JP4112868B2 - Air conditioning system - Google Patents
Air conditioning system Download PDFInfo
- Publication number
- JP4112868B2 JP4112868B2 JP2002011073A JP2002011073A JP4112868B2 JP 4112868 B2 JP4112868 B2 JP 4112868B2 JP 2002011073 A JP2002011073 A JP 2002011073A JP 2002011073 A JP2002011073 A JP 2002011073A JP 4112868 B2 JP4112868 B2 JP 4112868B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- air conditioning
- air
- room
- measuring means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Air Conditioning Control Device (AREA)
Description
【0001】
【発明の属する技術の分野】
本発明は、例えば、ビルや病院などの建家内の冷暖房を行う空調システムに関する。
【0002】
【従来の技術】
一般に、ビルの空調システムにおける部屋温度の制御方式には、部屋の温度を測定してこれが目標値になるように、熱源機が製造する冷水または温水の流量を制御する定風量制御方式(CAV方式)と、冷水または温水の水量は一定で風量を変える可変風量制御方式(VAV方式)とがある。また、両者を組み合わせたハイブリッド方式もある。
【0003】
定風量制御方式では、冷水(温水)の流量を制御するために水循環系にポンプとバルブとを設け、ポンプは一定回転数で水を送り出す一方、バルブで所望の流量に調節する。この定風量制御方法ではポンプ動力が中問負荷のときに無駄になるので、近年ではバルブではなくインバータ制御ポンプにより流量制御が行われる場合が増えてきた。
【0004】
一方、可変流量制御方式では空調ファンが一定回転数で空気を循環させ、その空気流量をダンパーで調節するものである。この空気の流量調節により室温を目標値に制御する。この場合も省エネルギーの観点からダンパーではなくインバータ制御ファンにて空気流量を制御することが近年行われるようになっている。
【0005】
このように、従来の空調システムの制御では、部屋温度のフィードバックによりバルブやダンパーを制御し、または、インバータ制御ポンプやインバータ制御ファンを制御することにより、部屋温度を所定の値に制御している。
【0006】
一方、冷却塔は熱源機の発生する熱を大気中に放散するための装置であるが、従来は一定温度の冷却水を製造するように制御されている。空調用では一般的に約32℃程度である。
【0007】
【発明が解決しようとする課題】
ところが、従来の空調システムでは、水流量または空気流量のみを操作して室温を制御しているので、必ずしも最もエネルギー消費が少ない状態で運用されるとは限らない。
【0008】
冷水戻り温度と冷凍機成績係数(COP)との間、ファンやポンプに関し、その流量と所要動力との間には密接な相関関係がある。冷水戻り温度は一般的には高いほうが冷凍機成績係数(COP)は高くなる。また、ファンやポンプの所要動力は良く知られているように流量の3乗に比例する。特に、インバータ制御ファンとインバータ制御ポンプとを備えた空調システムでは、水流量と空気流量とをどのようにも調節可能であるが、室温のみにより制御しているので、必ずしも最もエネルギー消費が少ない点で運用されるとは限らなかった。
【0009】
いま、図3に示すような空調システムを考える。熱源機である冷凍機1の温度をTr、その基準温度をTr0、ポンプ2による冷却流量をFW、その基準流量をFW0、ポンプ2の動力をPpump、その基準動力をPpump0、空調コイル3の温度をTc、その基準温度をTc0、ファン4による空調風量をFa、その基準風量をFa0、ファン4の動力をPfan、その基準動力をPfan0室内5の室内温度をTa、その基準温度をTa0とする。
【0010】
ポンプ2の動力Ppumpの関係式は(1)式に示され、ファン4の動力Pfanの関係式は(2)式で示される。また、ポンプ2の動力とファン4の動力との合計f(Tc)を(3)式に示す。
【0011】
【数1】
(1)式に示されるように、ポンプ2の動力Ppumpは流量FWの3乗に比例し、また必要流量は負荷が変わらなければ温度差に反比例する。同様に、ファン4の動力Pfanも、(2)式に示すように流量Faの3乗に比例し、また必要流量は負荷が変わらなければ温度差に反比例する。
【0012】
図4は、(3)式のポンプ2の動力とファン4の動力との合計f(Tc)を空調コイル温度Tcについてプロットした特性図である。図4に示すように、総動力f(Tc)は空調コイル温度Tcにより大きく変化する。
【0013】
しかるに、従来の空調システムでは部屋温度のみによりポンプ2またはファン4の制御を行っているので、ポンプ2の動力およびファン4の動力の両者の最小化は考慮されておらず、例えば、運用点1にて運用されていた。
【0014】
一方、冷却塔の製造する冷却水に関しても、冷却水温度が低いほど冷凍機1の成績係数(COP)は改善しその消費動力は低減するが、冷却水温度を低くするためには冷却塔ファンの消費動力が増大するという特性を有する。
【0015】
図5は、熱源機(冷凍機)がガス炊きボイラによる蒸気吸収式冷凍機である場合の冷却水温度に対する冷却塔ファンの消費動力(電力消費量)およびガス消費量の関係を示す特性図である。図5から明らかなように、冷却水温度によりガスおよび電気の総合動力コストは変化する。特に、時間帯により電気料金は大きく変化するので、従来の一定冷却水温度制御では動力コストが最小化されないという問題があった。
【0016】
本発明の目的は、最適な省エネルギー化を図った空調運転を行うことができる空調システムを提供することである。
【0017】
【課題を解決するための手段】
請求項1の発明に係る空調システムは、冷水または温水を生産する熱源機と、熱源機で生産された冷水または温水の熱を空気に熱交換する空調コイルと、熱源機と空調コイルとの間の水循環を受け持つインバータ制御ポンプと、部屋と空調コイルとの間の空気循環を担当するインバータ制御ファンと、部屋の温度を測定する室温測定手段と、空調コイルの温度を測定する空調コイル温度測定手段と、部屋温度があらかじめ定めた設定温度になるようにインバータ制御ファンを制御すると共に前記空調コイル温度の関数で示される前記インバータ制御ファンと前記インバータ制御ポンプとの合計動力が最小となる空調コイル温度をあらかじめ空調コイル温度の設定値として求めておき前記空調コイル温度がその設定値となるようにインバータ制御ポンプを制御するコントローラとを備えたことを特徴とする。
【0018】
請求項1の発明に係る空調システムにおいては、熱源機で生産された冷水または温水の熱を空調コイルで空気に熱交換し、その空気を部屋に供給する。コントローラは、室温測定手段で測定した部屋温度があらかじめ定めた設定温度になるようにインバータ制御ファンを制御すると共に、
インバータ制御ファンとインバータ制御ポンプとの合計動力が最小になる空調コイル温度をその設定値として求め空調コイル温度がその設定値となるようにインバータ制御ポンプを制御する。これにより、インバータ制御ポンプとインバータ制御ファンとの総合動力が最小化になるように制御する。
【0019】
請求項2の発明に係る空調システムは、請求項1の発明において、空調コイル温度測定手段に代えて、戻り温度測定手段により冷水または温水の熱源機への戻り温度を測定し、コントローラは、戻り温度測定手段で測定された熱源機への冷水または温水の戻り温度に基づいてインバータ制御ポンプを制御することを特徴とする。
【0020】
請求項2の発明に係る空調システムにおいては、請求項1の発明の作用に加え、コントローラは、戻り温度測定手段で測定された熱源機への冷水または温水の戻り温度に基づいてインバータ制御ポンプを制御する。これにより、空調コイル温度測定手段を新たに設ける必要がなく、インバータ制御ポンプとインバータ制御ファンとの総合動力が最小化になるように制御できる。
【0021】
請求項3の発明に係る空調システムは、請求項1の発明において、空調コイル温度測定手段に代えて、空気の部屋への噴出温度を測定する部屋噴出温度測定手段を設け、コントローラは、部屋噴出温度測定手段で測定された空気の部屋への噴出温度に基づいてインバータ制御ポンプを制御することを特徴とする。
【0022】
請求項3の発明に係る空調システムにおいては、請求項1の発明の作用に加え、コントローラは、部屋噴出温度測定手段で測定された空気の部屋への噴出温度に基づいてインバータ制御ポンプを制御する。この場合、コントローラは空気噴出温度と空調コイル温度との差について補正して制御する。これにより、インバータ制御ポンプとインバータ制御ファンとの総合動力が最小化になるように制御できる。
【0025】
請求項4の発明に係る空調システムは、請求項1の発明において、熱源機は冷却塔を備えたガス式吸収式冷凍機であり、コントローラは、電気料金またはあらかじめ設定されたタイムスケジュールに応じて、冷却塔の冷却水温度の設定値を変更することを特徴とする。
【0026】
請求項4の発明に係る空調システムにおいては、請求項1の発明の作用に加え、コントローラは、電気料金またはあらかじめ設定されたタイムスケジュールに応じて、ガス式吸収式冷凍機の冷却塔の冷却水温度の設定値を変更する。これにより、効率的にガス式吸収式冷凍機を運転できる。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わる空調システムの構成図である。熱源機である冷凍機1は冷水を発生し、ポンプ2により冷水流量が調整されて空調コイル3に供給される。ポンプ2はインバータ6aで駆動制御されるインバータ制御ポンプである。このインバータ6aはコントローラ7により制御される。
【0028】
空調コイル3は冷凍機1からの冷水を空気と熱交換する。空調コイル3で熱交換された空気は、ファン4により風量が制御されて室内5に供給される。ファン4はインバータ6bで駆動制御されるインバータ制御ファンである。このインバータ6bはコントローラ7により制御される。
【0029】
また、室内5の部屋温度Taを測定する室温測定手段8が設けられ、この室温測定手段8で測定された部屋温度Taはコントローラ7に入力される。さらに、空調コイル3の空調コイル温度Tcを測定する空調コイル温度測定手段9が設けられ、この空調コイル温度測定手段9で測定された空調コイル温度Tcもコントローラ7に入力される。コントローラ7は、部屋温度Taがあらかじめ定めた設定温度になるようにインバータ6bを介してインバータ制御ファン4を制御すると共に、空調コイル温度Tcがあらかじめ定めた設定温度になるようにインバータ6aを介してインバータ制御ポンプ2を制御する。
【0030】
すなわち、コントローラ7は、部屋温度Taと空調コイル温度Tcとを入力信号とし、ポンプ2とファン4とをインバータ6a、6bにより制御する。コントローラ7のアルゴリズムは、PID制御器が2個備わったものであり、1つは部屋温度Taの設定値からの偏差が零になるようにファン動力を制御し、他方は空調コイル温度Tcが所定値になるようにポンプ動力を制御する。空調コイル温度Tcの設定値は、総合動力が最小になるように以下の(4)式により求める。
【0031】
【数2】
一般に、空調コイル3は一つのビルに多数あり、その各々について(4)式にて温度設定値を決定することになる。このように、空調コイル3の温度Tcを測定する空調コイル温度測定手段9を設け、部屋温度Taと共に、ポンプ2とファン4の流量制御により各々の温度が目標値になるように調節する。この場合、空調コイル3の温度設定値は、ポンプ2とファン4の総合動力を最小化(図4における運転点2)するように決定する。
【0032】
ここで、空調コイル温度測定手段9に代えて、冷水または温水の熱源機への戻り温度を測定する戻り温度測定手段を設け、インバータ制御ポンプ戻り温度測定手段で測定された冷凍機1への冷水または温水の戻り温度に基づいてインバータ制御ポンプ2を制御することも可能である。冷凍機1の戻り水温とした場合には、元々戻り水温を検出する戻り温度測定手段は冷却水の温度制御のために設けられているので、新たに空調コイル温度測定手段9を設ける必要がなく、最適な省エネルギー化を図った空調が可能となる。
【0033】
また、空調コイル温度測定手段9に代えて、空気の部屋への噴出温度を測定する部屋噴出温度測定手段を設け、部屋噴出温度測定手段で測定された空気の部屋への噴出温度に基づいてインバータ制御ポンプ2を制御することも可能である。この場合には、空気噴出温度と空調コイル温度Tcとの差についてあらかじめ補正しておくことになる。
【0034】
一方、部屋温度Taと空調コイル温度Tcとを同時にファン4とポンプ2とを使って制御する多入出力アルゴリズムをコントローラ7に採用することもできる。この場合の多入出力アルゴリズムの代表例としてはモデル予測制御アルゴリズムがある。
【0035】
図2は、熱源機として電動機ファンを持つ冷却塔を備えたガス式吸収式冷凍機を有する空調システムでの冷却水温度のタイムスケジュールの一例の特性図である。図2では、夏の冷却水温度のタイムスケジュールを設定した場合を示している。夏場は相対的にガスの値段が安く、昼間の重負荷時の電気代が高いので、図2に示すように、昼間の重負荷時にガスを多く使用する設定が最適設定となる。一方、冬場は、相対的にガスの値段が高いことと容易に冷却水温度が下げられることから、対応した低い冷却水温度にするのが最適なタイムスケジュールとなる。
【0036】
このように、電気料金またはガス料金を考慮してあらかじめタイムスケジュールを設定する。例えば、冷水温度の設定温度が、与えられた電気料金に対して冷却塔動力と冷凍機動力または供給蒸気エネルギー、または供給ガス熱量の和を最小化するように決める。そして、コントローラ7は、設定されたタイムスケジュールに応じて、冷却塔の冷却水温度の設定値を変更して制御する。
【0037】
このように、電気料金の時間変化に応じて、冷却塔の電動ファン動力費用と冷凍機1の所要動力費用との和が最小になるように冷却水温度を制御する。
【0038】
【発明の効果】
以上述べたように、本発明によれば、空調コイルの温度制御により、最適な省エネルギー化を図った空調運転が可能となる。また、冷却水温度と所要電力および所要ガスを考慮に入れた時間帯による冷却水の最適なタイムスケジューリングにより、コストが最もかからないように最適運転を行うことができるので、大幅なコスト低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係わる空調システムの構成図。
【図2】本発明の実施の形態における熱源機として電動機ファンを持つ冷却塔を備えたガス式吸収式冷凍機を有する空調システムでの冷却水温度のタイムスケジュールの一例の特性図。
【図3】従来の空調システムの構成図。
【図4】空調システムにおけるポンプ動力とファン動力との合計を空調コイル温度についてプロットした特性図。
【図5】空調システムの冷凍機がガス炊きボイラによる蒸気吸収式冷凍機である場合の冷却水温度に対する冷却塔ファンの消費動力(電力消費量)およびガス消費量の関係を示す特性図。
【符号の説明】
1…冷凍機、2…ポンプ、3…空調コイル、4…ファン、5…室内、6…インバータ、7…コントローラ、8…室温測定手段、9…空調コイル温度測定手段[0001]
[Field of the Invention]
The present invention relates to an air conditioning system that performs cooling and heating in a building such as a building or a hospital.
[0002]
[Prior art]
In general, a room temperature control method in a building air conditioning system is a constant air volume control method (CAV method) that controls the flow rate of cold water or hot water produced by a heat source device so that the temperature of a room is measured and becomes a target value. ) And a variable air volume control method (VAV method) in which the amount of cold water or hot water is constant and the air volume is changed. There is also a hybrid system combining both.
[0003]
In the constant air flow rate control method, a pump and a valve are provided in the water circulation system to control the flow rate of cold water (hot water), and the pump sends out water at a constant rotation speed while adjusting the flow rate to a desired value with the valve. In this constant air flow rate control method, the pump power is wasted when the load is moderate, and in recent years, the flow control is performed not by a valve but by an inverter control pump.
[0004]
On the other hand, in the variable flow rate control system, the air conditioning fan circulates air at a constant rotation speed and adjusts the air flow rate with a damper. The room temperature is controlled to the target value by adjusting the air flow rate. Also in this case, in recent years, the air flow rate is controlled by an inverter control fan instead of a damper from the viewpoint of energy saving.
[0005]
As described above, in the control of the conventional air conditioning system, the room temperature is controlled to a predetermined value by controlling the valve and the damper by feedback of the room temperature, or by controlling the inverter control pump and the inverter control fan. .
[0006]
On the other hand, the cooling tower is a device for dissipating the heat generated by the heat source device into the atmosphere, but conventionally it is controlled so as to produce cooling water at a constant temperature. For air conditioning, it is generally about 32 ° C.
[0007]
[Problems to be solved by the invention]
However, since the conventional air conditioning system controls the room temperature by operating only the water flow rate or the air flow rate, it is not always operated in a state where the energy consumption is the least.
[0008]
There is a close correlation between the cold water return temperature and the coefficient of performance (COP) of the refrigerator, and the flow rate and required power for fans and pumps. Generally, the higher the cold water return temperature, the higher the refrigerator coefficient of performance (COP). The required power of the fan or pump is proportional to the cube of the flow rate as is well known. In particular, in an air conditioning system equipped with an inverter control fan and an inverter control pump, the water flow rate and air flow rate can be adjusted in any way. It was not necessarily operated by.
[0009]
Now consider an air conditioning system as shown in FIG. The temperature of the refrigerator 1 as a heat source device is Tr, the reference temperature is Tr 0 , the cooling flow rate by the
[0010]
The relational expression of the power P pump of the
[0011]
[Expression 1]
As shown in the equation (1), the power P pump of the pump 2 is proportional to the cube of the flow rate FW , and the required flow rate is inversely proportional to the temperature difference unless the load changes. Similarly, the power P fan of the fan 4 is also proportional to the cube of the flow rate Fa as shown in the equation (2), and the required flow rate is inversely proportional to the temperature difference unless the load changes.
[0012]
FIG. 4 is a characteristic diagram in which the total f (Tc) of the power of the
[0013]
However, in the conventional air conditioning system, since the
[0014]
On the other hand, as for the cooling water produced by the cooling tower, the coefficient of performance (COP) of the refrigerator 1 is improved and the power consumption is reduced as the cooling water temperature is lower. It has the characteristic that the power consumption increases.
[0015]
FIG. 5 is a characteristic diagram showing the relationship between the cooling tower fan power consumption (electric power consumption) and gas consumption amount with respect to the cooling water temperature when the heat source machine (refrigeration machine) is a steam absorption refrigerator using a gas-fired boiler. is there. As is apparent from FIG. 5, the total power cost of gas and electricity varies depending on the cooling water temperature. In particular, since the electricity rate varies greatly depending on the time of day, there is a problem that the power cost is not minimized by the conventional constant cooling water temperature control.
[0016]
The objective of this invention is providing the air-conditioning system which can perform the air-conditioning driving | operation which aimed at the optimal energy saving.
[0017]
[Means for Solving the Problems]
An air conditioning system according to a first aspect of the present invention includes a heat source machine that produces cold water or hot water, an air conditioning coil that exchanges heat of the cold water or hot water produced by the heat source machine with air, and a space between the heat source machine and the air conditioning coil. Inverter control pump responsible for water circulation, inverter control fan in charge of air circulation between the room and the air conditioning coil, room temperature measuring means for measuring the temperature of the room, and air conditioning coil temperature measuring means for measuring the temperature of the air conditioning coil And the air-conditioning coil temperature that controls the inverter control fan so that the room temperature becomes a predetermined set temperature and the total power of the inverter control fan and the inverter control pump indicated by a function of the air-conditioning coil temperature is minimized. the setting value so as to inverter system the conditioned coil temperature advance required as a preset value of the air-conditioning coil temperature Characterized by comprising a controller for controlling the pump.
[0018]
In the air conditioning system according to the first aspect of the present invention, the heat of cold water or hot water produced by the heat source machine is heat-exchanged to air by the air conditioning coil, and the air is supplied to the room. The controller controls the inverter control fan so that the room temperature measured by the room temperature measurement means becomes a predetermined set temperature,
The air conditioning coil temperature at which the total power of the inverter control fan and the inverter control pump is minimized is obtained as the set value, and the inverter control pump is controlled so that the air conditioning coil temperature becomes the set value. Thus, control is performed so that the total power of the inverter control pump and the inverter control fan is minimized.
[0019]
The air conditioning system according to a second aspect of the present invention is the air conditioning system according to the first aspect of the invention, wherein the return temperature measuring means measures the return temperature of the cold water or hot water to the heat source device instead of the air conditioning coil temperature measuring means, and the controller The inverter control pump is controlled based on the return temperature of cold water or hot water to the heat source unit measured by the temperature measuring means.
[0020]
In the air conditioning system according to the invention of
[0021]
According to a third aspect of the present invention, there is provided an air conditioning system according to the first aspect of the present invention, wherein instead of the air conditioning coil temperature measuring means, a room ejection temperature measuring means for measuring an ejection temperature of air into the room is provided. The inverter control pump is controlled based on the temperature of air jetted into the room measured by the temperature measuring means.
[0022]
In the air conditioning system according to the invention of
[0025]
According to a fourth aspect of the present invention, there is provided an air conditioning system according to the first aspect of the present invention, wherein the heat source device is a gas absorption refrigeration machine provided with a cooling tower, and the controller is in accordance with an electricity rate or a preset time schedule. The setting value of the cooling water temperature of the cooling tower is changed.
[0026]
In the air conditioning system according to the invention of claim 4 , in addition to the operation of the invention of claim 1, the controller is configured to provide cooling water for the cooling tower of the gas absorption refrigerating machine in accordance with an electricity rate or a preset time schedule. Change the temperature setting. Thereby, a gas absorption refrigerating machine can be operated efficiently.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of an air conditioning system according to an embodiment of the present invention. The refrigerator 1 serving as a heat source device generates cold water, and the flow rate of the cold water is adjusted by a
[0028]
The
[0029]
Further, room temperature measuring means 8 for measuring the room temperature Ta in the
[0030]
That is, the
[0031]
[Expression 2]
In general, there are many air conditioning coils 3 in one building, and the temperature setting value is determined by the equation (4) for each of them. In this way, the air conditioning coil temperature measuring means 9 for measuring the temperature Tc of the
[0032]
Here, instead of the air conditioning coil temperature measuring means 9, a return temperature measuring means for measuring the return temperature to the heat source machine of cold water or hot water is provided, and the cold water to the refrigerator 1 measured by the inverter control pump return temperature measuring means is provided. Alternatively, the
[0033]
Further, in place of the air conditioning coil temperature measuring means 9, room ejection temperature measuring means for measuring the air ejection temperature into the room is provided, and the inverter is based on the air ejection temperature into the room measured by the room ejection temperature measuring means. It is also possible to control the
[0034]
On the other hand, a multi-input / output algorithm for simultaneously controlling the room temperature Ta and the air conditioning coil temperature Tc by using the fan 4 and the
[0035]
FIG. 2 is a characteristic diagram of an example of a time schedule of cooling water temperature in an air conditioning system having a gas absorption chiller including a cooling tower having an electric fan as a heat source. FIG. 2 shows a case where a time schedule for the summer cooling water temperature is set. In summer, the price of gas is relatively low, and the electricity cost during heavy loads during the day is high. Therefore, as shown in FIG. 2, a setting that uses a large amount of gas during heavy loads during the day is the optimum setting. On the other hand, in winter, the gas schedule is relatively expensive, and the cooling water temperature can be easily lowered. Therefore, the optimum time schedule is to set the cooling water temperature to a corresponding low temperature.
[0036]
In this way, the time schedule is set in advance in consideration of the electricity charge or the gas charge. For example, the set temperature of the cold water temperature is determined so as to minimize the sum of the cooling tower power and the refrigerator power or the supply steam energy, or the supply gas heat quantity for a given electricity rate. And the
[0037]
In this way, the coolant temperature is controlled so that the sum of the electric fan power cost of the cooling tower and the required power cost of the refrigerator 1 is minimized in accordance with the time change of the electricity rate.
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to perform an air conditioning operation that achieves optimum energy saving by controlling the temperature of the air conditioning coil. In addition, the optimal time scheduling of the cooling water in the time zone that takes into consideration the cooling water temperature, the required power, and the required gas makes it possible to perform the optimal operation so that the cost is not the least, so the cost can be greatly reduced. Can do.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an air conditioning system according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram of an example of a time schedule of cooling water temperature in an air conditioning system having a gas absorption refrigerator having a cooling tower having an electric motor fan as a heat source in the embodiment of the present invention.
FIG. 3 is a configuration diagram of a conventional air conditioning system.
FIG. 4 is a characteristic diagram in which the sum of pump power and fan power in an air conditioning system is plotted with respect to the air conditioning coil temperature.
FIG. 5 is a characteristic diagram showing the relationship between the cooling tower fan power consumption (electric power consumption) and the gas consumption amount with respect to the cooling water temperature when the refrigerator of the air conditioning system is a steam absorption refrigerator using a gas-fired boiler.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Refrigerator, 2 ... Pump, 3 ... Air conditioning coil, 4 ... Fan, 5 ... Indoor, 6 ... Inverter, 7 ... Controller, 8 ... Room temperature measuring means, 9 ... Air conditioning coil temperature measuring means
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002011073A JP4112868B2 (en) | 2002-01-21 | 2002-01-21 | Air conditioning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002011073A JP4112868B2 (en) | 2002-01-21 | 2002-01-21 | Air conditioning system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003214685A JP2003214685A (en) | 2003-07-30 |
JP4112868B2 true JP4112868B2 (en) | 2008-07-02 |
Family
ID=27648635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002011073A Expired - Lifetime JP4112868B2 (en) | 2002-01-21 | 2002-01-21 | Air conditioning system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4112868B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7010341B1 (en) | 2020-07-29 | 2022-01-26 | フジテック株式会社 | Elevator, control panel, elevator control method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4794883B2 (en) * | 2005-03-29 | 2011-10-19 | 東洋熱工業株式会社 | Air conditioning unit |
JP5183291B2 (en) * | 2008-04-22 | 2013-04-17 | 株式会社Nttファシリティーズ | Rack air conditioning system and operation method thereof, rack type air conditioner |
CN102418965B (en) * | 2011-09-16 | 2013-06-05 | 浙江大学 | Multifunctional frequency conversion central air-conditioning experimental platform |
CN105509411B (en) * | 2016-01-29 | 2018-02-13 | 合肥美的电冰箱有限公司 | A kind of controlling method for refrigerator system and refrigerator |
-
2002
- 2002-01-21 JP JP2002011073A patent/JP4112868B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7010341B1 (en) | 2020-07-29 | 2022-01-26 | フジテック株式会社 | Elevator, control panel, elevator control method |
Also Published As
Publication number | Publication date |
---|---|
JP2003214685A (en) | 2003-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4936961B2 (en) | Air conditioning system controller | |
EP1375216B1 (en) | Vehicle control system | |
JP4166051B2 (en) | Air conditioning system | |
JPS63150551A (en) | Air-conditioning system and control method of speed of compressor and speed of motor in said system | |
CN104613593A (en) | Air conditioner and electric heating control method thereof | |
JP5583897B2 (en) | Cooling tower and heat source system | |
EP2610558A2 (en) | Heat pump apparatus and control method of heat pump system | |
US20150122473A1 (en) | Vehicle air conditioner | |
CN103776213B (en) | Heat pump and its control method | |
JP5082585B2 (en) | Air conditioning system | |
JP2001248937A (en) | Heat pump hot water supply air conditioner | |
CN107781946A (en) | The heat-production control method of convertible frequency air-conditioner | |
CN1325849C (en) | Air conditioner with constant air outlet temperature and control method therefor | |
JP4112868B2 (en) | Air conditioning system | |
JP3770223B2 (en) | Heating system and housing with heating system | |
CN111023414B (en) | Air conditioning system and dehumidification control method | |
JPH0128299B2 (en) | ||
WO2019193686A1 (en) | Air conditioning system control device, outdoor unit, relay device, heat source device, and air conditioning system | |
KR101274512B1 (en) | Bldc motor type air conditioner control unit | |
JPH024152A (en) | Air conditioner | |
JPS6345023B2 (en) | ||
JP2635976B2 (en) | Stirling heat engine driven heat pump | |
JP2012112649A (en) | Air conditioning system | |
JP5286324B2 (en) | Heating / cooling temperature controller | |
KR20190030816A (en) | Movable industrial air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060919 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070710 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070907 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071225 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080408 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080410 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4112868 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |