[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4117561B2 - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
JP4117561B2
JP4117561B2 JP2003585483A JP2003585483A JP4117561B2 JP 4117561 B2 JP4117561 B2 JP 4117561B2 JP 2003585483 A JP2003585483 A JP 2003585483A JP 2003585483 A JP2003585483 A JP 2003585483A JP 4117561 B2 JP4117561 B2 JP 4117561B2
Authority
JP
Japan
Prior art keywords
discharge lamp
peak
capacitor
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003585483A
Other languages
Japanese (ja)
Other versions
JPWO2003088722A1 (en
Inventor
修 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2003088722A1 publication Critical patent/JPWO2003088722A1/en
Application granted granted Critical
Publication of JP4117561B2 publication Critical patent/JP4117561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2851Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2855Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

技術分野
この発明は、自励式インバータ回路からの高周波電力によって放電灯を点灯させる放電灯点灯装置に係り、安価で小型な検出回路で点灯状態を検出して、回路を保護することができる放電灯点灯装置に関する。
技術背景
図5に、従来の放電灯装置の回路図を示す。図において、1は商用電源から得られる直流電源、2及び3は、インバータ回路を構成するMOSFETからなるスイッチング素子、L100、L110は並列接続された放電灯負荷回路である。放電灯負荷回路L100はチョークコイル5、放電灯6、放電灯6に並列に接続されたコンデンサ7及びカップリングコンデンサ8から構成される。
放電灯負荷回路L110はチョークコイル9、放電灯10、放電灯10に並列に接続されたコンデンサ11及びカップリングコンデンサ12から構成される。
4は2つのスイッチング素子2及び3の接続点と放電灯負荷回路L100及びL110の並列回路の接続点間に接続された変流器(以下CTと呼ぶ)で、その2次巻線4a、4bは図示・印の極性でスイッチング素子2及び3を交互にON/OFF駆動するように抵抗13及び抵抗14を介してスイッチング素子2及び3のゲート、ソース間に接続される(CT4の1次巻線と2次巻線との結合を表すため、破線で図示してある。)。
なお、スイッチング素子2及び3のドレイン・ソース間に並列に内蔵されている等価ダイオード及びインバータを起動するための起動回路の図示を省略している。
P100は放電灯負荷回路L100のチョークコイル5と放電灯6の接続点a100と直流電源1の負極b100(ダイオード52のアノード近傍に図示)間に印加されるピーク間電圧(peak to peak電圧)を検出するピーク間電圧検出回路、P110は放電灯負荷回路L110のチョークコイル9と放電灯10の接続点a110と直流電源1の負極b110(ダイオード55のアノード近傍に図示)間に印加されるピーク間電圧を検出するピーク間電圧検出回路である。
ピーク間電圧検出回路P100において、50、51は直列に接続されたコンデンサで50の一端は直流電源1の負極に51の他端はチョークコイル5と放電灯6の接続点に接続される。52はアノードが直流電源1の負極にカソードがコンデンサ50とコンデンサ51の接続点に接続されたダイオードである。
この構成により、接続点a100と直流電源1の負極b100間に印加されるピーク間電圧を、コンデンサ51とコンデンサ50の静電容量値の逆比でダイオード56のアノードに取り出す。
ピーク間電圧検出回路P110において、53、54は直列に接続されたコンデンサで53の一端は直流電源1の負極に54の他端はチョークコイル9と放電灯10の接続点に接続される。55はアノードが直流電源1の負極にカソードがコンデンサ53とコンデンサ54の接続点に接続されたダイオードである。
この構成により、接続点a110と直流電源1の負極b110間に印加されるピーク間電圧をコンデンサ54とコンデンサ53の静電容量値の逆比でダイオード57のアノードに取り出す。
ダイオード56とダイオード57のカソードは接続され、その接続点と直流電源1の負極の間にコンデンサ58が接続され、ピーク間電圧検出回路P100、P110の電圧の内高い方の電圧がコンデンサ58の両端に直流電圧としてピーク検出される。
H100は回路を保護する保護回路であり、61はダイオード56と57の接続点にカソードが接続されたツェナーダイオードでそのアノードから抵抗60及び抵抗59を介して直流電源1の負極に接続される。62は抵抗60と抵抗59の接続点にゲートが接続されたサイリスタで、そのカソードは直流電源1の負極に、そのアノードはダイオード63のカソードに接続される。ダイオード63のアノードはスイッチング素子3のゲートに接続される。また、サイリスタ63のアノードから抵抗64を介して直流電源1の正極に接続される。
なお、商用電源から直流電源を得る場合の直流電源1の構成例を図6に示す。 図に示すように、商用電源1aから出力された交流電源は、ダイオードブリッジ1bで全波整流された後、平滑コンデンサ1cで平滑化され、直流電源として負荷回路に出力されるように構成される。
以下、この図5に示した従来例の回路の動作を説明する。
図において、直流電源1が投入されると、図示を省略している起動回路によってスイッチング素子2及び3は交互に高周波で駆動され放電灯は点灯に至る。
ここで、例えば放電灯6がフィラメントの放電物質の消耗などで寿命末期になれば、放電灯6の両端電圧は正常点灯時より上昇し、その電圧の変化はピーク間電圧検出回路P100で検出され、ダイオード56のアノード電圧が上昇し、コンデンサ58の電圧も上昇する。また、ツェナーダイオード61、抵抗60、抵抗59を適当に選定して、サイリスタ62が放電灯6が正常点灯している時に得られるコンデンサ58の電圧ではONせず、放電灯の寿命末期のように電圧が上昇した場合にコンデンサ58に得られる電圧によってONするようにする。サイリスタ62がONすれば、CT4の2次巻線4bから抵抗13を介してスイッチング素子3のゲートに流れる電流がダイオード63、サイリスタ62を介してバイバスされるため、スイッチング素子3はOFFになりインバータ回路の発振は停止する。
そして、発振が停止しても、サイリスタ62には抵抗64を介して保持電流が流れ続けるので直流電源1を遮断後再投入するまでこの状態は保持されるので、放電灯6が異常放電を継続した状態で運転することを防止できるものであった。
なお、上記では放電灯6が正常放電でない場合の説明をしたが、放電灯10が正常放電でない場合、及びいずれの放電灯も正常放電でない場合でも同様に異常放電を継続した状態で運転することを防止できるものであった。
しかしながら、上記構成では放電灯6、10の両端電圧は、正常点灯時で例えばラピドスタート形蛍光放電灯40Wで約95V程度、32WHf放電灯で約125V程度、カップリングコンデンサの電圧も放電灯6、10の両端電圧と同等程度あるのでピーク間電圧検出回路P100、P110を構成する部品は大型で高価なものが必要であった。
また、ピーク間電圧検出回路P100についていえば、a100とb100との間の電圧は高電圧なので、この電圧をサイリスタ62のゲートに印加するためには、コンデンサ51とコンデンサ50容量比を適当に選定して、コンデンサ50の両端にはa100とb100との間の高電圧が分圧されるようにする必要があるが、分圧することにより正常点灯時と異常点灯時に得られる検出電圧も同じ分圧比で小さくなってしまい、外部ノイズなどに対して充分な識別が困難になる問題があった。
なお、上記のことはピーク間電圧検出回路P110についても同様である。また、a100とb100の間の電圧には放電灯6の電圧の他に、カップリングコンデンサ8の電圧も含まれているので、放電灯6の正常点灯時と異常点灯時の検出電圧の差が大きく得られない問題があった。
