JP4111218B2 - Electron beam image processing method and apparatus - Google Patents
Electron beam image processing method and apparatus Download PDFInfo
- Publication number
- JP4111218B2 JP4111218B2 JP2005333561A JP2005333561A JP4111218B2 JP 4111218 B2 JP4111218 B2 JP 4111218B2 JP 2005333561 A JP2005333561 A JP 2005333561A JP 2005333561 A JP2005333561 A JP 2005333561A JP 4111218 B2 JP4111218 B2 JP 4111218B2
- Authority
- JP
- Japan
- Prior art keywords
- electron beam
- secondary electrons
- digital image
- detector
- image processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
本発明は、半導体装置や液晶などの回路パターンを有する基板製造装置にかかわり、特に製造途中の基板のパターンをSEMを用いて検査する技術に関する。 The present invention relates to a substrate manufacturing apparatus having a circuit pattern such as a semiconductor device or a liquid crystal, and more particularly to a technique for inspecting a pattern of a substrate being manufactured using an SEM.
従来の電子線式パターン検査装置には、例えば、特開平5−258703号公報に記載されているものがある。この特開平5−258703号公報に記載されている電子線式パターン検査装置の例を、図1に示す。電子線1からの電子線2を偏向器3でX方向に偏向し、対物レンズ4を介して対象物基板5に照射し、同時にステージ6をY方向に連続で移動させながら、対象物基板5からの二次電子7(一次電子ビームを照射することにより試料から発生する二次電子と反射電子とを含めて、二次電子と記す)をE×B偏向器(以下、単にE×Bと記す)13で曲げ、検出器8で検出、プリアンプ14で増幅した後、検出信号をA/D変換器9でA/D変換し、デジタル画像とし、画像処理回路10で本来同一である事が期待できる場所のデジタル画像と比較し、差がある場所をパターン欠陥11として検出、欠陥位置を確定するものである。尚、対象物基板5はリターディング電圧12により負の電位に保ち、リターディング電圧12を変更する事で対象物基板5上での加速電圧可変を容易としている。
A conventional electron beam pattern inspection apparatus is described in, for example, Japanese Patent Application Laid-Open No. 5-258703. An example of an electron beam pattern inspection apparatus described in Japanese Patent Laid-Open No. 5-258703 is shown in FIG. The
図1に示したような従来の装置では、二次電子7を1個の検出器8に収束させて検出していた。しかし、二次電子の収束の程度は、各種の条件により制約を受ける。制約条件としては、(1)電子光学系の自由度(試料に入射する一次電子の加速電圧を制御するリターデイング電圧、一次ビームの電流、試料近傍の電界など)、(2)試料上を走査する偏向器3による電子線2の偏向、(3)設定余裕、(4)二次電子が当たることによって生ずる検出器7の表面の汚染、(5)電子光学系の各種収差、等である。
電子光学系の具体的な設計にも依存するが、電子光学系の条件、即ち、上記した試料に入射する一次電子の加速電圧を制御するリターデイング電圧、一次ビームの電流、試料近傍の電界などが1種類の固定した条件の下では、上記二次電子の収束の程度には(4)と(5)とが寄与し、最も小さく見積もっても1mm程度である。また、(2)の偏向器3で電子線2を走査することによる二次電子の集束の程度への影響は、走査幅や二次電子に対する倍率などもに依存するが0.5mm程度の収束位置の移動として現われる。さらに、(1)の光学系の自由度は例えばリターディング電圧12を変更した場合、他の条件にもよるが、デフォーカスにより1mm程度集束の程度が変化する。
更に、実際には、二次電子光学系の光軸にずれがあるために、0.5mm程度の収束位置のシフトが生じることが見込まれる。これらを全て加算すると、二次電子を検出する検出器の有効受光面の径は3mm程度必要となり、(3)設定余裕を考慮すると、受光器の有効受光面の系は、4mmは必要となる。
In the conventional apparatus as shown in FIG. 1, the
Depending on the specific design of the electron optical system, the electron optical system conditions, that is, the retarding voltage for controlling the acceleration voltage of the primary electrons incident on the sample, the current of the primary beam, the electric field in the vicinity of the sample, etc. However, under one fixed condition, (4) and (5) contribute to the degree of convergence of the secondary electrons, and the smallest estimate is about 1 mm. In addition, the influence on the degree of focusing of secondary electrons by scanning the
Further, in reality, since the optical axis of the secondary electron optical system is displaced, it is expected that a shift of the convergence position of about 0.5 mm will occur. When all of these are added, the diameter of the effective light receiving surface of the detector for detecting secondary electrons is required to be about 3 mm. (3) Considering the setting margin, the effective light receiving surface system of the light receiver is required to be 4 mm. .
