JP4113609B2 - Swellable synthetic fluoromica - Google Patents
Swellable synthetic fluoromica Download PDFInfo
- Publication number
- JP4113609B2 JP4113609B2 JP00505598A JP505598A JP4113609B2 JP 4113609 B2 JP4113609 B2 JP 4113609B2 JP 00505598 A JP00505598 A JP 00505598A JP 505598 A JP505598 A JP 505598A JP 4113609 B2 JP4113609 B2 JP 4113609B2
- Authority
- JP
- Japan
- Prior art keywords
- mica
- swellable
- present
- fluorine mica
- dispersibility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、陽イオン交換体、触媒、潤滑剤、増粘剤、化粧品の基材及びプラスチックや塗料用のフイラー等として有用な新規膨潤性フッ素雲母に関する。
【0002】
【従来の技術】
溶融法や固相反応法で合成した膨潤性フッ素雲母は、従来から陽イオン交換体、触媒、潤滑剤、増粘剤、化粧品の基材及びプラスチックや塗料用フイラーとして使用されている。
【0003】
従来の膨潤性フッ素雲母の中で、代表的なものは、Na型フッ素四珪素雲母(NaMg2.5Si4O10F2)であり、これが上記の技術分野で広く使用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来のNa型フッ素四珪素雲母は、安全性や陽イオン交換性及び分散性等の性能の点で、必ずしも充分満足すべきものではなかった。
【0005】
安全性の点では、水分散性のpHが10以上と高いので、化粧品の用途では、このままでは使用が制限される問題があった。
【0006】
上記したように、従来の膨潤性フッ素雲母粉体は、工業材料として未だ充分満足すべきものではなく、イオン交換性や分散性に優れ、しかも安全性の高い膨潤性フッ素雲母が強く求められている。
【0007】
この発明は、このような点に着目してなされたものであり、イオン交換性や分散性に優れ、しかも安全性の高い膨潤性フッ素雲母を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明者等は鋭意研究の結果、Na型膨潤性フッ素雲母の層間のNaイオンを減じた化学組成とすることによって、イオン交換性や分散性に優れ、しかも安全性の高い膨潤性フッ素雲母が得られることを見いだし、本発明に到達した。
【0009】
即ち、本発明の膨潤性フッ素雲母は、化学組成が、下記一般式:
Nax(Mg3 ー 0.5x)(Si4O10)F2
(式中のxの値は、0.4≧x≧0.33である。)で表されることを特徴とする。
【0010】
【発明の実施の形態】
次に、本発明の実施の形態を説明する。
本発明の膨潤性フッ素雲母は、上記一般式になるように原料酸化物やフッ化物を調合し、これを加熱することによって、製造することができる。
【0011】
上記式中、xは層間のNaイオンのモル数を表し、0.4≧x≧0.33の値をとるように原料を調合する。
【0012】
上記式中、Mg3ー0.5xは、八面体層のMgイオンのモル数を表し、xの値に応じて変化させるように原料を調合する。
【0013】
x=1の場合は、従来公知のいわゆるNa型フッ素四珪素雲母となるが、0.4≧x≧0.33となるように合成時に原料配合組成を調整することによって、本発明による膨潤性フッ素雲母の化学組成及び性質を自由に制御することができる。
【0014】
上記膨潤性フッ素雲母は、原料として、シリカ、マグネシア、フッ化マグネシウム、ケイフッ化ナトリウム、フッ化ナトリウム、炭酸ナトリウム及び天然鉱物であるタルク等を、目的とする膨潤性フッ素雲母の化学組成になるように調合し、これを内燃式電気炉中、1400℃〜1500℃にて溶融後、溶融体を鋳型に流出させて冷却する公知の方法によって合成することができる。
【0015】
アルミナやマグネシア製などの耐火性の高い坩堝中に、原料調合物を装填し、いわゆる外熱式溶融法によって、1400℃〜1500℃にて溶融後、冷却する方法によっても、本発明の膨潤性フッ素雲母を合成することができる。
【0016】
更に、本発明による膨潤性フッ素雲母の原料調合物、即ち、シリカ、マグネシア、フッ化マグネシウム、ケイフッ化ナトリウム、フッ化ナトリウム、炭酸ナトリウム及び天然鉱物であるタルク等を、目的とする膨潤性フッ素雲母の化学組成になるように調合し、これを溶融温度以下の温度域、例えば、700℃〜1200℃にて加熱する、いわゆる固相反応法によって合成することもできる。
【0017】
本発明による膨潤性フッ素雲母の分散性が優れている理由は、Na型フッ素四珪素雲母に比べて層間のNaイオンが0.4以下と少ないので、層間の結合力が減少し、水中に分散させた場合、雲母結晶の劈開が容易に進行するためと考えられる。
【0018】
また、層間イオンが少ないことによる層間結合力の減少は、層間のNaイオンの不安定性を増大させるので、イオン交換が容易に進行し、イオン交換性が高まるものと考えられる。
【0019】
本発明によらない膨潤性フッ素雲母の中で、結晶の八面体層にLiイオンを含むNa型テニオライトとNa型フッ素ヘクトライトとの固溶体(NaxMg3ーxLixSi4O10F2;1≧x≧0.33)においても、層間のNaイオンを減少させることによって、分散性の指標である膨潤性が向上することが、確認されている。
【0020】
しかし、上記固溶体において、xを減少させるにつれて、膨潤性は大きくなるものの、x値が1≧x≧0.5の範囲では、いわゆる限定膨潤型の範疇にあり、分散性は小さい。x値を更に0.5>x≧0.33に減少させたNa型フッ素ヘクトライトやそれに近い組成の膨潤性雲母になってようやく、いわゆる自由膨潤型となり、分散性は向上する。
【0021】
即ち、上記の膨潤性フッ素雲母固溶体の場合とは異なり、本発明による膨潤性フッ素雲母(NaxMg3-0.5xSi4O10F2)のように、結晶の八面体層にLiイオンを含まない組成では、x値が1の場合においても自由膨潤型であり、層間のNaイオンの減少は、更なる分散性の増大に大きく寄与する。
【0022】
更に、本発明による膨潤性フッ素雲母は、アルカリイオンであるNaイオンが少ないことで、水中に分散させた分散液のpHは低くなる。
【0023】
上記のように、本発明による膨潤性フッ素雲母は、分散性やイオン交換性等の優れた性能を保持しているのみならず、安全性も高く、しかも雲母の構成成分として、リチウムを含まないので安価な工業材料として供することができる。
【0024】
【実施例】
次に、実施例、比較例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されない。
【0025】
実施例1
次表1に示す配合組成(モル比)で原材料を約1トン調合し、これを本発明の膨潤性フッ素雲母の合成用原料とした。
【0026】
【表1】
原料配合表
【0027】
次表2に示す本発明によらない配合組成(モル比)で原材料を約1トン調合し、これを比較例のNa型フッ素四珪素雲母の合成用原料とした。
【0028】
【表2】
原料配合表
【0029】
実施例1〜4及び比較例1前記原料配合サンプルA、B、C、D及びRの500kgを、それぞれ内燃式電気炉中、1400℃〜1500℃で溶融後、溶融体を鋳型に流出させて冷却し、雲母鉱塊A1、B1、C1、D1及びR1を、それぞれ約450kg得た。
【0030】
実施例5〜8及び比較例2
前記原料配合サンプルA、B、C、D及びRの100gを、それぞれ内容積100ccのマグネシア製坩堝に入れ、これを電気炉に装填し、いわゆる外熱式溶融法によって1420℃で溶融後、電気炉内で放冷し、雲母鉱塊A2、B2、C2、D2及びR2を、それぞれ約100g得た。
【0031】
実施例9〜12及び比較例3
前記原料配合サンプルA、B、C、D及びRの100gを、それぞれ内容積100ccのマグネシア製坩堝に入れ、これを電気炉に装填し、いわゆる固相反応法によって950℃で1時間加熱した後、これを電気炉内で放冷し、雲母鉱塊A3、B3、C3、D3及びR3を、それぞれ約100g得た。
【0032】
試験例
上記実施例及び比較例で合成した膨潤性フッ素雲母鉱塊100gを、室温で飽和水蒸気に24時間接触させ、水蒸気の作用によって崩壊粉末化させ、篩を通して20メッシュ以下の膨潤性フッ素雲母粉体を得た。
【0033】
上記のようにして得た膨潤性フッ素雲母粉体について、膨潤力(ml/2g)、陽イオン交換量(meq/100g)及びpHを測定した。結果を、次表3に示す。
【0034】
尚、膨潤力とpHについては、日本ベントナイト工業会により規定された標準法に基づいて実施し、陽イオン交換量は、Caイオンを用いる常法によって測定した。
【0035】
【表3】
性能試験結果
【0036】
上記表3から明らかなように、本発明の膨潤性フッ素雲母(C、D)は、比較例のNa型フッ素四珪素雲母(R)に比較して、分散性の指標である膨潤力と陽イオン交換量が著しく向上している。
【0037】
具体的には、比較例の雲母は、膨潤力が35〜36程度であるのに対し、本発明の雲母は、膨潤力が40〜57と顕著に向上している。
【0038】
また、イオン交換量については、比較例の雲母は、81〜83程度であるのに対し、本発明の雲母は、91〜101と著しく向上している。
【0039】
また、pHについては、比較例の雲母が全て10以上で、化粧品への用途においては、使用が制限されるのに対し、本発明の雲母は、全て9.9以下であるので、化粧品への用途に於いても、その使用が制限されない。
【0040】
【発明の効果】
以上のべた如く、本発明による膨潤性フッ素雲母は、従来汎用されていた比較例の雲母と比べて、単にNaイオンを減少させただけで、分散性や陽イオン交換性が遥かに優れた性質を示すと共に、pHを10未満とすることができるので、化粧品の用途にも支障無くそのまま使用することができるという従来の比較例のNa型フッ素四珪素雲母で解決できなかった課題を解決したものであり、それ故極めて画期的な発明である。
【0041】
上記性質の膨潤性フッ素雲母は、陽イオン交換体、触媒、潤滑剤、増粘剤、粘結剤、化粧品の基材及びプラスチックや塗料に複合若しくは配合するフイラー等の工業材料として強く求められていたものであるから、本発明の産業上の利用価値は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel swellable fluorinated mica useful as a cation exchanger, a catalyst, a lubricant, a thickener, a cosmetic base, a filler for plastics and paints, and the like.
[0002]
[Prior art]
Swellable fluoromica synthesized by a melting method or a solid-phase reaction method has been conventionally used as a cation exchanger, a catalyst, a lubricant, a thickener, a cosmetic base material, and a plastic or paint filler.
[0003]
A typical example of the conventional swellable fluorine mica is Na-type fluorine tetrasilicon mica (NaMg 2.5 Si 4 O 10 F 2 ), which is widely used in the above technical field.
[0004]
[Problems to be solved by the invention]
However, the conventional Na-type fluorine tetrasilicon mica is not always satisfactory in terms of safety, performance such as cation exchange and dispersibility.
[0005]
From the viewpoint of safety, the pH of water dispersibility is as high as 10 or more, so there is a problem that the use is limited as it is in cosmetic applications.
[0006]
As described above, the conventional swellable fluorinated mica powder is not yet satisfactory as an industrial material, and there is a strong demand for a swellable fluorinated mica that is excellent in ion exchange and dispersibility and has high safety. .
[0007]
The present invention has been made paying attention to such points, and an object of the present invention is to provide a swellable fluorine mica that is excellent in ion exchange and dispersibility and has high safety.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors have conducted intensive research and obtained a chemical composition in which Na ions between layers of the Na-type swellable fluorinated mica are reduced, thereby providing excellent ion exchange and dispersibility, and safety. The present inventors have found that a highly swellable fluorine mica can be obtained, and have reached the present invention.
[0009]
That is, the swellable fluorine mica of the present invention has a chemical composition represented by the following general formula:
Na x (Mg 3 over 0.5x) (Si 4 O 10) F 2
(The value of x in the formula is 0.4 ≧ x ≧ 0.33).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
The swellable fluorine mica of the present invention can be produced by preparing raw material oxides and fluorides so as to satisfy the above general formula and heating them.
[0011]
In the above formula, x represents the number of moles of Na ions between layers, and the raw materials are prepared so as to have a value of 0.4 ≧ x ≧ 0.33 .
[0012]
In the above formula, Mg 3 -0.5x represents the number of moles of Mg ions in the octahedral layer, and the raw material is prepared so as to change according to the value of x.
[0013]
When x = 1, the so-called Na-type fluorotetrasilicon mica is known in the art, but by adjusting the raw material composition at the time of synthesis so that 0.4 ≧ x ≧ 0.33, the swelling property according to the present invention is achieved. The chemical composition and properties of the fluorine mica can be freely controlled.
[0014]
The swellable fluorinated mica has a chemical composition of the target swellable fluorinated mica, such as silica, magnesia, magnesium fluoride, sodium silicofluoride, sodium fluoride, sodium carbonate, and natural mineral talc as raw materials. And after melting at 1400 ° C. to 1500 ° C. in an internal electric furnace, the melt is discharged into a mold and cooled by a known method.
[0015]
The swellability of the present invention can also be achieved by a method in which a raw material preparation is loaded into a highly fire-resistant crucible such as made of alumina or magnesia, and is melted at 1400 ° C. to 1500 ° C. by a so-called external heating melting method and then cooled. Fluorine mica can be synthesized.
[0016]
Furthermore, the swellable fluoromica raw material formulation according to the present invention, that is, silica, magnesia, magnesium fluoride, sodium silicofluoride, sodium fluoride, sodium carbonate, natural mineral talc, etc. It can also synthesize | combine by what is called a solid-phase reaction method which mix | blends so that it may become the chemical composition of this, and heats this in the temperature range below a melting temperature, for example, 700 to 1200 degreeC.
[0017]
The reason why the dispersibility of the swellable fluorinated mica according to the present invention is excellent is that the Na ion between the layers is less than 0.4 compared with the Na-type fluorotetrasilicon mica, so that the bonding force between the layers is reduced and dispersed in water. This is probably because cleaving of the mica crystal proceeds easily.
[0018]
In addition, a decrease in interlayer cohesion due to a small number of interlayer ions increases the instability of Na ions between layers, so that ion exchange proceeds easily and ion exchange properties are considered to increase.
[0019]
Among the swellable fluorine mica not according to the present invention, a solid solution of Na type teniolite and Na type fluorine hectorite containing Li ions in the octahedral layer of the crystal (Na x Mg 3 x Li x Si 4 O 10 F 2 1 ≧ x ≧ 0.33), it is confirmed that the swelling property, which is an index of dispersibility, is improved by reducing the Na ions between the layers.
[0020]
However, in the above solid solution, as x is decreased, the swellability increases, but when the x value is in the range of 1 ≧ x ≧ 0.5, it is in the category of so-called limited swelling type and the dispersibility is small. Only the Na-type fluorine hectorite and the swellable mica having a composition close to that in which the x value is further reduced to 0.5> x ≧ 0.33 become the so-called free-swelling type, and the dispersibility is improved.
[0021]
That is, unlike the case of the above-described swellable fluorine mica solid solution, Li ions are applied to the octahedral layer of the crystal as in the case of the swellable fluorine mica according to the present invention (Na x Mg 3 -0.5x Si 4 O 10 F 2 ). In the composition not containing, even when the x value is 1, it is a free swelling type, and the decrease in Na ions between layers greatly contributes to further increase in dispersibility.
[0022]
Further, the swellable fluoromica according to the present invention has a low pH of a dispersion liquid dispersed in water because it contains few Na ions, which are alkali ions.
[0023]
As described above, the swellable fluorine mica according to the present invention not only retains excellent performance such as dispersibility and ion exchange properties, but also has high safety and does not contain lithium as a component of mica. Therefore, it can be used as an inexpensive industrial material.
[0024]
【Example】
Next, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to these Examples.
[0025]
Example 1
About 1 ton of raw material was prepared with the composition (molar ratio) shown in the following Table 1, and this was used as a raw material for the synthesis of the swellable fluoromica of the present invention.
[0026]
[Table 1]
Raw material recipe
[0027]
About 1 ton of raw material was prepared with a blending composition (molar ratio) not according to the present invention shown in Table 2 below, and this was used as a raw material for synthesizing Na-type fluorotetrasilicon mica of Comparative Example.
[0028]
[Table 2]
Raw material recipe
[0029]
Examples 1 to 4 and Comparative Example 1 500 kg of the raw material blend samples A, B, C, D and R were melted at 1400 ° C. to 1500 ° C. in an internal electric furnace, respectively, and then the melt was discharged into a mold. And about 450 kg of mica ores A1, B1, C1, D1 and R1 were obtained.
[0030]
Examples 5 to 8 and Comparative Example 2
100 g of the raw material blended samples A, B, C, D, and R are put in a magnesia crucible having an internal volume of 100 cc, and loaded in an electric furnace. After melting at 1420 ° C. by a so-called external heating melting method, After cooling in the furnace, about 100 g of mica ores A2, B2, C2, D2 and R2 were obtained.
[0031]
Examples 9-12 and Comparative Example 3
After putting 100 g of the raw material blended samples A, B, C, D and R into a magnesia crucible with an internal volume of 100 cc, charging them in an electric furnace and heating them at 950 ° C. for 1 hour by a so-called solid phase reaction method This was allowed to cool in an electric furnace to obtain about 100 g of mica ores A3, B3, C3, D3 and R3.
[0032]
Test Example 100 g of swellable fluorinated mica ore synthesized in the above examples and comparative examples was brought into contact with saturated water vapor at room temperature for 24 hours, disintegrated into powder by the action of water vapor, and swellable fluorinated mica powder of 20 mesh or less through a sieve Got the body.
[0033]
The swelling power (ml / 2g), cation exchange amount (meq / 100g) and pH of the swellable fluoromica powder obtained as described above were measured. The results are shown in Table 3 below.
[0034]
In addition, about the swelling power and pH, it implemented based on the standard method prescribed | regulated by the Japan Bentonite Industry Association, and the cation exchange amount was measured by the conventional method using Ca ion.
[0035]
[Table 3]
Performance test results
[0036]
As apparent from Table 3 above, the swellable fluorine mica ( C, D ) of the present invention has a swelling power and a positive index, which are indicators of dispersibility, as compared with the Na-type fluorine tetrasilicon mica (R) of the comparative example. The amount of ion exchange is significantly improved.
[0037]
Specifically, the mica of the comparative example has a swelling power of about 35 to 36, while the mica of the present invention has a significantly improved swelling power of 40 to 57.
[0038]
Further, regarding the ion exchange amount, the mica of the comparative example is about 81 to 83, whereas the mica of the present invention is remarkably improved to 91 to 101 .
[0039]
Further, as for pH, all of the mica in the comparative examples are 10 or more, and the use in cosmetics is limited, whereas the mica of the present invention is all 9.9 or less. The use is not limited even in the application.
[0040]
【The invention's effect】
As described above, the swellable fluorine mica according to the present invention is far more excellent in dispersibility and cation exchange than the conventionally used comparative example of mica simply by reducing Na ions. In addition to the above, since the pH can be made less than 10, the problem that could not be solved by the conventional Na type fluorine tetrasilicon mica of the comparative example that it can be used as it is without any trouble for cosmetic use Therefore, it is a very ground-breaking invention.
[0041]
Swelling fluorinated mica having the above properties is strongly demanded as an industrial material such as a cation exchanger, a catalyst, a lubricant, a thickener, a binder, a cosmetic base material, and a filler compounded or blended into a plastic or paint. Therefore, the industrial utility value of the present invention is extremely large.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00505598A JP4113609B2 (en) | 1998-01-13 | 1998-01-13 | Swellable synthetic fluoromica |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00505598A JP4113609B2 (en) | 1998-01-13 | 1998-01-13 | Swellable synthetic fluoromica |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11199222A JPH11199222A (en) | 1999-07-27 |
JP4113609B2 true JP4113609B2 (en) | 2008-07-09 |
Family
ID=11600725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00505598A Expired - Lifetime JP4113609B2 (en) | 1998-01-13 | 1998-01-13 | Swellable synthetic fluoromica |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4113609B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2168918A1 (en) | 2008-09-24 | 2010-03-31 | Bayer MaterialScience AG | Non-swellable, synthetic layered silicate for polymer layered silicate (nano) composites |
JP5841414B2 (en) * | 2011-11-29 | 2016-01-13 | クニミネ工業株式会社 | Clay powder in which hydrogen ions are present between layers and method for producing the same |
-
1998
- 1998-01-13 JP JP00505598A patent/JP4113609B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11199222A (en) | 1999-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | Stable Oxoborate with Edge‐Sharing BO4 Tetrahedra Synthesized under Ambient Pressure | |
JP2000344520A (en) | Production of flaky titanate | |
JP3393276B2 (en) | Composite titanium compound powder and method for producing the same | |
JP4113609B2 (en) | Swellable synthetic fluoromica | |
CN101516773B (en) | Metal phosphate and method for producing the same | |
US5492871A (en) | Superstoichiometric MgAl2 O4 spinel and use thereof, and process for the synthesis thereof | |
JP4138058B2 (en) | Swellable synthetic fluoromica | |
US4118227A (en) | Process for producing dicalcium silicate power | |
JPH11199224A (en) | Swellable synthetic fluorine mnica | |
EP3749718A1 (en) | A process for delamination of layered silicates | |
JP4875793B2 (en) | Plastic magnet composition | |
JPH0621026B2 (en) | Fluorine mica production method | |
Chudinova et al. | Double cyclohexaphosphates of cesium and divalent metals | |
JP4814435B2 (en) | Synthetic swellable fluorinated mica containing aluminum | |
JP4216510B2 (en) | Layered silicate and method for producing the same | |
JP4714856B2 (en) | Crystallized glass and method for producing the same | |
JPH0639324B2 (en) | Method for synthesizing fluoromica clay | |
KR20240034938A (en) | Magnesium oxide powder and method for manufacturing the same | |
JP3305763B2 (en) | Manufacturing method of fluorine mica | |
JP2621431B2 (en) | Surfactant-containing resin composition with excellent thermal stability | |
JP2024527766A (en) | Layered silicates partially modified with amino acids | |
JPH07330500A (en) | Production of aluminum borate whisker | |
JP3503750B2 (en) | Method for producing iron dihydrogen tripolyphosphate or dihydrate thereof | |
JP2981594B2 (en) | Reinforced metal matrix composite | |
JPS5827225B2 (en) | fireproof composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040730 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080414 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |