[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4115426B2 - Horizontal dust remover - Google Patents

Horizontal dust remover Download PDF

Info

Publication number
JP4115426B2
JP4115426B2 JP2004174503A JP2004174503A JP4115426B2 JP 4115426 B2 JP4115426 B2 JP 4115426B2 JP 2004174503 A JP2004174503 A JP 2004174503A JP 2004174503 A JP2004174503 A JP 2004174503A JP 4115426 B2 JP4115426 B2 JP 4115426B2
Authority
JP
Japan
Prior art keywords
cylinder
gas
swirling
phase fluid
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004174503A
Other languages
Japanese (ja)
Other versions
JP2005349340A (en
Inventor
昭次 赤松
Original Assignee
株式会社赤松電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社赤松電機製作所 filed Critical 株式会社赤松電機製作所
Priority to JP2004174503A priority Critical patent/JP4115426B2/en
Publication of JP2005349340A publication Critical patent/JP2005349340A/en
Application granted granted Critical
Publication of JP4115426B2 publication Critical patent/JP4115426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

本発明は、工場で発生する微細粉塵やミスト、あるいは溶接ブースで発生する溶接ヒュームなど、各種作業機器周りで発生するオイルミストや油煙、溶接ヒュームのように、気体や蒸気中に何等かの微細混合物(以下、塵埃と総称する)を含んで全体としては気相を呈する流体や、気体とともに吸引される洗浄水や油などの液体を含む流体(以下、本明細書中では「気相流体」と呼称する。)を処理対象として、その気相流体中から塵埃などの被除去物を除去するための除塵装置に関する。   The present invention relates to fine dust and mist generated in factories, welding fumes generated in welding booths, oil mist, smoke and welding fumes generated around various types of work equipment. A fluid that includes a mixture (hereinafter collectively referred to as dust) and presents a gas phase as a whole, or a fluid that includes a liquid such as cleaning water or oil that is sucked together with the gas (hereinafter referred to as “gas phase fluid” in the present specification). The present invention relates to a dust removal apparatus for removing a removal object such as dust from the gas phase fluid.

この種の気相流体を処理する除塵装置としては、ケーシング内に気相流体の処理経路を形成し、その処理経路に、気相流体と衝突するバフラーや、気相流体と接触して気相流体中に含まれるオイルミストや溶接ヒュームなどを布様濾材からなるフィルターで捕捉するものは、下記の特許文献1に示されるように従来より知られている(特許文献1参照)。
また、気相流体として主として粉塵を含む気相流体を処理対象とする場合には、図16に示すように周知のサイクロン式の除塵装置も存在する。
As a dust removing device for processing this kind of gas-phase fluid, a gas-phase fluid processing path is formed in the casing, and a baffle that collides with the gas-phase fluid or a gas-phase fluid in contact with the gas-phase fluid in the processing path A device that captures oil mist, welding fume, and the like contained in a fluid with a filter made of a cloth-like filter medium has been conventionally known (see Patent Document 1).
Further, when a gas phase fluid containing mainly dust as a gas phase fluid is to be treated, there is a known cyclone type dust removing device as shown in FIG.

登録実用新案第3006924号公報(段落「0010」、「0012」、「図1」、「図2」)Registered Utility Model No. 3006924 (paragraphs “0010”, “0012”, “FIG. 1”, “FIG. 2”)

上記の特許文献1に示される技術によれば、気相流体がバフラーと衝突したり、ラビリンス状の流路を流れる際の布様濾材との接触によって、気相流体中の塵埃が捕集除去されるものであるが、気相流体中に多くの塵埃や油分が含まれる場合などには、次の問題がある。
つまり、濾材に対する気相流体の接触による捕集では、気相流体中の塵埃除去率を高めようとすると、気相流体からの塵埃除去率が目標とする高除去精度に達するまでに、長い経路で多段の濾材を多数設ける必要が生じる。このため、装置の大型化を招く不都合や、早期のうちに濾材の目詰まりが生じて濾材の交換に多くの手数を要するというメンテナンスの煩雑化を招き易いものであった。
上記特許文献1による除塵装置では、濾材の目詰まりが生じるまでの有効稼働期間を極力長くするために、前述のバフラーなどを用いて、気相流体に含まれる被除去物が濾材に接触する前の、できるだけ早期のうちに気流から被除去物の多くを脱落させ、ケーシング内に装備された回収容器へ回収するように工夫している。
このように、気相流体の処理経路での初期段階で多くの被除去物が回収されるようにしたことにより、比較的小型の除塵装置で被除去物の除去率を向上し得る点では有効であるが、気流から脱落した被除去物の堆積物の取り出しのためのメンテナンス作業がかなりの高頻度で要求されるという新たな問題がある。つまり、被除去物を回収する容器に多量の被除去物が貯留堆積した場合、被除去物の性状によっては、粘性の高いものであったり、硬化し易い物であったりして、回収容器をケーシングから取り出すことすらできなくなる虞があり、これを避けるために高頻度でのメンテナンスが要求されるという煩わしさがある。
除塵装置のケーシング全体を極端に大きくすれば、被除去物の貯留空間を大きく確保してメンテナンス頻度を低減できることにはなるが、これでは折角除塵装置を小型化したことの意味合いが薄れてしまう。また、作業環境によっては、気相流体中の被除去物濃度が薄く、かなり長い稼働期間でも回収量があまり増えないような作業条件もあり、このような作業環境では、大型の回収容器は無用の長物となる。
According to the technique disclosed in Patent Document 1 above, dust in the gas phase fluid is collected and removed by contact with the cloth-like filter medium when the gas phase fluid collides with the baffle or flows through the labyrinth channel. However, there are the following problems when a large amount of dust or oil is contained in the gas phase fluid.
In other words, in the collection by contact of the gas phase fluid with the filter medium, if the dust removal rate in the gas phase fluid is increased, a long path is required until the dust removal rate from the gas phase fluid reaches the target high removal accuracy. Therefore, it is necessary to provide a large number of multistage filter media. For this reason, it is easy to cause inconvenience that leads to an increase in the size of the apparatus and complicated maintenance that the filter medium is clogged at an early stage and requires a lot of work to replace the filter medium.
In the dust removing apparatus according to Patent Document 1, in order to extend the effective operation period until the filter medium is clogged as much as possible, the object to be removed contained in the gas phase fluid is contacted with the filter medium using the above-described baffler or the like. However, it is devised that most of the objects to be removed are removed from the airflow as soon as possible and collected in a collection container equipped in the casing.
In this way, it is effective in that the removal rate of the object to be removed can be improved with a relatively small dust removing device by recovering a large amount of the object to be removed at the initial stage in the treatment path of the gas phase fluid. However, there is a new problem that maintenance work for taking out the deposits of the removed objects that have fallen out of the airflow is required at a considerably high frequency. In other words, when a large amount of the object to be removed is accumulated in the container for collecting the object to be removed, depending on the property of the object to be removed, it may be highly viscous or easily hardened. There is a possibility that it cannot even be removed from the casing, and in order to avoid this, there is an inconvenience that frequent maintenance is required.
If the entire casing of the dust remover is made extremely large, it is possible to secure a large storage space for the object to be removed and reduce the maintenance frequency. However, this impairs the meaning of downsizing the folding dust remover. In addition, depending on the working environment, there are working conditions in which the concentration of the object to be removed in the gas phase fluid is thin and the recovery amount does not increase much even during a considerably long operation period. In such a working environment, a large collection container is unnecessary. It will be a long product.

また、周知のサイクロン式の除塵装置では、その処理対象物が粉塵を主体とするものに限られてしまうことと、装置自体が極端に大型化してしまう傾向がある。
つまり、通常のサイクロン式の除塵装置は、気相流体が接線方向から吹き込まれる円筒状の円筒室の下側に下すぼまりの円錐筒を連設し、円錐筒下端の塵埃排出口から粉塵を自重落下させ、気体は円筒室の中心部に挿入された排気筒から気体を外部へ排出するように構成されているが、その寸法関係は、図16に示すように、おおむね次のように設定される。
円筒室の直径 : D
円筒室からの排気口径: d
塵埃排出口の直径 : δ
円筒室の上下高さ : L
円錐筒の上下高さ : H
とした場合、
d=D/2
δ=D/2〜D/4
L=D
H=2D
上記の関係が成り立つ寸法に近い寸法で設定される。したがって、気相流体の旋回流の直径に相当する円筒室の直径Dの3倍程度の寸法が除塵構造として必要であり、さらにその下方に大きな回収容器や設置台が必要となるため、全体としては相当に上下高さの高い装置となってしまう。
したがって、工場内で比較的高い位置に滞留する粉塵や煙を吸引したい場合や、比較的大型の加工装置等の上側に載置して除塵装置設置のための床面積を節減しようする場合、除塵装置を設置しようする高さ位置が高くなるので、屋内天井の高さの制限を受けて背の高い除塵装置そのもの設置できないとか、設置できても高くなりすぎて安定性が悪いとか、メンテナンス作業を行い難いなどの問題がある。
Further, in the known cyclone type dust removing device, the processing object is limited to the one mainly composed of dust, and the device itself tends to be extremely large.
In other words, an ordinary cyclone type dust remover has a conical cylinder with a concentric bottom and is continuously connected to the lower side of a cylindrical cylindrical chamber into which gas-phase fluid is blown from the tangential direction, and dust is discharged from a dust discharge port at the lower end of the cone cylinder. It is configured to drop by its own weight, and the gas is discharged from the exhaust tube inserted in the center of the cylindrical chamber to the outside, but the dimensional relationship is generally set as follows as shown in FIG. Is done.
Diameter of cylindrical chamber: D
Exhaust port diameter from cylindrical chamber: d
Dust outlet diameter: δ
Vertical height of cylindrical chamber: L
Conical cylinder height: H
If
d = D / 2
δ = D / 2 to D / 4
L = D
H = 2D
It is set to a dimension close to the dimension that satisfies the above relationship. Therefore, a size about three times as large as the diameter D of the cylindrical chamber corresponding to the diameter of the swirling flow of the gas phase fluid is required as the dust removal structure, and further, a large recovery container and installation base are required below the dust removal structure. Becomes a device with a considerably high vertical height.
Therefore, if you want to suck in dust or smoke that stays at a relatively high position in the factory, or if you want to reduce the floor space for installing a dust removal device by placing it on the upper side of a relatively large processing device, etc. Since the height position where the device is to be installed becomes high, it is impossible to install a tall dust removal device itself due to the height restriction of the indoor ceiling, or even if it can be installed, it becomes too high and the stability is poor. There are problems such as difficult to do.

本発明の目的は、各種の気相流体を処理対象として処理を行うことができるものでありながら、気相流体から除去される被除去物の回収を各種の条件に適合させやい回収構造とし、さらに、上下高さが制限されている箇所で配設するに好適な横型構造の除塵装置を提供するとともに、除塵装置そのもののより一層の小型化を図ることにある。   An object of the present invention is to provide a recovery structure that can perform processing on various gas-phase fluids as processing targets, but adapts the recovery of the removal object to be removed from the gas-phase fluids to various conditions. Furthermore, another object of the present invention is to provide a dust removing device having a horizontal structure suitable for being arranged at a place where the vertical height is restricted, and to further reduce the size of the dust removing device itself.

上記目的を達成するために講じた本発明による横型除塵装置では、下記の技術手段を講じたものである。
〔解決手段1〕
本発明の横型除塵装置は、請求項1に記載のように、取り入れ口から吸い込んだ気相流体中の被除去物を除去処理して排出口から外部へ排出するための処理経路をケーシングの内部に備え、前記処理経路に、取り入れ口から吸引導入された気相流体をケーシング内で旋回流動させる旋回除塵部を設け、
この旋回除塵部を、水平方向に沿わせて筒軸芯の向きを設定した内側の導風筒体と外側の外囲筒体とで構成し、
前記導風筒体の水平方向での一端側に気相流体の導入口を設け他端側に送出口を設けるとともに、前記外囲筒体を有底筒状に形成して、その筒底部が前記導風筒体の導入口と対向し、かつ導入口及び前記導風筒体の外周側との間に所定間隔を隔ててた状態に配設し、
内側の導風筒体と外側の外囲筒体との間に形成される円環状の旋回用流路で気相流体の旋回流が生じるように、処理対象の気相流体の導入方向を前記導風筒体の接線に沿う方向に設定するとともに、導風筒体内部の気相流体を前記導入口とは反対側の送出口から処理経路の下手側へ吸引排出する起風手段を備え、
前記旋回除塵部において、前記旋回用流路の内側に位置する導風筒体の前記導入口の反対側に位置する送出口寄りの周壁部分に、導風筒体の内部からの吸引作用で、旋回中の気相流体の一部を前記導入口よりも処理系路の上手側位置で吸い込むための短絡用通気部を形成するとともに、旋回用流路の外側に位置する外囲筒体の一部に、旋回流の最外側に含まれる被除去物の旋回流外方側への飛び出しを許して旋回流から脱出させる塵埃分離部を形成し、
この塵埃分離部の旋回流から脱出した被除去物を前記ケーシング外へ案内して自重落下させる外部取り出し筒を設け、
前記旋回除塵部よりも気相流体流れ方向での下手側の処理系路に、その旋回除塵部から送り出された気相流体に残存する被除去物を除去するための二次処理部を備え、この二次処理部を、反転処理部と塵埃捕捉部とで構成してあり、
前記反転処理部は、旋回除塵部から送り出される気相流体の流れに交差して前記気相流体の流動方向を中央部から放射方向に向けた後、外周部で前記流れの前方向きに反転させるように案内する碗状の二次曲面で構成された凹入湾曲面を有した衝突プレートを備え、
前記塵埃捕捉部は、前期衝突プレートで反転処理された後の気相流体を上下方向ならびに左右方向に拡散させるように通気流路の案内面が形成された格子状ルーバーと、拡散された気相流体と接触するようにスパイラル金属線を充填して構成された濾材層とを備え、
前記衝突プレート、格子状ルーバー、濾材層の夫々を金属製材料によって構成してあるという技術手段を講じたものである。
In the horizontal dust removing apparatus according to the present invention taken to achieve the above object, the following technical means are taken.
[Solution 1]
According to the horizontal dust removing apparatus of the present invention, the processing path for removing the object to be removed from the gas-phase fluid sucked from the intake port and discharging it from the discharge port to the outside is provided inside the casing. In the processing path, a swirling dust removing unit that swirls and flows the gas-phase fluid sucked and introduced from the intake port in the casing,
This swirling dust removing part is composed of an inner wind guide cylinder and an outer envelope cylinder that set the direction of the cylinder axis along the horizontal direction,
A gas-phase fluid inlet is provided on one end side in the horizontal direction of the wind guide cylinder and a delivery port is provided on the other end. The outer cylinder is formed in a bottomed cylinder, and the cylinder bottom is Opposed to the introduction port of the wind guide cylinder, and disposed in a state with a predetermined interval between the introduction port and the outer peripheral side of the wind guide cylinder,
The introduction direction of the gas phase fluid to be processed is set so that the swirling flow of the gas phase fluid is generated in an annular swirling flow path formed between the inner wind guide cylinder and the outer envelope cylinder. It is set in a direction along the tangent line of the wind guide cylinder, and includes a wind generating means for sucking and discharging the gas-phase fluid inside the wind guide cylinder from the delivery port opposite to the inlet to the lower side of the processing path,
In the swirling dust removing section, a suction action from the inside of the baffle cylinder is applied to the peripheral wall portion near the feed outlet located on the opposite side of the introduction port of the baffle cylinder located inside the swirling flow path, A short-circuiting vent is formed for sucking a part of the gas-phase fluid during swirling at a position closer to the processing system than the introduction port, and one of the surrounding cylinders located outside the swirling flow path. Forming a dust separation part that allows the removal object to be removed from the swirling flow to the outer side of the swirling flow to escape from the swirling flow,
Set the dust separator external extraction tube to free-fall to-be-removed substance escaped guided outside the casing from the swirling flow of
A secondary processing unit for removing the object to be removed remaining in the gas-phase fluid sent from the swirling dust removing unit in the processing system path on the lower side in the gas-phase fluid flow direction than the swirling dust removing unit, This secondary processing unit is composed of an inversion processing unit and a dust trapping unit,
The inversion processing unit crosses the flow of the gas phase fluid sent out from the swirling dust removing unit and directs the flow direction of the gas phase fluid from the central part to the radial direction, and then reverses the flow in the forward direction at the outer peripheral part. A collision plate having a concave curved surface composed of a bowl-shaped quadric surface that guides the
The dust trapping unit includes a lattice-like louver in which a guide surface of a ventilation channel is formed so as to diffuse the gas-phase fluid after being reversed by the collision plate in the vertical direction and the horizontal direction, and the diffused gas-phase A filter medium layer configured to be filled with a spiral metal wire so as to come into contact with a fluid;
The technical means that each of the collision plate, the lattice louver, and the filter medium layer is made of a metal material is provided.

〔作用〕
上記の技術手段を講じたことによる作用は次の通りである。
請求項1にかかる発明の構成によると、水平方向に沿わせて筒軸芯の向きを設定した内側の導風筒体と外側の外囲筒体との間に外部から処理対象の気相流体を導入し、内側の導風筒体の内部からの吸引作用で、導風筒体と外囲筒体との間の気体に旋回力を与えるようにした旋回除塵部を備えている。
この旋回除塵部において、旋回流の外側に位置して旋回流を案内する外囲筒体の外周部の一部に、前記筒軸芯の前後方向に沿う凹溝を設けて、旋回流の最外側に多く含まれる質量の大きな塵埃や液体などの被除去物を効率良く旋回流から脱出除去させることができる。
そして、塵埃の混入割合の少ない旋回流の内側(旋回中心側)では、導風筒体の一端側の導入口の反対側に位置する送出口寄りの周壁部分に、導風筒体の内部からの吸引作用で、旋回流の一部を前記導入口よりも流路上手側位置で吸い込むための短絡用通気部を形成して、旋回流が導風筒体の一端側の導入口に達する前から吸引導入を開始している。これは、旋回流に対する吸引面積を実質的に拡張していることになり、短絡用通気部なしで導風筒体を構成して一端側の導入口のみから処理対象の気相流体を吸引導入する場合に比べて、吸引風の風速がこの部位で比較的低速となっている。
しかも、前記導風筒体に形成される短絡用通気部は、旋回流の旋回流軸線方向での速度分布状態にも影響を与えている。例えば、このような短絡用通気部がなく導風筒体の一端側にだけ小径の導入口がある先細りの筒状体を採用した場合と比べると、次のような相違がある。
つまり、旋回初期である導風筒体の外周部で前記取り入れ口と対向する箇所付近では、導入された気相流体の全体が、導風筒体の外周面に対する接線に沿う方向での直進方向の動慣性を持って導入され、これが旋回方向に向きを変えるように案内されて旋回流となるのであるが、前記短絡用通気部がない構造の導風筒体では、旋回内側で旋回流の速度を低減させる要素としては、導風筒体外周壁との摩擦以外に特に何も存在しない。このため、外部から処理対象の気相流体を導入する取り入れ口流路部分の流路幅の中央付近で最大速度となる速度分布で、かつ導風筒体の外周面近くでも旋回速度の低下が少ない状態で全体として比較的高速での旋回が維持される傾向がある。したがって、導風筒体の一端側の導入口から処理経路の下手側へ気相流体を吸引して導き出す際に、導風筒体の一端側の導入口付近で所定の低速度にまで旋回流の速度を低下させてから吸引導出しようとすると、導風筒体の筒軸線方向長さを十分に長くして、気相流体の旋回移動距離を十分に大きくする必要が生じる。
すなわち、旋回による遠心力では分離され難い微細な浮遊塵埃の多くが導風筒体の一端側の導入口から下流の処理系路へ吸引導出されてしまうことを避けるように、吸引速度を極力低下させて吸引力を小さくすること、あるいは、導風筒体下端付近での旋回流の速度を極力低下させて塵埃の自重降下が効率よく生じるようにすることが望まれるのであるが、吸引速度を極端に低下させると処理能力が著しく低下し、旋回流の速度を十分に低下させるために気相流体の旋回移動距離を十分に長くすると、装置の大型化を招くという問題がある。
本発明では、このような問題を解決するために、前述のように、導風筒体の一端側の導入口とは別に、その導入口の反対側に位置する送出口寄りの周壁部分に、導風筒体の内部からの吸引作用で、旋回流の一部を前記導入口よりも上手側位置で吸い込むための多数の短絡用通気部を形成して、旋回流に対する吸引面積を実質的に拡張することによって、前記導入口での吸引速度の低下を図り、かつ、旋回流が導風筒体の一端側の導入口に達する前から吸引導入を開始して、この吸引導入作用が旋回流の内側での旋回抵抗として働くことにより、旋回流の内側での旋回速度を低減し、結果的に旋回流の旋回速度の減衰を早め、そのことによって前記導風筒体や外囲筒体の筒軸芯方向長さの短縮が可能となる。
[Action]
The effects of taking the above technical means are as follows.
According to the configuration of the first aspect of the present invention, the gas phase fluid to be processed from the outside is provided between the inner air guide cylinder and the outer envelope cylinder in which the direction of the cylinder axis is set along the horizontal direction. , And a swirling dust removing unit that applies a swirling force to the gas between the wind guiding cylinder and the outer cylinder by the suction action from the inside of the inner wind guiding cylinder.
In this swirling dust removing portion, a concave groove along the front-rear direction of the cylindrical shaft core is provided in a part of the outer peripheral portion of the outer cylinder that is located outside the swirling flow and guides the swirling flow, so Objects to be removed such as dust and liquid having a large mass contained on the outside can be efficiently escaped and removed from the swirling flow.
And inside the swirl flow with little dust mixing ratio (turning center side), the inner wall of the wind guide tube is located on the opposite side of the inlet on the one end side from the inside of the wind guide tube. Before the swirl flow reaches the inlet on one end side of the wind guide cylinder by forming a short-circuit vent for sucking a part of the swirl flow at a position upstream of the introduction port by the suction action of The suction introduction has started. This substantially expands the suction area for the swirling flow, configures the wind guide cylinder without a short-circuiting vent, and sucks and introduces the gas phase fluid to be processed from only the inlet on one end side. Compared with the case where it does, the wind speed of a suction wind is comparatively low in this site | part.
In addition, the short-circuit vent formed in the wind guide cylinder also affects the velocity distribution state of the swirling flow in the swirling flow axis direction. For example, there are the following differences compared to the case where a tapered tubular body without a short-circuiting ventilation portion and having a small-diameter inlet only on one end side of the air guide tubular body is employed.
That is, in the vicinity of the portion facing the intake port at the outer periphery of the wind guide cylinder at the initial stage of turning, the entire introduced gas-phase fluid is linearly moved along the tangent to the outer peripheral surface of the wind guide cylinder It is introduced with the dynamic inertia of this, and this is guided so as to change the direction in the swirling direction to become a swirling flow. There is nothing in particular other than the friction with the outer peripheral wall of the wind guide cylinder as an element for reducing the speed. For this reason, the speed distribution has a maximum speed near the center of the flow path width of the inlet flow path portion for introducing the gas phase fluid to be processed from the outside, and the swirling speed is also decreased near the outer peripheral surface of the wind guide cylinder. There is a tendency that turning at a relatively high speed is maintained as a whole in a small state. Therefore, when the gas-phase fluid is sucked and guided from the inlet on one end side of the wind guide cylinder to the lower side of the processing path, the swirling flow reaches a predetermined low speed near the inlet on the one end side of the wind guide cylinder. If the suction and derivation is attempted after reducing the speed, the length of the wind guide cylinder in the cylinder axis direction needs to be made sufficiently long to sufficiently increase the swirl movement distance of the gas phase fluid.
In other words, the suction speed is reduced as much as possible so that most of the fine floating dust that is difficult to separate by centrifugal force due to swirling is sucked and led out from the inlet on one end side of the wind guide tube to the downstream processing system. It is desirable to reduce the suction force or reduce the speed of the swirling flow near the lower end of the wind guide cylinder as much as possible so that the dust weight drops efficiently. When the pressure is extremely reduced, the processing capability is remarkably reduced, and there is a problem that if the swirl moving distance of the gas phase fluid is sufficiently long in order to sufficiently reduce the swirling flow speed, the apparatus becomes large.
In the present invention, in order to solve such a problem, as described above, separately from the introduction port on one end side of the air guide tube body, on the peripheral wall portion near the delivery port located on the opposite side of the introduction port, By a suction action from the inside of the wind guide cylinder, a number of short-circuiting ventilation portions for sucking a part of the swirling flow at a position on the upper side of the introduction port are formed, and the suction area for the swirling flow is substantially reduced. By expanding, the suction speed at the introduction port is reduced, and suction introduction is started before the swirling flow reaches the introduction port on one end side of the wind guide cylinder. The swirl resistance inside the swirl flow is reduced by reducing the swirl speed inside the swirl flow, and consequently the swirl speed of the swirl flow is attenuated. The length in the cylinder axis direction can be shortened.

また、本発明の請求項1にかかる発明の構成によると、塵埃分離部で旋回流から脱出させた被除去物を前記ケーシング外へ案内して自重落下させる外部取り出し筒を設けてあるので、旋回除塵部の旋回流から脱出した被除去物を貯留して回収するための空間を、旋回除塵部とは切り離して構成することができる。したがって、被除去物を収容するための手段は、使用条件に応じて除塵装置とは別に任意のものを採用することができる。
しかも、このように旋回流から脱落した被除去物を貯留して回収するための空間が、旋回除塵部とは切り離されて構成してあって、外囲筒体の一部に形成される塵埃分離部が、旋回除塵部での旋回流の旋回作用が伝わらない状態で被除去物を自重落下させ、かつ、導風筒体内部の気相流体を処理経路の下手側へ吸引排出する起風手段による吸引作用も被除去物が堆積する回収空間には伝わらないので、この回収空間に堆積されている被除去物が軽い粉塵であっても、再び旋回除塵部側へ舞い上がるような自体の発生をほぼ確実に回避することができる。
さらに、この発明では、筒軸芯の向きを水平方向に沿う状態に設定して導風筒体と外囲筒体とを横向き姿勢に配置してあり、これに加えて前述のように、これら両筒体の筒軸芯方向の長さも極力短くできるので、上下方向でも水平方向でもコンパクトな構造の除塵装置を構成することができる。
Further, according to the configuration of the invention according to claim 1 of the present invention, there is provided an external take-out cylinder that guides the object to be removed escaped from the swirling flow by the dust separation part to the outside of the casing and drops it by its own weight. A space for storing and recovering the object to be removed escaped from the swirling flow of the dust removing unit can be configured separately from the swirling dust removing unit. Therefore, any means for accommodating the object to be removed can be employed separately from the dust removing device according to the use conditions.
In addition, the space for storing and collecting the object to be removed that has fallen from the swirling flow is configured separately from the swirling dust removing portion, and is formed in a part of the outer cylinder. Winding that causes the separation part to drop the object to be removed by its own weight without the swirling action of the swirling flow in the swirling dust removing section being transmitted, and sucking and discharging the gas phase fluid inside the wind guide cylinder to the lower side of the processing path Since the suction action by the means is not transmitted to the collection space where the object to be removed is accumulated, even if the object to be removed accumulated in this collection space is a light dust, it will rise again to the swirl dust removal part side Can be avoided almost certainly.
Further, in the present invention, the direction of the cylinder axis is set in a state along the horizontal direction, and the wind guide cylinder and the outer cylinder are arranged in the lateral attitude. In addition to these, as described above, Since the length in the cylinder axis direction of both cylinders can be shortened as much as possible, a dust removing device having a compact structure can be configured both in the vertical direction and in the horizontal direction.

〔作用〕
また、上記の技術手段を講じたことによるさらなる作用は次の通りである。
旋回除塵部よりも気相流体流れ方向での下手側の処理系路に設ける二次処理部として、気相流体の流れに交差して前記気相流体の流動方向を中央部から放射方向に向けた後、外周部で前記流れの前方向きに反転させるように案内する碗状の二次曲面で構成された凹入湾曲面を有した衝突プレートと、気相流体を上下方向ならびに左右方向に拡散させるように通気流路の案内面が形成された格子状ルーバーと、拡散された気相流体と接触するようにスパイラル金属線を充填して構成された濾材層とを備え、かつ、これらの衝突プレートと、格子状ルーバーと、濾材層との夫々を金属製材料によって構成してあるので、除塵装置としてメンテナンス頻度のきわめて少ないものに構成することができる。
すなわち、旋回除塵部による遠心分離作用で高性能での塵埃等の除去が先行して行える
ことに加えて、比較的質量の大きい塵埃や液体などが除去された後の気相流体に残存する比較的質量の小さい被除去物を、衝突プレートによる衝突と反転方向への向き変更とで失速させることによる脱落、及び格子状バフラーで拡散して金属製の濾材に接触させることによる捕捉、ならびに被除去物がオイルミストなどの液化する性状のものであれば、その微細粒子どうしが金属面との衝突や接触によって肥大し液状化して金属に付着する塵埃とともに流下するなど、目詰まりの生じにくい状況で除塵装置を稼働させることができる。
したがって、旋回除塵部で除去回収される大量の被除去物が、外部取り出し筒を介して除塵装置の大きさとは関係のない回収容器などに回収でき、この旋回除塵部からの被除去物を回収するためだけの最も頻度の高いメンテナンスが不要になる。そして、旋回除塵部を過ぎてから回収される微細な被除去物は、その回収量が僅かであり、かつ液化し易いものであれば目詰まり解消の役にも立つので、全体としてメンテナンス頻度は少なくて済む。
[Action]
Moreover, the further effect | action by having taken said technical means is as follows.
As a secondary processing section provided in the processing system path on the lower side in the gas-phase fluid flow direction than the swirling dust removal section, the flow direction of the gas-phase fluid is directed from the center to the radial direction so as to intersect the flow of the gas-phase fluid After that, the collision plate having a concave curved surface composed of a bowl-shaped secondary curved surface that guides the flow to be reversed in the forward direction at the outer periphery, and the gas phase fluid is diffused in the vertical and horizontal directions. A lattice-like louver in which a guide surface of a ventilation channel is formed, and a filter medium layer filled with a spiral metal wire so as to come into contact with the diffused gas phase fluid, and these collisions Since each of the plate, the lattice-like louver, and the filter medium layer is made of a metal material, the dust removing device can be constructed with extremely low maintenance frequency.
In other words, in addition to being able to remove dust and the like with high performance in advance by the centrifugal separation action by the swirling dust remover, a comparison that remains in the gas phase fluid after removing dust or liquid with relatively large mass Of the object to be removed with a small target mass by colliding with the collision plate and changing the direction in the reversal direction, and by trapping with the metal filter medium by diffusing with a lattice baffle, and removing the object If the object is of a liquefiable nature such as oil mist, the fine particles are enlarged due to collision or contact with the metal surface, liquefy and flow down with dust adhering to the metal. The dust removing device can be operated.
Therefore, a large amount of objects removed and collected by the swirling dust removal unit can be collected in a collection container that is not related to the size of the dust removal device via the external take-out cylinder. This eliminates the need for the most frequent maintenance. And the fine objects to be recovered after passing through the swirling dust removal part are useful for relieving clogging if the recovered amount is small and easily liquefied. Less is enough.

〔解決手段2〕
本発明の除塵装置は、前記請求項1にかかる発明の構成に加えて、請求項2記載のように、旋回除塵部の外囲筒体は、筒底部に導風筒体の外径よりも径の大きい開口と、その開口を開閉自在な蓋体を備え、かつ外囲筒体の外周部に気相流体の取り入れ口を設けてあるという構成を採用するとよい。
[Solution 2]
In addition to the configuration of the invention according to the first aspect , the dust removing device of the present invention is configured such that, as described in the second aspect, the outer cylindrical body of the swirling dust removing section is located at the bottom of the cylinder more than the outer diameter of the air guide cylinder. It is preferable to employ a configuration in which an opening having a large diameter, a lid that can be opened and closed, and a gas-phase fluid intake port are provided in the outer peripheral portion of the outer cylinder.

〔作用〕
上記の技術手段を講じたことによる作用は次の通りである。
すなわち、外囲筒体の筒底部に導風筒体の外径よりも径の大きい開口を設けたものであるから、この開口に設けた蓋体を開閉操作することで、外囲筒体や、その外囲筒体に設けられる取り入れ口と連結される気相流体の導入ダクトを取り外さずに外囲筒体内部の導風筒体部分の掃除など、メンテナンス作業を行い易いものである。
[Action]
The effects of taking the above technical means are as follows.
That is, since an opening having a diameter larger than the outer diameter of the air guide cylinder is provided at the bottom of the outer cylinder, by opening and closing the lid provided in the opening, The maintenance work such as cleaning of the air guide cylinder inside the outer cylinder without removing the gas duct introduction duct connected to the intake provided in the outer cylinder is easy.

本第1発明によれば、水平方向に沿わせて筒軸芯の向きを設定した内側の導風筒体と外囲筒体との間の気相流体に旋回力を与えるようにした旋回除塵部において、旋回流の外側に位置して旋回流を案内する外囲筒体の一部に、前記筒軸芯の前後方向に沿う凹溝を設けて、旋回流の最外側に多く含まれている質量の大きな塵埃や液体の被除去物を効率良く旋回流から脱出除去させ、塵埃等の混入割合の少ない旋回流の内側(旋回中心側)では、導風筒体の一端側の導入口とは反対側に位置する送出口寄りの周壁部分に、導風筒体の内部からの吸引作用で、旋回流の一部を前記導入口よりも流路上手側位置で吸い込むための多数の短絡用通気部を形成して、旋回流に対する吸引面積を実質的に拡張することによって、吸引速度の低下を図り、かつ、旋回流が導風筒体の一端側の導入口に達する前から吸引導入を開始して、この吸引導入作用が旋回流の内側での旋回抵抗として働くことにより、旋回流の内側での旋回速度を低減し、結果的に旋回流の旋回速度の減衰を早めている。
これによって、旋回流の全体を考えると、旋回移動距離をあまり長くしなくても効率良く塵埃等の被除去物を除去するとともに、旋回速度の減衰を早めることによって、旋回流の筒軸芯方向での移動距離を短縮することができ、しかもその筒軸芯の方向を水平方向に沿う状態に設定した状態で導風筒体と外囲筒体とが配設されているので、水平方向でも上下方向でもコンパクトな構造とし、装置全体の小型化を図ることができる利点がある。
According to the first aspect of the present invention, swirling dust removal that applies a swirling force to the gas-phase fluid between the inner air guide tube and the outer tube body in which the direction of the cylinder axis is set along the horizontal direction. Part of the outer cylindrical body that is positioned outside the swirling flow and guides the swirling flow is provided with a concave groove along the longitudinal direction of the cylindrical axis, and is included in the outermost portion of the swirling flow. A large mass of dust or liquid to be removed is efficiently removed from the swirling flow. Inside the swirling flow where the mixing ratio of dust or the like is low (the swiveling center side), an inlet on one end side of the air guide cylinder Is a short circuit for sucking a part of the swirling flow at the upper side of the flow path from the introduction port by the suction action from the inside of the air guide cylinder to the peripheral wall portion near the delivery port located on the opposite side By forming a ventilation part and substantially expanding the suction area for the swirling flow, the suction speed is reduced, and Suction introduction starts before the swirl flow reaches the inlet on the one end side of the wind guide cylinder, and this suction introduction action acts as a swirl resistance inside the swirl flow, so that the swirl speed inside the swirl flow As a result, the turning speed of the swirling flow is attenuated faster.
Thus, considering the entire swirling flow, it is possible to efficiently remove the object to be removed, such as dust, without increasing the swirling movement distance, and to accelerate the attenuation of the swirling speed, so that Since the air guide cylinder and the surrounding cylinder are arranged in a state where the direction of the cylinder axis is set in a state along the horizontal direction, the horizontal distance can be reduced. There is an advantage that the structure can be made compact in the vertical direction and the entire apparatus can be downsized.

また、本第1発明の構成によると、塵埃分離部で旋回流から脱落させた被除去物を前記ケーシング外へ案内して自重落下させる外部取り出し筒を設けて、旋回除塵部の旋回流から脱出した被除去物を貯留して回収するための空間を、旋回除塵部とは切り離して構成することができるので、除塵装置とは別に使用条件に応じて別途作成した容器や市販品の容器など、任意の形状、構造、大きさの収容手段を採用することができ、除塵装置そのものの汎用性を高めることにもなる。その上、このように被除去物を貯留して回収するための空間を、旋回除塵部とは切り離して構成することにより、装置全体のより一層の小型化を図り得る利点もある。
さらに、このように旋回流から脱落した被除去物を貯留して回収するための空間が、旋回除塵部とは切り離されて構成してあって、外囲筒体の一部に形成される塵埃分離部が、旋回除塵部での旋回流の旋回作用が伝わらない状態で被除去物を自重落下させ、かつ、導風筒体内部の気相流体を処理経路の下手側へ吸引排出する起風手段による吸引作用も被除去物が堆積する回収空間には伝わらないので、この回収空間に堆積されている被除去物が軽い粉塵であっても、旋回除塵部側へ舞い上がるような自体の発生をほぼ確実に回避することができる。これによって、旋回除塵部に多く粉塵が存在している状態で溶接の火の粉が飛び込むなどして火災や粉塵爆発が生じるという可能性を極力低減し得る利点がある。また、仮に火災や粉塵爆発が生じたとしても、それは回収容器の内部で生じる程度であり、除塵装置全体が火災や粉塵爆発で損傷してしまうこと避けやすい利点もある。
Further, according to the configuration of the first aspect of the present invention, an external take-out cylinder that guides the object to be removed, which has been dropped from the swirling flow by the dust separation unit, to the outside of the casing and falls by its own weight is provided to escape from the swirling flow of the swirling dust removing unit. Since the space for storing and collecting the removed objects can be configured separately from the swirling dust removal unit, containers created separately according to the use conditions separately from the dust removal device, commercially available containers, etc. An accommodating means having an arbitrary shape, structure, and size can be adopted, and the versatility of the dust removing device itself can be improved. In addition, there is an advantage that the entire apparatus can be further reduced in size by separating the space for storing and collecting the objects to be removed from the swirling dust removing unit.
Furthermore, the space for storing and recovering the object to be removed that has fallen from the swirling flow is configured to be separated from the swirling dust removing portion, and is formed in a part of the outer cylinder. Winding that causes the separation part to drop the object to be removed by its own weight without the swirling action of the swirling flow in the swirling dust removing section being transmitted, and sucking and discharging the gas phase fluid inside the wind guide cylinder to the lower side of the processing path Since the suction action by the means is not transmitted to the recovery space where the objects to be removed are accumulated, even if the objects to be removed accumulated in the recovery space are light dust, it will generate itself that rises to the swirling dust removal side. It can be avoided almost certainly. As a result, there is an advantage that the possibility that a fire or dust explosion may occur as much as possible due to, for example, welding sparks jumping in a state where a large amount of dust is present in the swirling dust removing portion. In addition, even if a fire or dust explosion occurs, it only occurs within the collection container, and there is an advantage that it is easy to avoid that the entire dust removal device is damaged by fire or dust explosion.

しかも、旋回除塵部による遠心分離作用で高性能での塵埃等の除去が先行して行われるとともに、除去回収される大量の被除去物が、外部取り出し筒を介して除塵装置とは別の回収容器などに回収できるので、この旋回除塵部からの被除去物を回収するためだけの最も頻度の高いメンテナンスが不要になり、これに加えて、旋回除塵部を過ぎてから回収される微細な被除去物は、その回収量が僅かであり、かつ金属製の衝突プレートによる衝突と反転方向への向き変更とで失速脱落させ、格子状バフラーで拡散して金属製の濾材に接触させることによる捕捉し、液化し易いものであれば目詰まり解消の役にも立つので、全体としてメンテナンス頻度を低減し得る利点がある。 In addition, high-performance removal of dust and the like is performed in advance by the centrifugal separation action by the swirling dust removing unit, and a large amount of removed objects to be removed and collected is collected separately from the dust removing device via the external take-out cylinder. Since it can be collected in a container, etc., the most frequent maintenance only for collecting the object to be removed from the swirling dust removal unit becomes unnecessary. The removed material is collected in a small amount, and is collected by colliding with a metal collision plate and stalling by reversing the direction of reversal, diffusing with a lattice baffle, and contacting with a metal filter medium. However, if it is easy to be liquefied, it can also help to eliminate clogging, so that there is an advantage that the maintenance frequency can be reduced as a whole.

第2発明によれば、外囲筒体の筒底部に設けた開口を利用して、外囲筒体や、その外囲筒体に設けられる取り入れ口と連結される気相流体の導入ダクトを取り外さずに外囲筒体内部の導風筒体部分の掃除など、メンテナンス作業を行い易いという利点ある。 According to the second invention , the introduction duct of the gas phase fluid connected to the outer cylinder and the intake provided in the outer cylinder using the opening provided in the cylinder bottom of the outer cylinder. There is an advantage that it is easy to perform maintenance work such as cleaning the air guide tube portion inside the outer tube without removing it.

以下に、本発明の実施の形態を図面の記載に基づいて説明する。
〔除塵装置の全体構成〕
本発明の横型除塵装置は、図1〜図3に示すように、ケーシング1の内部に、取り入れ口10から気相流体を吸い込み、これを排出口11から排出するように、内部に気相流体の気流を生じさせるための起風手段6を備え、かつ、気相流体を通過させる途中で塵埃を除去処理する処理経路Rを備えたものである。
Embodiments of the present invention will be described below based on the drawings.
[Overall configuration of dust removal equipment]
As shown in FIGS. 1 to 3, the horizontal dust removing apparatus of the present invention sucks gas-phase fluid from the intake 10 into the casing 1 and discharges it from the discharge port 11. And a processing path R for removing dust in the middle of passing the gas-phase fluid.

上記ケーシング1内における処理経路Rには、除塵の除去処理を行うための除塵処理部として、取り入れ口10から吸引導入された気相流体をケーシング1内で旋回流動させる旋回除塵部A1と、この旋回除塵部A1で処理された後の気相流体に衝突して気相流体を、その流れ方向での上手側へ向けて一時的に反転させることによって気相流体中の塵埃等を除去するように処理する反転処理部A2と、さらに気相流体の流れの下手側で気相流体を流路の広範囲に拡散させ、かつ拡散された塵埃を捕捉する塵埃捕捉部A3と、これらの旋回除塵部A1と反転処理部A2と塵埃捕捉部A3とに対して吸引力を作用させるように設けた排気部A4とが設けられている。
ケーシング1の内部では、前記処理経路Rにおける流れ方向が概ね前後方向に沿う状態に設定され、この流れ方向の最前部に旋回除塵部A1が設けられ、その後方側である中間箇所に反転処理部A2が、さらに後方側には塵埃捕捉部A3が、そして最後部に排気部A4がそれぞれ区画形成され、これらが前後方向で層状に配設されている。これらの旋回除塵部A1及び反転処理部A2の構成材は金属製であり、かつ塵埃捕捉部A3も金属製フィルターからなる。
そして、処理経路Rから流下及び降下する被除去物を処理経路R外へ排出するための外部取り出し筒7がケーシング1の外へ被除去物を導き出すように旋回除塵部A1に設けてある。
The processing path R in the casing 1 includes a swirling dust removing unit A1 that swirls and flows the gas-phase fluid sucked and introduced from the intake 10 as a dust removing processing unit for performing dust removal processing, It collides with the gas phase fluid after being processed in the swirling dust removing unit A1, and the dust in the gas phase fluid is removed by temporarily inverting the gas phase fluid toward the upper side in the flow direction. The reversal processing unit A2 for processing the gas, the dust capturing unit A3 for diffusing the gas phase fluid over a wide range of the flow path on the lower side of the flow of the gas phase fluid and capturing the diffused dust, and these swirling dust removing units An exhaust part A4 is provided so as to apply a suction force to A1, the reversal processing part A2, and the dust trapping part A3.
Inside the casing 1, the flow direction in the processing path R is set substantially along the front-rear direction, and a swirling dust removing portion A <b> 1 is provided at the forefront portion of the flow direction, and the reversing processing portion is located at an intermediate position on the rear side. A2 is further provided with a dust trapping part A3 on the rear side and an exhaust part A4 at the rearmost part, which are arranged in layers in the front-rear direction. The components of the swirling dust removing unit A1 and the inversion processing unit A2 are made of metal, and the dust capturing unit A3 is also made of a metal filter.
Further, an external take-out cylinder 7 for discharging the object to be removed flowing down and descending from the processing path R to the outside of the processing path R is provided in the swirling dust removing portion A1 so as to lead the object to be removed out of the casing 1.

〔旋回除塵部〕
図1乃至5に示すように、ケーシング1内に設けられる旋回除塵部A1は、ケーシング1の一部を構成する外囲筒体3とその内部に同心状に配置される導風筒体2とで構成され、筒軸心を水平方向に沿わせた外囲筒体3の外周側面に設けた取り入れ口10から吸い込まれた気相流体を、ケーシング1内で旋回させるように構成してある。
つまり、ケーシング1内において、旋回除塵部A1が設けられる最前部と、反転処理部A2が設けられる中間部とは、中間仕切12で区画されており、この中間仕切12の前方側空間に、前端側に導入口を有した導風筒体2と、その導風筒体2の外側に所定間隔を隔てて配設された外囲筒体3とで構成される前記旋回除塵部A1が設けられている。
そして、外囲筒体3に形成される取り入れ口10は、図2及び図4に示すように、その開口中心P1が、前記導風筒体2の付け根近くの外周面とほぼ一致する程度に、導風筒体2の中心P2からは正面視で所定距離Lだけ偏した位置に設定されている(図3及び図4参照)。
このように構成されていることにより、取り入れ口10から吸い込まれた気相流体は、導風筒体2の周りを旋回しながら徐々に旋回半径を狭めて、サイクロン除塵構造に似た旋回流動を行いながら、導風筒体2の内側に形成されている気相流体導入経路rを通って気相流体流れ方向で下手側の反転処理部A2へ送り込まれる。
(Rotating dust removal unit)
As shown in FIGS. 1 to 5, the swirling dust removing portion A <b> 1 provided in the casing 1 includes an outer cylinder 3 that constitutes a part of the casing 1, and a wind guide cylinder 2 that is concentrically disposed therein. The gas-phase fluid sucked from the intake 10 provided on the outer peripheral side surface of the outer cylinder 3 with the cylinder axis extending along the horizontal direction is swirled in the casing 1.
That is, in the casing 1, the foremost part where the swirling dust removing part A <b> 1 is provided and the intermediate part where the reversal processing part A <b> 2 is provided are partitioned by the intermediate partition 12, and the front end of the intermediate partition 12 has a front end. The swirling dust removing portion A1 is provided which includes a wind guide cylinder 2 having an introduction port on the side and an outer cylinder 3 disposed at a predetermined interval outside the wind guide cylinder 2. ing.
As shown in FIGS. 2 and 4, the intake 10 formed in the outer cylinder 3 has an opening center P <b> 1 that substantially coincides with the outer peripheral surface near the root of the air guide cylinder 2. The center is set at a position deviated by a predetermined distance L from the center P2 of the wind guide tube 2 (see FIGS. 3 and 4).
By being configured in this way, the gas-phase fluid sucked from the intake 10 gradually narrows the turning radius while turning around the air guide cylinder 2 and causes a swirling flow similar to the cyclone dust removal structure. While performing, the gas is introduced into the inversion processing section A2 on the lower side in the gas-phase fluid flow direction through the gas-phase fluid introduction path r formed inside the air guide tube 2.

〔導風筒体〕
図2及び図5に示すように、導風筒体2は、処理経路R中において、外囲筒体3とともに気相流体の旋回を案内する筒状案内作用部20と、その内部で一端側の導入口22から気相流体を導入して他端側に設けられた送出口28から下手側経路に案内するための気相流体導入経路rとを備えている。
前記筒状案内作用部20は、図5に示すように円筒形の第一案内作用部21Aと、これよりも導入口22側寄りに位置する先細り円錐形の第二案内作用部21Bとで構成され、この第一案内作用部21A部分の外周面に対して、筒軸心方向でほぼ重複する位置の前記取り入れ口10から接線方向に気相流体が取り入れられるように、取り入れ口10と第一案内作用部21Aとの相対位置が設定されている。
この第一案内作用部21Aの周部には、旋回流の内側における気相流体の一部を導風筒体2の内方側からの吸引作用によって気相流体導入経路rに導入するように短絡用通気部23を形成してある。
(Wind guide cylinder)
As shown in FIGS. 2 and 5, the air guide cylinder 2 includes a cylindrical guide action part 20 that guides the swirling of the gas-phase fluid together with the outer cylinder 3 in the processing path R, and one end side inside thereof. A gas-phase fluid introduction path r for introducing a gas-phase fluid from the inlet 22 and guiding it from a delivery port 28 provided on the other end side to a lower-side path.
As shown in FIG. 5, the cylindrical guide action part 20 is composed of a cylindrical first guide action part 21A and a tapered conical second guide action part 21B located closer to the introduction port 22 than this. The inlet 10 and the first inlet 10 are arranged so that the gas-phase fluid is taken in the tangential direction from the inlet 10 at a position substantially overlapping with the outer peripheral surface of the first guide action portion 21A in the cylinder axis direction. A relative position with respect to the guide action portion 21A is set.
A part of the gas-phase fluid inside the swirling flow is introduced into the gas-phase fluid introduction path r by the suction action from the inner side of the wind guide cylinder 2 around the circumference of the first guide action portion 21A. A short-circuiting vent 23 is formed.

すなわち、短絡用通気部23は、図4〜図6に示すように、導風筒体2の外側に形成される旋回流の移動方向での上手側が半径方向の内側に向き、下手側が外側に向く状態で併設された多数の板状体24によって、旋回流の軸線方向に沿うスリット状に形成された多数の通気孔25を備えている。各板状体24の夫々は扁平板状のものでもよいが、図4に示すように、断面視で多少の曲率を有した円弧状に形成され、突曲面を外側に向けて設けたものである方が、短絡用通気部23での案内作用面の全体が円弧に近くなり、より滑らかな案内を行えるので、旋回流の乱れを抑制する上では有効である。
そして、この短絡用通気部23は、導風筒体2の周方向での全周に形成されるのではなく、処理対象の気相流体を外部から取り入れるための取り入れ口10に対向する部位の所定範囲には、導風筒体2の無孔の周壁部分が取り込まれた気相流体に最初に接触して旋回方向への案内を開始するように構成された初期案内壁部分26が設けられていて、短絡用通気部23は、この無孔の初期案内壁部分26を除く範囲に形成してある。
つまり、図4に示す例では、図中の領域Iに示す範囲が処理対象の気相流体を外部から取り入れるための取り入れ口10に対向する部位に相当し、この所定範囲(1/4周程度)が無孔の第一案内作用部21Aを構成しているものであり、残りの領域II〜IVに相当する範囲(3/4周程度)が短絡用通気部23に構成されている。
このように構成された導風筒体2は、その後端側に鍔状部分27を備えており、この鍔状部分27を、後述する外囲筒体3の後端部に設けた鍔状部分33に接当させた状態で連結し、外囲筒体3とともに中間仕切12に形成されている開口に対して連通するように固定されるものである。
That is, as shown in FIGS. 4 to 6, the short-circuiting ventilation portion 23 has the upper side in the moving direction of the swirling flow formed on the outer side of the air guide cylinder 2 facing inward in the radial direction and the lower side in outward direction. A large number of air holes 25 formed in a slit shape along the axial direction of the swirling flow are provided by a large number of plate-like bodies 24 arranged side by side. Each of the plate-like bodies 24 may have a flat plate shape, but as shown in FIG. 4, the plate-like body 24 is formed in an arc shape having a slight curvature in a cross-sectional view, and has a projecting curved surface facing outward. One is effective in suppressing the disturbance of the swirling flow because the entire guide acting surface in the short-circuiting vent 23 is close to a circular arc and can perform smoother guidance.
And this short-circuiting ventilation part 23 is not formed in the perimeter of the circumferential direction of the wind guide cylinder 2, but the site | part facing the inlet 10 for taking in the gaseous-phase fluid of a process target from the outside In the predetermined range, there is provided an initial guide wall portion 26 configured to first contact the gas phase fluid in which the non-peripheral peripheral wall portion of the wind guide cylinder 2 is taken in and start guiding in the turning direction. In addition, the short-circuiting vent 23 is formed in a range excluding the non-porous initial guide wall portion 26.
That is, in the example shown in FIG. 4, the range shown in the region I in the drawing corresponds to a portion facing the intake 10 for taking in the gas phase fluid to be processed from the outside, and this predetermined range (about ¼ round) ) Constitutes a non-porous first guiding action portion 21A, and a range (about 3/4 round) corresponding to the remaining regions II to IV is constituted in the short-circuiting ventilation portion 23.
The wind guide cylinder 2 configured as described above includes a flange-shaped portion 27 on the rear end side, and the flange-shaped portion 27 is provided at the rear end portion of the outer tube 3 described later. It connects in the state contacted to 33, and is fixed so that it may communicate with the opening formed in the intermediate partition 12 with the surrounding cylinder 3.

上記のように、旋回流の移動方向での上手側が半径方向の内側に向き、下手側が外側に向く状態で併設された多数の板状体24によって、導風筒体2に形成される短絡用通気部23を形成したことにより、旋回流の動慣性で気相流体が短絡用通気部23に入り込むことを板状体24で制限しながら、導風筒体2内部からの吸引作用で、導風筒体2の外表面近くの気相流体を吸引導出することができる。
また、旋回除塵部A1に外部から処理対象の気相流体を供給するための気相流体取り入れ口10に対向する部位の導風筒体2の周壁部分を、無孔の周壁に構成してあるので、気相流体取り入れ口10から接線方向で導入される気相流体が、導風筒体2の対向部分に多くの塵埃を含む未処理気相流体が直接的に衝突しても、その部位からは気相流体が取り込まれず、気相流体が旋回方向に向きを変更してから後に導風筒体2の内部からの吸引作用によって取り込まれることになる。
したがって、外部から接線方向で導入される気相流体の旋回方向への案内を良好に行うことができるとともに、外部から接線方向で導入される気相流体が、動慣性を持って直接的に導風筒体2の内部に侵入し大量の塵埃が導風筒体2の内部に入り込むというような事態を避けることができる。
As described above, the short-circuit formed in the wind guide cylinder 2 by a large number of the plate-like bodies 24 provided in a state where the upper side in the moving direction of the swirl flow faces inward in the radial direction and the lower side faces outward. By forming the ventilation portion 23, the plate-like body 24 restricts the gas-phase fluid from entering the short-circuiting ventilation portion 23 due to the dynamic inertia of the swirling flow, and the air is introduced by the suction action from the inside of the wind guide cylinder 2. The gas phase fluid near the outer surface of the wind tube body 2 can be sucked out.
Further, the peripheral wall portion of the wind guide cylinder 2 at a portion facing the gas-phase fluid intake port 10 for supplying the gas-phase fluid to be processed from the outside to the swirling dust removing portion A1 is configured as a non-porous peripheral wall. Therefore, even if the gas-phase fluid introduced in the tangential direction from the gas-phase fluid intake port 10 directly collides with an untreated gas-phase fluid containing a large amount of dust on the facing portion of the wind guide cylinder 2, The gas phase fluid is not taken in, and the gas phase fluid is taken in by the suction action from the inside of the air guide tube 2 after the direction is changed in the turning direction.
Therefore, the gas-phase fluid introduced from the outside in the tangential direction can be guided well in the swirl direction, and the gas-phase fluid introduced from the outside in the tangential direction can be directly guided with dynamic inertia. A situation in which a large amount of dust enters the inside of the wind guide body 2 and enters the inside of the wind guide cylinder body 2 can be avoided.

〔外囲筒体〕
前記導風筒体2との間に旋回用流路を形成するように所定間隔を隔てて外囲筒体3が配設されている。この外囲筒体3は、前記導風筒体2の導入口22と対向する側である底部側がやや小径となる円錐面を有した有底筒状に形成されているとともに、その外周面の一部に前記取り入れ口10が一体形成され、取り込まれた気相流体が外囲筒体3の内部を旋回しながら次第に前記導風筒体2の一端側に形成されている導入口22側へ移行して、導風筒体2の導入口22から吸い込まれ、その内部に形成されている気相流体導入経路rを経て、前記導入口22とは反対側の送出口28から下手側流路に気相流体を導出するように構成されている。
また、この外囲筒体3は、旋回流の外側に位置して、前記導風筒体2とともに気相流体を旋回方向に案内する円弧状の周方向案内面30と、その周方向の2カ所に、旋回流の最外側に含まれる質量の大きな塵埃の旋回流外方側への飛び出しを許して旋回流から脱出させるための塵埃分離部31と、その塵埃分離部31で除去された被除去物を処理経路R外へ排出するための外部取り出し筒7とを備えている。
(Outer cylinder)
An enclosing cylinder 3 is disposed at a predetermined interval so as to form a turning flow path between the air guide cylinder 2. The outer cylindrical body 3 is formed in a bottomed cylindrical shape having a conical surface having a slightly smaller diameter on the bottom side, which is the side facing the introduction port 22 of the air guide cylindrical body 2, and The intake 10 is partly formed integrally, and the taken-in gas phase fluid gradually turns to the introduction port 22 formed at one end side of the air guide tube 2 while turning inside the outer tube 3. Then, the air is sucked from the introduction port 22 of the air guide tube 2 and passes through the gas-phase fluid introduction path r formed therein, and then the lower flow path from the outlet 28 on the side opposite to the introduction port 22. The gas-phase fluid is derived from the gas.
The outer cylinder 3 is located outside the swirl flow, and has an arcuate circumferential guide surface 30 that guides the gas-phase fluid in the swirl direction together with the wind guide cylinder 2, and 2 in the circumferential direction. The dust separating part 31 for allowing the dust having a large mass contained in the outermost part of the swirling flow to jump out of the swirling flow and allowing the dust to escape from the swirling flow, and the object removed by the dust separating unit 31 And an external take-out cylinder 7 for discharging the removed material out of the processing path R.

前記塵埃分離部31は、旋回流の外側に位置する外囲筒体3の筒軸心方向に沿ってその内周面に形成した凹溝によって構成してあり、凹溝の一端は、前記外囲筒体3の筒軸線方向で、前記取り入れ口10の中心よりも外囲筒体3の底部側寄り、つまり導風筒体2の導入口22側寄りの箇所に位置し、凹溝の他端は、外囲筒体3の底部近くにあって、下方に延びる外部取り出し筒7と連なり、外部取り出し筒7の下端側は開放されている。
このように、塵埃分離部31を、旋回流の外側に位置する外囲筒体3の周方向での一部に形成された筒軸心方向の凹溝によって構成したことにより、旋回流の最外側に含まれる質量の大きな塵埃や液体等の被除去物が旋回流外方側への飛び出すことを許して旋回流から脱出させるための構成と、その塵埃分離部31で捕捉した塵埃や液体を下方の集塵部A5に案内するための構成とを、凹溝によって兼ねることができる。
したがって、例えば、旋回流の最外側に含まれる質量の大きな塵埃や液体の旋回流外方側への飛び出しを許して旋回流から脱出させるための構成として、外囲筒体3の一部に多数の透孔、あるいは網状部分を設け、その外側にさらに大径の筒状体を套嵌して、旋回流の外部に飛び出した質量の大きな塵埃を外部へ案内するようにした構造などに比べて、構成の簡素化を図ることができる。また、凹溝が外囲筒体3に形成されていることで、外囲筒体3にリブ状の部分が形成された状態となり、外囲筒体3の強度向上にも役立つ。
そして、除塵装置の運転を停止した場合も、ケーシング1内の旋回除塵部A1に付着した油分等が、流れ落ちて、前記外部取り出し筒7を経て、機外の集塵部A5に集められる。
The dust separation part 31 is constituted by a concave groove formed on the inner peripheral surface along the axial direction of the outer cylinder 3 positioned outside the swirling flow, and one end of the concave groove is formed on the outer circumferential surface. In the cylinder axis direction of the surrounding cylinder 3, it is located closer to the bottom side of the outer surrounding cylinder 3 than the center of the intake 10, that is, closer to the introduction port 22 side of the air guide cylinder 2, The end is near the bottom of the outer cylinder 3 and is continuous with the external take-out cylinder 7 extending downward, and the lower end side of the external take-out cylinder 7 is open.
As described above, the dust separation portion 31 is constituted by the concave groove in the cylindrical axis direction formed in a part of the outer circumferential cylindrical body 3 positioned outside the swirling flow, so that A structure for allowing a removal object such as dust or liquid having a large mass contained on the outer side to jump out of the swirling flow, and for removing the dust or liquid captured by the dust separating unit 31 from the swirling flow. The configuration for guiding to the lower dust collecting portion A5 can also serve as the concave groove.
Therefore, for example, as a configuration for allowing the dust or liquid having a large mass contained in the outermost side of the swirling flow to jump out of the swirling flow and allowing it to escape from the swirling flow, a large number of parts are included in the outer cylindrical body 3. Compared to a structure in which a large-diameter cylindrical body is fitted on the outside of the through-hole or net-like portion, and large-sized dust that has jumped out of the swirling flow is guided to the outside. Thus, the configuration can be simplified. Further, since the recessed groove is formed in the outer cylinder 3, a rib-like portion is formed in the outer cylinder 3, which is useful for improving the strength of the outer cylinder 3.
Even when the operation of the dust removing device is stopped, oil or the like adhering to the swirling dust removing portion A1 in the casing 1 flows down and is collected in the dust collecting portion A5 outside the apparatus through the external take-out cylinder 7.

有底筒状の外囲筒体3の底部側には、導風筒体2の最大径部分の外径よりも径の大きい開口と、その開口を開閉自在な蓋体32とが設けられている。したがって、この蓋体32を開放して内部の導風筒体2を、外囲筒体3を取り外すことなく外部へ取り出してメンテナンスすることができる。したがって、外囲筒体3の外周部に設けられた気相流体の取り入れ口10を取り外すなどの作業を要さずに、外囲筒体3内部の点検や掃除を行うこと可能である。
外囲筒体3の底部側とは反対側の端部は、ケーシング1の二次処理部を内装する部位に固定の中間仕切12に形成された開口に対向する鍔状部分33を備えていて、中間仕切12の側面に対してボルト連結されている。
An opening having a diameter larger than the outer diameter of the maximum diameter portion of the air guide cylinder 2 and a lid 32 that can be opened and closed are provided on the bottom side of the bottomed cylindrical casing 3. Yes. Therefore, the lid 32 can be opened and the internal air guide cylinder 2 can be taken out and maintained without removing the outer cylinder 3. Accordingly, it is possible to inspect and clean the inside of the outer cylinder 3 without requiring an operation such as removing the gas-phase fluid intake 10 provided on the outer peripheral portion of the outer cylinder 3.
The end of the outer cylinder 3 opposite to the bottom side is provided with a hook-like portion 33 facing the opening formed in the fixed intermediate partition 12 at the portion where the secondary processing portion of the casing 1 is housed. The intermediate partition 12 is bolted to the side surface.

〔旋回除塵部での除塵動作〕
上記の導風筒体2と外囲筒体3とを備えてなる旋回除塵部A1では、図7に示すように、旋回流から塵埃等の除去が行われる。
この図7では、最も左側に図7(イ)として図示する側面視での旋回除塵部A1の位置に合わせて、気相流体の速度変化の状態を示している。
(Dust removal operation in the swirling dust removal unit)
In the swirling dust removing portion A1 including the wind guide cylinder 2 and the outer cylinder 3, the dust and the like are removed from the swirling flow as shown in FIG.
In FIG. 7, the state of the change in the velocity of the gas phase fluid is shown in accordance with the position of the swirling dust removing portion A1 in the side view illustrated as FIG.

図7(ロ)は、取り入れ口10から導入された直後の直進状態の気相流体の速度分布を表す線図であり、これによれば、取り入れ口10の開口中心P1の位置での旋回速度が最大速度となり、その取り入れ口10の開口の両外端縁位置Lu,Ldに至るほど、流路抵抗による速度低下を生じて、所謂管内流れの速度分布の傾向と同様の分布曲線となっている。   FIG. 7B is a diagram showing the velocity distribution of the gas-phase fluid in the straight traveling state immediately after being introduced from the intake port 10, and according to this, the turning speed at the position of the opening center P <b> 1 of the intake port 10. Becomes the maximum speed, and the speed decreases due to the flow resistance as the outer edge positions Lu and Ld of the opening of the intake port 10 are reached, resulting in a distribution curve similar to the tendency of the so-called pipe flow speed distribution. Yes.

図中、最も右端の図7(ニ)は、外形は本発明の導風筒体2と同様な導風筒体を用いてはいるが、短絡用通気部23を有していない導風筒体2を用いた比較例の場合における気相流体の旋回流の速度分布状態を示している。
この図7(ニ)中の符号aは、旋回流の最外側付近の速度分布曲線を示し、符号bは旋回流の最内側付近の速度分布曲線を示す。
この場合は、導風筒体2の導入口22とは反対側位置L1近くでもある程度の気相流体の流れが生じており、取り入れ口10の開口中心P1の位置に近づくにつれて次第に旋回速度が増加し、やはり開口中心P1付近か、開口中心P1を少し越えた位置で最大速度となる。
その後、前記開口中心P1の位置を過ぎてそこから遠ざかるに連れて次第に旋回径を縮小しながら徐々に旋回速度も低下し、導風筒体2の導入口22が存在する導入口位置L2で旋回流の最内側における気相流体が吸引導出され、残りの気相流体はさらに旋回移動を継続して、最後は速度零の状態、つまり旋回流が消滅してしまうものである。しかしながらこの構造では、導入口位置L2における旋回流の最内側における気相流体の速度が、図7(ハ)の場合と比べると明なように十分に落ちていず、このような旋回速度に抗して気相流体を処理経路Rの下手側から強制的に吸い出すと、気相流体に多くの塵埃が混入したままとなって除塵機能が低下することになる。したがって、導入口位置L2における旋回流の最内側における気相流体の速度が、図7(ハ)に記載されている場合と同程度に落ちるまで旋回流の収束を待つ必要があるが、そのように消滅に至るまでに相当長い旋回移動距離を要する結果、旋回流の消滅までに必要とする旋回移動距離として水平方向に長い距
離を要することになる。
現実には筒軸心を水平方向に沿わせた横型の除塵装置でこのような構造のものは存在しないので、このような構造を採用した場合に旋回流から脱落した被除去物をどのようにして回収するのか想像し難いが、縦型のサイクロン装置を横向きにした構造と同様のものと考えると、旋回流が収束するまでの距離がきわめて長く、水平方向距離の長い大型の装置となる傾向がある。旋回流が収束するまでの距離範囲内に相当するレベルL3に無理やり集塵部A5を設けると、一旦降下して堆積していた塵埃が再び舞い上がるような事態が生じることがある。
7 (d) at the right end of the figure, the air guide cylinder having the same outer shape as the air guide cylinder 2 of the present invention but having no short-circuiting vent 23 is shown in FIG. The velocity distribution state of the swirl | vortex flow of the gaseous-phase fluid in the case of the comparative example using the body 2 is shown.
The symbol a in FIG. 7 (d) indicates a velocity distribution curve near the outermost side of the swirling flow, and the symbol b indicates a velocity distribution curve near the innermost side of the swirling flow.
In this case, a certain amount of gas-phase fluid flows even near the position L1 opposite to the inlet 22 of the air guide cylinder 2, and the swirl speed gradually increases as the position approaches the position of the opening center P1 of the inlet 10. However, the maximum speed is reached near the opening center P1 or at a position slightly beyond the opening center P1.
Thereafter, as the position of the opening center P1 is passed and moved away from it, the turning speed gradually decreases while the turning diameter is gradually reduced, and the turning at the introduction port position L2 where the introduction port 22 of the air guide cylinder 2 is present. The gas-phase fluid at the innermost side of the flow is sucked out, and the remaining gas-phase fluid continues to swirl, and finally the state of zero velocity, that is, the swirling flow disappears. However, in this structure, the velocity of the gas-phase fluid at the innermost side of the swirling flow at the inlet position L2 is not sufficiently lowered as compared with the case of FIG. When the gas-phase fluid is forcibly sucked out from the lower side of the processing path R, a large amount of dust remains mixed in the gas-phase fluid and the dust removal function is deteriorated. Accordingly, it is necessary to wait for the swirling flow to converge until the velocity of the gas-phase fluid at the innermost side of the swirling flow at the inlet position L2 falls to the same level as described in FIG. As a result, a considerably long swivel movement distance is required to disappear, and as a result, a long distance in the horizontal direction is required as a swirl movement distance necessary until the swirl flow disappears.
In reality, there is no such type of horizontal dust remover with the cylinder axis in the horizontal direction, so how to remove the objects that fall off the swirling flow when such a structure is adopted. However, if the vertical cyclone device is considered to be the same as the horizontal structure, the distance until the swirling flow converges is very long and tends to be a large device with a long horizontal distance. There is. If the dust collecting portion A5 is forcibly provided at the level L3 corresponding to the distance range until the swirling flow converges, there may occur a situation in which the dust once lowered and accumulated again rises.

これに比べて、図7(ハ)に示す本発明のものでは、スタート時点での、導風筒体2の導入口22とは反対側位置L1近くでの旋回流の速度は図7(ニ)の場合とほぼ同一であるが、旋回流の最内側の速度分布曲線bは、取り入れ口10の開口中心P1付近に至ってもあまり速度上昇していない。これは旋回流の内側から一部の気相流体が吸引導出され、これが旋回流に対する旋回内側での旋回抵抗として機能する結果、この最内側における気相流体の旋回速度はさほど上昇しない傾向にあることによるものと思われる。
そして、前記吸引導出の影響が比較的少ない最外側では、取り入れ口10の開口中心P1付近でかなりの速度上昇がみられるが、図7(ニ)の短絡用通気部23を備えていない構造と比較すると、やや少な目の速度である。これは、旋回流に対する旋回内側での旋回抵抗としての前記吸引導出の影響が、比較的少ないとはいえ旋回流の外側の旋回速度にも作用した結果によるものと思われ、これに伴って旋回流の旋回速度の減衰傾向は図7(ニ)の構造のものに比べてかなり早くなる。したがって、旋回流の旋回移動距離も比較的短くてよく、旋回流が収束するまでの水平方向の長さも短くてすむので、装置の小型化を図ることが可能となる。
In contrast, in the present invention shown in FIG. 7C, the speed of the swirling flow near the position L1 opposite to the inlet 22 of the air guide cylinder 2 at the start time is as shown in FIG. The velocity distribution curve b on the innermost side of the swirling flow does not increase so much even if it reaches the vicinity of the opening center P1 of the intake port 10. This is because a part of gas-phase fluid is sucked out from the inside of the swirling flow, and this functions as a swirling resistance inside the swirling flow, so that the swirling speed of the gas-phase fluid on the innermost side does not tend to increase so much. It seems to be due to this.
In the outermost side where the influence of the suction derivation is relatively small, a considerable speed increase is observed in the vicinity of the opening center P1 of the intake port 10, but the structure does not include the short-circuit vent 23 in FIG. In comparison, the speed is slightly lower. This is thought to be due to the effect of the suction derivation as the swirl resistance inside the swirl flow on the swirl flow, even though it was relatively small, which also affected the swirl velocity outside the swirl flow. The tendency of the flow swirl velocity to decay is considerably faster than that of the structure shown in FIG. Therefore, the swirl movement distance of the swirl flow may be relatively short, and the length in the horizontal direction until the swirl flow converges can be shortened. Therefore, the apparatus can be miniaturized.

旋回除塵部A1よりも気相流体流れ方向での下手側の処理経路Rには、前記旋回除塵部A1から送り出された気相流体に残存する被除去物を除去するための二次処理部を備えている。この二次処理部は、反転処理部A2と塵埃捕捉部A3とで構成されている。   In the processing path R on the lower side in the gas-phase fluid flow direction than the swirling dust removing unit A1, a secondary processing unit for removing the object to be removed remaining in the gas-phase fluid sent from the swirling dust removing unit A1. I have. This secondary processing unit includes an inversion processing unit A2 and a dust trapping unit A3.

〔反転処理部〕
前記反転処理部A2は、図8に示すように、旋回除塵部A1から送り出される気相流体の流れに交差して前記気相流体の流動方向を中央部から放射方向に向けた後、外周部で前記流れの前方向きに反転させるように案内する碗状の二次曲面で構成された凹入湾曲面を有する金属製の衝突プレート8を備えている。
前記衝突プレート8は、その衝突プレート8の凹入湾曲面80で案内されて反転する気相流体に残存している微細な被除去物のうちで、比較的質量の大きい塵埃や衝突プレート8との衝突に際して微細な塵埃同士が結合し粒状に肥大化した塵埃等が中間仕切12に衝突し得る程度の間隔を隔てて、凹入湾曲面80の外周端縁81と中間仕切12との距離を設定して配設してある。
[Inversion processing section]
As shown in FIG. 8, the inversion processing unit A2 crosses the flow of the gas phase fluid sent out from the swirling dust removing unit A1, and changes the flow direction of the gas phase fluid from the central portion to the radial direction, and then the outer peripheral portion. The metal collision plate 8 having a concave curved surface composed of a bowl-shaped secondary curved surface that is guided so as to be reversed in the forward direction of the flow is provided.
Among the fine objects to be removed that remain in the gas-phase fluid that is reversed by being guided by the concave curved surface 80 of the collision plate 8, the collision plate 8 has a relatively large mass of dust and the collision plate 8. The distance between the outer peripheral edge 81 of the indented curved surface 80 and the intermediate partition 12 is separated by an interval that allows fine dust particles to join together and collide with each other to collide with the intermediate partition 12. It is set and arranged.

〔塵埃捕捉部〕
前記旋回除塵部A1を通過した気相流体は、前記反転処理部A2を経て、さらにその流動方向の下手側であるケーシング1内の後方へ移動する。
そして、ケーシング1の気相流体を、流路の広範囲に拡散させ、かつ、気相流体中に含まれる残りの塵埃をフィルターに接触させ易くするための金属製の格子状ルーバー4と、その気相流体中の塵埃と接触してさらに除去処理するための金属製フィルター5からなる塵埃捕捉部A3を設けてある。
(Dust trap)
The gas phase fluid that has passed through the swirling dust removing portion A1 moves to the rear in the casing 1 that is the lower side in the flow direction through the reversal processing portion A2.
A metal lattice louver 4 for diffusing the gas-phase fluid in the casing 1 over a wide range of the flow path and making the remaining dust contained in the gas-phase fluid easily contact the filter, There is provided a dust trapping part A3 made of a metal filter 5 for further removal treatment in contact with the dust in the phase fluid.

金属製の格子状ルーバー4は、図9(イ)、(ロ)に示すように、吸入された気相流体に衝突してその気相流体の流動方向を、水平方向での前後または左右に変化させるように、鎧板と呼ばれる多数のスリットを形成した金属製のヨロイ状板材41によって衝突面を構成している。
この鎧板は、気相流体の流動方向を変えながら通過させる多数のスリットを備えた金属製のヨロイ状板材41の複数枚(図示の例では3枚)を、流動方向の前方から順に90度づつ向きを変えながら、これらの複数枚のヨロイ状板材41をひとまとまりのものとして支持する外枠40との組合せで構成してある。
As shown in FIGS. 9 (a) and 9 (b), the metal lattice louver 4 collides with the sucked gas phase fluid and changes the flow direction of the gas phase fluid to the front and rear or the left and right in the horizontal direction. In order to change, the collision surface is constituted by a metal armor-like plate material 41 having a large number of slits called armor plates.
In this armor plate, a plurality of metal armor-like plate members 41 (three in the illustrated example) provided with a large number of slits through which the flow direction of the gas-phase fluid is changed are sequentially 90 degrees from the front in the flow direction. While changing the direction, it is configured by a combination with the outer frame 40 that supports the plurality of yoro-like plate members 41 as a group.

これらのヨロイ状板材41の夫々は、図9に示すように、金属製板材の板面を所定幅で一定方向に打ち出し成形して、その板面の全体にわたって多数のスリット状の通気孔42と、傾斜した衝突面となる打ち出し突片43とを形成したものである。
これらのヨロイ状板材41のうち、最も前面側に位置する最前段のヨロイ状板材41は、これらのヨロイ状板材41を前記外枠40と一体に成形されている。そして、次段のヨロイ状板材41が、その通気孔42の長手方向を前記最前段のヨロイ状板材41の通気孔42の方向に対して直交する状態に形成され、さらに、その次の段のヨロイ状板材41の通気孔42が直前のヨロイ状板材41の通気孔42に対してやはり直交するように形成されている。
このヨロイ状板材41の衝突面は、ヨロイ状板材41の板面41aと、そのヨロイ状板材41のスリットを形成するために打ち出された打ち出し突片43が備える斜め下向き面43aとで構成されている。
吸入気相流体は、これらの各面41a,43aに衝突し、このとき流体中に浮遊して運ばれる溶接スパッターなどの火の粉が残存していたとしても、その各面41a,43aとの衝突で流動方向での移動速度を低減され、失速して落下する、もしくは流動方向を変化させながら移動することになる。
As shown in FIG. 9, each of these armor-like plate members 41 is formed by stamping and molding a plate surface of a metal plate member in a predetermined direction with a predetermined width, and a plurality of slit-like vent holes 42 over the entire plate surface. A launching projecting piece 43 serving as an inclined collision surface is formed.
Among these armor-like plate members 41, the foremost plate-like member 41 located on the foremost side is formed integrally with the outer frame 40. The next-stage armor-like plate material 41 is formed in a state in which the longitudinal direction of the vent hole 42 is orthogonal to the direction of the vent hole 42 of the front-most armor-like plate material 41, and further, The vent holes 42 of the armor-like plate material 41 are formed so as to be orthogonal to the vent holes 42 of the immediately preceding yoro-like plate material 41.
The collision surface of the armor-like plate material 41 is composed of a plate surface 41a of the armor-like plate material 41 and an obliquely downward surface 43a provided in the projecting protrusion 43 that is ejected to form a slit of the armor-like plate material 41. Yes.
The suction gas-phase fluid collides with each of the surfaces 41a and 43a, and even if sparks such as welding spatter that floats and is carried in the fluid remain at this time, they collide with the surfaces 41a and 43a. The moving speed in the flow direction is reduced, and the vehicle is stalled and dropped, or moved while changing the flow direction.

図1,3及び図10,11に示すように、ケーシング1内において、反転処理部A2を通過した気相流体の流れ方向では下手側となる上方位置には、その気相流体中の塵埃をさらに除去処理するための金属製フィルター5を設けてある。
この塵埃捕捉部A3で気相流体の吸引風路内に装備される金属製フィルター5は、図10,及び図11に示すように、ステンレス、あるいは真鍮などの薄紐状の素材からなるスパイラル金属線を渦巻き状に巻回して円柱状に形成したフィルター単位体50と、そのフィルター単位体50を個々に収容する平面視矩形の凹部52を備えたフィルター枠体51とで構成されている。
前記円柱状のフィルター単位体50の軸線方向(図10における線分P4で表される方向)での一端側が面するフィルター枠体51の各凹部底面のうち、前記矩形の凹部52と円柱状のフィルター単位体50周辺との間にできる空隙部分sに対向する凹部底面52aを無孔に形成し、前記無孔の空隙部分sを除く範囲の凹部底面52bに気相流体の通過孔53を形成してある。
このように、スパイラル金属線を渦巻き状に巻回して円柱状に形成したフィルター単位体50と、フィルター枠体51の凹部に収容された円柱状のフィルター単位体50周辺との間にできる空隙部分sを無孔部分とし、その空隙部分sを除く範囲の凹部底面に気相流体の通過孔53を形成したフィルター枠体51とを用いることによって、耐熱性、耐食性、及び再生機能面で優れた金属線を用いながら、機能的に優れたフィルター構造を構成することができ、吸着形式の布様フィルターを用いた場合に比べて、フィルター交換の手数を皆無、もしくは極端に少なくすることができる。
この金属製フィルター5は、図1に示すように、ケーシング1の側部に形成された蓋1Aを開放することにより、フィルター枠体51とともに開口から取り出すことができるように構成されている。
As shown in FIGS. 1, 3, 10, and 11, in the casing 1, dust in the gas phase fluid is placed at an upper position on the lower side in the flow direction of the gas phase fluid that has passed through the inversion processing unit A <b> 2. Furthermore, the metal filter 5 for the removal process is provided.
As shown in FIGS. 10 and 11, the metal filter 5 installed in the gas phase fluid suction air passage in the dust trapping part A3 is a spiral metal made of a thin string material such as stainless steel or brass. The filter unit body 50 is formed by winding a wire in a spiral shape into a cylindrical shape, and a filter frame body 51 having a rectangular recess 52 in a plan view for accommodating the filter unit body 50 individually.
Of the concave bottom surfaces of the filter frame body 51 facing one end side in the axial direction of the cylindrical filter unit body 50 (the direction represented by the line segment P4 in FIG. 10), the rectangular concave portion 52 and the cylindrical shape are formed. A concave bottom surface 52a facing the void portion s formed between the filter unit body 50 and the periphery thereof is formed without holes, and a gas phase fluid passage hole 53 is formed in the concave bottom surface 52b except for the nonporous void portions s. It is.
Thus, a gap portion formed between the filter unit body 50 formed in a cylindrical shape by spirally winding a spiral metal wire and the periphery of the columnar filter unit body 50 accommodated in the concave portion of the filter frame body 51. By using s as a non-porous portion and a filter frame 51 in which a gas-phase fluid passage hole 53 is formed on the bottom surface of a recess in a range excluding the void portion s, the heat resistance, corrosion resistance, and regeneration function are excellent. While using a metal wire, a functionally excellent filter structure can be constructed, and the number of filter replacements can be reduced or extremely reduced compared to the case of using an adsorption-type cloth-like filter.
As shown in FIG. 1, the metal filter 5 is configured to be removed from the opening together with the filter frame 51 by opening the lid 1 </ b> A formed on the side portion of the casing 1.

〔排気部〕
前記集塵捕捉部A3よりも流路下手側(ケーシング1内では後部側)に相当する位置に、処理済みの気相流体を排出するための排気部A4を設けてある。
この排気部A4は、水平軸心周りで回転駆動される吸引ファン60と、その、吸引ファン60を駆動するための電動モータ61とからなる起風手段6によって構成されている。
前記吸引ファン60は、吸引ファン60の中心側へ気相流体を集める導風ガイド62を入り口部分に備え、出口63を吸引ファン60の外周側に臨ませて設けた起風室64内に設置してあり、出口63に連なる環状の排気チャンバー65が前記電動モータ61の周囲を囲繞する状態に配設され、排気チャンバー65に排出口11が設けられている。
上記のように、排出口11が起風室64に直接設けられるのではなく、一旦出口63をでて排気チャンバー65に入ってから排出口11と連通することにより、この排気チャンバー65が吸引ファン60の消音手段として作用している。
[Exhaust section]
An exhaust part A4 for discharging the processed gas-phase fluid is provided at a position corresponding to the downstream side of the flow path (the rear side in the casing 1) from the dust collection part A3.
The exhaust part A4 is constituted by a wind generating means 6 including a suction fan 60 that is driven to rotate around a horizontal axis, and an electric motor 61 for driving the suction fan 60.
The suction fan 60 is provided in a wind chamber 64 provided with an air guide 62 for collecting a gas-phase fluid toward the center of the suction fan 60 at the entrance, and an outlet 63 facing the outer periphery of the suction fan 60. The annular exhaust chamber 65 connected to the outlet 63 is disposed so as to surround the electric motor 61, and the exhaust chamber 11 is provided with the discharge port 11.
As described above, the exhaust port 11 is not directly provided in the wind chamber 64, but the exhaust chamber 65 is temporarily connected to the exhaust port 11 after exiting the outlet 63 and entering the exhaust chamber 65. 60 acts as a silencer.

〔外部取り出し筒〕
前記外囲筒体3に形成された塵埃分離部31の下端側に連なる外部取り出し筒7は、図1及び図2に示すように、前記塵埃分離部31を構成する凹溝部分に連設された筒状体によって構成され、この外部取り出し筒7に対して着脱自在に可撓性の延長筒部等を接続して外部の集塵部A5に被除去物を貯留する。
集塵部A5としては、任意の容器などを用いることができ、排出される被除去物の量に応じて適宜大きさものを容易すればよく、集塵容量を各種変化させた仕様の除塵装置を用意する必要がない。
また、集塵部A5では、集塵容器内の滞留ガスを早期のうちに外部へ排出できるように、適宜エアー抜き手段を設けるなどして、集塵容器内を大気に開放しておくと良い。
[External tube]
As shown in FIGS. 1 and 2, the external take-out cylinder 7 connected to the lower end side of the dust separation portion 31 formed in the outer cylinder 3 is continuously provided in a concave groove portion constituting the dust separation portion 31. It is comprised by the cylindrical body, and a flexible extended cylinder part etc. are connected to this external taking-out cylinder 7 detachably, and a to-be-removed object is stored in external dust collection part A5.
An arbitrary container or the like can be used as the dust collection part A5, and it is sufficient that the size of the dust collection unit A5 is appropriately sized according to the amount of objects to be removed. There is no need to prepare.
Further, in the dust collection part A5, it is preferable that the inside of the dust collection container is opened to the atmosphere by appropriately providing an air venting means so that the staying gas in the dust collection container can be discharged to the outside as soon as possible. .

〔補助外部取り出し部〕
前記外囲筒体3に形成された塵埃分離部31に連なる外部取り出し筒7の他に、二次処理部の下方にも補助の外部取り出し部75が設けられている。
この補助の外部取り出し部75は、反転処理部A2を内装する室と、塵埃捕捉部A3を内装する室と、起風室64との、各室共通のスラッジ収容ボックス76と、その下部の通液孔から漏れ出た液体を回収するためのドレンパイプ77とから構成してあり、ドレンパイプ77から排出される液体は任意の回収容器に回収すればよく、スラッジ収容ボックス76に堆積するスラッジは、ケーシング1の前面側からスラッジ収容ボックス76を引き出して取り出すことができる。このスラッジ収容ボックス76に堆積するスラッジの量は、気相流体の種類にもよるが、殆どのものが旋回除塵部A1で除去された後の気相流体から除去するものであるから、きわめて微量のものであり、メンテナンス頻度はきわめて低くてすむ。
したがって、金属製フィルターの掃除を行うなどのメンテナンス作業が必要であれば、ケーシング1側部に形成された開口を閉塞する開閉蓋1Aを開放することにより、二次処理部を開放して金属製フィルターの掃除を行うことができるが、その必要性もほとんど無く、メンテナンス頻度はきわめて低くてすむ。
[Auxiliary external take-out part]
In addition to the external take-out cylinder 7 connected to the dust separation part 31 formed in the outer cylinder 3, an auxiliary external take-out part 75 is also provided below the secondary processing part.
The auxiliary external take-out section 75 includes a common sludge storage box 76 for the chamber in which the reversal processing section A2 is installed, the chamber in which the dust trapping section A3 is installed, and the wind generating chamber 64, and a lower passage therethrough. The drain pipe 77 for collecting the liquid leaking from the liquid hole is configured. The liquid discharged from the drain pipe 77 may be collected in an arbitrary collection container, and the sludge accumulated in the sludge storage box 76 is The sludge storage box 76 can be pulled out from the front side of the casing 1 and taken out. Although the amount of sludge accumulated in the sludge storage box 76 depends on the type of the gas phase fluid, most of the sludge is removed from the gas phase fluid after being removed by the swirling dust removing unit A1, and therefore, a very small amount. The maintenance frequency is very low.
Therefore, if maintenance work such as cleaning of the metal filter is necessary, the secondary processing section is opened by opening the opening / closing lid 1A that closes the opening formed on the side of the casing 1 to make the metal filter. Although the filter can be cleaned, there is little need for it and the maintenance frequency is very low.

〔他の実施の形態〕
[1] 図12〜13に示すように、外囲筒体3に設けられる取り入れ口10の向きを変更できるように構成してもよい。
この構造では、外囲筒体3が、二次処理部を内装するケーシング1に固定の第1筒部3Aと、取り入れ口10を一体に設けた第2筒部3Bと、外部取り出し筒7を設けた第3筒部3Cとの組み合わせで構成し、中間に位置する第2筒部3Bを、その前後に位置する第1筒部3Aと第3筒部3Cとに対して前記筒軸芯周りで相対回転させて前記取り入れ口10の向きを変更可能に構成してある。
すなわち、前記第1筒部3Aと、第3筒部3Cとのそれぞれには、図13(イ),(ロ)に示すように、その全周にわたって円環状の金具受け具34が一体に設けてあり、中間の第2筒部3Bを第1筒部3Aと第3筒部3Cと間に介装した状態で、周方向の複数箇所(4カ所〜6カ所程度)で複数本のバネ鋼製の固定金具35を用いて弾性付勢する状態で連結することにより、これら3者を一連の外囲筒体3として構成できるようにしてある。
そして、外囲筒体3を構成する三個の筒部3A,3B,3Cのうち、中間の第2筒部3Bは、その外周部に1つの取り入れ口10を設けてあり、取り入れ口10以外の部分は円筒状に構成され、両端にシール材36を付設してある。
前記第1筒部3Aと第3筒部3Cの各内周部分の底部側には、第3筒部3Cに設けられた外部取り出し筒7と一体に形成された凹溝31と連通する開口が形成されており、この開口を介して前記凹溝31が、前記第2筒部3Bを除く第1筒部3Aと第3筒部3Cの各内部空間に開放して連通接続されている。
これによって、中間に位置する第2筒部3Bを、その前後に位置する第1筒部3Aと第3筒部3Cとに対して前記筒軸芯周りで相対回転させて前記取り入れ口10の向きを変更可能に構成してある。
[Other Embodiments]
[1] As shown in FIGS. 12 to 13, the orientation of the intake 10 provided in the outer cylinder 3 may be changed.
In this structure, the outer cylinder 3 includes a first cylinder part 3A fixed to the casing 1 that houses the secondary processing part, a second cylinder part 3B that is integrally provided with an intake port 10, and an external extraction cylinder 7. The second cylindrical portion 3B is configured in combination with the provided third cylindrical portion 3C, and the second cylindrical portion 3B positioned in the middle is around the cylindrical axis with respect to the first cylindrical portion 3A and the third cylindrical portion 3C positioned in front and rear The direction of the intake 10 can be changed by relative rotation.
That is, as shown in FIGS. 13 (a) and 13 (b), each of the first cylindrical portion 3A and the third cylindrical portion 3C is integrally provided with an annular metal fitting 34 over the entire circumference thereof. A plurality of spring steels at a plurality of locations in the circumferential direction (about 4 to 6 locations) with the intermediate second tube portion 3B interposed between the first tube portion 3A and the third tube portion 3C. These three members can be configured as a series of enclosing cylindrical bodies 3 by being connected in a state of being elastically urged by using a fixing bracket 35 made of metal.
And among the three cylinder parts 3A, 3B, 3C constituting the outer cylinder 3, the intermediate second cylinder part 3B is provided with one intake port 10 on the outer peripheral portion thereof. This portion is formed in a cylindrical shape, and seal members 36 are attached to both ends.
On the bottom side of each inner peripheral portion of the first cylindrical portion 3A and the third cylindrical portion 3C, there is an opening communicating with the concave groove 31 formed integrally with the external take-out cylinder 7 provided in the third cylindrical portion 3C. Through this opening, the concave groove 31 is open and connected to the internal spaces of the first and third cylindrical portions 3A and 3C excluding the second cylindrical portion 3B.
As a result, the second cylindrical portion 3B positioned in the middle is rotated relative to the first cylindrical portion 3A and the third cylindrical portion 3C positioned in the front and rear directions around the cylindrical axis, and the orientation of the intake 10 Can be changed.

[2] 図14に示すように、外囲筒体3に設けられた取り入れ口10を、気相流体の導入方向が前記筒軸芯周りで上向きと、右向きと、左向きとの各方向に設定された3個の取り入れ口10で構成し、各取り入れ口10のうち、気相流体の導入ダクトに対して接続される1個の取り入れ口以外の取り入れ口を閉塞するカバー10Aを設けることによって、有効な取り入れ口10の方向を選択できるようにしてもよい。
勿論、取り入れ口10の設ける方向は、上記3方向に限らず、各種の方向を選択することは自由であり、また、3個にかぎらず、2個であるとか4個であるなど、任意の個数のものを設けてもよい。
[2] As shown in FIG. 14, the inlet 10 provided in the outer cylinder 3 is set so that the introduction direction of the gas phase fluid is upward, rightward, and leftward around the cylinder axis. By providing a cover 10A that closes the intake ports other than the one intake port connected to the gas duct fluid introduction duct among the respective intake ports 10, An effective intake 10 direction may be selected.
Of course, the direction in which the intake 10 is provided is not limited to the above three directions, and various directions can be freely selected, and the number is not limited to three but may be two or four. You may provide the thing of a number.

[3] 外囲筒体3と導風筒体2との間に導入される吸入流体の流入方向は、取り入れ口10の開口中心P1線が導風筒体2の外周縁に対する接線と一致するように、導風筒体2の中心P2から所定距離Lだけ偏して設定する構造に限らず、外囲筒体3と導風筒体2との間に問題なく旋回流が生じる程度であれば、前記所定距離Lから或る程度ずれて設定されていてもよく、また、適宜ガイド板などを用いて導入する吸入流体の流れ方向を制御する場合には、取り入れ口10の位置や方向は、前記所定距離Lや方向に囚われることなく任意に定めても良い。 [3] The inflow direction of the suction fluid introduced between the outer cylinder 3 and the wind guide cylinder 2 is such that the opening center P1 line of the intake port 10 coincides with a tangent to the outer peripheral edge of the wind guide cylinder 2. As described above, the present invention is not limited to the structure that is set to be deviated by a predetermined distance L from the center P2 of the wind guide cylindrical body 2, as long as a swirl flow is generated between the outer cylindrical body 3 and the wind guide cylindrical body 2 without any problem. For example, it may be set to be deviated from the predetermined distance L to some extent, and when the flow direction of the intake fluid to be introduced is appropriately controlled using a guide plate or the like, the position and direction of the intake port 10 are determined. The predetermined distance L and the direction may be arbitrarily determined without being trapped.

[4] 図15に示すように、排出口11に、排気を消臭するための消臭ボックス9を脱着自在に設けてもよい。排出口11に対する消臭ボックス9の取付手段としては、取付筒部の弾性変形を利用して強制的に押し込み嵌合できるようにしたり、もしくは、2重螺旋や3重螺旋などの多重螺旋ねじを用いることによって、360°未満の回転操作で簡単にねじ込み固定できるように構成してもよい。 [4] As shown in FIG. 15, a deodorization box 9 for deodorizing the exhaust gas may be detachably provided at the discharge port 11. As a means for attaching the deodorization box 9 to the discharge port 11, it is possible to forcibly press-fit using the elastic deformation of the mounting cylinder portion, or a multiple spiral screw such as a double helix or a triple helix. By using it, you may comprise so that it can be screwed and fixed easily by rotation operation of less than 360 degrees.

[5] 導風筒体2としては、前述の実施の形態で示したような、筒状の第一案内作用部21Aと、先細り円錐状の第二案内作用部21Bとの組み合わせによる構造に限らず、全体が先細り円錐状に形成されたものであってもよい。
また、短絡用通気部23が設けられる筒軸芯方向の範囲は、第一案内作用部21A部分のみに限らず、第二案内作用部21B部分にも設けても良い。
前記短絡用通気部23が設けられる周方向での範囲と、取り入れ口10と対向する範囲に設けられる初期案内壁部分26との周方向での割合は、図4に示すような取り入れ口10と対向する範囲の1/4程度を初期案内壁部分26とし、残りを短絡用通気部23に設定するものに限らず、これよりも少ない範囲に設定して短絡用通気部23を設けるなど、任意に設定することが可能である。
さらに、導風筒体2と外囲筒体3との間に気相流体を供給する前から、気相流体に予め旋回作用を与えるようにすれば、前記短絡用通気部23を導風筒体2の全周に設けても構わない。
[5] The air guide cylinder 2 is not limited to the structure of the combination of the cylindrical first guide action part 21A and the tapered conical second guide action part 21B as shown in the above-described embodiment. Instead, the whole may be formed in a tapered cone shape.
In addition, the range in the cylinder axis direction in which the short-circuiting ventilation portion 23 is provided is not limited to the first guide operation portion 21A, but may be provided in the second guide operation portion 21B.
The ratio in the circumferential direction between the circumferential range in which the short-circuiting vent 23 is provided and the initial guide wall portion 26 provided in the range facing the intake 10 is the same as that of the intake 10 as shown in FIG. About 1/4 of the opposing range is set as the initial guide wall portion 26, and the rest is not limited to the short-circuit vent 23, but is set to a range smaller than this, and the short-circuit vent 23 is provided. Can be set.
Further, if the swirling action is given to the gas-phase fluid before the gas-phase fluid is supplied between the air-guiding cylinder 2 and the surrounding cylinder 3, the short-circuit vent 23 is connected to the air-guiding cylinder. It may be provided all around the body 2.

[6] 短絡用通気部23の具体構成としては、実施の形態で示したような、板状体24とスリット状の通気孔25とを用いる構造に限らず、例えば、単なる多数の小開孔や、網などで短絡用通気部23を構成してもよい。 [6] The specific configuration of the short-circuiting ventilation section 23 is not limited to the structure using the plate-like body 24 and the slit-like ventilation holes 25 as shown in the embodiment. Alternatively, the short-circuiting ventilation portion 23 may be formed of a net or the like.

[7] 外囲筒体3に設けられる塵埃分離部31は、前述の実施の形態で示したように周方向の1カ所に設けるものに限らず、2カ所、または3カ所以上の複数箇所に設けてもよい。
また、その形状も凹溝によって形成されるものに限らず、外囲筒体3の内面側にスリットや小開孔、網などの、塵埃が通過可能な構造を設け、かつ、その通過塵埃を下方の外部取り出し筒7に集める手段を設けるようにしたものであってもよい。
[7] The dust separation portion 31 provided in the outer cylinder 3 is not limited to one provided in the circumferential direction as shown in the above-described embodiment, and may be provided in two places, or three or more places. It may be provided.
Moreover, the shape is not limited to that formed by the concave groove, and a structure through which dust can pass such as a slit, a small opening, and a net is provided on the inner surface side of the outer cylindrical body 3, and the passing dust is A means for collecting in the lower external take-out cylinder 7 may be provided.

[8] 旋回除塵部A1の筒軸心が沿う水平方向とは、絶対的な水平方向を意図するものではなく、多少の傾斜姿勢を含むものであり、旋回除塵部A1の筒軸心を鉛直方向に沿わせる所謂縦型の装置に比べて、筒軸心がより水平に近いものであればよい。 [8] The horizontal direction along which the cylinder axis of the swirling dust removing unit A1 is not intended to be an absolute horizontal direction, but includes a slight inclination, and the cylinder axis of the swirling dust removing unit A1 is vertical. Compared to a so-called vertical device that extends along the direction, the cylindrical axis may be more horizontal.

除塵装置の全体を示す左側面図Left side view showing the entire dust removal equipment 除塵装置の全体を示す正面図Front view showing the entire dust removal equipment 除塵装置の全体を示す平面視での断面図Sectional view in plan view showing the entire dust removal device 旋回除塵部を示す水平方向断面図Horizontal sectional view showing swirling dust removal unit 旋回除塵部を示す上下方向断面図Vertical sectional view showing the swirling dust removal unit 導風筒体部分を示す斜視図The perspective view which shows a wind guide cylinder part 旋回除塵部における旋回流の速度分布状態を示す説明図Explanatory drawing showing the velocity distribution state of the swirling flow in the swirling dust removing section 反転処理部を示す断面図Sectional view showing the reversal processing section 金属製ルーバーフィルターを示し、(イ)は一部切り欠き正面図、(ロ)は断面図Shows a metal louver filter, (a) is a partially cutaway front view, (b) is a cross-sectional view 金属製フィルターを示す斜視図Perspective view showing a metal filter 金属製フィルターのフィルター枠を示す平面図Plan view showing the filter frame of a metal filter 他の実施形態を示す左即面視での断面図Sectional view in left immediate view showing another embodiment 他の実施形態における外囲筒体の接続構造を示し、(イ)は断面図、(ロ)は金具を示す平面図The connection structure of the surrounding cylinder body in other embodiment is shown, (A) is sectional drawing, (B) is a top view which shows metal fittings 他の実施形態を示す正面部図Front view showing another embodiment 排気構造部分の他の実施形態を示す側面図Side view showing another embodiment of the exhaust structure portion 分級用サイクロンの寸法比を示す説明図Explanatory drawing showing dimensional ratio of cyclone for classification

符号の説明Explanation of symbols

1 ケーシング
2 導風筒体
3 外囲筒体
4 金属製ルーバー
5 金属製フィルター
6 起風手段
7 外部取り出し筒
8 衝突プレート
10 取り入れ口
11 排出口
12 中間仕切
20 筒状案内作用部
22 導入口
30 周方向案内面
31 塵埃分離部
A1 旋回除塵部
A2 反転処理部
A3 塵埃捕捉部
A4 排気部
A5 集塵部
R 処理経路
DESCRIPTION OF SYMBOLS 1 Casing 2 Air guide cylinder 3 Outer cylinder 4 Metal louver 5 Metal filter 6 Winding means 7 External take-out cylinder 8 Collision plate 10 Intake port 11 Outlet 12 Intermediate partition 20 Cylindrical guide action part 22 Inlet port 30 Circumferential guide surface 31 Dust separation part A1 Swivel dust removal part A2 Inversion processing part A3 Dust trapping part A4 Exhaust part A5 Dust collection part R Processing path

Claims (2)

取り入れ口から吸い込んだ気相流体中の被除去物を除去処理して排出口から外部へ排出するための処理経路をケーシングの内部に備え、前記処理経路に、取り入れ口から吸引導入された気相流体をケーシング内で旋回流動させる旋回除塵部を設け、
この旋回除塵部を、水平方向に沿わせて筒軸芯の向きを設定した内側の導風筒体と外側の外囲筒体とで構成し、
前記導風筒体の水平方向での一端側に気相流体の導入口を設け他端側に送出口を設けるとともに、前記外囲筒体を有底筒状に形成して、その筒底部が前記導風筒体の導入口と対向し、かつ導入口及び前記導風筒体の外周側との間に所定間隔を隔ててた状態に配設し、
内側の導風筒体と外側の外囲筒体との間に形成される円環状の旋回用流路で気相流体の旋回流が生じるように、処理対象の気相流体の導入方向を前記導風筒体の接線に沿う方向に設定するとともに、導風筒体内部の気相流体を前記導入口とは反対側の送出口から処理経路の下手側へ吸引排出する起風手段を備え、
前記旋回除塵部において、前記旋回用流路の内側に位置する導風筒体の前記導入口の反対側に位置する送出口寄りの周壁部分に、導風筒体の内部からの吸引作用で、旋回中の気相流体の一部を前記導入口よりも処理系路の上手側位置で吸い込むための短絡用通気部を形成するとともに、旋回用流路の外側に位置する外囲筒体の一部に、旋回流の最外側に含まれる被除去物の旋回流外方側への飛び出しを許して旋回流から脱出させる塵埃分離部を形成し、
この塵埃分離部の旋回流から脱出した被除去物を前記ケーシング外へ案内して自重落下させる外部取り出し筒を設け、
前記旋回除塵部よりも気相流体流れ方向での下手側の処理系路に、その旋回除塵部から送り出された気相流体に残存する被除去物を除去するための二次処理部を備え、この二次処理部を、反転処理部と塵埃捕捉部とで構成してあり、
前記反転処理部は、旋回除塵部から送り出される気相流体の流れに交差して前記気相流体の流動方向を中央部から放射方向に向けた後、外周部で前記流れの前方向きに反転させるように案内する碗状の二次曲面で構成された凹入湾曲面を有した衝突プレートを備え、
前記塵埃捕捉部は、前期衝突プレートで反転処理された後の気相流体を上下方向ならびに左右方向に拡散させるように通気流路の案内面が形成された格子状ルーバーと、拡散された気相流体と接触するようにスパイラル金属線を充填して構成された濾材層とを備え、
前記衝突プレート、格子状ルーバー、濾材層の夫々を金属製材料によって構成してある横型除塵装置。
The casing is provided with a treatment path for removing the object to be removed from the gas-phase fluid sucked from the intake port and discharging it from the discharge port to the outside. The gas phase sucked and introduced into the process route from the intake port A swirling dust removing unit that swirls and flows the fluid in the casing is provided.
This swirling dust removing part is composed of an inner wind guide cylinder and an outer envelope cylinder that set the direction of the cylinder axis along the horizontal direction,
A gas-phase fluid inlet is provided on one end side in the horizontal direction of the wind guide cylinder and a delivery port is provided on the other end. The outer cylinder is formed in a bottomed cylinder, and the cylinder bottom is Opposed to the introduction port of the wind guide cylinder, and disposed in a state with a predetermined interval between the introduction port and the outer peripheral side of the wind guide cylinder,
The introduction direction of the gas phase fluid to be processed is set so that the swirling flow of the gas phase fluid is generated in an annular swirling flow path formed between the inner wind guide cylinder and the outer envelope cylinder. It is set in a direction along the tangent line of the wind guide cylinder, and includes a wind generating means for sucking and discharging the gas-phase fluid inside the wind guide cylinder from the delivery port opposite to the inlet to the lower side of the processing path,
In the swirling dust removing section, a suction action from the inside of the baffle cylinder is applied to the peripheral wall portion near the feed outlet located on the opposite side of the introduction port of the baffle cylinder located inside the swirling flow path, A short-circuiting vent is formed for sucking a part of the gas-phase fluid during swirling at a position closer to the processing system than the introduction port, and one of the surrounding cylinders located outside the swirling flow path. Forming a dust separation part that allows the removal object to be removed from the swirling flow to the outer side of the swirling flow to escape from the swirling flow,
Set the dust separator external extraction tube to free-fall to-be-removed substance escaped guided outside the casing from the swirling flow of
A secondary processing unit for removing the object to be removed remaining in the gas-phase fluid sent from the swirling dust removing unit in the processing system path on the lower side in the gas-phase fluid flow direction than the swirling dust removing unit, This secondary processing unit is composed of an inversion processing unit and a dust trapping unit,
The inversion processing unit crosses the flow of the gas phase fluid sent out from the swirling dust removing unit and directs the flow direction of the gas phase fluid from the central part to the radial direction, and then reverses the flow in the forward direction at the outer peripheral part. A collision plate having a concave curved surface composed of a bowl-shaped quadric surface that guides the
The dust trapping unit includes a lattice-like louver in which a guide surface of a ventilation channel is formed so as to diffuse the gas-phase fluid after being reversed by the collision plate in the vertical direction and the horizontal direction, and the diffused gas-phase A filter medium layer configured to be filled with a spiral metal wire so as to come into contact with a fluid;
A horizontal dust removing apparatus in which each of the collision plate, the lattice-like louver, and the filter medium layer is made of a metal material .
旋回除塵部の外囲筒体は、筒底部に導風筒体の外径よりも径の大きい開口と、その開口を開閉自在な蓋体を備え、かつ外囲筒体の外周部に気相流体の取り入れ口を設けてある請求項1記載の横型除塵装置。 The outer cylinder of the swirling dust removing unit includes an opening having a diameter larger than the outer diameter of the air guide cylinder at the bottom of the cylinder, and a lid that can be opened and closed, and a gas phase is formed on the outer periphery of the outer cylinder. The horizontal dust removing apparatus according to claim 1, further comprising a fluid intake port.
JP2004174503A 2004-06-11 2004-06-11 Horizontal dust remover Expired - Lifetime JP4115426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004174503A JP4115426B2 (en) 2004-06-11 2004-06-11 Horizontal dust remover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004174503A JP4115426B2 (en) 2004-06-11 2004-06-11 Horizontal dust remover

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008003417A Division JP4679589B2 (en) 2008-01-10 2008-01-10 Horizontal dust remover

Publications (2)

Publication Number Publication Date
JP2005349340A JP2005349340A (en) 2005-12-22
JP4115426B2 true JP4115426B2 (en) 2008-07-09

Family

ID=35584235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004174503A Expired - Lifetime JP4115426B2 (en) 2004-06-11 2004-06-11 Horizontal dust remover

Country Status (1)

Country Link
JP (1) JP4115426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103908866A (en) * 2014-04-18 2014-07-09 大连兆和科技发展有限公司 Oil mist purifier

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189332B2 (en) * 2007-09-07 2013-04-24 フルタ電機株式会社 Floating mist trap
JP5496606B2 (en) * 2009-11-02 2014-05-21 フルタ電機株式会社 Oil mist catcher
JP2013022495A (en) * 2011-07-19 2013-02-04 Midori Anzen Co Ltd Mist collecting apparatus and disk
JP6076032B2 (en) * 2012-10-24 2017-02-08 昭和電機株式会社 Oil mist removal device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103908866A (en) * 2014-04-18 2014-07-09 大连兆和科技发展有限公司 Oil mist purifier
CN103908866B (en) * 2014-04-18 2016-06-22 大连兆和科技发展有限公司 A kind of oil mist eliminator

Also Published As

Publication number Publication date
JP2005349340A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP4679589B2 (en) Horizontal dust remover
US9108136B2 (en) Dust collector with spark arrester
CN108290097B (en) Separator device for cleaning gases
US20180242804A1 (en) Dust-removal apparatuses and associated methods
US4424069A (en) Dry and wet dual-purpose dust-collecting device
US6468321B2 (en) Blade and skirt assembly for directional gas cleaning and drying system
JP2009530096A (en) Particle separator
JP2007275867A (en) Cyclone, cyclone air purifier and method of air purification thereof
CN105597472B (en) A kind of air swirl combination demister
JP4115426B2 (en) Horizontal dust remover
JP2004202392A (en) Dust removing apparatus
US1620241A (en) Air-volume dust reducer
KR102178549B1 (en) Air cleaner
JP2005524819A (en) Device for effective separation of airborne particles from airflow
CN212700918U (en) Water and gas removing and purifying device for vacuum pump
JP4621008B2 (en) Garbage separator for vacuum cleaner
JP4874408B2 (en) Dust separating device and dust removing device using the same
JP2005349339A (en) Dust-removal device
WO2020183537A1 (en) Exhaust gas purifier and exhaust gas detoxifier in which same is used
RU2668028C1 (en) Dust collector with fire and explosion safety system
JP2008104734A (en) Vacuum cleaner
CN116272138A (en) Zero release is with enhancement mode gas-liquid separation ware
JP2005169347A (en) Dust removing apparatus
JP2005349099A (en) Vacuum cleaner
KR20190008452A (en) Noxious gas dust remover using separation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4115426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250