また、上記のことはピーク間電圧検出回路P110についても同様である。また、CT4には放電灯負荷回路L100とL110の合成電流が流れるが放電灯6または放電灯10の寿命による故障などのためいずれかの一方の放電灯を抜去した場合にはCT4に流れる電流が減少し、そのためCT4の2次巻線電圧も減少しスイッチング素子2及び3の駆動電圧が減少し、それによってインバータ回路の発振周波数は変化するため残った放電灯負荷回路に装着された放電灯電流も変化してしまい、これに伴って、正常点灯時及び異常点灯時にピーク間電圧検出回路P100、P110に得られる電圧も変化してしまう問題があった。
この発明は、上記のような問題点を解決するためになされたもので、この発明の第1の目的はピーク間電圧検出回路を構成する部品に大型で高価なものを必要としない安価で小型な放電灯点灯装置を提供することを目的とする。
また、この発明の第2の目的は、正常点灯時と異常点灯時に得られるピーク間電圧検出回路の出力電圧の差が外部ノイズなどに対して充分余裕があり、保護回路の動作の信頼性が高い放電灯点灯装置を提供することを目的とする。
また、この発明の第3の目的は複数の放電灯の内、何れかを抜去しても、残りの放電灯の正常点灯と異常点灯状態を検出するピーク間電圧検出回路の出力電圧の差が全ての放電灯が装着されている場合の検出電圧の差と変わらず、同一の条件で異常状態を検出できる放電灯点灯装置を提供することを目的とする。
また、この発明の第4の目的は複数の放電灯の内、何れかを抜去しても、残りの放電灯の正常点灯と異常点灯状態を検出するピーク間電圧検出回路の出力電圧の差が、全ての放電灯が装着されている場合の検出電圧の差と概略等しい検出電圧を得ることができる安価で簡便な複数の放電灯に対して共通するピーク間電圧検出回路を有する放電灯点灯装置を提供することを目的とする。
発明の開示
この発明に係る放電灯点灯装置は、直流電源と、この直流電源から供給される直流を高周波電流に変換する一対のスイッチング素子を有するハーフブリッジ回路からなるインバータ回路と、このインバータ回路からの高周波電流により放電灯を点灯させ、複数並列接続された放電灯負荷回路とを備えた放電灯点灯装置において、上記各放電灯負荷回路はチョークコイル、放電灯、カップリングコンデンサの直列回路及び上記放電灯に並列に接続されたコンデンサを備え、上記各放電灯負荷回路の上記チョークコイルに各々一対設けられ、各々電流制限素子を介して上記一対のスイッチング素子のゲート・ソース間に接続され、上記一対のスイッチング素子を駆動する電圧を出力する2次巻線と、上記各々の一対の2次巻線の一方の2次巻線の両端に各々直列に接続されたコンデンサの直列回路と、直列に接続された上記コンデンサの一方のコンデンサに並列に接続されたダイオードとからなり、上記ダイオードと並列に接続された上記一方のコンデンサの容量を他方のコンデンサの容量の4倍以下に設定されるとともに、上記一方の2次巻線に発生するピーク間電圧を上記コンデンサの直列回路の他方のコンデンサと上記ダイオードと並列に接続された上記一方のコンデンサとの容量の逆比で検出する複数のピーク間検出回路と、これらの複数のピーク間電圧検出回路により検出された電圧をワイヤードオアした電圧が予め定めた値を越えたときに、上記インバータ回路の発振を停止させ、停止した状態を維持させる保護回路と、を備えたものである。このことによって、ピーク間電圧検出回路の構成部品を小型で安価な部品とすることができる。
また、ピーク間電圧検出回路の出力電圧として正常点灯時と異常点灯時に得られるピーク間電圧検出電圧の差が外部ノイズなどで対して充分余裕があり、保護回路の動作を信頼性を高くすることができる。
また、各放電灯負荷回路及びピーク間電圧検出回路が各々独立して設けられているので、何れかの放電灯を抜去した場合でも、全て装着されている場合と同一の条件で異常点灯状態を検出することができる。
また、部品のバラツキ、周囲温度変動、外来ノイズ等があっても、放電灯の正常点灯時と異常点灯時の識別を安定して行うことができる。
また、ピーク間電圧検出回路は、接続される2次巻線とコンデンサの間に挿入された抵抗を備えたものである。このことによって、チョークコイルの2次巻線のインダクタンス成分とピーク間電圧回路のコンデンサ成分とによる寄生発振を抑制でき、放電灯の正常点灯時と異常放電時の検出電圧の差を大きくすることができる。
また、直流電源と、この直流電源から供給される直流を高周波電流に変換する一対のスイッチング素子を有するハーフブリッジ回路からなるインバータ回路と、このインバータ回路からの高周波電流により放電灯を点灯させ、複数並列接続された放電灯負荷回路とを備えた放電灯点灯装置において、上記各放電灯負荷回路はチョークコイル、放電灯、カップリングコンデンサの直列回路及び上記放電灯に並列に接続されたコンデンサを備え、
上記各放電灯負荷回路の上記チョークコイルに各々一対設けられ、各々電流制限素子を介して上記一対のスイッチング素子のゲート・ソース間に接続され、上記一対のスイッチング素子を駆動する電圧を出力する2次巻線と、上記各々の一対の2次巻線のうち、1つの一対の2次巻線の一方の2次巻線の両端に各々直列に接続された抵抗と2つのコンデンサの直列回路と、直列に接続された上記コンデンサの一方のコンデンサに並列に接続されたダイオードと、他の一対の2次巻線の一方の2次巻線の一端と前記直列回路の前記抵抗及び前記コンデンサの接続点に接続された抵抗とからなり、上記ダイオードと並列に接続された上記一方のコンデンサの容量を他方のコンデンサの容量の4倍以下にするとともに、上記一方の2次巻線に発生するピーク間電圧を上記直列回路の他方のコンデンサと上記ダイオードと並列に接続された上記一方のコンデンサとの容量の逆比で検出する共通のピーク間検出回路と、このピーク間電圧検出回路により検出された電圧が予め定めた値を越えたときに、上記インバータ回路の発振を停止させ、停止した状態を維持させる保護回路と、を備えたものである。このことによって、ピーク間電圧検出回路を放電灯負荷回路に対応して複数設ける必要がないので小型で安価にすることができる。
また、ピーク間電圧検出回路を放電灯負荷回路に対応して複数設ける必要がないので小型で安価にすることができる。
発明を実施するための最良の形態
実施の形態1.
図1は、この発明の実施の形態1を示す放電灯点灯装置の回路図である。
図において、1は商用電源から得られる直流電源、2及び3は、インバータ回路を構成するMOSFETからなるスイッチング素子、L100、L110は並列接続された放電灯負荷回路である。放電灯負荷回路L100はチョークコイル5、放電灯6、放電灯6に並列に接続されたコンデンサ7及びカップリングコンデンサ8から構成される。
放電灯負荷回路L110はチョークコイル9、放電灯10、放電灯10に並列に接続されたコンデンサ11及びカップリングコンデンサ12から構成される。
放電灯負荷回路L100、L110のチョークコイル5及び9には、各々2つの2次巻線5a、5b、9a、9bを設け、上記2次巻線は図示・印の極性でスイッチング素子2及び3を交互にON/OFF駆動するように抵抗13、15及び抵抗14、16を介してゲート、ソース間に接続される。(チョークコイル5及び9の1次巻線と2次巻線の結合を表すため、一点鎖線及び破線で図示してある。)
なお、スイッチング素子2及び3のドレイン・ソース間に並列に内蔵されている等価ダイオード及びインバータを起動するための起動回路の図示を省略している。
また、ここで放電灯6と放電灯10が同一定格出力の場合は、各放電灯負荷回路L100及びL110の回路定数を等しく選択する。
また、放電灯6と放電灯10の定格出力が異なる場合は、放電灯負荷回路L100、L110の点灯時の共振周波数が概略等しく、また、点灯時の各チョークコイル5、9の2次巻線電圧が概略等しくなるように設定する。
P100は、放電灯負荷回路L100のチョークコイル5の2次巻線5bに発生する電圧のピーク間電圧(peak to peak電圧)を検出するピーク間電圧検出回路、P110は、放電灯負荷回路L110のチョークコイル9の2次巻線9bに発生するピーク間電圧を検出するピーク間電圧検出回路である。
ピーク間電圧検出回路P100において、150、151は直列に接続されたコンデンサで、コンデンサ150の一端は直流電源1の負極に、151の他端はチョークコイル5の2次巻5bと抵抗13の接続点に接続される。
152はアノードが直流電源1の負極にカソードがコンデンサ150とコンデンサ151の接続点に接続されたダイオードである。
この構成により、チョークコイル5の2次巻線間のピーク間電圧を、コンデンサ151とコンデンサ150の静電容量値の逆比でダイオード156のアノードに取り出す。
ピーク間電圧検出回路P110において、153、154は直列に接続されたコンデンサで153の一端は直流電源1の負極に154の他端はチョークコイル9の2次巻線と抵抗15の接続点に接続される。
155はアノードが直流電源1の負極にカソードがコンデンサ153とコンデンサ154の接続点に接続されたダイオードである。
この構成により、チョークコイル9の2次巻線のピーク間電圧を、コンデンサ154とコンデンサ153の静電容量値の逆比でダイオード157のアノードに取り出す。
ダイオード156とダイオード157のカソードは接続され、その接続点と直流電源1の負極の間にコンデンサ158が接続され、ピーク間電圧検出回路P100及びP110の電圧の内高い方の電圧がコンデンサ158の両端に直流電圧としてピーク検出される。
H100はピーク間電圧検出回路P100、P110により検出された電圧が予め定めた値を越えたときに、インバータ回路の発振を停止させる保護回路であり、61はダイオード156と157の接続点にカソードが接続されたツェナーダイオードでそのアノードから抵抗60及び抵抗59を介して直流電源1の負極に接続される。62は抵抗60と抵抗61の接続点にゲートが接続されたサイリスタで、そのカソードは直流電源1の負極に、そのアノードはダイオード63のカソードに接続される。ダイオード63のアノードはスイッチング素子3のゲートに接続される。また、サイリスタ63のアノードから抵抗64を介して直流電源1の正極に接続される。
以下、この発明の実施の形態1を示す放電灯点灯装置の動作を図1により説明する。
図1において、直流電源1が投入されると、図示を省略している起動回路によってスイッチング素子2、3は交互に高周波数で駆動され放電灯6、10は点灯に至る。
ここで、例えば放電灯6がフィラメントの放電物質の消耗などで寿命末期になれば、放電灯6の両端電圧は正常点灯時より上昇し、チョークコイル5の両端電圧も上昇する。その電圧の変化はチョークコイル5の2次巻線5bに設けたピーク間電圧検出回路P100で検出され、ダイオード156のアノード電圧が上昇し、コンデンサ158の電圧も上昇する。
また、保護回路H100のツェナーダイオード61、抵抗60、抵抗59を適当に選定して、サイリスタ62が放電灯6、10が正常点灯している時に得られるコンデンサ158の電圧ではONせず、放電灯の寿命末期のように電圧が上昇した場合にコンデンサ158に得られる電圧によってONするようにする。
サイリスタ62がONすれば、チョークコイル5、9の2次巻線5b、9bから抵抗13及び15を介してスイッチング素子3のゲートに流れる電流がダイオード63、サイリスタ62を介してバイバスされるため、スイッチング素子3はOFFになりインバータ回路の発振は停止する。
発振が停止しても、サイリスタ62には抵抗64を介して保持電流が流れ続けるので、直流電源1を遮断後再投入するまでこの状態は保持されるので、放電灯6が異常放電を継続した状態で運転することを防止できるものである。
なお、上記では放電灯6が正常放電でない場合の説明をしたが、放電灯10が正常放電でない場合、及びいずれの放電灯も正常放電でない場合でも同様に異常放電を継続した状態で運転することを防止できる。
ここで、チョークコイル5、9の2次巻線5b、9bの電圧はスイッチング素子3のゲート・ソース間閾値電圧より大きな電圧が得られるように選定すれば良く、図5の従来例のようにピーク間電圧検出回路P100、P110を各々a100とb100、a110とb110の間に設けるよりも充分小さく選定でき、ピーク間電圧検出回路P100、P110の構成部品を耐圧の小さい、小型で安価な部品を使用することができる。
また、ピーク間電圧検出回路P100において、チョークコイルの2次巻線5bの電圧には、放電灯6の正常点灯時と異常点灯時の電圧変化の小さいカップリングコンデンサ8の電圧成分が含まれていないので、正常点灯時と異常点灯時の検出電圧の差が大きく得ることができ、保護回路H100を外部ノイズなどで対して充分な識別が可能なものにすることができる。
なお、上記のことはピーク間電圧検出回路P110についても同様である。
また、放電灯6または放電灯10の寿命による故障などのためいずれかの一方の放電灯を抜去しても各放電灯負荷回路L110、L110は独立しており、そのチョークコイルの2次巻線5b、9bに生じる放電灯の正常点灯時及び異常点灯時のピーク間電圧を検出するピーク間電圧検出回路P100、P110も独立して各々設けられているので1灯が抜去した場合でも、2灯が全て装着されている場合と同一の条件で異常点灯状態を検出することができる。
ところで、スイッチング素子3をMOSFETで構成する場合に、そのゲート、ソース間の逆耐電圧は一般的に入手し易い標準品においては20V乃至30V程度以下であるので、異常点灯時にチョークコイル5、9の2次巻線5b、9bに得られる電圧をそのゲート、ソース間の逆耐電圧より小さくなるように選定すれば、スイッチング素子3のMOSFETとしては安価で入手し易い標準品を使用することができる。本実施の形態でFL40の放電灯を点灯させたところ、チョークコイル5、9の2次巻線5b、9bには正常点灯時に平均的に16.5V0-P(33.0VP-P)、寿命末期放電時に19.0V0-P(38.0P-P)程度の電圧が得られた。また、ピーク間電圧検出回路P100におけるコンデンサ150のコンデンサ151に対する比率を大きくするとダイオード156のアノードに得られる電圧はその逆比で小さくなり、放電灯の正常点灯時と異常点灯時に得られる電圧の差もその逆比で小さくなることになる。
上記のFL40の放電灯の場合、正常点灯時と異常放電時の検出電圧差は5VP-Pになるが、上記検出電圧差が上記のほぼ1/4程度を越えると、即ち、1.2VP-P程度を越えると、保護回路H100のツェナーダイオード61などの部品を標準的な仕様品を選定したときに、そのツェナー電圧のバラツキ、周囲温度変動、保護回路H100への外来ノイズ等に対して不安定となるので、上記検出電圧差が上記のほぼ1/4程度以下とするのが好ましい。
即ち、ピーク間電圧検出回路として、コンデンサの直列回路と一方のコンデンサに並列にダイオードを接続してなる構成の場合で、この回路をチョークコイルの2次巻線に設けるものにあっては、ピーク間電圧検出回路のダイオードと並列に接続されたコンデンサの容量を他方のコンデンサの容量のほぼ4倍以下にするのが好ましく、このようにすることで放電灯の正常点灯時と異常点灯時の識別を部品のバラツキ、周囲温度変動、外来ノイズ等に対して安定して行うことができる。
以上のように、ピーク間電圧検出回路P100、P110の構成部品を耐圧の小さい、小型で安価な部品にすることができ、また、正常点灯時と異常点灯時の検出電圧の差を大きくすることができ、保護回路H100を外部ノイズなどに対して充分な識別が可能なものにすることができる。
また、1灯が抜去した場合でも、2灯が全て装着されている場合と同一の条件で異常点灯状態を検出することができる。
また、部品のバラツキ、周囲温度変動、外来ノイズ等があっても、放電灯の正常点灯時と異常点灯時の識別を安定して行うことができる。
実施の形態2.
図2は、この発明の実施の形態2を示す放電灯点灯装置の回路図である。
図において、実施の形態1の図1と同一の部分には同一の符号を付し説明を省略する。
図において、放電灯負荷回路L100において、30は放電灯6とカップリングコンデンサ8との接続点にアノードが、直流電源1の正極にカソードが接続されたダイオード、31は放電灯6とカップリングコンデンサ8との接続点にカソードが、直流電源1の負極にアノードが接続されたダイオードである。
32及び33は、放電灯負荷回路L110において、放電灯100のダイオード30及びダイオード31に対応するダイオードである。
この構成において、放電灯6、10の寿命末期等に放電灯6、10の電流が減少してその等価インピーダンスが大きくなり、放電灯負荷回路L100、L110の共振の鋭さが大きくなって、カップリングコンデンサ8、12の両端電圧が直流電源1よりも増大したときに、各々ダイオード30〜33を介して直流電源1に還流することにより、放電灯負荷回路L100、L110に生じる共振電圧の増大を抑制することができる。
また、実施の形態1と同様の効果がある。
実施の形態3.
図3は、この発明の実施の形態3を示す放電灯点灯装置の回路図である。
図において、実施の形態1の図1、実施の形態2の図2と同一の部分には同一の符号を付し説明を省略する。
図において、70はコンデンサ151とチョークコイル5の2次巻線5bとの間に新たに挿入された抵抗、また、71はコンデンサ154とチョークコイル9の2次巻線9bとの間に新たに挿入された抵抗である。
この構成において、抵抗70及び71はチョークコイル5、9の2次巻線5b、9bのインダクタンス成分とピーク間電圧検出回路P100、P110のコンデンサ成分とで放電灯負荷回路L100、L110と異なる寄生発振が生じ、その電圧によってコンデンサ158の両端にサイリスタ62を誤動作させる電圧が発生するのを抑制するための制動抵抗である。
そして、抵抗70および71を適当に選定すれば、ピーク間電圧検出回路P100、P110の出力電圧にほとんど影響を与えること無く、チョークコイル5、9の2次巻線5b、9bのインダクタンス成分とピーク間電圧検出回路P100、P110のコンデンサ成分とによる寄生発振を抑制でき、放電灯の正常点灯時と異常放電時の検出電圧の差を大きくすることができ、保護回路H100を外部ノイズなどで対してより充分な識別が可能なものにすることができる。
実施の形態4.
図4は、この発明の実施の形態4を示す放電灯点灯装置の回路図である。
本実施の形態は実施の形態3においてピーク間電圧検出回路P110を検出回路P100と共用化して一つにしたものである。
図において、実施の形態1の図1、実施の形態2の図2と同一の部分には同一の符号を付し説明を省略する。
P120は共用のピーク間電圧検出回路であり、各々直列に接続されたコンデンサ150、151からなる直列回路、コンデンサ150に並列に接続されたダイオード152、コンデンサ151と2次巻線5bとの間に新たに挿入された抵抗70、抵抗70とコンデンサ151の接続点と2次巻線9bとの間に挿入された抵抗71から構成される。
この構成において、ピーク間電圧検出回路P120の入力にはチョークコイル5、9の2次巻線5b、9bに発生した電圧が抵抗70及び71を介して合成されるので、例えば、放電灯6が正常点灯、放電灯10が寿命末期等の異常点灯状態になったとすると、ピーク間電圧検出回路P120からの出力としてダイオード156のアノードには正常点灯時と異常点灯時の合成したピーク間電圧が得られるので、ツェナーダイオード61、抵抗60及び抵抗59を適当に選定すれば、全ての放電灯が正常点灯時には保護回路H100が動作せず、放電灯6が正常点灯、放電灯10が寿命末期等の異常点灯時にのみ保護回路H100を動作させてインバータ回路の発振を停止させることができる。
また、放電灯6が寿命末期等の異常放電、放電灯10が正常点灯になった場合、及び全ての放電灯が異常点灯状態になった場合も同様に保護回路H100を動作させてインバータ回路の発振を停止させることができる。
また、ピーク間電圧検出回路を放電灯負荷回路L100、L110に各々対応して設ける必要がないので小型で安価にすることができる。
【図面の簡単な説明】
第1図はこの発明の実施の形態1を示す放電灯点灯装置の回路図、第2図は、この発明の実施の形態2を示す放電灯点灯装置の回路図、第3図は、この発明の実施の形態3を示す放電灯点灯装置の回路図、第4図は、この発明の実施の形態4を示す放電灯点灯装置の回路図、第5図は従来の放電灯点灯装置の回路図、第6図は従来の放電灯点灯装置の直流電源の回路図である。
Technical field
The present invention relates to a discharge lamp lighting device that lights a discharge lamp with high-frequency power from a self-excited inverter circuit, and can detect a lighting state with an inexpensive and small detection circuit to protect the circuit. About.
Technical background
FIG. 5 shows a circuit diagram of a conventional discharge lamp device. In the figure, 1 is a DC power source obtained from a commercial power source, 2 and 3 are switching elements composed of MOSFETs constituting an inverter circuit, and L100 and L110 are discharge lamp load circuits connected in parallel. The discharge lamp load circuit L100 includes a choke coil 5, a discharge lamp 6, a capacitor 7 connected in parallel to the discharge lamp 6, and a coupling capacitor 8.
The discharge lamp load circuit L110 includes a choke coil 9, a discharge lamp 10, a capacitor 11 connected in parallel to the discharge lamp 10, and a coupling capacitor 12.
Reference numeral 4 denotes a current transformer (hereinafter referred to as CT) connected between the connection point of the two switching elements 2 and 3 and the connection point of the parallel circuit of the discharge lamp load circuits L100 and L110, and its secondary windings 4a and 4b. Is connected between the gate and the source of the switching elements 2 and 3 via the resistor 13 and the resistor 14 so as to alternately turn on / off the switching elements 2 and 3 with the polarity shown in the figure (the primary winding of CT4). (Indicated by a broken line to represent the coupling between the line and the secondary winding).
In addition, illustration of the starting circuit for starting the equivalent diode and inverter which were built in parallel between the drain-source of the switching elements 2 and 3 is abbreviate | omitted.
P100 is a peak-to-peak voltage applied between the connection point a100 of the choke coil 5 and the discharge lamp 6 of the discharge lamp load circuit L100 and the negative electrode b100 of the DC power supply 1 (shown near the anode of the diode 52). A peak-to-peak voltage detection circuit P110 is a peak-to-peak voltage applied between the connection point a110 of the choke coil 9 and the discharge lamp 10 of the discharge lamp load circuit L110 and the negative electrode b110 of the DC power source 1 (shown near the anode of the diode 55). It is a peak-to-peak voltage detection circuit for detecting a voltage.
In the peak-to-peak voltage detection circuit P100, 50 and 51 are capacitors connected in series. One end of 50 is connected to the negative electrode of the DC power source 1 and the other end of 51 is connected to the connection point of the choke coil 5 and the discharge lamp 6. A diode 52 has an anode connected to the negative electrode of the DC power source 1 and a cathode connected to a connection point between the capacitor 50 and the capacitor 51.
With this configuration, the peak-to-peak voltage applied between the connection point a100 and the negative electrode b100 of the DC power supply 1 is taken out to the anode of the diode 56 at the inverse ratio of the capacitance values of the capacitor 51 and the capacitor 50.
In the peak-to-peak voltage detection circuit P <b> 110, 53 and 54 are capacitors connected in series. One end of 53 is connected to the negative electrode of the DC power source 1 and the other end of 54 is connected to the connection point between the choke coil 9 and the discharge lamp 10. A diode 55 has an anode connected to the negative electrode of the DC power source 1 and a cathode connected to a connection point between the capacitor 53 and the capacitor 54.
With this configuration, the peak-to-peak voltage applied between the connection point a <b> 110 and the negative electrode b <b> 110 of the DC power supply 1 is extracted to the anode of the diode 57 with the inverse ratio of the capacitance values of the capacitor 54 and the capacitor 53.
The cathodes of the diode 56 and the diode 57 are connected, and a capacitor 58 is connected between the connection point and the negative electrode of the DC power supply 1, and the higher one of the voltages between the peak-to-peak voltage detection circuits P100 and P110 is applied to both ends of the capacitor 58. The peak is detected as a DC voltage.
H100 is a protection circuit for protecting the circuit, and 61 is a Zener diode having a cathode connected to a connection point between the diodes 56 and 57, and is connected from the anode to the negative electrode of the DC power source 1 through the resistor 60 and the resistor 59. A thyristor 62 has a gate connected to a connection point between the resistor 60 and the resistor 59, and has a cathode connected to the negative electrode of the DC power supply 1 and an anode connected to the cathode of the diode 63. The anode of the diode 63 is connected to the gate of the switching element 3. In addition, the anode of the thyristor 63 is connected to the positive electrode of the DC power source 1 through the resistor 64.
In addition, the structural example of the DC power supply 1 in the case of obtaining DC power from commercial power is shown in FIG. As shown in the figure, the AC power output from the commercial power source 1a is configured to be full-wave rectified by the diode bridge 1b, smoothed by the smoothing capacitor 1c, and output to the load circuit as a DC power source. .
The operation of the conventional circuit shown in FIG. 5 will be described below.
In the figure, when the DC power source 1 is turned on, the switching elements 2 and 3 are alternately driven at a high frequency by a starting circuit (not shown), and the discharge lamp is turned on.
Here, for example, when the discharge lamp 6 reaches the end of its life due to exhaustion of the filament discharge material, the voltage across the discharge lamp 6 rises from that during normal lighting, and the voltage change is detected by the peak-to-peak voltage detection circuit P100. The anode voltage of the diode 56 increases, and the voltage of the capacitor 58 also increases. In addition, the Zener diode 61, the resistor 60, and the resistor 59 are appropriately selected, and the thyristor 62 is not turned on with the voltage of the capacitor 58 obtained when the discharge lamp 6 is normally lit, as in the end of the life of the discharge lamp. When the voltage rises, it is turned on by the voltage obtained in the capacitor 58. When the thyristor 62 is turned on, the current flowing from the secondary winding 4b of CT4 to the gate of the switching element 3 via the resistor 13 is bypassed via the diode 63 and the thyristor 62, so that the switching element 3 is turned off and the inverter Circuit oscillation stops.
Even when the oscillation stops, the holding current continues to flow through the resistor 64 through the resistor 64, so this state is maintained until the DC power supply 1 is turned off and then turned on again, so that the discharge lamp 6 continues abnormal discharge. It was possible to prevent driving in the state.
In addition, although the case where the discharge lamp 6 is not normal discharge was demonstrated above, when the discharge lamp 10 is not normal discharge and when any discharge lamp is not normal discharge, it is operated in the state which continued abnormal discharge similarly. Can be prevented.
However, in the above configuration, the voltage across the discharge lamps 6 and 10 is about 95V for the rapid start type fluorescent discharge lamp 40W and about 125V for the 32WHf discharge lamp when normally lit, and the voltage of the coupling capacitor is also about the discharge lamp 6. Since the voltage is about the same as the voltage at both ends of the circuit 10, parts constituting the peak-to-peak voltage detection circuits P100 and P110 are large and expensive.
Further, regarding the peak-to-peak voltage detection circuit P100, since the voltage between a100 and b100 is a high voltage, in order to apply this voltage to the gate of the thyristor 62, the capacitance ratio between the capacitor 51 and the capacitor 50 is appropriately selected. Thus, it is necessary to divide the high voltage between a100 and b100 at both ends of the capacitor 50, but the detection voltage obtained during normal lighting and abnormal lighting by dividing the voltage is also the same voltage dividing ratio. There is a problem that it becomes difficult to sufficiently identify external noise and the like.
The above also applies to the peak-to-peak voltage detection circuit P110. Further, since the voltage between a100 and b100 includes the voltage of the coupling capacitor 8 in addition to the voltage of the discharge lamp 6, there is a difference between the detected voltage when the discharge lamp 6 is normally lit and when it is abnormally lit. There was a problem that could not be obtained greatly.
The above also applies to the peak-to-peak voltage detection circuit P110. The combined current of the discharge lamp load circuits L100 and L110 flows through CT4. However, if one of the discharge lamps is removed due to a failure due to the life of the discharge lamp 6 or the discharge lamp 10, the current flowing through CT4 is Therefore, the secondary winding voltage of CT4 also decreases, and the driving voltage of the switching elements 2 and 3 decreases, whereby the oscillation frequency of the inverter circuit changes, so that the discharge lamp current mounted on the remaining discharge lamp load circuit is reduced. As a result, the voltage obtained in the peak-to-peak voltage detection circuits P100 and P110 also changes during normal lighting and abnormal lighting.
The present invention has been made to solve the above-described problems, and a first object of the present invention is to provide an inexpensive and small-sized device that does not require large and expensive components constituting the peak-to-peak voltage detection circuit. It is an object to provide a discharge lamp lighting device.
The second object of the present invention is that the difference in the output voltage of the peak-to-peak voltage detection circuit obtained during normal lighting and abnormal lighting has a sufficient margin against external noise, etc., and the operation reliability of the protection circuit is improved. It aims at providing a high discharge lamp lighting device.
Further, the third object of the present invention is that even if any of the plurality of discharge lamps is removed, the difference between the output voltages of the peak-to-peak voltage detection circuit for detecting the normal lighting state and the abnormal lighting state of the remaining discharge lamps. It is an object of the present invention to provide a discharge lamp lighting device capable of detecting an abnormal state under the same conditions without changing the difference in detection voltage when all the discharge lamps are mounted.
A fourth object of the present invention is to provide a difference between output voltages of a peak-to-peak voltage detection circuit that detects a normal lighting state and an abnormal lighting state of the remaining discharge lamps even if any of the plurality of discharge lamps is removed. A discharge lamp lighting device having a common peak-to-peak voltage detection circuit for a plurality of inexpensive and simple discharge lamps capable of obtaining a detection voltage substantially equal to the difference in detection voltage when all the discharge lamps are mounted The purpose is to provide.
Disclosure of the invention
A discharge lamp lighting device according to the present invention includes a DC power supply, an inverter circuit including a half bridge circuit having a pair of switching elements that convert a DC supplied from the DC power supply into a high-frequency current, and a high-frequency current from the inverter circuit. A discharge lamp lighting device comprising a plurality of discharge lamp load circuits connected in parallel, and each of the discharge lamp load circuits includes a choke coil, a discharge lamp, a series circuit of a coupling capacitor, and the discharge lamp. A pair of capacitors connected in parallel, each provided in the choke coil of each discharge lamp load circuit, each connected between the gate and source of the pair of switching elements via a current limiting element, and the pair of switching A secondary winding that outputs a voltage for driving the element, and one secondary winding of each of the pair of secondary windings. A series circuit of a capacitor each connected in series to the end, Connected in series Consisting of a diode connected in parallel to one of the capacitors, The capacitance of the one capacitor connected in parallel with the diode is set to be not more than four times the capacitance of the other capacitor, and A plurality of peak-to-peak detections for detecting a peak-to-peak voltage generated in one of the secondary windings by an inverse ratio of the capacitance of the other capacitor in the series circuit of the capacitors and the one capacitor connected in parallel with the diode When the voltage detected by the circuit and the voltage detected by the plurality of peak-to-peak voltage detection circuits exceeds a predetermined value, the oscillation of the inverter circuit is stopped. , Keep it stopped A protective circuit I got Is. As a result, the component parts of the peak-to-peak voltage detection circuit can be made small and inexpensive.
In addition, the output voltage of the peak-to-peak voltage detection circuit must have a sufficient margin for the difference between the peak-to-peak voltage detection voltages obtained during normal lighting and abnormal lighting, due to external noise, etc. Can do.
In addition, since each discharge lamp load circuit and peak-to-peak voltage detection circuit are provided independently, even when any discharge lamp is removed, the abnormal lighting state is maintained under the same conditions as when all the discharge lamps are installed. Can be detected.
Further, even when there are component variations, ambient temperature fluctuations, external noise, etc., it is possible to stably identify when the discharge lamp is normally lit and when it is abnormally lit.
The peak-to-peak voltage detection circuit includes a resistor inserted between the connected secondary winding and the capacitor. As a result, parasitic oscillation due to the inductance component of the secondary winding of the choke coil and the capacitor component of the peak-to-peak voltage circuit can be suppressed, and the difference between the detection voltage during normal lighting and abnormal discharge of the discharge lamp can be increased. it can.
In addition, an inverter circuit composed of a half-bridge circuit having a DC power supply and a pair of switching elements that convert a DC supplied from the DC power supply into a high-frequency current, and a discharge lamp is lit by the high-frequency current from the inverter circuit, In the discharge lamp lighting device comprising a discharge lamp load circuit connected in parallel, each of the discharge lamp load circuits includes a series circuit of a choke coil, a discharge lamp, a coupling capacitor, and a capacitor connected in parallel to the discharge lamp. ,
A pair of choke coils provided in each of the discharge lamp load circuits is connected between the gates and sources of the pair of switching elements via current limiting elements, and outputs a voltage for driving the pair of switching elements. A series circuit of a secondary winding, a resistor and two capacitors connected in series to both ends of one secondary winding of a pair of secondary windings of each of the pair of secondary windings; , Connected in series A diode connected in parallel to one capacitor of the capacitor, one end of one secondary winding of the other pair of secondary windings, a resistor connected to the resistor of the series circuit and the connection point of the capacitor And consist of The capacitance of the one capacitor connected in parallel with the diode is made to be not more than four times the capacitance of the other capacitor, A common peak-to-peak detection circuit for detecting a peak-to-peak voltage generated in the one secondary winding by an inverse ratio of the capacitance of the other capacitor of the series circuit and the one capacitor connected in parallel with the diode; When the voltage detected by the peak-to-peak voltage detection circuit exceeds a predetermined value, the oscillation of the inverter circuit is stopped. , Keep it stopped A protective circuit I got Is. Accordingly, it is not necessary to provide a plurality of peak-to-peak voltage detection circuits corresponding to the discharge lamp load circuit, so that the size and the cost can be reduced.
Further, since it is not necessary to provide a plurality of peak-to-peak voltage detection circuits corresponding to the discharge lamp load circuit, it can be made small and inexpensive.
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
1 is a circuit diagram of a discharge lamp lighting device showing Embodiment 1 of the present invention.
In the figure, 1 is a DC power source obtained from a commercial power source, 2 and 3 are switching elements composed of MOSFETs constituting an inverter circuit, and L100 and L110 are discharge lamp load circuits connected in parallel. The discharge lamp load circuit L100 includes a choke coil 5, a discharge lamp 6, a capacitor 7 connected in parallel to the discharge lamp 6, and a coupling capacitor 8.
The discharge lamp load circuit L110 includes a choke coil 9, a discharge lamp 10, a capacitor 11 connected in parallel to the discharge lamp 10, and a coupling capacitor 12.
The choke coils 5 and 9 of the discharge lamp load circuits L100 and L110 are each provided with two secondary windings 5a, 5b, 9a and 9b, and the secondary windings have switching polarities shown and marked with the switching elements 2 and 3 Are connected between the gate and the source via the resistors 13 and 15 and the resistors 14 and 16 so as to be alternately turned ON / OFF. (In order to represent the coupling between the primary winding and the secondary winding of the choke coils 5 and 9, they are shown by a dashed line and a broken line.)
In addition, illustration of the starting circuit for starting the equivalent diode and inverter which were built in parallel between the drain-source of the switching elements 2 and 3 is abbreviate | omitted.
Here, when the discharge lamp 6 and the discharge lamp 10 have the same rated output, the circuit constants of the discharge lamp load circuits L100 and L110 are selected to be equal.
When the rated outputs of the discharge lamp 6 and the discharge lamp 10 are different, the resonance frequencies when the discharge lamp load circuits L100 and L110 are turned on are approximately equal, and the secondary windings of the choke coils 5 and 9 are turned on. Set so that the voltages are approximately equal.
P100 is a peak-to-peak voltage detection circuit for detecting a peak-to-peak voltage generated in the secondary winding 5b of the choke coil 5 of the discharge lamp load circuit L100. P110 is a peak-to-peak voltage detection circuit. This is a peak-to-peak voltage detection circuit that detects a peak-to-peak voltage generated in the secondary winding 9 b of the choke coil 9.
In the peak-to-peak voltage detection circuit P100, 150 and 151 are capacitors connected in series. One end of the capacitor 150 is connected to the negative electrode of the DC power source 1, and the other end of 151 is connected to the secondary winding 5b of the choke coil 5 and the resistor 13. Connected to a point.
A diode 152 has an anode connected to the negative electrode of the DC power supply 1 and a cathode connected to a connection point between the capacitor 150 and the capacitor 151.
With this configuration, the peak-to-peak voltage between the secondary windings of the choke coil 5 is extracted to the anode of the diode 156 at the inverse ratio of the capacitance values of the capacitor 151 and the capacitor 150.
In the peak-to-peak voltage detection circuit P110, 153 and 154 are capacitors connected in series. One end of the 153 is connected to the negative electrode of the DC power source 1 and the other end of the 154 is connected to the connection point between the secondary winding of the choke coil 9 and the resistor 15. Is done.
A diode 155 has an anode connected to the negative electrode of the DC power supply 1 and a cathode connected to a connection point between the capacitor 153 and the capacitor 154.
With this configuration, the peak-to-peak voltage of the secondary winding of the choke coil 9 is extracted to the anode of the diode 157 at the inverse ratio of the capacitance values of the capacitors 154 and 153.
The cathodes of the diode 156 and the diode 157 are connected, and a capacitor 158 is connected between the connection point and the negative electrode of the DC power supply 1, and the higher one of the voltages between the peak-to-peak voltage detection circuits P100 and P110 is connected across the capacitor 158. The peak is detected as a DC voltage.
H100 is a protection circuit that stops the oscillation of the inverter circuit when the voltages detected by the peak-to-peak voltage detection circuits P100 and P110 exceed a predetermined value, and 61 is a cathode at the connection point of the diodes 156 and 157. The connected Zener diode is connected from the anode to the negative electrode of the DC power source 1 through the resistor 60 and the resistor 59. Reference numeral 62 denotes a thyristor having a gate connected to a connection point between the resistor 60 and the resistor 61, a cathode connected to the negative electrode of the DC power supply 1, and an anode connected to the cathode of the diode 63. The anode of the diode 63 is connected to the gate of the switching element 3. In addition, the anode of the thyristor 63 is connected to the positive electrode of the DC power source 1 through the resistor 64.
Hereinafter, the operation of the discharge lamp lighting device according to Embodiment 1 of the present invention will be described with reference to FIG.
In FIG. 1, when the DC power source 1 is turned on, the switching elements 2 and 3 are alternately driven at a high frequency by a starting circuit not shown, and the discharge lamps 6 and 10 are turned on.
Here, for example, when the discharge lamp 6 reaches the end of its life due to exhaustion of the discharge material of the filament, the voltage across the discharge lamp 6 rises from that during normal lighting, and the voltage across the choke coil 5 also rises. The change in voltage is detected by the peak-to-peak voltage detection circuit P100 provided in the secondary winding 5b of the choke coil 5, the anode voltage of the diode 156 increases, and the voltage of the capacitor 158 also increases.
In addition, the Zener diode 61, the resistor 60, and the resistor 59 of the protection circuit H100 are appropriately selected, and the thyristor 62 is not turned on with the voltage of the capacitor 158 obtained when the discharge lamps 6 and 10 are normally lit. When the voltage rises at the end of the life of the capacitor 158, it is turned on by the voltage obtained in the capacitor 158.
If the thyristor 62 is turned on, the current flowing from the secondary windings 5b and 9b of the choke coils 5 and 9 to the gate of the switching element 3 via the resistors 13 and 15 is bypassed via the diode 63 and the thyristor 62. The switching element 3 is turned OFF and the oscillation of the inverter circuit is stopped.
Even if the oscillation stops, the holding current continues to flow through the resistor 64 through the resistor 64. Therefore, this state is maintained until the DC power supply 1 is turned off and then turned on again, so that the discharge lamp 6 continued abnormal discharge. It is possible to prevent driving in a state.
In addition, although the case where the discharge lamp 6 is not normal discharge was demonstrated above, when the discharge lamp 10 is not normal discharge and when any discharge lamp is not normal discharge, it is operated in the state which continued abnormal discharge similarly. Can be prevented.
Here, the voltages of the secondary windings 5b and 9b of the choke coils 5 and 9 may be selected so as to obtain a voltage larger than the threshold voltage between the gate and the source of the switching element 3, as in the conventional example of FIG. The peak-to-peak voltage detection circuits P100 and P110 can be selected to be sufficiently smaller than those provided between a100 and b100 and a110 and b110, respectively. The components of the peak-to-peak voltage detection circuits P100 and P110 are small and inexpensive parts with a low withstand voltage. Can be used.
Further, in the peak-to-peak voltage detection circuit P100, the voltage of the secondary winding 5b of the choke coil includes the voltage component of the coupling capacitor 8 that has a small voltage change during normal lighting and abnormal lighting of the discharge lamp 6. Therefore, a large difference in detection voltage between normal lighting and abnormal lighting can be obtained, and the protection circuit H100 can be sufficiently distinguished from external noise or the like.
The above also applies to the peak-to-peak voltage detection circuit P110.
Even if one of the discharge lamps is removed due to a failure due to the life of the discharge lamp 6 or the discharge lamp 10, the discharge lamp load circuits L110 and L110 are independent, and the secondary winding of the choke coil Since the peak-to-peak voltage detection circuits P100 and P110 for detecting the peak-to-peak voltage at the time of normal lighting and abnormal lighting of the discharge lamps generated in 5b and 9b are also provided independently, It is possible to detect an abnormal lighting state under the same conditions as when all are mounted.
By the way, when the switching element 3 is constituted by a MOSFET, the reverse withstand voltage between the gate and the source is about 20 V to 30 V or less in a standard product that is generally easily available. If the voltage obtained at the secondary windings 5b and 9b is selected to be smaller than the reverse withstand voltage between the gate and source, it is possible to use an inexpensive and easily available standard product as the MOSFET of the switching element 3. it can. In this embodiment, when the discharge lamp of FL40 is turned on, the secondary windings 5b and 9b of the choke coils 5 and 9 have an average of 16.5V when normally lit. 0-P (33.0V PP ), 19.0V at the end of life discharge 0-P (38.0 PP ) About a voltage was obtained. Further, when the ratio of the capacitor 150 to the capacitor 151 in the peak-to-peak voltage detection circuit P100 is increased, the voltage obtained at the anode of the diode 156 is reduced by the inverse ratio, and the difference between the voltages obtained when the discharge lamp is normally lit and abnormally lit. Is also reduced by the inverse ratio.
In the case of the above-mentioned FL40 discharge lamp, the detected voltage difference between normal lighting and abnormal discharge is 5V. PP However, when the detected voltage difference exceeds about 1/4 of the above, that is, 1.2V. PP Exceeding a certain level, when a standard specification product such as the Zener diode 61 of the protection circuit H100 is selected, it is unstable against variations in the Zener voltage, ambient temperature fluctuations, external noise to the protection circuit H100, etc. Therefore, it is preferable that the detected voltage difference is about ¼ or less of the above.
That is, the peak-to-peak voltage detection circuit has a configuration in which a diode is connected in parallel to a series circuit of capacitors and one capacitor, and this circuit is provided in the secondary winding of the choke coil. It is preferable that the capacity of the capacitor connected in parallel with the diode of the inter-voltage detection circuit is less than about 4 times the capacity of the other capacitor, so that the discharge lamp can be distinguished between normal lighting and abnormal lighting. Can be stably performed against component variations, ambient temperature fluctuations, external noise, and the like.
As described above, the components of the peak-to-peak voltage detection circuits P100 and P110 can be made small and inexpensive with low withstand voltage, and the difference in detection voltage between normal lighting and abnormal lighting can be increased. The protection circuit H100 can be sufficiently identified against external noise and the like.
Even when one light is removed, the abnormal lighting state can be detected under the same conditions as when all the two lights are mounted.
Further, even when there are component variations, ambient temperature fluctuations, external noise, etc., it is possible to stably identify when the discharge lamp is normally lit and when it is abnormally lit.
Embodiment 2. FIG.
FIG. 2 is a circuit diagram of a discharge lamp lighting device showing Embodiment 2 of the present invention.
In the figure, the same reference numerals are given to the same parts as those in FIG.
In the figure, in the discharge lamp load circuit L100, 30 is a diode in which an anode is connected to the connection point between the discharge lamp 6 and the coupling capacitor 8, and a cathode is connected to the positive electrode of the DC power source 1. 31 is the discharge lamp 6 and the coupling capacitor. 8 is a diode in which a cathode is connected to a connection point to 8 and an anode is connected to the negative electrode of the DC power supply 1.
Reference numerals 32 and 33 denote diodes corresponding to the diode 30 and the diode 31 of the discharge lamp 100 in the discharge lamp load circuit L110.
In this configuration, the current of the discharge lamps 6 and 10 decreases at the end of the life of the discharge lamps 6 and 10 and the equivalent impedance increases, and the sharpness of the resonance of the discharge lamp load circuits L100 and L110 increases. When the voltage across the capacitors 8 and 12 increases from the DC power source 1, the increase in the resonance voltage generated in the discharge lamp load circuits L 100 and L 110 is suppressed by returning to the DC power source 1 via the diodes 30 to 33. can do.
In addition, the same effect as in the first embodiment is obtained.
Embodiment 3 FIG.
FIG. 3 is a circuit diagram of a discharge lamp lighting device showing Embodiment 3 of the present invention.
In the figure, the same parts as those in FIG. 1 of the first embodiment and FIG.
In the figure, 70 is a resistor newly inserted between the capacitor 151 and the secondary winding 5b of the choke coil 5, and 71 is newly inserted between the capacitor 154 and the secondary winding 9b of the choke coil 9. Inserted resistance.
In this configuration, the resistors 70 and 71 are parasitic oscillations different from those of the discharge lamp load circuits L100 and L110 due to the inductance components of the secondary windings 5b and 9b of the choke coils 5 and 9 and the capacitor components of the peak-to-peak voltage detection circuits P100 and P110. This is a braking resistor for suppressing the occurrence of a voltage that causes the thyristor 62 to malfunction at both ends of the capacitor 158 due to the voltage.
If the resistors 70 and 71 are appropriately selected, the inductance components and the peaks of the secondary windings 5b and 9b of the choke coils 5 and 9 are hardly affected with little influence on the output voltages of the peak-to-peak voltage detection circuits P100 and P110. Parasitic oscillation due to the capacitor components of the inter-voltage detection circuits P100 and P110 can be suppressed, the difference in detection voltage between the normal lighting and abnormal discharge of the discharge lamp can be increased, and the protection circuit H100 can be protected against external noise. It is possible to make the identification more sufficient.
Embodiment 4 FIG.
FIG. 4 is a circuit diagram of a discharge lamp lighting device according to Embodiment 4 of the present invention.
In this embodiment, the peak-to-peak voltage detection circuit P110 is shared with the detection circuit P100 in the third embodiment, and is combined into one.
In the figure, the same parts as those in FIG. 1 of the first embodiment and FIG.
P120 is a common peak-to-peak voltage detection circuit, which is a series circuit composed of capacitors 150 and 151 connected in series, a diode 152 connected in parallel to the capacitor 150, and between the capacitor 151 and the secondary winding 5b. The resistor 70 is newly inserted, and the resistor 71 is inserted between the connection point of the resistor 70 and the capacitor 151 and the secondary winding 9b.
In this configuration, the voltage generated in the secondary windings 5b and 9b of the choke coils 5 and 9 is synthesized via the resistors 70 and 71 at the input of the peak-to-peak voltage detection circuit P120. If the normal lighting and the discharge lamp 10 are in an abnormal lighting state such as the end of life, the combined peak-to-peak voltage during normal lighting and abnormal lighting is obtained at the anode of the diode 156 as an output from the peak-to-peak voltage detection circuit P120. Therefore, if the Zener diode 61, the resistor 60, and the resistor 59 are appropriately selected, the protection circuit H100 does not operate when all the discharge lamps are normally lit, the discharge lamp 6 is normally lit, and the discharge lamp 10 is at the end of its life. It is possible to stop the oscillation of the inverter circuit by operating the protection circuit H100 only at the time of abnormal lighting.
Similarly, when the discharge lamp 6 is abnormally discharged at the end of its life, when the discharge lamp 10 is normally lit, and when all the discharge lamps are abnormally lit, the protection circuit H100 is operated in the same manner. Oscillation can be stopped.
Further, since it is not necessary to provide a peak-to-peak voltage detection circuit corresponding to each of the discharge lamp load circuits L100 and L110, it can be made small and inexpensive.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a discharge lamp lighting device according to Embodiment 1 of the present invention, FIG. 2 is a circuit diagram of a discharge lamp lighting device according to Embodiment 2 of the present invention, and FIG. FIG. 4 is a circuit diagram of a discharge lamp lighting device showing a fourth embodiment of the present invention, and FIG. 5 is a circuit diagram of a conventional discharge lamp lighting device. FIG. 6 is a circuit diagram of a DC power source of a conventional discharge lamp lighting device.

Claims (3)

直流電源と、この直流電源から供給される直流を高周波電流に変換する一対のスイッチング素子を有するハーフブリッジ回路からなるインバータ回路と、このインバータ回路からの高周波電流により放電灯を点灯させ、複数並列接続された放電灯負荷回路とを備えた放電灯点灯装置において、
上記各放電灯負荷回路はチョークコイル、放電灯、カップリングコンデンサの直列回路及び上記放電灯に並列に接続されたコンデンサを備え、
上記各放電灯負荷回路の上記チョークコイルに各々一対設けられ、各々電流制限素子を介して上記一対のスイッチング素子のゲート・ソース間に接続され、上記一対のスイッチング素子を駆動する電圧を出力する2次巻線と、
上記各々の一対の2次巻線の一方の2次巻線の両端に各々直列に接続されたコンデンサの直列回路と、直列に接続された上記コンデンサの一方のコンデンサに並列に接続されたダイオードとからなり、上記ダイオードと並列に接続された上記一方のコンデンサの容量を他方のコンデンサの容量の4倍以下に設定されるとともに、上記一方の2次巻線に発生するピーク間電圧を上記コンデンサの直列回路の他方のコンデンサと上記ダイオードと並列に接続された上記一方のコンデンサとの容量の逆比で検出する複数のピーク間検出回路と、
これらの複数のピーク間電圧検出回路により検出された電圧をワイヤードオアした電圧が予め定めた値を越えたときに、上記インバータ回路の発振を停止させ、停止した状態を維持させる保護回路と、
を備えることを特徴とする放電灯点灯装置。
An inverter circuit composed of a DC power supply and a half-bridge circuit having a pair of switching elements that convert the DC supplied from the DC power supply into a high-frequency current, and a plurality of parallel connections are made by lighting a discharge lamp by the high-frequency current from the inverter circuit In the discharge lamp lighting device comprising the discharge lamp load circuit,
Each discharge lamp load circuit includes a choke coil, a discharge lamp, a series circuit of a coupling capacitor, and a capacitor connected in parallel to the discharge lamp,
A pair of choke coils provided in each of the discharge lamp load circuits is connected between the gates and sources of the pair of switching elements via current limiting elements, and outputs a voltage for driving the pair of switching elements. The next winding,
A series circuit of capacitors connected in series to both ends of one secondary winding of each of the pair of secondary windings; a diode connected in parallel to one capacitor of the capacitors connected in series ; And the capacitance of the one capacitor connected in parallel with the diode is set to be not more than four times the capacitance of the other capacitor, and the peak-to-peak voltage generated in the one secondary winding is A plurality of peak-to-peak detection circuits that detect a reverse ratio of the capacitance of the other capacitor in the series circuit and the one capacitor connected in parallel with the diode;
A protection circuit that stops the oscillation of the inverter circuit and maintains the stopped state when a voltage obtained by wired-ORing voltages detected by the plurality of peak-to-peak voltage detection circuits exceeds a predetermined value;
The discharge lamp lighting device comprising the Ruco equipped with.
上記ピーク間電圧検出回路は、接続される上記2次巻線と上記コンデンサの間に挿入された抵抗を備えたことを特徴とする請求項1記載の放電灯点灯装置。  2. The discharge lamp lighting device according to claim 1, wherein the peak-to-peak voltage detection circuit includes a resistor inserted between the secondary winding to be connected and the capacitor. 直流電源と、この直流電源から供給される直流を高周波電流に変換する一対のスイッチング素子を有するハーフブリッジ回路からなるインバータ回路と、このインバータ回路からの高周波電流により放電灯を点灯させ、複数並列接続された放電灯負荷回路とを備えた放電灯点灯装置において、
上記各放電灯負荷回路はチョークコイル、放電灯、カップリングコンデンサの直列回路及び上記放電灯に並列に接続されたコンデンサを備え、
上記各放電灯負荷回路の上記チョークコイルに各々一対設けられ、各々電流制限素子を介して上記一対のスイッチング素子のゲート・ソース間に接続され、上記一対のスイッチング素子を駆動する電圧を出力する2次巻線と、
上記各々の一対の2次巻線のうち、1つの一対の2次巻線の一方の2次巻線の両端に各々直列に接続された抵抗と2つのコンデンサの直列回路と、直列に接続された上記コンデンサの一方のコンデンサに並列に接続されたダイオードと、他の一対の2次巻線の一方の2次巻線の一端と前記直列回路の前記抵抗及び前記コンデンサの接続点に接続された抵抗とからなり、上記ダイオードと並列に接続された上記一方のコンデンサの容量を他方のコンデンサの容量の4倍以下にするとともに、上記一方の2次巻線に発生するピーク間電圧を上記直列回路の他方のコンデンサと上記ダイオードと並列に接続された上記一方のコンデンサとの容量の逆比で検出する共通のピーク間検出回路と、
このピーク間電圧検出回路により検出された電圧が予め定めた値を越えたときに、上記インバータ回路の発振を停止させ、停止した状態を維持させる保護回路と、
を備えることを特徴とする放電灯点灯装置。
An inverter circuit composed of a DC power supply and a half-bridge circuit having a pair of switching elements that convert the DC supplied from the DC power supply into a high-frequency current, and a plurality of parallel connections are made by lighting a discharge lamp by the high-frequency current from the inverter circuit In the discharge lamp lighting device comprising the discharge lamp load circuit,
Each discharge lamp load circuit includes a choke coil, a discharge lamp, a series circuit of a coupling capacitor, and a capacitor connected in parallel to the discharge lamp,
A pair of choke coils provided in each of the discharge lamp load circuits is connected between the gates and sources of the pair of switching elements via current limiting elements, and outputs a voltage for driving the pair of switching elements. The next winding,
Of the pair of secondary windings, a series circuit of a resistor and two capacitors connected in series to both ends of one secondary winding of one pair of secondary windings is connected in series. The diode connected in parallel to one capacitor of the capacitor, one end of one secondary winding of the other pair of secondary windings, the resistor of the series circuit and the connection point of the capacitor And the capacitance of the one capacitor connected in parallel with the diode is less than four times the capacitance of the other capacitor, and the peak-to-peak voltage generated in the one secondary winding is reduced to the series circuit. A common peak-to-peak detection circuit that detects a reverse ratio of the capacitance of the other capacitor and the one capacitor connected in parallel with the diode;
A protection circuit for stopping the oscillation of the inverter circuit and maintaining the stopped state when the voltage detected by the peak-to-peak voltage detection circuit exceeds a predetermined value;
The discharge lamp lighting device comprising the Ruco equipped with.
JP2003585483A 2002-04-12 2002-04-12 Discharge lamp lighting device Expired - Fee Related JP4117561B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/003654 WO2003088722A1 (en) 2002-04-12 2002-04-12 Discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JPWO2003088722A1 JPWO2003088722A1 (en) 2005-08-25
JP4117561B2 true JP4117561B2 (en) 2008-07-16

Family

ID=29227577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003585483A Expired - Fee Related JP4117561B2 (en) 2002-04-12 2002-04-12 Discharge lamp lighting device

Country Status (3)

Country Link
JP (1) JP4117561B2 (en)
CN (1) CN100431392C (en)
WO (1) WO2003088722A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166288A (en) * 2003-11-28 2005-06-23 Mitsubishi Electric Corp Discharge lamp lighting device
KR101046924B1 (en) * 2004-05-11 2011-07-06 삼성전자주식회사 Back light assembly and display device having same
US7733028B2 (en) 2007-11-05 2010-06-08 General Electric Company Method and system for eliminating DC bias on electrolytic capacitors and shutdown detecting circuit for current fed ballast

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439271A (en) * 1987-08-04 1989-02-09 Mitsubishi Electric Corp Power source equipment
JP3184558B2 (en) * 1991-06-25 2001-07-09 松下電工株式会社 Switch device for remote control system
JPH05205889A (en) * 1992-01-22 1993-08-13 Tokyo Electric Co Ltd Lighting device for electric discharge lamp
JP3026681B2 (en) * 1992-06-30 2000-03-27 三洋電機株式会社 Fluorescent light control device
JPH10335079A (en) * 1997-05-30 1998-12-18 Mitsubishi Electric Corp Discharge lamp lighting device
JP2001006892A (en) * 1999-06-16 2001-01-12 Ikeda Electric Co Ltd Discharge lamp lighting device
JP2001068290A (en) * 1999-08-26 2001-03-16 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2001093690A (en) * 1999-09-27 2001-04-06 Matsushita Electric Works Ltd Discharge lamp lighting apparatus
JP2001284082A (en) * 2000-04-03 2001-10-12 Sanyo Electric Co Ltd Fluorescent lamp lighting device

Also Published As

Publication number Publication date
CN1516992A (en) 2004-07-28
CN100431392C (en) 2008-11-05
JPWO2003088722A1 (en) 2005-08-25
WO2003088722A1 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
US5883473A (en) Electronic Ballast with inverter protection circuit
US6087782A (en) Resonant mode power supply having over-power and over-current protection
US5869935A (en) Electronic ballast with inverter protection circuit
JP2001357993A (en) Discharge lamp lighting device
KR101450833B1 (en) Lamp end of life detection circuit
JP4117561B2 (en) Discharge lamp lighting device
US7432664B2 (en) Circuit for powering a high intensity discharge lamp
US20150208492A1 (en) End of life protection for voltage fed ballast
JP4085264B2 (en) Discharge lamp lighting device
JP4088926B2 (en) Discharge lamp lighting device
JP4706148B2 (en) Discharge lamp lighting device
JP3532710B2 (en) Discharge lamp lighting device
JP4088924B2 (en) Discharge lamp lighting device
US8274235B2 (en) Inverter device and driving method thereof
JP2007066700A (en) Discharge lamp lighting device
JP5019694B2 (en) Discharge lamp lighting device
JP3482784B2 (en) Electrodeless discharge lamp lighting device
JP2004063320A (en) Discharge lamp lighting device
TW550976B (en) Light operating apparatus of discharge lamp
JP2004319521A (en) Discharge lamp lighting device
JP2000208289A (en) Discharge lamp lighting device
JP3890894B2 (en) Discharge lamp lighting device
JP2001006892A (en) Discharge lamp lighting device
JPH118084A (en) Discharge lamp lighting device
US8947020B1 (en) End of life control for parallel lamp ballast

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees