[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4112895B2 - Secondary battery charge state detection device - Google Patents

Secondary battery charge state detection device Download PDF

Info

Publication number
JP4112895B2
JP4112895B2 JP2002138785A JP2002138785A JP4112895B2 JP 4112895 B2 JP4112895 B2 JP 4112895B2 JP 2002138785 A JP2002138785 A JP 2002138785A JP 2002138785 A JP2002138785 A JP 2002138785A JP 4112895 B2 JP4112895 B2 JP 4112895B2
Authority
JP
Japan
Prior art keywords
secondary battery
state
charge
voltage
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002138785A
Other languages
Japanese (ja)
Other versions
JP2003331931A (en
Inventor
昭治 堺
淳 橋川
尚彦 鈴木
雅之 森藤
洋 名手
岳士 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2002138785A priority Critical patent/JP4112895B2/en
Publication of JP2003331931A publication Critical patent/JP2003331931A/en
Application granted granted Critical
Publication of JP4112895B2 publication Critical patent/JP4112895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、充電中においても二次電池の充電状態を精度よく検出できる二次電池の充電状態検出装置に関する。
【0002】
【従来の技術】
車両用電池の充電制御では、調整電圧は電池の充電を効率的に実行させるために電池の定格電圧12Vよりも高く13.5V〜14.5Vぐらいに設定されている。この場合、常に電池は過充電気味となって内燃機関の負担が増大され燃費を悪化させ、かつ電池の液べりが助長される。そこで電池が出し入れする電流を検出するために電流センサを追加し、過(満)充電状態よりも少し下の充電状態で、検出した電流の充放電収支がゼロとなるように制御するシステムが考案されている。
【0003】
これらシステムでは、一般に、電池の自己放電や電流積算誤差などによる充電状態の低下を防ぐために最低電圧ガードが設けられている。充電状態の低下を検出するための従来技術として、電池使用中に電流データ、電圧データ、及び電池温度を測定して、これらデータと電池温度毎に予め記憶した放電電流-電圧マップとを比較して電池の充電状態を検出する技術が公知となっている。この技術は、放電が大半を占める電気自動車などの充電状態検出装置としては有効である。また、電池使用中の電流を一定のサンプリング周期で検出して、検出電流から電池の分極状態を検出する技術として、例えば特開2000−258514公報においては、電流の充放電履歴を考慮して算出された分極起電力を利用して、予め測定されている起電力と電池の充電状態との関係を補正する技術が開示されている。この技術によれば、電池の分極起電力の影響が適切に補償されるので、電池の充電状態を精度よく検出することが可能となる。
【0004】
【発明が解決しようとする課題】
しかしながら、電気自動車以外の車両においては、昼間の走行時などの低電気負荷状態で、電池の放電が上述したような最低電圧ガードにより行われない場合がある。従って、比較的頻繁に実施される充電時に電池の充電状態(SOC)を検出することは、充電状態が自己放電や暗電流放電で低下した状態であっても、当該充電状態の低下を検出できる故に有効である。
【0005】
また、充電状態が60%程度に維持されるように充電制御されるハイブリッド車では、電池容量の低下と判断される充電状態が40%程度であるのに対し、満充電状態よりも少し下の充電状態で維持されるように充電制御される車両では、電池容量の低下と判断される充電状態が50%程度であり、従って、かかる車両に対しては、比較的高い充電状態における充電状態の変化を検出するのに適した充電状態検出装置は有用である。
【0006】
また、充電状態を精度よく検出するためには、特開2000−2585142記載の技術と同様に、電池の分極が電流−電圧特性に与える影響を考慮する必要がある。一方、充電分極状態においては、分極の影響が特に大きく、また水素過電圧により電圧が見かけ上高くなるので、検出した電流−電圧特性の扱いが困難となる。
【0007】
そこで、本発明は、充電中においても電池の充電状態を検出でき、充電分極状態においても高精度に充電状態を検出できる、比較的高い充電状態における充電状態の変化を検出するのに適した二次電池用電状態検出装置の提供を目的とする。
【0008】
【課題を解決するための手段】
上記目的は、請求項1に記載する如く、二次電池の電圧値を検出する電圧検出手段と、上記二次電池の電流値を検出する電流検出手段とを含む二次電池用充電状態検出装置であって、
上記二次電池の分極により該二次電池の電流−電圧特性が受ける影響度合いを検出する分極状態検出手段と
上記分極の影響度合いが所定値以上となる充電分極状態を検出する充電分極状態検出手段と、
上記二次電池が充電中である状態を検出する充電中状態検出手段とを更に含み、
上記充電分極状態且つ上記充電中状態での上記二次電池の電圧値及び電流値を用いて、上記二次電池の充電状態を判断することを特徴とする、二次電池用充電状態検出装置によって達成される。
【0009】
上記発明によれば、充電中の二次電池の電圧及び電流を用いて二次電池の充電状態を判断するので、放電がほとんど行われない状態であっても、電池の充電状態の低下を検出することができる。従って、本発明によれば、昼間の走行時などの低電気負荷状態で二次電池の放電が行われない場合であっても、自己放電や暗電流放電による充電状態の低下を検出することができる。
【0010】
また、請求項2に記載する如く、請求項1記載の二次電池用充電状態検出装置において、上記分極状態検出手段が、上記二次電池の充放電履歴から上記二次電池の分極の影響度合いを推定することとすると、密度計、濃度計、比重計等のような複雑な分極状態検出手段を用いることなく電池の充電分極状態が検出できる。
【0011】
また、請求項3に記載する如く、請求項1記載の二次電池用充電状態検出装置において、上記充電分極状態且つ上記充電中状態での上記二次電池の電圧値と、このときの電流値に依存する所定の閾値とを比較することにより、上記二次電池の充電状態を判断することとすると、二次電池の充電状態の低下を精度よく検出することができる。即ち、充電状態が低い二次電池は、分極の影響度合いが所定値を超えても電圧値が高くならないという特性を利用することにより、二次電池の充電状態の低下を精度よく検出することができる。このような特性は、特に充電状態が50%以下の二次電池において顕著に現れるので、充電状態50%以下を容量低下と判断し、容量低下と判断されない最大の充電状態が70%程度の充電制御システムにおいて特に有効となる。尚、電流値に依存する上記閾値は、当該電流値に対応した、容量低下と判断されない最大の充電状態における、分極の影響度合いが上記所定値であるときの、二次電池の電圧値であってよい。また、この閾値は、分極の影響度合い及び各充電状態における上記特性を考慮して、各電流値に対して予め用意されてよい。
【0012】
また、上記目的は、請求項4に記載する如く、交流発電機及びこの交流発電機の出力電圧を調整するレギュレータを搭載する車両に装備され上記レギュレータの調整のもとに充放電される二次電池の電圧値を検出する電圧検出手段と、上記二次電池の電流値を検出する電流検出手段と、上記二次電池の温度を検出する温度検出手段とを含む二次電池用充電状態検出装置であって、
上記二次電池の分極により該二次電池の電流−電圧特性が受ける影響度合いを検出する分極状態検出手段と
上記分極の影響度合いが所定値以上となる充電分極状態を検出する充電分極状態検出手段と、
上記二次電池が充電中である状態を検出する充電中状態検出手段とを更に含み、
上記充電分極状態且つ上記充電中状態での上記二次電池の電圧値と、このときの電流値及び温度に依存する所定の閾値とを比較することにより、上記二次電池の充電状態を判断すること特徴とする、二次電池用充電状態検出装置によって達成される。
【0013】
上記発明によれば、充電中の二次電池の電圧及び電流を用いて二次電池の充電状態を判断するので、放電がほとんど行われない状態であっても、電池の容量低下を検出することができる。また、充電状態が低い二次電池は、分極の影響度合いが所定値を超えても電圧値が高くならないという特性を利用することにより、二次電池の充電状態の低下を精度よく検出することができる。また、この特性は電池温度に依存することなく現れるので、電池温度が変化する一般的な使用環境において、当該電池温度の変化を補償して二次電池の充電状態の低下を精度よく検出することができる。尚、電池温度及び電流値に依存する上記閾値は、当該電池温度及び電流値に対応した、容量低下と判断されない最大の充電状態における、分極の影響度合いが上記所定値であるときの、二次電池の電圧値であってよい。また、この閾値は、分極の影響度合い及び各充電状態における上記特性を考慮して、各電流値及び各電池温度に対して予め用意されてよい。
【0014】
また、請求項5に記載する如く、請求項4記載の二次電池用充電状態検出装置において、上記比較結果が、所定回数連続して同一となる場合に、上記二次電池の充電状態の低下を検知することとすると、充電状態の低下を高い確度で検出することができる。
【0015】
本発明の他の目的、構成及び効果は、図面を参照して行う以下の実施形態の説明から、より明らかになるだろう。
【0016】
【発明の実施の形態】
図1は、本発明に係る充電状態検出方法を使用する、車両用バッテリを充電制御するための充電制御システム90の実施形態を示す。尚、このバッテリは、鉛蓄電池のような二次電池Bにより構成されている。
【0017】
この充電制御システム90は、図1に示すように、交流発電機10(以下、発電機10という)と、整流器20と、レギュレータ30とを備えている。発電機10は、車両のエンジンにより駆動されて交流電圧を発生する。整流器20は、発電機10の交流電圧を整流して整流電圧を発生し二次電池B及びレギュレータ30に供給する。レギュレータ30は、後述するマイクロコンピュータ70による制御のもと、整流器20の整流電圧を調整して二次電池B及び電気的負荷Lに出力する。
【0018】
また、この充電制御システム90は、電流センサ40と、電圧センサ50と、温度センサ60と、マイクロコンピュータ70とを備えている。電流センサ40は、二次電池Bの充電電流或いは放電電流を所定のサンプリング周期で検出する。同様に、電圧センサ50は、二次電池Bの端子電圧を所定のサンプリング周期で検出する。温度センサ60は、二次電池Bの液温若しくは、二次電池Bを格納するケース(図示せず)の側面又は底面の温度を検出する。マイクロコンピュータ70は、後述するフローチャートに従って制御プログラムを実行する。この制御プログラムの実行中に、マイクロコンピュータ70は、電流センサ40、電圧センサ50及び温度センサ60の検出値に基づき二次電池Bの充電状態の検出、レギュレータ30の制御に要する処理やデータの記憶処理などを行う。尚、マイクロコンピュータ70は、二次電池Bから常時給電されて作動状態にあり、自動車のイグニッションスイッチIGのオンにより、後述する制御プログラムの実行を開始する。尚、この制御プログラムはマイクロコンピュータ70のROMに予め記憶されている。
【0019】
<分極状態を表す指数>
本発明に係る充電状態検出方法は、二次電池の分極が当該二次電池の電流−電圧特性に与える影響度合い(以下、これを単に「分極状態」という)を表す指数として、次式で与えられる指数Pを用いる。
【0020】
【数1】

Figure 0004112895
この指数P(単位:A・sec)は、電極近傍の溶液濃度を電気量で表現したものであり、充放電による電極近傍の溶液濃度変化及び拡散による解消分を考慮している。尚、本明細書中において、この指数PがP<0である状態を、放電分極状態と定義し、P≧0である状態を、充電分極状態と定義する。
【0021】
ここで、式1において、Iは検出電流(A)であり、I>0を充電、I<0を放電とする。γは二次電池Bの充電効率の変動に対する補正項(二次電池Bの充電時に0〜1の値となるが、充放電が繰り返される場合は、ほぼ1となる)である。Tは時間(秒)である。また、Idは二次電池B内の分極に起因する補正項である。そして、P’をT1の1周期前における指数Pの値とし、a、bをそれぞれ定数とすると、P’>0のとき、Id=a×P’であり、P’=0のとき、Id=0であり、P’<0のとき、Id=b×P’である。ここで定数a、bを使い分ける理由は、放電後と充電後で分極の影響時間が異なるためである。尚、式1は、マイクロコンピュータ70のROMに予め記憶されている。
【0022】
<本発明による容量低下判定方法>
次に、本発明による容量低下判定方法を実現するための制御プログラムの作動について図2を用いて説明する。
【0023】
自動車のイグニッションスイッチIGのオンにより、制御プログラムの実行が開始されると、ステップ100において、分極状態を表す指数Pの値と電池充放電容量の積算値Isumをゼロにリセットする。
【0024】
次いで、ステップ110から190の処理をサンプリング周期ΔT毎に実施する。ステップ110では、電流センサ40の検出電流I、電圧センサ50の検出電圧Vと温度センサ60の検出温度Tが読み込まれる。するとステップ120にて、電池充放電容量の積算値Isumが次式に基づき1周期前の電池充放電容量の積算値Isum’とステップ110で読み込んだ検出電流Iに応じて算出される。
【0025】
sum=Isum’+I×ΔT
ここで、検出電流I>0を充電、I<を放電とする。
【0026】
さらにステップ130において、調整電圧の補正量ΔVmをステップ120で求めた電池充放電容量の積算値Isumに応じて、例えば図3に示すマップに基づき算出する。
続くステップ140では、調整電圧Vmが次式に基づき、1周期前の調整電圧Vm’とステップ130で算出した調整電圧の補正量ΔVmに応じて算出される。
【0027】
Vm=Vm’+ΔVm
尚、算出したVmが予め設定した上限値以上となった場合は上限値に、予め設定した下限値以下となった場合は下限値に変更する。これら処理により通常は、二次電池Bの充放電収支が、ゼロとなるように制御され、電池の過充電によるエネルギ損失が低減できる。
【0028】
続くステップ150では、分極状態を表す指数Pが、上記数1の式に基づき、上記ステップ110で読み込んだ検出電流Iに応じて算出される。
【0029】
このようにして指数Pが算出されると、続くステップ160において、指数Pが所定値、例えば400よりも大きいか否か(即ち、充電分極の影響度合いが大きいか否か)、かつ検出電流Iがゼロよりも大きいか(即ち、充電中か否か)が判定される。判定が否定された場合は、ステップ190に進み、判定が肯定された場合は、ステップ170に進む。
【0030】
ステップ170では、検出電流Iに対する検出電圧Vのプロット点が、例えば図4に示す容量低下判定用の境界線よりも下の領域に属するか否かの判定を行う。この容量低下判定用の境界線は、図4に示すように、電池温度に応じて予め用意されており、この容量低下判定用の境界線は、上記ステップ110で読み込んだ検出温度Tに応じて選択される。尚、この容量低下判定用の境界線の設定方法については、後に詳説する。ステップ170で判定が否定された場合は、ステップ190に進み、判定が肯定された場合は、ステップ180に進む。
【0031】
ステップ180では、電池容量が低下していると判断し、充電状態の回復性を向上するために、調整電圧を高めに設定して充電を行う通常制御へ移行し、ステップ190に進む。尚、このステップ180では、判断の確実性を向上すべく、ステップ170の条件が連続して成立した場合に、電池容量が低下していると判断するようにしてもよい。
【0032】
ステップ190では、イグニッションスイッチIGがオフされたか否かを判定し、判定が肯定された場合は、処理を終了する。一方、判定が否定された場合は、ステップ110以後の処理が繰り返される。
【0033】
<容量低下判定用の境界線の決定方法>
次に、図4に示す容量低下判定用の境界線の決定方法について、図5を用いて説明する。図5は、二次電池(電池温度30℃、定格容量48Ah)を一定電流で充電した場合における、数1の式で求めた指数Pに対する当該二次電池の電圧曲線を示した図である。図5(A)は、電流Ia=9.6(A)で充電した場合の結果を示し、図5(B)は、電流Ib=24(A)充電した場合の結果を示している。尚、図5の各図には、電池の充電状態(以下、SOCという)の異なる二次電池(スタートSOC:30%、50%、70%、90%)のそれぞれの電圧曲線が示されている。
【0034】
図5(A)及び図5(B)に示すように、充電電流がIa=9.6(A)若しくはIb=24(A)のいずれの場合においても、SOC50%以下の状態では、指数Pが400(A・sec)を超える付近から、電圧の上昇率が小さくなることがわかる。他言すると、充電を継続した場合、結果としてSOCが高くなり電圧は上昇していくが、指数Pが約400(A・sec)を超えると、SOC50%以下の二次電池では、SOC70%以上の二次電池に比べて、その電圧上昇が低下していることがわかる。
【0035】
ここで、電池の容量低下の判断基準をSOC50%以下とし、最大SOC70%以下までの充電状態を許容する場合における、具体的な容量低下判定用の境界線の決定方法について言及する。図5(A)に示すように、指数Pが400(A・sec)を超える範囲で、SOC70%に係る電圧曲線とSOC50%以下の電圧曲線を電圧Vaのラインにより仕切ることができる。同様に、図5(B)に示すように、指数Pが400(A・sec)を超える範囲で、SOC70%に係る電圧曲線とSOC50%以下の電圧曲線を電圧Vbのラインにより仕切ることができる。これらの電圧Va、Vbは、図5(A)及び図5(B)に示すように、SOC70%に係る電圧曲線におけるP=400でのそれぞれの電圧値であってよいが、上記ステップ160で例えば400<P<500のような範囲で判定する場合には、P=400での電圧値より低い電圧値であってもよい。
【0036】
このようにして決定された電圧Va及びVbを、それぞれ電流値Ia及びIbに対する判定電圧Vthresholdとして直線で結ぶことにより、図4に示す電池温度30℃における容量低下判定用の境界線が得られる。尚、電流値Ia及びIb以外の電流値に対する判定電圧Vthresholdは、この容量低下判定用の境界線上の当該電流値に対する電圧値になる。同様に、電池温度を変更して、図4に示すような各電池温度に対する境界線が得られる。従って、判定電圧Vthresholdは、電流値I及び電池温度Tを用いて、Vthreshold=f(I,T)で表わされる(上記ステップ170参照)。
【0037】
尚、本例は、2つの電流値IaとIbに対する各判定電圧に基づいて容量低下判定用の境界線を求めるものであるが、より多くの電流値に対する各判定電圧に基づいて容量低下判定用の境界線を求めるようにしてもよい。また、本例は、SOC50%以下を容量低下の検出目標とし、最大SOC70%以下までを許容するとして、容量低下判定用の境界線を決定したが、検出目標は必要に応じて変更してもよい。
【0038】
次に、このようにして設定された容量低下判定用の境界線(検出目標をSOC50%以下とした境界線)を用いた、上述の制御プログラムによる二次電池の容量低下の検出結果について言及する。
【0039】
図6は、上述の制御プログラムのステップ110(図2参照)により実際の車両走行中の電流と電圧を測定し、測定点をサンプリング周期ΔT毎にプロットした図であり、図6(A)は、SOC70%の二次電池を使用した結果を示し、図6(B)は、SOC50%の二次電池を使用した結果を示している。
【0040】
図6(A)に示すように、SOC70%でのプロット点の幾つか(小さな○印のプロット点)は、容量低下判定用の境界線よりも下の領域に属したが、電池の分極状態を表す指数Pが400を超えるプロット点(▲印のプロット点)に関しては、当該容量低下判定用の境界線よりも下の領域に属することがなかったので、上記ステップ180で容量低下との判断はなされなかった。一方、SOC50%では、指数が400を超えるプロット点(▲印のプロット点)であっても、図6(B)に示すように、容量低下判定用の境界線より下の領域に属したため、上記ステップ180で容量低下との判断がなされた。この結果から、P>400の範囲で、上述したように設定された容量低下判定用の境界線により、SOC50%以下となる充電状態の低下を確実に検出できることが確認された。
【0041】
尚、二次電池が劣化した場合、SOC70%以上であっても、ほとんどの場合は、充電分極状態での電圧上昇が低下する(例えば、図5(B)のSOC50%の電圧曲線のようになる)ため、上記ステップ180で容量低下との判断が行われることが予測される。しかしながら、この場合には、当該SOC70%の二次電池から実際に取り出せる容量が低下していることになるので、当該SOC70%の二次電池に残っている容量は、例えばSOC50%の新品の二次電池と略同一と考えることができ、安全側の判定となる。
【0042】
以上説明したように、本発明では、容量低下(充電状態が50%以下)状態では、過電圧が発生する充電分極状態であっても電圧の上昇が抑えられるといった点に着目し、所定値を超える充電分極状態であるにも関わらず、予め定めた容量低下判定用の境界線よりも、検出した充電電流-電圧特性が下回る場合には、容量低下と判断することによって、二次電池が発電機に並列接続されているためにほとんど放電しない状態であっても、当該二次電池の容量低下を検出することが可能となる。
【0043】
尚、特許請求の範囲に記載した「分極状態検出手段」は、発明の詳細な説明に記載した制御プログラムのステップ150をマイクロコンピュータ70が実行することによって実現されている。
【0044】
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。例えば、上述した実施例においては、分極状態を判断するために、数1の式で定義された指数を使用していたが、特にこの式に限定されるものではなく、当該式に変更を加えた式、同一の観点から導出された式若しくはその類の式を本発明に適用することもできる。
【0045】
【発明の効果】
本発明は、以上説明したようなものであるから、以下に記載されるような効果を奏する。請求項1の発明によると、放電がほとんど行われない状態であっても、電池の容量低下を検出することができる。
【0046】
また、請求項2の発明によると、低コストで電池の充電分極状態を確実に検出できる。また、請求項3、4又は5の発明によると、充電状態が低い二次電池は、所定値を超える分極の影響度合いであっても電圧値が高くならないという特性が利用され、二次電池の充電状態の低下を精度よく検出することができる。
【図面の簡単な説明】
【図1】車両用バッテリを充電制御する充電制御システム90を示す図である。
【図2】本発明によるマイクロコンピュータ70の動作を示すフローチャートである。
【図3】調整電圧の補正量ΔVmを算出するために予め用意されたマップである。
【図4】容量低下判定用の境界線を示す図である。
【図5】図5は、指数Pに対する二次電池の電圧曲線を示した図であり、図5(A)は、電流Ia=9.6(A)で充電した場合の結果を示し、図5(B)は、電流Ib=24(A)充電した場合の結果を示す。
【図6】図6は、本発明による制御プログラムよる容量低下の検出結果を示す図であり、図6(A)は、SOC70%の結果を示し、図6(B)は、SOC50%の結果を示す。
【符号の説明】
10 交流発電機
20 整流器
30 レギュレータ
40 電流センサ
50 電圧センサ
60 温度センサ
70 マイクロコンピュータ
90 充電制御システム
B 二次電池
L 電気的負荷[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery charge state detection device capable of accurately detecting a charge state of a secondary battery even during charging.
[0002]
[Prior art]
In the vehicle battery charging control, the adjustment voltage is set to about 13.5V to 14.5V higher than the rated voltage of the battery 12V in order to efficiently charge the battery. In this case, the battery is always overcharged, the burden on the internal combustion engine is increased, fuel consumption is deteriorated, and liquid leakage of the battery is promoted. Therefore, a current sensor was added to detect the current flowing in and out of the battery, and a system was devised to control the charge / discharge balance of the detected current to zero in a charged state slightly below the over (full) charged state. Has been.
[0003]
In these systems, a minimum voltage guard is generally provided in order to prevent the state of charge from being lowered due to battery self-discharge or current integration error. As a conventional technique for detecting a decrease in the state of charge, current data, voltage data, and battery temperature are measured while the battery is in use, and these data are compared with a discharge current-voltage map stored in advance for each battery temperature. Techniques for detecting the state of charge of a battery are well known. This technique is effective as a state-of-charge detection device for an electric vehicle or the like in which the majority of discharge is generated. Further, as a technique for detecting the current during battery use at a constant sampling period and detecting the polarization state of the battery from the detected current, for example, in Japanese Patent Laid-Open No. 2000-258514, calculation is performed in consideration of the charge / discharge history of the current. A technique for correcting a relationship between an electromotive force measured in advance and a state of charge of a battery by using the polarized electromotive force is disclosed. According to this technique, since the influence of the polarization electromotive force of the battery is appropriately compensated, the state of charge of the battery can be accurately detected.
[0004]
[Problems to be solved by the invention]
However, in vehicles other than electric vehicles, the battery may not be discharged by the minimum voltage guard as described above in a low electric load state such as during daytime driving. Therefore, detecting the state of charge (SOC) of the battery during charging that is performed relatively frequently can detect a decrease in the state of charge even if the state of charge is reduced by self-discharge or dark current discharge. Therefore, it is effective.
[0005]
Further, in a hybrid vehicle that is controlled to be charged so that the charged state is maintained at about 60%, the charged state that is determined to be a decrease in battery capacity is about 40%, which is slightly lower than the fully charged state. In a vehicle that is controlled to be charged in a charged state, the charged state that is determined to be a decrease in battery capacity is about 50%. Therefore, for such a vehicle, the charged state in a relatively high charged state is low. A state-of-charge detection device suitable for detecting a change is useful.
[0006]
Further, in order to accurately detect the state of charge, it is necessary to consider the influence of the polarization of the battery on the current-voltage characteristics, as in the technique described in Japanese Patent Laid-Open No. 2000-2585142. On the other hand, in the charge polarization state, the influence of polarization is particularly large, and the voltage is apparently increased due to hydrogen overvoltage, so that it is difficult to handle the detected current-voltage characteristics.
[0007]
Therefore, the present invention can detect the state of charge of the battery even during charging, and can detect the state of charge with high accuracy even in the charge polarization state, and is suitable for detecting changes in the state of charge in a relatively high state of charge. It aims at provision of the electrical condition detection apparatus for a secondary battery.
[0008]
[Means for Solving the Problems]
The object of the present invention is to provide a state-of-charge detection apparatus for a secondary battery, comprising: voltage detection means for detecting the voltage value of the secondary battery; and current detection means for detecting the current value of the secondary battery. Because
Polarization state detection means for detecting the degree of influence of the current-voltage characteristics of the secondary battery due to the polarization of the secondary battery ;
Charge polarization state detection means for detecting a charge polarization state in which the degree of influence of the polarization is a predetermined value or more;
And a charging state detection means for detecting a state where the secondary battery is being charged ,
By using the voltage state and the current value of the secondary battery in the charge polarization state and the charging state, the state of charge of the secondary battery is determined. Achieved.
[0009]
According to the above-described invention, the state of charge of the secondary battery is determined using the voltage and current of the secondary battery being charged. Therefore, even when the battery is hardly discharged, a decrease in the state of charge of the battery is detected. can do. Therefore, according to the present invention, even when the secondary battery is not discharged in a low electrical load state such as during daytime running, it is possible to detect a decrease in the state of charge due to self-discharge or dark current discharge. it can.
[0010]
Further, as described in claim 2, in the charging state detection device for a secondary battery according to claim 1, the polarization state detection unit is configured to determine the degree of influence of the polarization of the secondary battery from the charge / discharge history of the secondary battery. Is estimated, it is possible to detect the charge polarization state of the battery without using complicated polarization state detection means such as a density meter, a densitometer, and a hydrometer.
[0011]
Further, as described in claim 3, in the charge state detection device for a secondary battery according to claim 1, the voltage value of the secondary battery in the charge polarization state and the charge state, and the current value at this time If the charge state of the secondary battery is determined by comparing with a predetermined threshold value depending on the value, it is possible to accurately detect a decrease in the charge state of the secondary battery. In other words, a secondary battery with a low state of charge can accurately detect a decrease in the state of charge of the secondary battery by utilizing the characteristic that the voltage value does not increase even if the degree of influence of polarization exceeds a predetermined value. it can. Such characteristics are particularly noticeable in a secondary battery having a charge state of 50% or less. Therefore, it is determined that the charge state is 50% or less as a capacity decrease, and the maximum charge state that is not determined as a capacity decrease is approximately 70%. This is particularly effective in a control system. Note that the threshold value depending on the current value is the voltage value of the secondary battery when the degree of influence of polarization is the predetermined value in the maximum charge state that is not determined to be a capacity decrease corresponding to the current value. It's okay. Further, this threshold value may be prepared in advance for each current value in consideration of the degree of influence of polarization and the above characteristics in each state of charge.
[0012]
According to a fourth aspect of the present invention, there is provided a secondary battery that is mounted on a vehicle equipped with an alternator and a regulator that regulates the output voltage of the alternator and is charged and discharged under the regulation of the regulator. Charge state detection device for a secondary battery, including voltage detection means for detecting a voltage value of the battery, current detection means for detecting the current value of the secondary battery, and temperature detection means for detecting the temperature of the secondary battery Because
Polarization state detection means for detecting the degree of influence of the current-voltage characteristics of the secondary battery due to the polarization of the secondary battery ;
Charge polarization state detection means for detecting a charge polarization state in which the degree of influence of the polarization is a predetermined value or more;
And a charging state detection means for detecting a state where the secondary battery is being charged ,
The charging state of the secondary battery is determined by comparing the voltage value of the secondary battery in the charging polarization state and the charging state with a predetermined threshold value depending on the current value and temperature at this time. This is achieved by a charge state detection device for a secondary battery.
[0013]
According to the above-described invention, since the state of charge of the secondary battery is determined using the voltage and current of the secondary battery being charged, it is possible to detect a decrease in the capacity of the battery even in a state where almost no discharge is performed. Can do. In addition, a secondary battery with a low state of charge can accurately detect a decrease in the state of charge of a secondary battery by utilizing the characteristic that the voltage value does not increase even if the degree of influence of polarization exceeds a predetermined value. it can. In addition, since this characteristic appears without depending on the battery temperature, in a general use environment where the battery temperature changes, it is possible to compensate for the change in the battery temperature and accurately detect a decrease in the state of charge of the secondary battery. Can do. Note that the threshold value depending on the battery temperature and current value is a secondary value when the degree of influence of polarization is the predetermined value in the maximum charge state corresponding to the battery temperature and current value and not determined as a capacity decrease. It may be the voltage value of the battery. Further, this threshold value may be prepared in advance for each current value and each battery temperature in consideration of the degree of influence of polarization and the above characteristics in each state of charge.
[0014]
Further, in the secondary battery charge state detection device according to claim 4, when the comparison result is the same continuously for a predetermined number of times, the charge state of the secondary battery is lowered. , It is possible to detect a reduction in the state of charge with high accuracy.
[0015]
Other objects, configurations, and effects of the present invention will become more apparent from the following description of embodiments with reference to the drawings.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a charging control system 90 for controlling charging of a vehicle battery using the charging state detection method according to the present invention. In addition, this battery is comprised by the secondary battery B like a lead storage battery.
[0017]
As shown in FIG. 1, the charging control system 90 includes an AC generator 10 (hereinafter referred to as a generator 10), a rectifier 20, and a regulator 30. The generator 10 is driven by a vehicle engine to generate an alternating voltage. The rectifier 20 rectifies the AC voltage of the generator 10 to generate a rectified voltage and supplies it to the secondary battery B and the regulator 30. The regulator 30 adjusts the rectified voltage of the rectifier 20 and outputs it to the secondary battery B and the electrical load L under the control of the microcomputer 70 described later.
[0018]
The charging control system 90 includes a current sensor 40, a voltage sensor 50, a temperature sensor 60, and a microcomputer 70. The current sensor 40 detects the charging current or discharging current of the secondary battery B at a predetermined sampling period. Similarly, the voltage sensor 50 detects the terminal voltage of the secondary battery B at a predetermined sampling period. The temperature sensor 60 detects the liquid temperature of the secondary battery B or the temperature of the side surface or the bottom surface of the case (not shown) in which the secondary battery B is stored. The microcomputer 70 executes a control program according to a flowchart described later. During execution of this control program, the microcomputer 70 stores the processing and data required for detecting the charge state of the secondary battery B and controlling the regulator 30 based on the detection values of the current sensor 40, the voltage sensor 50 and the temperature sensor 60. Perform processing. Note that the microcomputer 70 is always in operation by being supplied with power from the secondary battery B, and starts execution of a control program, which will be described later, when an ignition switch IG of the automobile is turned on. This control program is stored in advance in the ROM of the microcomputer 70.
[0019]
<Index indicating polarization state>
The charging state detection method according to the present invention is given by the following equation as an index indicating the degree of influence of the polarization of the secondary battery on the current-voltage characteristics of the secondary battery (hereinafter simply referred to as “polarization state”). The index P is used.
[0020]
[Expression 1]
Figure 0004112895
This index P (unit: A · sec) expresses the solution concentration in the vicinity of the electrode as an electric quantity, and considers the solution concentration change in the vicinity of the electrode due to charge / discharge and the elimination due to diffusion. In the present specification, a state where the index P is P <0 is defined as a discharge polarization state, and a state where P ≧ 0 is defined as a charge polarization state.
[0021]
Here, in Equation 1, I is a detection current (A), where I> 0 is charged and I <0 is discharged. γ is a correction term for a change in charging efficiency of the secondary battery B (a value of 0 to 1 is obtained when the secondary battery B is charged, but is approximately 1 when charging and discharging are repeated). T is time (seconds). Id is a correction term due to polarization in the secondary battery B. If P ′ is the value of the index P one period before T1, and a and b are constants, Id = a × P ′ when P ′> 0, and Id when P ′ = 0. = 0, and when P ′ <0, Id = b × P ′. The reason why the constants a and b are properly used is that the influence time of polarization is different after discharge and after charge. Note that Equation 1 is stored in advance in the ROM of the microcomputer 70.
[0022]
<Method for Determining Capacity Decrease According to the Present Invention>
Next, the operation of the control program for realizing the capacity drop determination method according to the present invention will be described with reference to FIG.
[0023]
When execution of the control program is started by turning on the ignition switch IG of the automobile, the value of the index P indicating the polarization state and the integrated value I sum of the battery charge / discharge capacity are reset to zero in step 100.
[0024]
Next, the processing of steps 110 to 190 is performed every sampling period ΔT. In step 110, the detection current I of the current sensor 40, the detection voltage V of the voltage sensor 50, and the detection temperature T of the temperature sensor 60 are read. Then, in step 120, the battery charge / discharge capacity integrated value I sum is calculated according to the battery charge / discharge capacity integrated value I sum ' of the previous cycle and the detected current I read in step 110 based on the following equation.
[0025]
I sum = I sum ′ + I × ΔT
Here, the detection current I> 0 is charged and I <is discharged.
[0026]
Further, in step 130, the correction amount ΔVm of the adjustment voltage is calculated based on the integrated value I sum of the battery charge / discharge capacity obtained in step 120, for example, based on the map shown in FIG.
In the following step 140, the adjustment voltage Vm is calculated according to the adjustment voltage Vm ′ of the previous cycle and the adjustment amount ΔVm of the adjustment voltage calculated in step 130 based on the following equation.
[0027]
Vm = Vm ′ + ΔVm
When the calculated Vm is equal to or higher than a preset upper limit value, the upper limit value is changed. When the calculated Vm is lower than a preset lower limit value, the lower limit value is changed. By these processes, the charge / discharge balance of the secondary battery B is normally controlled to be zero, and energy loss due to overcharge of the battery can be reduced.
[0028]
In the subsequent step 150, the index P representing the polarization state is calculated according to the detected current I read in the step 110 based on the equation (1).
[0029]
When the index P is calculated in this way, in the subsequent step 160, it is determined whether the index P is larger than a predetermined value, for example, 400 (that is, whether the influence degree of the charge polarization is large) and the detected current I. Is greater than zero (ie, whether charging is in progress). If the determination is negative, the process proceeds to step 190, and if the determination is affirmative, the process proceeds to step 170.
[0030]
In step 170, it is determined whether or not the plot point of the detection voltage V with respect to the detection current I belongs to a region below the boundary for determining the capacity decrease shown in FIG. As shown in FIG. 4, the boundary line for determining the capacity reduction is prepared in advance according to the battery temperature, and the boundary line for determining the capacity decrease is determined according to the detected temperature T read in step 110 above. Selected. The method for setting the boundary for determining the capacity decrease will be described in detail later. If the determination in step 170 is negative, the process proceeds to step 190. If the determination is positive, the process proceeds to step 180.
[0031]
In step 180, it is determined that the battery capacity is decreasing, and in order to improve the recoverability of the charged state, the control proceeds to normal control in which charging is performed with the adjustment voltage set high, and the process proceeds to step 190. In this step 180, in order to improve the certainty of determination, it may be determined that the battery capacity is decreasing when the conditions of step 170 are continuously satisfied.
[0032]
In step 190, it is determined whether or not the ignition switch IG is turned off. If the determination is affirmative, the process ends. On the other hand, if the determination is negative, the processing after step 110 is repeated.
[0033]
<Determining the boundary line for capacity reduction judgment>
Next, a method for determining the boundary line for determining the capacity decrease shown in FIG. 4 will be described with reference to FIG. FIG. 5 is a diagram showing a voltage curve of the secondary battery with respect to the index P obtained by the equation 1 when a secondary battery (battery temperature 30 ° C., rated capacity 48 Ah) is charged with a constant current. FIG. 5A shows the result when charging with current Ia = 9.6 (A), and FIG. 5B shows the result when charging with current Ib = 24 (A). In addition, each figure of FIG. 5 shows respective voltage curves of secondary batteries (start SOC: 30%, 50%, 70%, 90%) having different battery charge states (hereinafter referred to as SOC). Yes.
[0034]
As shown in FIG. 5 (A) and FIG. 5 (B), when the charging current is Ia = 9.6 (A) or Ib = 24 (A), the index P It can be seen that the rate of increase in voltage decreases from around 400 (A · sec). In other words, when charging is continued, as a result, the SOC increases and the voltage increases. However, when the index P exceeds about 400 (A · sec), the secondary battery with an SOC of 50% or less has an SOC of 70% or more. It can be seen that the voltage rise is lower than that of the secondary battery.
[0035]
Here, a specific method for determining the boundary line for determining the capacity reduction is described in the case where the criterion for determining the battery capacity reduction is SOC 50% or less and the state of charge up to the maximum SOC 70% or less is allowed. As shown in FIG. 5A, in the range where the index P exceeds 400 (A · sec), the voltage curve related to SOC 70% and the voltage curve of SOC 50% or less can be partitioned by the line of voltage Va. Similarly, as shown in FIG. 5B, in the range where the index P exceeds 400 (A · sec), the voltage curve related to the SOC 70% and the voltage curve below the SOC 50% can be partitioned by the voltage Vb line. . These voltages Va and Vb may be the respective voltage values at P = 400 in the voltage curve relating to SOC 70% as shown in FIG. 5A and FIG. For example, when the determination is made in the range of 400 <P <500, the voltage value may be lower than the voltage value at P = 400.
[0036]
By connecting the voltages Va and Vb determined in this way as straight lines as determination voltages V threshold for the current values Ia and Ib, respectively, the boundary line for determining the capacity decrease at the battery temperature of 30 ° C. shown in FIG. 4 is obtained. . Note that the determination voltage V threshold for current values other than the current values Ia and Ib is a voltage value for the current value on the boundary for determining the capacity decrease. Similarly, the boundary line for each battery temperature as shown in FIG. 4 is obtained by changing the battery temperature. Therefore, the determination voltage V threshold is expressed by V threshold = f (I, T) using the current value I and the battery temperature T (see step 170 above).
[0037]
In this example, the boundary for determining the capacity decrease is obtained based on the respective determination voltages for the two current values Ia and Ib. However, for determining the capacity decrease based on the respective determination voltages for more current values. The boundary line may be obtained. Further, in this example, the boundary for determining the capacity reduction is determined on the assumption that the SOC is 50% or less and the maximum SOC is 70% or less. However, the detection target may be changed as necessary. Good.
[0038]
Next, reference will be made to the detection result of the capacity decrease of the secondary battery by the above-described control program using the boundary line for determining the capacity decrease set in this way (the boundary line where the detection target is SOC 50% or less). .
[0039]
FIG. 6 is a diagram in which the current and voltage during actual vehicle travel are measured in step 110 (see FIG. 2) of the above-described control program, and the measurement points are plotted for each sampling period ΔT. FIG. FIG. 6B shows the result of using a secondary battery of SOC 50%, and FIG. 6B shows the result of using a secondary battery of SOC 50%.
[0040]
As shown in FIG. 6 (A), some of the plot points at SOC 70% (small plot points marked with ◯) belonged to the region below the boundary for capacity reduction judgment, but the polarization state of the battery Since the plot point (plot point marked with ▲) that has an index P representing 400 does not belong to the region below the boundary for determining the decrease in capacity, it is determined that the capacity is decreased in step 180 above. Was not done. On the other hand, when the SOC is 50%, even plot points with an index exceeding 400 (plot points marked with ▲) belong to the region below the boundary for capacity reduction determination, as shown in FIG. In step 180, it is determined that the capacity has been reduced. From this result, it was confirmed that in the range of P> 400, it is possible to reliably detect a decrease in the state of charge that is 50% or less of the SOC by the boundary line for determining the capacity decrease set as described above.
[0041]
When the secondary battery is deteriorated, even if the SOC is 70% or more, in most cases, the voltage increase in the charge polarization state is reduced (for example, as shown in the voltage curve of SOC 50% in FIG. 5B). Therefore, it is predicted that the determination of capacity reduction is made in step 180 above. However, in this case, the capacity that can be actually taken out from the SOC 70% secondary battery is reduced. Therefore, the capacity remaining in the SOC 70% secondary battery is, for example, a new 50% SOC secondary battery. It can be considered to be substantially the same as the secondary battery, and is a safe determination.
[0042]
As described above, the present invention pays attention to the fact that the increase in voltage is suppressed even in the charge polarization state in which overvoltage occurs in the state of reduced capacity (charge state is 50% or less), and exceeds a predetermined value. If the detected charge current-voltage characteristic falls below the predetermined boundary line for capacity decrease determination in spite of the charge polarization state, the secondary battery can be Therefore, even when the battery is hardly discharged because of being connected in parallel, it is possible to detect a decrease in the capacity of the secondary battery.
[0043]
The “polarization state detecting means” described in the claims is realized by the microcomputer 70 executing step 150 of the control program described in the detailed description of the invention.
[0044]
The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added. For example, in the above-described embodiment, the index defined by the formula 1 is used to determine the polarization state. However, the index is not particularly limited to this formula, and the formula is changed. It is also possible to apply to the present invention, a formula derived from the same viewpoint, or a similar formula.
[0045]
【The invention's effect】
Since the present invention is as described above, the following effects can be obtained. According to the first aspect of the present invention, it is possible to detect a decrease in the capacity of the battery even in a state where the discharge is hardly performed.
[0046]
According to the invention of claim 2, the charge polarization state of the battery can be reliably detected at low cost. In addition, according to the invention of claim 3, 4 or 5, the secondary battery having a low state of charge utilizes the characteristic that the voltage value does not increase even when the influence of polarization exceeds a predetermined value. A decrease in the state of charge can be accurately detected.
[Brief description of the drawings]
FIG. 1 is a diagram showing a charging control system 90 for controlling charging of a vehicle battery.
FIG. 2 is a flowchart showing the operation of the microcomputer 70 according to the present invention.
FIG. 3 is a map prepared in advance for calculating an adjustment voltage correction amount ΔVm.
FIG. 4 is a diagram illustrating a boundary line for determining a capacity decrease.
FIG. 5 is a diagram showing a voltage curve of the secondary battery with respect to the index P. FIG. 5 (A) shows a result when charging is performed with a current Ia = 9.6 (A). 5 (B) shows the result when the current Ib = 24 (A) is charged.
FIG. 6 is a diagram showing a detection result of capacity decrease by a control program according to the present invention, FIG. 6 (A) shows a result of SOC 70%, and FIG. 6 (B) shows a result of SOC 50%. Indicates.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 AC generator 20 Rectifier 30 Regulator 40 Current sensor 50 Voltage sensor 60 Temperature sensor 70 Microcomputer 90 Charge control system B Secondary battery L Electrical load

Claims (5)

二次電池の電圧値を検出する電圧検出手段と、上記二次電池の電流値を検出する電流検出手段とを含む二次電池用充電状態検出装置であって、
上記二次電池の分極により該二次電池の電流−電圧特性が受ける影響度合いを検出する分極状態検出手段と
上記分極の影響度合いが所定値以上となる充電分極状態を検出する充電分極状態検出手段と、
上記二次電池が充電中である状態を検出する充電中状態検出手段とを更に含み、
上記充電分極状態且つ上記充電中状態での上記二次電池の電圧値及び電流値を用いて、上記二次電池の充電状態を判断することを特徴とする、二次電池用充電状態検出装置。
A charging state detection device for a secondary battery, comprising: voltage detection means for detecting a voltage value of the secondary battery; and current detection means for detecting the current value of the secondary battery,
Polarization state detection means for detecting the degree of influence of the current-voltage characteristics of the secondary battery due to the polarization of the secondary battery ;
Charge polarization state detection means for detecting a charge polarization state in which the degree of influence of the polarization is a predetermined value or more;
And a charging state detection means for detecting a state where the secondary battery is being charged ,
A charging state detection device for a secondary battery, wherein the charging state of the secondary battery is determined using a voltage value and a current value of the secondary battery in the charging polarization state and the charging state.
上記分極状態検出手段は、上記二次電池の充放電履歴から上記二次電池の分極の影響度合いを推定する、請求項1記載の二次電池用充電状態検出装置。  The charge state detection device for a secondary battery according to claim 1, wherein the polarization state detection means estimates an influence degree of polarization of the secondary battery from a charge / discharge history of the secondary battery. 上記充電分極状態且つ上記充電中状態での上記二次電池の電圧値と、このときの電流値に依存する所定の閾値とを比較することにより、上記二次電池の充電状態を判断する、請求項1又は2記載の二次電池用充電状態検出装置。 The charging state of the secondary battery is determined by comparing the voltage value of the secondary battery in the charging polarization state and the charging state with a predetermined threshold value depending on the current value at this time. Item 3. The secondary battery charge state detection device according to Item 1 or 2. 交流発電機及びこの交流発電機の出力電圧を調整するレギュレータを搭載する車両に装備され上記レギュレータの調整のもとに充放電される二次電池の電圧値を検出する電圧検出手段と、上記二次電池の電流値を検出する電流検出手段と、上記二次電池の温度を検出する温度検出手段とを含む二次電池用充電状態検出装置であって、
上記二次電池の分極により該二次電池の電流−電圧特性が受ける影響度合いを検出する分極状態検出手段と
上記分極の影響度合いが所定値以上となる充電分極状態を検出する充電分極状態検出手段と、
上記二次電池が充電中である状態を検出する充電中状態検出手段とを更に含み、
上記充電分極状態且つ上記充電中状態での上記二次電池の電圧値と、このときの電流値及び温度に依存する所定の閾値とを比較することにより、上記二次電池の充電状態を判断すること特徴とする、二次電池用充電状態検出装置。
A voltage detection means for detecting a voltage value of a secondary battery mounted on a vehicle equipped with an alternator and a regulator for regulating the output voltage of the alternator, and charged and discharged under the regulation of the regulator; A secondary battery charge state detection device including current detection means for detecting a current value of the secondary battery and temperature detection means for detecting the temperature of the secondary battery,
Polarization state detection means for detecting the degree of influence of the current-voltage characteristics of the secondary battery due to the polarization of the secondary battery ;
Charge polarization state detection means for detecting a charge polarization state in which the degree of influence of the polarization is a predetermined value or more;
And a charging state detection means for detecting a state where the secondary battery is being charged ,
The charging state of the secondary battery is determined by comparing the voltage value of the secondary battery in the charging polarization state and the charging state with a predetermined threshold value depending on the current value and temperature at this time. A charge state detection device for a secondary battery, characterized in that.
上記比較結果が、所定回数連続して同一となる場合に、上記二次電池の充電状態の低下を検知する、請求項4記載の二次電池用充電状態検出装置。  The charged state detection device for a secondary battery according to claim 4, wherein when the comparison result is the same continuously for a predetermined number of times, a decrease in the charged state of the secondary battery is detected.
JP2002138785A 2002-05-14 2002-05-14 Secondary battery charge state detection device Expired - Fee Related JP4112895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138785A JP4112895B2 (en) 2002-05-14 2002-05-14 Secondary battery charge state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138785A JP4112895B2 (en) 2002-05-14 2002-05-14 Secondary battery charge state detection device

Publications (2)

Publication Number Publication Date
JP2003331931A JP2003331931A (en) 2003-11-21
JP4112895B2 true JP4112895B2 (en) 2008-07-02

Family

ID=29700132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138785A Expired - Fee Related JP4112895B2 (en) 2002-05-14 2002-05-14 Secondary battery charge state detection device

Country Status (1)

Country Link
JP (1) JP4112895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12025671B2 (en) 2020-07-31 2024-07-02 Lg Energy Solution, Ltd. Overvoltage characteristics evaluation apparatus and method for battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969943B2 (en) 2006-08-10 2012-07-04 株式会社デンソー Battery charge / discharge current detector
FR2942882A1 (en) * 2009-03-09 2010-09-10 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING THE CHARGE STATE OF AN ELECTROCHEMICAL SOURCE FOR THE ELECTRICAL TRACTION OF VEHICLES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12025671B2 (en) 2020-07-31 2024-07-02 Lg Energy Solution, Ltd. Overvoltage characteristics evaluation apparatus and method for battery

Also Published As

Publication number Publication date
JP2003331931A (en) 2003-11-21

Similar Documents

Publication Publication Date Title
JP6384412B2 (en) Power supply
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
US6621250B1 (en) Battery capacity measuring and remaining capacity calculating system
JP4952808B2 (en) Lithium deposition discrimination device for lithium ion secondary battery, method thereof, and vehicle equipped with the device
US12061241B2 (en) Rechargeable battery short circuit early detection device and rechargeable battery short circuit early detection method
US10286789B2 (en) Secondary battery charging system with allowable voltage zone and method thereof
US20020113595A1 (en) Battery control method for hybrid vehicle
JP4959511B2 (en) Charge control device for storage battery
JP4700644B2 (en) Lead battery charge control device
JP4112895B2 (en) Secondary battery charge state detection device
JP3891845B2 (en) Charge control device for secondary battery for vehicle
JP4076211B2 (en) Secondary battery internal resistance detection device and charge control system using the same
JP2003338325A (en) Method of determining deteriorated condition of storage battery and method of charging it
JP3475894B2 (en) Apparatus for determining full charge of vehicle secondary battery and apparatus for calculating remaining capacity
US8994324B2 (en) Charge capacity parameter estimation system of electric storage device
JPH10319100A (en) Battery charging state detecting device
JP6699533B2 (en) Battery system
JP2000123886A (en) Full charge determination device of secondary battery for vehicle
JP5081722B2 (en) Charge control device for secondary battery
JP3628912B2 (en) Battery charge state detection device
JP2004179097A (en) Uniform charging system of lead battery
JP2002048848A (en) Remaining capacity detector for accumulator
JPH06351166A (en) Charging controller for vehicle
JP2004254365A (en) Method and apparatus for charging battery
JP3391206B2 (en) Method for estimating initial value of regenerable power

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees