having a wavelength of 533 nm and an output of 100 mW (YAG double wave)) is converted into intermittent light (intermittent frequency: f) by the chopper 2 (that is, periodicity). The intensity of the sample 5 is applied to the sample 5 through the lens 3. Thereby, the sample 5 absorbs the excitation light P3 and generates heat (photothermal effect), and the refractive index of the sample 5 changes due to the temperature change (rise).
On the other hand, the measurement light output from a laser light source 7 (for example, a He—Ne laser having an output of 1 mW) that outputs measurement light for measuring the refractive index change of the sample 5 is a half-wave plate 8 and has a plane of polarization. Then, the light is further split into two polarized waves (P1, P2) orthogonal to each other by a polarization beam splitter (PBS) 9.
The polarizations P1 and P2 are shifted in frequency (frequency conversion) by the acousto-optic modulators (AOM) 10 and 11, reflected by the mirrors 12 and 13, and then synthesized by the polarization beam splitter 14. . Frequency difference f b of 2 to these orthogonal polarization P1, P2, for example, a 30MHz or the like.
One polarization P2 of the synthesized measurement light passes (transmits) through the polarization beam splitter 15 and is reflected by the mirror 18, thereby returning to the polarization beam splitter 15 again. Here, the polarization P2 that has returned to the polarization beam splitter 15 reciprocally passes through the quarter-wave plate 16 disposed between the polarization beam splitter 15 and the mirror 18, so that the polarization plane is 90 °. Since it is rotating, it is reflected by the polarization beam splitter 15 and directed toward the photodetector 20.

これに対し,合成された測定光の他方の前記偏波P1は,偏光ビームスプリッタ15に反射して,1/4波長板17及び前記レンズ4を通過して試料5の測定部5aに入射する。また,前記励起光P3も,試料5の測定部5aに照射されるよう構成されている。
さらに,試料5に入射した前記偏波P1(測定光)は,試料5の測定部5aを通過し,試料5の裏面側(測定光(偏波P1)の照射面の反対面側)に設けられた反射ミラー6で反射し,再び試料5の測定部5aを通過(即ち,往復通過)して,前記レンズ4及び前記1/4波長板17を通過して前記偏光ビームスプリッタ15へ戻る。ここで,前記偏波P1(測定光)は,前記1/4波長板17を往復通過することによってその偏波面が90°回転しているため,今度は偏光ビームスプリッタ15を通過して前記偏波P2と合流し,前記光検出器20の方向へ向かう。
前記偏光ビームスプリッタ15と前記光検出器20との間には偏光板19が配置され,この偏光板19において前記偏波P1と,該偏波P1と光周波数が異なる前記偏波P2とが,それぞれ観測光(測定光)と参照光として干渉し,その干渉光の光強度が前記光検出器20(光電変換手段)によって電気信号(以下,この電気信号の信号値を干渉光強度という)に変換される。この電気信号(即ち,干渉光強度)は,計算機等からなる信号処理装置21に入力及び記憶され,該信号処理装置21において前記偏波P1(測定光)の位相変化の演算(算出)処理(即ち,光干渉法による位相変化の測定)がなされる。ここで,前記偏波P1,P2を各々所定の方向へ導く光学系機器及び前記偏波P1,P2(測定光と参照光)の干渉光を形成させる前記偏光板19,並びに前記光検出器20と前記信号処理装置21とが,前記位相変化測定手段の一例を構成する。
On the other hand, the other polarization P1 of the combined measurement light is reflected by the polarization beam splitter 15, passes through the quarter-wave plate 17 and the lens 4, and enters the measurement unit 5a of the sample 5. . Further, the excitation light P3 is also configured to be applied to the measurement unit 5a of the sample 5.
Further, the polarization P1 (measurement light) incident on the sample 5 passes through the measurement unit 5a of the sample 5 and is provided on the back side of the sample 5 (on the opposite side of the irradiation surface of the measurement light (polarization P1)). The light is reflected by the reflecting mirror 6, passes again through the measurement unit 5 a of the sample 5 (ie, reciprocates), passes through the lens 4 and the quarter-wave plate 17, and returns to the polarizing beam splitter 15. Here, since the polarization plane of the polarization P1 (measurement light) is rotated 90 ° by reciprocating through the quarter-wave plate 17, this time, the polarization P1 (measurement light) passes through the polarization beam splitter 15 and passes through the polarization beam splitter 15. It merges with the wave P <b> 2 and travels toward the photodetector 20.
A polarizing plate 19 is disposed between the polarizing beam splitter 15 and the photodetector 20, and in this polarizing plate 19, the polarization P 1 and the polarization P 2 having a different optical frequency from the polarization P 1 are Each of them interferes as observation light (measurement light) and reference light, and the light intensity of the interference light is converted into an electric signal (hereinafter, the signal value of the electric signal is referred to as interference light intensity) by the photodetector 20 (photoelectric conversion means). Converted. This electric signal (that is, interference light intensity) is input and stored in a signal processing device 21 composed of a computer or the like, and the signal processing device 21 calculates (calculates) a phase change of the polarization P1 (measurement light). That is, phase change is measured by optical interferometry. Here, an optical device that guides the polarizations P1 and P2 in a predetermined direction, the polarizing plate 19 that forms interference light of the polarizations P1 and P2 (measurement light and reference light), and the photodetector 20 respectively. And the signal processing device 21 constitute an example of the phase change measuring means.

ここで,干渉光強度S1は,次の(1)式で表される。
S1=C1+C2・cos(2π・fb・t+φ) …(1)
この(1)式において,C1,C2は偏光ビームスプリッタ等の光学系や試料5の透過率により定まる定数,φは前記偏P1,P2の光路長差による位相差,fbは2偏波P1,P2の周波数差である。
(1)式より,前記干渉光強度S1の変化(前記励起光を照射しない或いはその光強度が小さいときとその光強度が大きいときとの差)から,前記位相差φの変化が求まることがわかる。前記信号処理装置21は,(1)式に基づいて前記位相差φの変化を算出する。
また,試料5の測定部5aにおいて,励起光P3を吸収する所定の含有物質の量に応じて吸熱量(発熱量)が変わり,その発熱量に応じて測定部5aの屈折率が変わり,その屈折率に応じて前記位相差φ(試料5中の前記偏波P1の光路長)が変わる。即ち,励起光P3を吸収する含有物質の量が多いほど,励起光P3の変化に対する前記位相差φの変化(即ち,前記偏波P1の位相変化)が大きい。従って,前記位相差φを測定すれば,試料5の温度変化により生じる屈折率の変化が求まり,その結果,試料の含有物質の量(濃度)の分析が可能となる。
例えば,当該光熱変換測定装置Xを用いて,予め所定の含有物質の量(濃度)が既知である複数種類のサンプル試料について前記位相差φの変化を測定し,その結果とその含有物質の量との対応づけを前記信号処理装置21にデータテーブルとして記憶しておく。
そして,測定対象とする試料についての前記位相差φの測定結果を前記データテーブルに基づいて補間処理等を行う等によりその含有物質の量を特定する処理を前記信号処理装置21により実行すればよい。
このように,試料5の光熱効果による屈折率変化を,光干渉法を用いて,試料5の測定部5aを通過(透過)させた測定光(前記偏波P1)における位相変化(励起光P3の照射による位相変化)を測定することによって,即ち,参照光(前記偏波P2)と測定光(前記偏波P1)との位相の相対評価(位相差)することによって検出(測定)する。これにより,例えば装置ごとに光検出器20の位置や測定光P1の強度及びその強度分布等が異なっても,測定中に変化さえしなければ,これらに依存することなく安定的に,しかも光学的に高精度で試料の屈折率変化を測定することが可能となる。
Here, the interference light intensity S1 is expressed by the following equation (1).
S1 = C1 + C2 · cos (2π · f b · t + φ) (1)
In this equation (1), C1 and C2 are constants determined by the transmittance of an optical system such as a polarizing beam splitter and the sample 5, φ is a phase difference due to the optical path length difference between the polarizations P1 and P2, and f b is a two-polarization P1. , P2 frequency difference.
From the equation (1), the change in the phase difference φ can be obtained from the change in the interference light intensity S1 (difference between when the excitation light is not irradiated or when the light intensity is low and when the light intensity is high). Recognize. The signal processing device 21 calculates the change in the phase difference φ based on the equation (1).
Further, in the measurement unit 5a of the sample 5, the endothermic amount (heat generation amount) changes in accordance with the amount of the predetermined contained substance that absorbs the excitation light P3, and the refractive index of the measurement unit 5a changes in accordance with the amount of heat generation. The phase difference φ (the optical path length of the polarization P1 in the sample 5) changes according to the refractive index. That is, the greater the amount of the substance that absorbs the excitation light P3, the greater the change in the phase difference φ with respect to the change in the excitation light P3 (that is, the phase change in the polarization P1). Therefore, if the phase difference φ is measured, the change in the refractive index caused by the temperature change of the sample 5 can be obtained, and as a result, the amount (concentration) of the substance contained in the sample can be analyzed.
For example, the photothermal conversion measuring device X is used to measure the change of the phase difference φ for a plurality of types of sample samples whose amounts (concentrations) of a predetermined content are known in advance, and the result and the amount of the content Is stored in the signal processing device 21 as a data table.
Then, the signal processing device 21 may execute a process of specifying the amount of the contained substance by, for example, performing an interpolation process on the measurement result of the phase difference φ of the sample to be measured based on the data table. .
In this way, the change in refractive index due to the photothermal effect of the sample 5 is caused by the phase change (excitation light P3) in the measurement light (the polarization P1) that has passed (transmitted) through the measurement unit 5a of the sample 5 using optical interferometry. Is detected (measured) by measuring the relative phase (phase difference) between the reference light (the polarization P2) and the measurement light (the polarization P1). As a result, for example, even if the position of the photodetector 20, the intensity of the measurement light P1 and its intensity distribution, etc. differ from device to device, as long as they do not change during the measurement, they are stable and optically independent. Therefore, it is possible to measure the refractive index change of the sample with high accuracy.

また,本光熱変換測定装置Xでは,裏面側の前記反射ミラー6(前記裏面側光反射手段の一例)に測定光(偏波P1)を反射させることにより,測定光(偏波P1)を試料5に往復通過させ,その往復通過後の測定光について位相変化測定が行われるため,片道通過の場合の2倍の感度で前記位相差φの変化を測定できる。しかも,励起光の出力増大やS/N比の低下を伴わない。
さらに,前記励起光は周波数fで強度変調されているため,試料5の屈折率も周波数fで変化し,偏波P1の光路長も周波数fで変化し(偏波P2の光路長は一定),前記位相差φも周波数fで変化する。従って,前記位相差φの変化を,周波数fの成分(前記励起信号の強度変調周期と同周期成分)について測定(算出)すれば,周波数fの成分を有しないノイズの影響を除去しつつ試料5の屈折率変化のみを測定できる。
これにより,前記位相差φの測定のS/N比が向上する。
In this photothermal conversion measuring apparatus X, the measurement light (polarized wave P1) is reflected on the sample by reflecting the measurement light (polarized wave P1) on the reflection mirror 6 on the back side (an example of the back side light reflecting means). Since the phase change measurement is performed on the measurement light after being reciprocated to 5 and passing through the reciprocating passage, the change in the phase difference φ can be measured with twice the sensitivity in the case of one-way passage. In addition, there is no increase in the output of pumping light or a decrease in the S / N ratio.
Furthermore, since the excitation light is intensity-modulated at the frequency f, the refractive index of the sample 5 also changes at the frequency f, and the optical path length of the polarization P1 also changes at the frequency f (the optical path length of the polarization P2 is constant). The phase difference φ also changes with the frequency f. Therefore, if the change in the phase difference φ is measured (calculated) with respect to the component of the frequency f (the same period component as the intensity modulation period of the excitation signal), the influence of noise having no component of the frequency f is removed. Only a refractive index change of 5 can be measured.
Thereby, the S / N ratio in the measurement of the phase difference φ is improved.

また,光熱変換測定装置Xでは,レーザ光源7及び各種光学系9,12,14,15,4(測定光照射手段の一例)により試料5の測定部5aに対して測定光(偏波)P1を照射する方向(以下,第1の方向という)と,前記励起光源1及びチョッパ2等(励起光照射手段の一例)により,試料5の測定部5aに対して励起光P3を照射する方向(以下,第2の方向)とは異なる。即ち,試料5の測定部5aにおいて,測定光P1と励起光P3とが交差するようになっている。
図1に示すように,本実施形態では,前記第1の方向と前記第2の方向とがほぼ直交する方向となうように構成されている。
また,試料5は,これを収容する容器であるセルSによって保持されており,測定光P1及び励起光P3は,そのセルSの壁(保持部材の一例)を通過(透過)して試料5の測定部5aに照射される。ここで,前記セルS(の壁)は,石英等,測定光P1や励起光P3を通過(透過)させる材料により構成されている。
また,前記セルSの壁は,直方体状に形成されており,直交する前記第1の方向(測定光P1の照射方向)と前記第2の方向(励起光P3の照射方向)とは,各々前記セルSの壁面(保持部材の表面の一例)に対してほぼ垂直な方向となるように構成(配置)されている。
In the photothermal conversion measuring apparatus X, the measurement light (polarized wave) P1 is applied to the measurement unit 5a of the sample 5 by the laser light source 7 and the various optical systems 9, 12, 14, 15, 4 (an example of measurement light irradiation means). And the direction in which the excitation light P3 is irradiated to the measuring part 5a of the sample 5 by the excitation light source 1, the chopper 2, etc. (an example of excitation light irradiation means) (hereinafter referred to as the first direction) Hereinafter, the second direction is different. That is, in the measurement part 5a of the sample 5, the measurement light P1 and the excitation light P3 intersect each other.
As shown in FIG. 1, in the present embodiment, the first direction and the second direction are configured to be substantially orthogonal to each other.
The sample 5 is held by a cell S that is a container for containing the sample 5, and the measurement light P <b> 1 and the excitation light P <b> 3 pass (transmit) through the wall (an example of a holding member) of the cell S. The measurement unit 5a is irradiated. Here, the cell S (the wall) is made of a material such as quartz that allows the measurement light P1 and the excitation light P3 to pass (transmit).
The wall of the cell S is formed in a rectangular parallelepiped shape, and the first direction (irradiation direction of the measurement light P1) and the second direction (irradiation direction of the excitation light P3) orthogonal to each other are respectively The cell S is configured (arranged) in a direction substantially perpendicular to the wall surface (an example of the surface of the holding member).

図2は,セルSに収容された試料5の測定部5aに測定光P1及び励起光P3が入射される状態を3パターンの入射状態について表す図である。
ここで,図2(a)は図1に示したように測定光P1と励起光P3とが相互に直交する方向から試料5の測定部5aに入射(照射)される状態(以下,パターンaという),図2(b)は測定光P1の入射方向と励起光P3の入射方向とが鋭角をなす状態(以下,パターンbという),図2(c)は測定光P1と励起光P3とが同軸方向に(同じ方向から)入射される状態(以下,パターンcという)を表す。
また,図2に示す前記セルSの壁は,直方体状に形成されており,前記パターンaは,直交する測定光P1の入射方向(第1の方向)と励起光P3の入射方向(第2の方向)とが,各々異なる方向であり,かつ各々前記セルSの壁面(保持部材の表面の一例)に対してほぼ垂直な方向であるパターンともいえる。
前記パターンcにおいては,前記セルSにおける測定光P1が通過する部分S3と励起光P3が通過する部分S4とが重複する,或いは近傍となる。このため,励起光P3の通過部S4が励起されて特性変化が生じると,その励起部S4と重複する或いは近傍となる部分S3を測定光P1が通過するため,その励起部S3の特性変化の大きさによっては,測定光P1における雑音となって測定精度が悪化し得る。
これに対し,前記パターンaでは,前記セルSにおける測定光P1が通過する部分S1と励起光P3が通過する部分S2とが全く異なる(重複せず,近傍でもない)。このため,前記セルSの一部S2が,励起光P3によって発熱する等の特性変化が生じても,測定光P1はその励起部S2(励起光P3の通過部(発熱部))を通過しないため,その励起部S2の特性変化が測定光P1における雑音となって測定精度が悪化することがない。
同様に,前記パターンbにおいても,前記セルSにおける測定光P1が通過する部分S1’と励起光P3が通過する部分S2’とが全く異なるため,前記セルSの励起部S2’の特性変化が測定光P1における雑音となって測定精度が悪化することがない。
このように,測定光P1及び励起光P3の測定部5aに対する照射方向を異ならせることにより,励起光P3が,測定部5aに至るまでの間に,その励起光P3によって励起される物を通過する場合であっても,測定光P1がその励起される部分を通過しないよう容易に構成でき,励起部分の特性変化が測定光P1に対する雑音となって測定精度が悪化することを防止できる。
但し,前記パターンbでは,励起光P3が前記セルSの壁面に対して垂直入射されていないため,励起光P3は,前記セルSにおける通過部S2’(励起部)において屈折し,その屈折率は,通過部S2’の励起状態(発熱状態)の変化に応じて変化する。そして,この屈折率の変化により,試料5の測定部5aに対する励起光P3の入射角度(照射方向)が微妙に変化して測定精度が微妙に悪化し得る。
これに対し,前記パターンaでは,励起光P3が前記セルSの壁面に対してほぼ垂直入射されているため,励起光P3は,前記セルSにおける通過部S2においてその励起(加熱)状態に関わらず屈折しない。従って,励起光P3の通過部S2における励起状態の変化が,試料5の測定部5aに対する励起光P3の入射角度(照射方向)の変化に影響して測定精度が微妙に悪化するということがない。
FIG. 2 is a diagram illustrating a state in which the measurement light P1 and the excitation light P3 are incident on the measurement unit 5a of the sample 5 accommodated in the cell S with respect to three patterns of incident states.
Here, FIG. 2A shows a state in which the measurement light P1 and the excitation light P3 are incident (irradiated) on the measurement unit 5a of the sample 5 from directions orthogonal to each other as shown in FIG. 2 (b) shows a state where the incident direction of the measurement light P1 and the incident direction of the excitation light P3 form an acute angle (hereinafter referred to as pattern b), and FIG. 2 (c) shows the measurement light P1 and the excitation light P3. Represents an incident state (hereinafter referred to as a pattern c) in the same direction (from the same direction).
Further, the wall of the cell S shown in FIG. 2 is formed in a rectangular parallelepiped shape, and the pattern a has an incident direction (first direction) of the orthogonal measuring light P1 and an incident direction (second) of the excitation light P3. Are directions that are different from each other and are substantially perpendicular to the wall surface of the cell S (an example of the surface of the holding member).
In the pattern c, the portion S3 through which the measurement light P1 passes in the cell S and the portion S4 through which the excitation light P3 pass overlap or are close to each other. For this reason, when the passage portion S4 of the excitation light P3 is excited and a characteristic change occurs, the measurement light P1 passes through the portion S3 that overlaps or is close to the excitation portion S4. Depending on the size, the measurement accuracy may deteriorate due to noise in the measurement light P1.
On the other hand, in the pattern a, the portion S1 through which the measurement light P1 passes in the cell S and the portion S2 through which the excitation light P3 pass are completely different (not overlapping and not in the vicinity). For this reason, even if a characteristic change occurs such that a part S2 of the cell S generates heat due to the excitation light P3, the measurement light P1 does not pass through the excitation part S2 (passage part (heat generation part) of the excitation light P3). Therefore, the characteristic change of the excitation unit S2 does not become noise in the measurement light P1, and the measurement accuracy does not deteriorate.
Similarly, in the pattern b, the portion S1 ′ through which the measurement light P1 passes in the cell S and the portion S2 ′ through which the excitation light P3 pass are completely different, so that the characteristic change of the excitation portion S2 ′ in the cell S changes. The measurement accuracy does not deteriorate due to noise in the measurement light P1.
In this way, by making the irradiation directions of the measurement light P1 and the excitation light P3 to the measurement unit 5a different, the excitation light P3 passes through the object excited by the excitation light P3 before reaching the measurement unit 5a. Even in this case, it can be easily configured so that the measurement light P1 does not pass through the excited portion, and it is possible to prevent the change in characteristics of the excitation portion from becoming noise with respect to the measurement light P1 and degrading the measurement accuracy.
However, in the pattern b, since the excitation light P3 is not perpendicularly incident on the wall surface of the cell S, the excitation light P3 is refracted at the passing portion S2 ′ (excitation portion) in the cell S, and its refractive index. Changes according to the change in the excitation state (heat generation state) of the passage S2 ′. Due to this change in refractive index, the incident angle (irradiation direction) of the excitation light P3 with respect to the measurement unit 5a of the sample 5 may be slightly changed, and the measurement accuracy may be slightly deteriorated.
On the other hand, in the pattern a, since the excitation light P3 is substantially perpendicularly incident on the wall surface of the cell S, the excitation light P3 is related to the excitation (heating) state in the passage portion S2 in the cell S. No refraction. Therefore, the change in the excitation state of the excitation light P3 in the passage part S2 does not affect the change in the incident angle (irradiation direction) of the excitation light P3 with respect to the measurement part 5a of the sample 5 and the measurement accuracy does not deteriorate slightly. .

(実施例)
図3は,液体状の試料5を収容するセルS’の構造の一例を表す図であり,正面方向から見た断面図(a),平面図(b),底面図(c),側面方向から断面図(d)及び試料5の測定部5aの拡大図(e)を表す。
セルS’は,石英材料からなる2つの板状部材Sa,Sb(以下,基材Sb,ふた材Saという)が対向して貼り合わされた構造を有し,基材Sbの底面(ふた材Saに対向する面に対し反対側の面)には,測定光P1を反射する前記反射ミラー6が設けられている。
また,基材Sbの上面(ふた材Saに対向する面)には,上方から見て帯状に伸びる溝Sgが形成されている。この溝Sgは,液体状の試料5を溜めるための溝である。
一方,ふた材Saには貫通穴Shが設けられており,ふた材Saと基材Sbとが貼り合わされた状態で,貫通穴Shを通じて液体状の試料5を基材Sb側の溝Sgに注ぎ込むことができる構造を有している。
図3に示すセルS’では,試料5を小さくして測定感度を高めるため,試料5を溜める(保持する)溝Sgは微細なもの(例えば,深さ100μm,幅200μm,長さ30mm程度)である。その加工方法としては,例えば,溶剤によって基材Sgを溶かすこと等が考えられ,この場合,溝Sgは若干丸みを帯びた形状となる。
(Example)
FIG. 3 is a diagram showing an example of the structure of the cell S ′ containing the liquid sample 5, and is a cross-sectional view (a), a plan view (b), a bottom view (c), and a side direction as seen from the front direction. Sectional drawing (d) and the enlarged view (e) of the measurement part 5a of the sample 5 are represented.
The cell S ′ has a structure in which two plate-like members Sa and Sb (hereinafter referred to as a base material Sb and a lid material Sa) made of a quartz material are bonded to each other, and the bottom surface (the lid material Sa) of the base material Sb. The reflection mirror 6 that reflects the measurement light P1 is provided on the surface opposite to the surface facing the surface.
Further, a groove Sg extending in a band shape when viewed from above is formed on the upper surface of the base material Sb (the surface facing the lid material Sa). The groove Sg is a groove for storing the liquid sample 5.
On the other hand, the cover material Sa is provided with a through hole Sh, and the liquid sample 5 is poured into the groove Sg on the substrate Sb side through the through hole Sh in a state where the cover material Sa and the substrate Sb are bonded together. It has a structure that can.
In the cell S ′ shown in FIG. 3, in order to reduce the sample 5 and increase the measurement sensitivity, the groove Sg for storing (holding) the sample 5 is fine (for example, a depth of 100 μm, a width of 200 μm, and a length of about 30 mm). It is. As the processing method, for example, it is conceivable to dissolve the base material Sg with a solvent, and in this case, the groove Sg has a slightly rounded shape.

前記実施の形態では,前記測定光(前記偏波P1)を試料5に往復通過させることによって感度の向上を図るものであったが,この往復通過をさらに多重化させる,即ち,前記測定光を試料5で多重通過させることによってさらなる感度向上を図ることも可能である。
図4は,測定光を試料の表面と裏面との間で多重反射させる構成の概略断面図である。
図4に示すように,試料5の表面側(前記測定光の照射面側)とその裏面側とのそれぞれに反射ミラー31,32(高反射ミラー,前記表面側光反射手段と前記裏面側光反射手段の一例)を配置し,前記測定光(前記偏波P1)を両反射ミラー31,32の間で多重反射させることができる。ここで,図4には,多重反射を模式的に示すため,便宜上,前記測定光が前記反射ミラー31,32に斜め入射しているように示しているが,実際は垂直入射させて入射光と反射光とが同軸となるようにする。これにより,前記測定光(前記偏波P1)は,両反射ミラー31,32間で多重反射しながら,その一部が試料5の前記表面側の反射ミラー31を透過して前記光検出器20の方向へ向かう。従って,前記光検出器20には,試料5を多重通過した前記測定光が重畳されて入力されるため,高感度での位相差測定,即ち,屈折率変化の測定が可能となる。
この場合,多重反射した測定光の位相を同期させるように両反射ミラー31,32の間隔を微調整するため,一方の反射ミラーの位置制御を行う駆動機構30(ミラー駆動機構)を設けることが望ましい。
In the above embodiment, the sensitivity is improved by reciprocating the measurement light (the polarization P1) through the sample 5, but this reciprocation is further multiplexed, that is, the measurement light is It is also possible to further improve sensitivity by making multiple passes through the sample 5.
FIG. 4 is a schematic cross-sectional view of a configuration in which measurement light is subjected to multiple reflection between the front surface and the back surface of the sample.
As shown in FIG. 4, reflection mirrors 31 and 32 (high reflection mirror, front surface side light reflecting means and rear surface side light are respectively provided on the front surface side (the measurement light irradiation surface side) and the back surface side of the sample 5. An example of a reflecting means) can be arranged, and the measurement light (the polarization P1) can be subjected to multiple reflection between the reflecting mirrors 31 and 32. Here, in order to schematically show multiple reflection, FIG. 4 shows that the measurement light is obliquely incident on the reflection mirrors 31 and 32 for the sake of convenience. The reflected light should be coaxial. As a result, the measurement light (the polarized wave P1) is reflected by the reflection mirrors 31 and 32, and a part of the measurement light is transmitted through the reflection mirror 31 on the surface side of the sample 5, and the photodetector 20 is transmitted. Head in the direction of Accordingly, since the measurement light that has passed through the sample 5 is superimposed and input to the photodetector 20, it is possible to perform phase difference measurement with high sensitivity, that is, measurement of refractive index change.
In this case, a drive mechanism 30 (mirror drive mechanism) for controlling the position of one of the reflection mirrors may be provided in order to finely adjust the distance between the reflection mirrors 31 and 32 so as to synchronize the phase of the multiple reflected measurement light. desirable.

ところで,光熱効果による測定光の屈折率変化は,励起光の波長によっても異なり,試料の含有物質の種類によって各波長の励起光に対する光熱効果及び光熱効果による試料の屈折率変化も異なる。
従って,複数の異なる波長の励起光を照射し,そのそれぞれについて前記位相差φの変化を測定すれば,その分布から試料の含有物質の種類及び量を特定(評価)できる。しかしながら,励起光を異なる波長ごとに照射して測定を行うことは時間や手間の面で測定効率が悪い。
そこで,前記励起光を,波長ごとに異なる周期で強度変調された光の多重光とし,前記信号処理装置21により,前記測定光の位相φの変化を,前記励起光の各波長の強度変調周期と同周期成分それぞれについて測定すれば,1回の測定によって複数波長の測定光についての試料の屈折率変化を測定でき,効率的な測定が可能となる。
このような励起光の光源(照射手段)としては,白色光源(例えば,タングステンランプ)の光を分光器で分光し,分光された光ごとに異なる周波数のチョッパ等を介して強度変調し,それらを集光(合流)した光を前記励起光するものが考えられる。
また,白色光源の光をビームスプリッタによって2方向に分岐させ,それらを固定ミラー及び移動ミラーそれぞれに反射さて再び前記ビームスプリッタに戻して合流させ,これを励起光とする周知のフーリエ分光を用いた励起光出力部とすることも考えられる。
By the way, the change in the refractive index of the measurement light due to the photothermal effect differs depending on the wavelength of the excitation light, and the photothermal effect on the excitation light of each wavelength and the change in the refractive index of the sample due to the photothermal effect also differ depending on the type of substance contained in the sample.
Therefore, by irradiating a plurality of excitation light beams having different wavelengths and measuring the change of the phase difference φ for each of them, the type and amount of the substance contained in the sample can be specified (evaluated) from the distribution. However, measuring with irradiation of excitation light at different wavelengths is inefficient in terms of time and labor.
Therefore, the excitation light is a multiplexed light of intensity-modulated light with different periods for each wavelength, and the signal processor 21 changes the phase φ of the measurement light to the intensity modulation period of each wavelength of the excitation light. If each of the same periodic components is measured, the change in the refractive index of the sample with respect to the measurement light of a plurality of wavelengths can be measured by one measurement, and efficient measurement becomes possible.
As a light source (irradiation means) of such excitation light, light from a white light source (for example, a tungsten lamp) is dispersed with a spectroscope, and the intensity is modulated via a chopper having a different frequency for each of the dispersed light. It is conceivable that the above-described excitation light is collected (combined) light.
Also, the light from the white light source is split in two directions by the beam splitter, reflected by the fixed mirror and the moving mirror, returned to the beam splitter and merged, and the well-known Fourier spectroscopy using this as the excitation light was used. An excitation light output unit may be considered.

本発明は,励起光が照射された試料の光熱効果により生じる前記試料の特性変化を測定する光熱変換測定装置への利用が可能である。   The present invention can be applied to a photothermal conversion measuring device that measures a change in the characteristics of the sample caused by the photothermal effect of the sample irradiated with excitation light.

本発明の実施の形態に係る光熱変換測定装置Xの概略構成図。The schematic block diagram of the photothermal conversion measuring apparatus X which concerns on embodiment of this invention. セルに収容された試料の測定部に測定光及び励起光が入射される状態を3パターンの入射状態について表す図。The figure showing the state in which measurement light and excitation light inject into the measurement part of the sample accommodated in the cell about the incident state of three patterns. 試料を収容するセルの構造の一例を表す図。The figure showing an example of the structure of the cell which accommodates a sample. 本発明の実施例に係る光熱変換測定装置における測定光を試料の表面と裏面との間で多重反射させる構成の概略断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of a configuration in which measurement light in a photothermal conversion measurement device according to an embodiment of the present invention is subjected to multiple reflection between a front surface and a back surface of a sample. 従来の光熱変換測定装置(光熱変換分光分析装置)の概略構成図。The schematic block diagram of the conventional photothermal conversion measuring apparatus (photothermal conversion spectroscopy analyzer).

1…励起光源(励起光照射手段)
2…チョッパ
3,4…レンズ
5…試料
6,32…反射ミラー(裏面側光反射手段)
7…レーザ光源(測定光照射手段)
10,11…音響光学変調機(AOM)
20…光検出器(光電変換手段)
21…信号処理装置(位相変化測定手段)
31…反射ミラー(表面側光反射手段)
S,S’…セル(試料の保持部材)
P1…偏波(測定光)
P2…偏波(参照光)
P3…励起光
1 ... Excitation light source (excitation light irradiation means)
2 ... Chopper 3, 4 ... Lens 5 ... Sample 6, 32 ... Reflection mirror (back side light reflecting means)
7. Laser light source (measurement light irradiation means)
10, 11 ... Acousto-optic modulator (AOM)
20: Photodetector (photoelectric conversion means)
21 ... Signal processing device (phase change measuring means)
31 ... Reflection mirror (surface side light reflection means)
S, S '... cell (sample holding member)
P1: Polarization (measurement light)
P2: Polarization (reference light)
P3 ... Excitation light

Claims (7)

励起光が照射された試料の光熱効果により生じる前記試料の屈折率変化を測定する光熱変換測定装置であって,
容器に収容された前記試料に対し第1の方向から測定光を照射して該測定光を前記試料の測定部に通過させる測定光照射手段と,
前記容器に収容された前記試料に対し前記第1の方向と異なる第2の方向から周期的に強度変調された励起光を照射することにより,該励起光を前記容器における前記測定光の通過部とは異なる部分に通過させつつ前記測定光が通過する前記試料の測定部に通過させる励起光照射手段と,
前記試料の測定部を通過後の前記測定光における,前記励起光の強度変調周期と同周期成分の位相変化を光干渉法により測定する位相変化測定手段と,
を具備してなることを特徴とする光熱変換測定装置。
A photothermal conversion measuring device for measuring a change in refractive index of a sample caused by a photothermal effect of a sample irradiated with excitation light,
A measuring light irradiation means for passing the measurement light to the measurement of the sample to the sample contained in the container is irradiated with measurement light from a first direction,
By irradiating a periodically intensity-modulated excitation light from a second direction different from said first direction to said sample contained in the container, passage of the measuring light excitation light in said container Excitation light irradiating means that passes through the measurement part of the sample through which the measurement light passes while passing through a different part from
Phase change measuring means for measuring the phase change of the same period component as the intensity modulation period of the excitation light in the measurement light after passing through the measurement unit of the sample by optical interferometry;
A photothermal conversion measuring device comprising:
前記第2の方向が前記試料が収容された前記容器の表面に対して略垂直な方向である請求項に記載の光熱変換測定装置。 The photothermal conversion measuring apparatus according to claim 1 , wherein the second direction is a direction substantially perpendicular to a surface of the container in which the sample is accommodated . 前記第1の方向と前記第2の方向とが略直交する方向である請求項1又は2のいずれかに記載の光熱変換測定装置。 Photothermal conversion measuring instrument according to claim 1 or 2 to the first direction and the second direction is a direction substantially orthogonal. 前記試料の前記測定光の照射面の反対面側に設けられ前記測定光を反射する裏面側光反射手段を具備し,
前記位相変化測定手段が,前記測定光が前記裏面側光反射手段に反射して前記試料の測定部を往復通過した後の前記測定光の位相変化を測定してなる請求項1〜のいずれかに記載の光熱変換測定装置。
Comprising a back side light reflecting means provided on the opposite side of the measurement light irradiation surface of the sample and reflecting the measurement light;
The phase change measuring means, one said measurement light according to claim 1 to 3 obtained by measuring the phase shift of the measuring light after reciprocally passes through the measurement portion of the sample is reflected on the rear surface side light reflecting means The photothermal conversion measuring device according to claim 1.
前記励起光が波長ごとに異なる周期で強度変調された光の多重光であり,
前記位相変化測定手段が,前記測定光の位相変化を前記励起光の各波長の強度変調周期と同周期成分それぞれについて測定してなる請求項1〜のいずれかに記載の光熱変換測定装置。
The excitation light is multiplexed light of intensity-modulated light with different periods for each wavelength,
The phase change measuring means, the measurement light photothermal conversion measuring instrument according to a phase change to any one of claims 1 to 4 made by measuring for each intensity modulation period and the periodic component of the wavelength of the excitation light.
前記位相変化測定手段が,
前記測定光と該測定光とは光周波数が異なる所定の参照光との干渉光の強度を光電変換する光電変換手段と,
前記光電変換手段により得られた前記干渉光の強度信号に基づいて前記測定光の位相変化を算出する位相変化算出手段と,
を具備してなる請求項1〜のいずれかに記載の光熱変換測定装置。
The phase change measuring means comprises:
Photoelectric conversion means for photoelectrically converting the intensity of the interference light between the measurement light and the predetermined reference light having a different optical frequency from the measurement light;
Phase change calculation means for calculating a phase change of the measurement light based on an intensity signal of the interference light obtained by the photoelectric conversion means;
The photothermal conversion measuring device according to any one of claims 1 to 5 .
励起光が照射された試料の光熱効果により生じる前記試料の屈折率変化を測定する光熱変換測定方法であって,
容器に収容された前記試料に対し第1の方向から所定の測定光照射手段により測定光を照射して該測定光を前記試料の測定部に通過させるとともに,前記容器に収容された前記試料に対し前記第1の方向と異なる第2の方向から所定の励起光照射手段により周期的に強度変調された励起光を照射することにより,該励起光を前記容器における前記測定光の通過部とは異なる部分に通過させつつ前記測定光が通過する前記試料の測定部に通過させ
前記試料の測定部を通過後の前記測定光における,前記励起光の強度変調周期と同周期成分の位相変化を光干渉法により測定してなることを特徴とする光熱変換測定方法。
A photothermal conversion measurement method for measuring a change in refractive index of a sample caused by a photothermal effect of a sample irradiated with excitation light,
To the sample contained in the container is irradiated with the measurement light by a predetermined measuring light irradiation means from the first direction together with passing the measurement light to the measurement of the sample, the sample contained in the container On the other hand, by irradiating excitation light whose intensity is periodically modulated by a predetermined excitation light irradiating means from a second direction different from the first direction , the excitation light is passed through the measurement light in the container. Passing through the measurement part of the sample through which the measurement light passes while passing through different parts ,
A photothermal conversion measurement method comprising measuring, by optical interferometry, a phase change of the same period component as the intensity modulation period of the excitation light in the measurement light after passing through the measurement unit of the sample.
JP2004272005A 2004-09-17 2004-09-17 Photothermal conversion measuring apparatus and method Expired - Lifetime JP4119411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004272005A JP4119411B2 (en) 2004-09-17 2004-09-17 Photothermal conversion measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004272005A JP4119411B2 (en) 2004-09-17 2004-09-17 Photothermal conversion measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2006084431A JP2006084431A (en) 2006-03-30
JP4119411B2 true JP4119411B2 (en) 2008-07-16

Family

ID=36163042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004272005A Expired - Lifetime JP4119411B2 (en) 2004-09-17 2004-09-17 Photothermal conversion measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP4119411B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119399A1 (en) * 2006-03-22 2007-10-25 Kabushiki Kaisha Kobe Seiko Sho Analyzing apparatus
JP4102836B2 (en) * 2006-03-22 2008-06-18 株式会社神戸製鋼所 Separation and purification analyzer
JP2008241425A (en) * 2007-03-27 2008-10-09 Kobe Steel Ltd Photothermal conversion measuring device
JP4947520B2 (en) * 2007-07-04 2012-06-06 国立大学法人東京農工大学 Method and apparatus for detecting small biomolecules
JP5512577B2 (en) * 2011-03-14 2014-06-04 株式会社神戸製鋼所 Thermophysical property measuring apparatus and thermophysical property measuring method
DE102011078885A1 (en) * 2011-07-08 2013-01-10 Carl Zeiss Smt Gmbh Method and apparatus for determining absorption in a blank
JP6163685B2 (en) * 2013-05-23 2017-07-19 国立研究開発法人物質・材料研究機構 3D interferometer
JP6642421B2 (en) * 2014-03-12 2020-02-05 ソニー株式会社 Measuring device and measuring method
JP2019060606A (en) * 2015-12-28 2019-04-18 株式会社日立製作所 Photothermal conversion analyzer and liquid cell
WO2025127280A1 (en) * 2023-12-15 2025-06-19 주식회사 큐빅셀 Transmissive scanning hologram interferometer

Also Published As

Publication number Publication date
JP2006084431A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
US7522287B2 (en) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
JP3949600B2 (en) Photothermal conversion measuring apparatus and method
US7397596B2 (en) Surface and subsurface detection sensor
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
CN110927122B (en) Phase type SPR detection device and method based on interference spectrum
JP4119411B2 (en) Photothermal conversion measuring apparatus and method
CN110927121A (en) Phase type SPR detection device and method based on white light interference spectrum
US7586606B2 (en) Near-field polarized-light measurement apparatus
JP2008128942A (en) Device for measuring photothermal conversion
JP2004117298A (en) Measuring method and apparatus using total reflection attenuation
EP3709002B1 (en) Spectroscopic analysis device
JP2005127748A (en) Photothermal converting/measuring apparatus and method
JP4119385B2 (en) Photothermal conversion measuring device
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
JP4284284B2 (en) Photothermal conversion measuring apparatus and method
JP4290142B2 (en) Photothermal conversion measuring apparatus and method
JP7534984B2 (en) Spectroscopic equipment
JP4116979B2 (en) Photothermal conversion measuring apparatus and method
JP2007192841A (en) Measuring method and measuring apparatus using total reflection attenuation
JP2016114532A (en) Photothermal conversion spectroscopic analyzer
JP4838012B2 (en) Photothermal conversion measuring device
JP4549292B2 (en) Photothermal conversion measuring device, photothermal conversion measuring method
JP3910498B2 (en) measuring device
JP4290139B2 (en) Photothermal conversion measuring apparatus and method
JP4749901B2 (en) Absorbance measuring device, absorbance measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Ref document number: 4119411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

EXPY Cancellation because of completion of term