一方、検出器の周波数特性は検出器の面積に逆比例している。例えば、径が4mmの検出器では設計条件、動作条件を工夫しても、遮断周波数は75MHz程度までにしかならない。一方、検出器の径を2mmにすると、遮断周波数は150MHz程度になる。しかし、上記したように、従来の装置では検出器の径が4mm必要であるため、遮断周波数75MHzに対応するサンプリング周波数の150Msps(sps: sample per second : サンプル毎秒)程度までしか対応することができず、それ以上の周波数には充分に対応することができなかった。
本発明の目的は、従来の構成では十分に対応することが難しい、150Mspsよりも高いサンプリング周波数でも十分に二次電子の検出が可能な、SEMを用いた検査装置を提供することにある。
On the other hand, the frequency characteristics of the detector are inversely proportional to the area of the detector. For example, with a detector having a diameter of 4 mm, even if the design conditions and operation conditions are devised, the cut-off frequency is only about 75 MHz. On the other hand, when the diameter of the detector is 2 mm, the cutoff frequency is about 150 MHz. However, as described above, since the diameter of the detector is required in the conventional apparatus, it is possible to support only up to about 150 Msps (sps: sample per second) of the sampling frequency corresponding to the cutoff frequency of 75 MHz. Therefore, it was not possible to sufficiently cope with frequencies higher than that.
An object of the present invention is to provide an inspection apparatus using an SEM that can sufficiently detect secondary electrons even at a sampling frequency higher than 150 Msps, which is difficult to cope with with a conventional configuration.
上記目的を達成するための第1の手段を、図2に示す。
ここでは、問題を解決するための構成を理解が容易なように、検出器の大きさは、上記した4mm角(前記例では、径が4mmの場合について説明したが、ここでは、説明を簡単にするために、4mm角の場合について説明する。)で遮断周波数が75MHz、しかも単純に遮断周波数は面積のみに逆比例すると言う仮定で、400Mspsの速度で検出する場合について説明する。勿論、センサの内部構造や材質により数値は変化するが詳細はここでは述べない。これら議論は400Msps以上の速度を目標とする場合に対しても必須の要件となる。また、検出器の個数は数量を限定して例えば4個で説明するが、複数個の代表数値として説明しているのであって4という数値には限定されない。
電子線2を発生させる電子源1、及び電子線2を偏向させる偏向器3、及び電子線2を対象物基板5上に収束させる対物レンズ4、及び対象物基板5を保持し、走査又は位置決めをするリターディング電圧12を印加したステージ6、及び対象物基板5からの二次電子7を曲げるE×B13、及びE×B13で曲げた二次電子7を検出する1個が2mm角の4分割検出器20、及び各検出器毎に接続した200MHz以上の帯域を持ったプリアンプ21a〜21d、及びプリアンプ21a〜21dの出力を加算、A/D変換しデジタル画像にする400MspsのA/D変換器22、及びデジタル画像より本来同一である事が期待できる場所のデジタル画像と比較し、差がある場所を欠陥11として検出する画像処理回路10よりなる。
A first means for achieving the above object is shown in FIG.
Here, in order to make it easy to understand the configuration for solving the problem, the size of the detector is the above-mentioned 4 mm square (in the above example, the case where the diameter is 4 mm has been described. In order to achieve this, a case of 4 mm square will be described.), And a case where detection is performed at a speed of 400 Msps on the assumption that the cutoff frequency is 75 MHz and that the cutoff frequency is simply inversely proportional to the area will be described. Of course, the numerical value varies depending on the internal structure and material of the sensor, but details are not described here. These discussions are indispensable requirements even when a speed of 400 Msps or more is targeted. In addition, the number of detectors is described as being limited to, for example, four, but is described as a plurality of representative numerical values, and is not limited to a numerical value of four.
An
上記構成において、電子源1からの電子線2を偏向器3でX方向に偏向し、対物レンズ4を介して対象物基板5に照射し、同時にステージ6をY方向に連続で移動させながら、対象物基板5からの二次電子7をE×B13で曲げて4分割検出器20で検出し、信号をプリアンプ21a〜dで各分割検出器の信号を電圧に変換し、A/D変換器22で信号を加算した後A/D変換し、デジタル画像とし、画像処理回路10で本来同一であることが期待出来る場所のディジタル画像と比較し、差が有る場所を欠陥11として検出する。この時、リターディング電圧12の変更、及び偏向器3による偏向等を考慮しても、二次電子7は最大4mm角の領域にしか広がらない。
4分割検出器20は1個が2mm角、4個で4mm角であるので二次電子7は何れかのセンサに入射する。何れの検出器の信号もプリアンプ21a〜dで受け、それらをA/D変換器22で加算する事で全ての二次電子7の信号をA/D変換することが出来る。検出器は2mm角であり、遮断周波数は300MHz、プリアンプの帯域は200MHz、A/D変換器は400Mspsであるので、検出器、プリアンプ、A/D変換器が400Msps対応であり、400Mspsに対する配慮は十分である。 ここで、4分割検出器20の変わりに、6分割又は8分割、更には12分割の検出器を用いて、二次電子を検出する構成にすれば、各検出器の面積は更に小さくなるので、上記に説明した400Mspsよりも更に高速な検出を行うことが可能になる。
次に、上記目的を達成するための第2の手段を、図3に示す。電子線2を発生させる電子源1、及び電子線2を偏向させる偏向器3、及び電子線2を対象物基板5上に収束させる対物レンズ4、及び対象物基板5を保持し、走査又は位置決めをするリターディング電圧12を印加したステージ6、及び対象物基板5からの二次電子7を曲げるE×B13、及びE×B13で曲げた二次電子7を偏向する二次電子偏向器30、及び二次電子偏向器30で偏向した二次電子等を検出する1個が4mm角の4分割検出器31a〜31d、及び各検出器毎に接続した50MHz帯域のプリアンプ32a〜32d、及びプリアンプ32a〜dの出力をデジタル画像にする100MspsのA/D変換器33a〜d、及びデジタル画像より本来同一である事が期待できる場所のデジタル画像と比較し、差がある場所を欠陥11として検出する画像処理回路10よりなる。
In the above configuration, the
Since one quadrant detector 20 is 2 mm square and four are 4 mm square, the
Next, the second means for achieving the above object is shown in FIG. An
上記のような構成とすることにより、電子源1からの電子線2を偏向器3でX方向に偏向し、対物レンズ4を介して対象物基板5に照射し、同時にステージ6をY方向に連続で移動させながら、対象物基板5からの二次電子7をE×B13で曲げた後、二次電子偏向器30を100MHzで4分割された検出器20の各検出器を順に走査し、4分割検出器31で検出し、信号をプリアンプ32a〜dで各分割検出器の信号を電圧に変換し、A/D変換器33a〜dで信号をA/D変換してデジタル画像とし、画像処理回路10で本来同一であることが期待出来る場所のディジタル画像と比較し、差が有る場所を欠陥11として検出する。この時、リターディング電圧12の変更、及び偏向器3による偏向等を考慮しても、二次電
子7は最大4mm角の領域にしか広がらない。
4分割センサは、1個が4mm角であるので二次電子偏向器30で選択された検出器に全ての二次電子7が入射する。何れの検出器の信号もプリアンプ32a〜dで受け、それらをA/D変換器33a〜dでA/D変換する。検出器は4mm角であり、遮断周波数は75MHz、プリアンプの帯域は50MHz、A/D変換器は100Mspsであるので、検出器、プリアンプ、A/D変換器が100Msps対応であり、100Mspsで4画素に1回サンプリングすることになるので4式の検出器、プリアンプ、A/D変換器のペアの総合で400Mspsに対する配慮は十分である。
二次電子偏向器30の動作を、図10を用いて詳細に説明する。二次電子偏向器30を2.5ns単位で順次a、b、c、dの順で切り替え周期としては100MHzである。A/D変換器33は10ns周期、100Mspsでおのおのをサンプリングし、4個のA/D変換器の出力を順次並べることで、総合として400Mspsを得ている。
二次電子偏向器30の動作方法を図11で説明する。X/Yの偏向信号をそれぞれsin/cosの信号とすることで、二次電子7を4分割検出器31a〜31dの検出面上で連続的に移動させるサークルスキャン92を行うことができる。また、X/Yの偏向信号を90度位相のずれた10ns周期の方形波とすることで、二次電子7を4分割検出器31a〜31dの検出面上で離散的にスキャンさせるスイッチングスキャン93を得ることができる。また、図示はしないが、X/Yの偏向信号を10ns、5ns周期の方形波とすることでも同様な信号を得ることができる。
上記目的を達成するための第3の手段を、図4に示す。電子線2を発生させる電子源1、及び電子線2を偏向させる偏向器3、及び電子線2を対象物基板5上に収束させる対物レンズ4、及び対象物基板5を保持し、走査又は位置決めをするリターディング電圧12を印加したステージ6、及び対象物基板5からの二次電子7を曲げるE×B13、及びE×B13で曲げた二次電子7検出するプリアンプ加算器一体型の1個のセンサが2mm角の4分割スマート検出器40、4分割スマート検出器40の出力をデジタル画像にする400MspsのA/D変換器41、及びデジタル画像より本来同一である事が期待できる場所のデジタル画像と比較し、差がある場所を欠陥11として検出する画像処理回路10よりなる。
このような構成としたことにより、電子源1からの電子線2を偏向器3でX方向に偏向し、対物レンズ4を介して対象物基板5に照射し、同時にステージ6をY方向に連続で移動させながら、対象物基板5からの二次電子7をE×B13で曲げた後、スマート検出器40で検出し、A/D変換器41で信号をA/D変換し、デジタル画像とし、画像処理回路10で本来同一であることが期待出来る場所のディジタル画像と比較し、差が有る場所を欠陥11として検出する。
この時、リターディング電圧12の変更、及び偏向器3による偏向等を考慮しても、二次電子7は最大4mm角の領域にしか広がらない。4分割センサは1個が2mm角、4個で2mm角であるので何れかのセンサに入射する。何れの検出器の信号もスマート検出器40に内蔵されたセンサ個別に付いたプリアンプで受け、それらを加算する事で全ての二次電子7の信号をスマート検出器40の出力とすることが出来る。スマート検出器40の内蔵プリアンプの帯域を200MHzとすれば、検出器は2mm角であり、遮断周波数は300MHz、 A/D変換器は400Mspsであるので、検出器、プリアンプ、A/D変換器が400Msps対応であり、400Mspsに対する配慮は十分である。
上記目的を達成するための第4の手段を、図5に示す。電子線2を発生させる電子源1、及び電子線2を偏向させる偏向器3、及び電子線2を対象物基板5上に収束させる対物レンズ4、及び対象物基板5を保持し、走査又は位置決めをするリターディング電圧12を印加したステージ6、及び対象物基板5からの二次電子7を曲げるE×B13、及びE×B13で曲げた二次電子7を収束させる収束光学系51、及び収束光学系51で収束させた二次電子7を検出する2mm角の検出器8、及び検出器に接続した200MHz以上の帯域を持ったプリアンプ52、及びプリアンプ52の出力をA/D変換しデジタル画像にする400MspsのA/D変換器9、及びデジタル画像より本来同一である事が期待できる場所のデジタル画像と比較し、差がある場所を欠陥11として検出する画像処理回路10よりなる。
上記のような構成により、電子源1からの電子線2を偏向器3でX方向に偏向し、対物レンズ4を介して対象物基板5に照射し、同時にステージ6をY方向に連続で移動させながら、対象物基板5からの二次電子7をリターディング電圧毎に曲げ角を最適化したE×B13で曲げた後、収束光学系51でリターディング電圧に見合う位置に収束させた二次電子7を2mm角の検出器8で検出し、プリアンプ52で増幅後、A/D変換器9で信号をA/D変換し、デジタル画像とし、画像処理回路10で本来同一であることが期待出来る場所のディジタル画像と比較し、差が有る場所を欠陥11として検出する。
この時、リターディング電圧12を変更した場合のデフォーカスによる広がり、収束位置の移動には、それぞれ収束光学系51、及びE×B13で調整しているため、偏向器3による偏向等を考慮しても、二次電子7は最大1.5mm角+設計余裕分の領域にしか広がらない。検出器8は1個が2mm角であるのでやや余裕は小さいが検出器に入射する為、ほぼ全ての二次電子7の信号を検出器8の出力とすることが出来る。プリアンプの帯域を200MHzとすれば、検出器は2mm角であり、遮断周波数は300MHz、 A/D変換器は400Mspsであるので、検出器、プリアンプ、A/D変換器が400Msps対応であり、400Mspsに対する配慮は十分である。
上記目的を達成するための第5の手段を、図6に示す。電子線2を発生させる電子源1、及び電子線2を偏向させる偏向器3、及び電子線2を対象物基板5上に収束させる対物レンズ4、及び対象物基板5を保持し、走査又は位置決めをするリターディング電圧12を印加したステージ6、及び対象物基板5からの二次電子7を曲げるE×B13、及びE×B13で曲げた二次電子7を検出する複数箇所に設置した2mm角の検出器61a〜61b、及び各検出器に接続した200MHz以上の帯域を持ったプリアンプ62a〜62b、及びプリアンプ62a〜62bの出力を加算、又は切り替える信号合成回路63、信号合成回路63で合成した信号をA/D変換しデジタル画像にする400MspsのA/D変換器9、及びデジタル画像より本来同一である事が期待できる場所のデジタル画像と比較し、差がある場所を欠陥11として検出する画像処理回路10よりなる。
このような構成において、検出器61aのリターディング電圧12の受け持ち範囲Vamin〜Vamax、検出器61bのリターディング電圧12の受け持ち範囲Vbmin〜Vbmaxとし、受持ち範囲のリターディング電圧12に対応する二次電子7の収束距離に検出器61a〜bを設置し、それらを合せると全てのリターディング電圧12の範囲をカバーするようにに設定しておく。リターディング電圧12がVamin〜Vamaxの場合には信号合成回路63で検出器61aを選択、E×B13は検出器61aに入射するように設定しておく。
電子源1からの電子線2を偏向器3でX方向に偏向し、対物レンズ4を介して対象物基板5に照射し、同時にステージ6をY方向に連続で移動させながら、対象物基板5からの二次電子7を、曲げ角を最適化したE×B13で曲げた後、二次電子7を2mm角の検出器61aで検出し、プリアンプ62aで増幅後、信号合成回路では検出器61aが選択されているのでA/D変換器9で信号をA/D変換し、デジタル画像とし、画像処理回路10で本来同一であることが期待出来る場所のディジタル画像と比較し、差が有る場所を欠陥11として検出する。
この時、リターディング電圧12を変更した場合のデフォーカスによる広がり、収束位置の移動には、それぞれ検出器61a〜61bの選択、及びE×B13で調整しているため、偏向器3による偏向等を考慮しても、二次電子7は最大1.5mm角+設計余裕分の領域にしか広がらない。検出器61a〜61bは1個が2mm角であるのでやや余裕は小さいが検出器に入射する為、ほぼ全ての二次電子7の信号を検出器61a〜61bの出力とすることが出来る。プリアンプの帯域を200MHzとすれば、センサは2mm角であり、遮断周波数は300MHz、 A/D変換器は400Mspsであるので、検出器、プリアンプ、A/D変換器が400Msps対応であり、400Mspsに対する配慮は十分である。
上記目的を達成するための第6の構成を、図7に示す。電子線2を発生させる電子源1、及び電子線2を偏向させる偏向器3、及び電子線2を対象物基板5上に収束させる対物レンズ4、及び対象物基板5を保持し、走査又は位置決めをするリターディング電圧12を印加したステージ6、及び対象物基板5からの二次電子7を曲げるE×B13、及びE×B13で曲げた二次電子7を偏向させる二次電子振り戻し偏向器71、及び振り戻し偏向器71で振り戻した二次電子7を検出する2mm角の検出器72、及び検出器72に接続した200MHz以上の帯域を持ったプリアンプ73、及びプリアンプ73の出力をA/D変換しデジタル画像にする400MspsのA/D変換器9、及びデジタル画像より本来同一である事が期待できる場所のデジタル画像と比較し、差がある場所を欠陥11として検出する画像処理回路10よりなる。
With the configuration as described above, the
Since one quadrant sensor is 4 mm square, all the
The operation of the
The operation method of the
A third means for achieving the above object is shown in FIG. An
With such a configuration, the
At this time, even if the change of the retarding
FIG. 5 shows a fourth means for achieving the above object. An
With the configuration as described above, the
At this time, when the retarding
FIG. 6 shows a fifth means for achieving the above object. An
In such a configuration, the receiving range Vamin to Vamax of the retarding
The
At this time, the spread due to defocus and the movement of the convergence position when the retarding
A sixth configuration for achieving the above object is shown in FIG. An
このような構成において、電子源1からの電子線2を偏向器3でX方向に偏向し、対物レンズ4を介して対象物基板5に照射し、同時にステージ6をY方向に連続で移動させながら、対象物基板5からの二次電子7をリターディング電圧毎に曲げ角を最適化したE×B13で曲げた後、二次電子7を二次電子振り戻し偏向器71で偏向器3での検出器72上の移動量分を振り戻し二次電子7の移動を無くし、2mm角の検出器72で検出し、プリアンプ73で増幅後、A/D変換器9で信号をA/D変換し、デジタル画像とし、画像処理回路10で本来同一であることが期待出来る場所のディジタル画像と比較し、差が有る場所を欠陥11として検出する。
この時、リターディング電圧12を変更した場合の収束位置の移動には、E×B13で調整している。また、偏向器3の走査に伴う二次電子7の移動には二次電子振り戻し偏向器71で対応するため、二次電子7は最大2mm角+設計余裕分の領域にしか広がらない。検出器72は2mm角であるので余裕は無いが検出器に入射する為、二次電子7の信号を検出器72の出力とすることが出来る。プリアンプの帯域を200MHzとすれば、検出器は2mm角であり、遮断周波数は300MHz、 A/D変換器は400Mspsであるので、検出器、プリアンプ、A/D変換器が400Msps対応であり、400Mspsに対する配慮は十分である。本構成は単独では目標を達成することはできないが、例えば第5の構成と組み合わせて設計余裕を稼ぐ為に用いることができる。
上記目的を達成するための第7の手段を、図8に示す。電子線2を発生させる電子源1、及び電子線2を偏向させる偏向器3、及び電子線2を対象物基板5上に収束させる対物レンズ4、及び対象物基板5を保持し、走査又は位置決めをするリターディング電圧12を印加したステージ6、及び対象物基板5からの二次電子7を曲げるE×B13、及びE×B13で曲げた二次電子7を衝突させる反射板81、及び反射版81に衝突させた二次電子7により発生する二次電子82を収束させる収束光学系83、及び収束光学系83で収束させた二次電子82を検出する2mm角の検出器84、及び検出器84に接続した200MHz以上の帯域を持ったプリアンプ85、及びプリアンプ85の出力をA/D変換しデジタル画像にする400MspsのA/D変換器9、及びデジタル画像より本来同一である事が期待できる場所のデジタル画像と比較し、差がある場所を欠陥11として検出する画像処理回路10よりなる。
尚、複数の検出器を用いた場合の検出器の構成は検出器の周辺の無効領域を極力小さくしたものを隣接して設置する。無効領域は極力小さくしても0.2mmは必要で、間隔を0にして配置した場合には0.4mmの無効領域を挟んで配置することが可能である。検出器の製作時に複数個を同時に集積する方法である。プロセスにも依存するが、0.02mm程度以下にはすることが可能である。図9に、5個の検出器91a〜91eで構成した例を示している。
In such a configuration, the
At this time, the movement of the convergence position when the retarding
FIG. 8 shows a seventh means for achieving the above object. An
In the case of using a plurality of detectors, the detectors are arranged adjacent to each other with the ineffective area around the detectors made as small as possible. Even if the invalid area is as small as possible, 0.2 mm is necessary. If the invalid area is arranged with a space of 0, it is possible to arrange the invalid area with a 0.4 mm invalid area in between. In this method, a plurality of detectors are integrated at the same time when the detector is manufactured. Although it depends on the process, it is possible to make it 0.02 mm or less. FIG. 9 shows an example configured with five detectors 91a to 91e.
このような構成において、電子源1からの電子線2を偏向器3でX方向に偏向し、対物レンズ4を介して対象物基板5に照射し、同時にステージ6をY方向に連続で移動させながら、対象物基板5からの二次電子7をリターディング電圧毎に曲げ角を最適化したE×B13で曲げた後、二次電子7を反射版81にぶつけ、反射版81で生じた二次電子82を収束光学系83を介して2mm角の検出器84で検出し、プリアンプ85で増幅後、A/D変換器9で信号をA/D変換し、デジタル画像とし、画像処理回路10で本来同一であることが期待出来る場所のディジタル画像と比較し、差が有る場所を欠陥11として検出する。
この時、一旦反射版81に衝突させているため、リターディング電圧12、偏向器3による走査に依存せず、エネルギのほとんど無い二次電子82が発生し、それを収束光学系83で検出器84に入射させるため、二次電子82は最大2mm角の領域にしか広がらない。検出器84は2mm角であるので、全ての二次電子7の信号を検出器84の出力とすることが出来る。プリアンプの帯域を200MHzとすれば、検出器は2mm角であり、遮断周波数は300MHz、 A/D変換器は400Mspsであるので、検出器、プリアンプ、A/D変換器が400Msps対応であり、400Mspsに対する配慮は十分である。
In such a configuration, the
At this time, since it is once collided with the reflecting plate 81, the secondary electron 82 having almost no energy is generated without depending on the retarding
尚、以上説明した課題を解決するための手段と作用では、E×Bで検出器への収束位置を調整しているが、ExB以外に電子線と二次電子両方を通過させるのではなく、二次電子等のみの光路中に二次電子偏向器を挿入して検出器への二次電子等の位置を調整する機能をしても良い。また、E×Bで大きな角度を偏向させると大きな収差を生じてしまうので、逆方向に動作をさせるダミーのE×Bを追加し、収差をキャンセルすることも考えられる。 In the means and action for solving the problem described above, the convergence position to the detector is adjusted by E × B, but not passing both the electron beam and the secondary electron other than ExB, A function of adjusting the position of the secondary electrons or the like to the detector by inserting a secondary electron deflector in the optical path of only the secondary electrons or the like may be used. Further, since a large aberration is caused when a large angle is deflected by E × B, it is conceivable to add a dummy E × B that operates in the reverse direction to cancel the aberration.
本発明によれば、200Msps以上のサンプリング周波数で画像を検出して、高速にSEM画像を処理することが可能になる。
また、例えば、従来の技術を用いて0.1μmの画素単位で100Mspsの速度で直径が200mmのウェハを全面に亘って検査する場合に、約15時間を要していたのに対して、本発明に示した方式で同じウェハを400Mspsの速度で検出すれば、ステージの移動j時間や電子ビームの走査時間などを含めても、1/3の約5時間で検査を行うことが可能になる。また、本発明に示した方式で同じウェハを200Mspsの速度で検出すれ場合には、約8時間で検査が可能になる。
これにより、検査の結果を、より早く製造プロセスへ反映させることが可能になる。
また、本発明による装置を用いれば、従来の装置に比べて、同じ所用時間で3倍のウェハを検査することができる。
According to the present invention, it is possible to detect an image at a sampling frequency of 200 Msps or higher and process an SEM image at high speed.
In addition, for example, when a wafer having a diameter of 200 mm is inspected over the entire surface at a speed of 100 Msps with a pixel unit of 0.1 μm using a conventional technique, it takes about 15 hours. If the same wafer is detected at a speed of 400 Msps by the method shown in the invention, the inspection can be performed in about 1/3 of the time, including the stage movement time j and the electron beam scanning time. . Further, when the same wafer is detected at a speed of 200 Msps by the method shown in the present invention, the inspection can be performed in about 8 hours.
As a result, the inspection result can be reflected in the manufacturing process more quickly.
Further, when the apparatus according to the present invention is used, it is possible to inspect three times as many wafers in the same time as the conventional apparatus.
[実施例1]
本発明の第1の実施例を説明する。図12に第1の実施例の構成を示す。
電子線2を発生させる電子源1、及び電子源1からの電子線2を一定場所に収束させるコンデンサレンズ103とコンデンサレンズ103で収束した位置の近傍に設置し電子線2のON/OFFを制御をするブランキングプレート104と電子線2をXY方向に偏向する偏向器105と電子線2を対象物基板5上に収束させる対物レンズ4よりなる電子光学系106、及び対象物基板であるウェーハ100を真空に保持する試料室107、及びウェーハ100を搭載し任意の位置の画像検出を可能とするリターディング電圧108を印可したステージ6、及び対象物基板5からの二次電子7を検出器20の方向に偏向させるE×B13、及び偏向させた二次電子7を検出する200MHzの帯域を持った2mm角の検出素子を4つ用いた4分割検出器20、及び200MHzの帯域を持ち、真空中に保持した試料室内に配置したプリアンプ21a〜21d、及びプリアンプ21a〜21dの出力を加算、400MspsでA/D変換しデジタル画像を得るA/D変換器22、及びデジタル画像を記憶しておくメモリ109、及びメモリ109に記憶した記憶画像とA/D変換したデジタル画像を比較して、差がある場所をパターン欠陥11として検出する画像処理回路10、及び全体制御部110(全体制御部110からの制御線は図上では省略)、及びウェーハ100の高さを測定し対物レンズ4の電流値をオフセット112を加算して制御することで対象基板5上に集束させる電子線2の焦点位置を調整して検出されるディジタル画像の焦点位置を一定に保つZセンサ113、及びカセット114内のウェーハ100を試料室107に出し入れするローダ116(非表示)、及びウェーハ100の外形形状を基準にウェーハ100を位置決めするオリフラ検出器117(非表示)、及びウェーハ100上のパターンを観察する為の光学式顕微鏡118、及びステージ6上に設けた標準試料片119よりなる。
なお、本実施例で説明した検出器20は、図2で説明したものと同じ構成である。
第1の実施例の動作を説明する。全体制御部110は各部に動作を以下の手順で指示する。ローダ116(非表示)に指示を出し、ローダ116はウェーハ100をカセット114から取出し、オリフラ検出器117(非表示)で外形形状を基準にウェーハを位置決めし、ステージ6にウェーハ100を搭載し、試料室107内を真空にする。搭載と共に、電子光学系106とリターディング電圧108の条件を設定し、ブランキングプレート104に電圧を印可して電子線2をOFFする。
つぎに、ステージを標準試料片119に移動し、Zセンサ113を有効として焦点をZセンサ113の検出値+オフセット112の一定に保ち、偏向器105をラスタスキャンし、スキャンに同期してブランキングプレート104の電圧を切り、電子線2を必要なときのみウェーハ100に照射し、その時ウェーハ100より発生する二次電子7を4分割検出器20で検出、プリアンプ21a〜dで増幅後、加算してA/D変換器22でA/D変換することでデジタル画像とする。オフセット112を変更してデジタル画像を複数枚検出し、検出毎に全体制御部110で最も画像の微分値の画像内総和が最高となる最適オフセット111を現在のオフセット値として設定する。
次に、ステージ6を移動し、搭載したウェーハ100の検査すべき領域の走査開始位置に移動する。オフセット112に予め測定しておいたウェーハ固有のオフセットを加算して設定し、Zセンサ113を有効にし、図13に示した走査線153に沿ってステージ6をY方向走査し、ステージ走査に同期して偏向器105をX方向に走査し、有効走査時にブランキングプレート104の電圧を切り電子線2をウェーハ100に照射、走査する。
ウェーハ100上のダイ152は、最終的に切り離されて製品になる単位で同一の配線パターンを持っている。ウェーハ100より発生する二次電子7を4分割検出器20で検出、プリアンプ21a〜dで増幅後、A/D変換器22で加算してA/D変換してストライプ領域154のデジタル画像を得、メモリ109に記憶する。ステージ6の走査終了後Zセンサ113を無効とする。ステージ走査を繰り返すことで必要な領域全面の検査をする。ウェーハ100の全面を検査する場合には図14に示した順で検査する。
ここで、4分割検出器20は、図2に示したものと同じ構成及び作用を有するものである。
画像処理回路10で検出位置A 155を検出している場合にはメモリ109に記憶した検出位置B 156の画像と比較し差がある場所をパターン欠陥11として抽出し、パターン欠陥11のリストを作成し、全体制御部110に送信する。
本実施例によると、SEM画像を用いてウェーハ全面を検査してパターン欠陥11のみを検出し、それらをユーザに提示できる特徴がある。
本実施例によると200MHz帯域の4分割検出器20を用いているため、総合で十分な面積と高速性を持ち、プリアンプ21a〜21dでそれぞれ帯域を保ったまま増幅しているため高速性があり、しかもそれらを加算し、A/D変換することで、検出器1個に比較して2倍のS/Nもを得ることができる。
次に、本実施例の第1の変形例を説明する。この第1の変形例においては、図4に示したような4分割センサ20、及びプリアンプ21a〜21d、及びプリアンプの出力を加算する回路を一体型としたスマート検出器を用いる。本変形例によると、400Msps以上の高速化をする場合にセンサとプリアンプが一体型になっている、及び出力が1個である為、分割数を容易に増加させることが可能である特徴がある。
次に、本実施例の第2の変形例を説明する。本変形例においては、4分割センサ20、及びプリアンプ21a〜21dを一体型としたスマート検出器を用いる(図示せず)。即ち、本変形例では、図4に示したような第1の変形例のスマート検出器のうち、加算する回路を切り離したもので、図2及び図12に示した構成のうち、4分割検出器20とプリアンプ21a〜21bとを一体化した構成を持つ。本変形例によると400Msps以上の高速化をする場合にセンサとプリアンプが一体型になっている為、分割数を容易に増加させることが可能である。また、プリアンプの出力を個別に出力している為、加算以外に演算機能を持たせることが容易にできる特徴がある。
次に、本実施例の第3の変形例を説明する。本変形例は、図12に示した構成において、4分割センサ20、及びプリアンプ21a〜21d、1個又は複数の出力を持つ演算回路、1個又は複数個の演算回路の出力をそれぞれA/D変換するA/D変換器を一体型としたスマート検出器を用いる。本変形例によると400Msps以上の高速化をする場合にセンサとプリアンプが一体型になっている為、分割数を容易に増加させることが可能である。
次に本実施例の第4の変形例を説明する。本変形例では、第1の実施例で説明したものに対して、加算とA/D変換の順序を入れ替えたもので、プリアンプ21a〜21dの出力を一旦A/D変換し、A/D変換後に加算、又は演算する。本変形例によると4分割検出器20やプリアンプ21a〜21dの特性を演算により補正が可能であるという特徴がある。
以上、第1の実施例とその変形例とを説明したが、本実施例及びその変形例においては、4分割検出器20の出力を単純に加算するだけでなく、それぞれの検出素子の出力にたいして、線形又は非線型の演算処理を施してもよい。
また、本実施例及びその変形例で説明したような4分割検出器20を用いることにより、各素子の受光面は、対象物を見込む角度が夫々異なるために、それらの出力を演算処理することにより、対象物の凹凸情報を含む形状の情報を、高速に得ることが可能になる。
更に、本実施例及びその変形例においては、4分割検出器20の例を示したが、検出器の構造を図9に示したような、中心領域に別の受光面を設けたものを用いてもよい。
以上説明した本実施例とその変形例によれば、従来の装置に比べて大幅な改造を必要とせずに比較的シンプルな光学系の構造で、従来の装置に比べて倍以上のサンプリング周波数でSEM画像を検出することが可能になる。
また、本実施例とその変形例によれば、二次電子のビーム径を従来の装置と同じ径にして検出することが可能なので、検出器表面を汚染する程度が従来の場合と同じであり、特に高速検出により検出器の寿命を短くしてしまうというような弊害が生じることがない。
さらに、本実施例とその変形例によれば、分割したそれぞれの検出器からの出力を同時に受けて信号を処理する構成になっているため、たとえ分割したそれぞれの検出器の感度にばらつきがあっても、そのばらつきに応じた出力を安定して得ることができので、出力信号の処理を比較的容易に行うことができる。
[実施例2]
本発明の第2の実施例を説明する。図15に第2の実施例の構成を示す。
電子線2を発生させる電子源1、及び電子源1からの電子線2一定場所に収束させるコンデンサレンズ103とコンデンサレンズ103で収束した位置の近傍に設置し電子線2のON/OFFを制御をするブランキングプレート104と電子線2をXY方向に偏向する偏向器105と電子線2を対象物基板5上に収束させる対物レンズ4よりなる電子光学系106、及び対象物基板であるウェーハ100を真空に保持する試料室107、及びウェーハ100を搭載し任意の位置の画像検出を可能とするリターディング電圧108を印可したステージ6、及び対象物基板5からの二次電子7を偏向させる二次電子偏向器30、及び対象物基板5からの二次電子偏向器30で偏向された二次電子7を検出する50MHzの帯域を持った4mm角の検出素子を4個用いた4分割検出器31a〜31d、及び50MHzの帯域を持ったプリアンプ32a〜32d、及びプリアンプ32a〜32dの出力を100MspsでA/D変換しデジタル画像を得るA/D変換器33a〜33d、及びA/D変換器33a〜33d毎に設けた検出器やプリアンプなどの特性を補正するビット補正テーブル130、及び補正したデジタル画像を記憶しておくメモリ109、及びメモリ109に記憶した記憶画像とA/D変換したデジタル画像を比較して、差がある場所をパターン欠陥11として検出する画像処理回路10、及び全体制御部110(全体制御部110からの制御線は図上では省略)、及びウェーハ100の高さを測定し対物レンズ4の電流値をオフセット112を加算して制御することで検出されるディジタル画像の焦点位置を一定に保つZセンサ113、及びカセット114内のウェーハ100を試料室107に出し入れするローダ116(非表示)、及びウェーハ100の外形形状を基準にウェーハ100を位置決めするオリフラ検出器117(非表示)、及びウェーハ100上のパターンを観察する為の光学式顕微鏡118、及びステージ6上に設けた標準試料片119よりなる。
第2の実施例の動作を説明する。まず、後で説明する方式でビット補正テーブルを設定しておく。全体制御部110は各部に動作を以下の手順で指示する。ローダ116(非表示)に指示を出し、ローダ116はウェーハ100をカセット114から取出し、オリフラ検出器117(非表示)で外形形状を基準にウェーハ100を位置決めし、ステージ6にウェーハ100を搭載し、試料室107内を真空にする。搭載と共に、電子光学系106とリターディング電圧108の条件を設定し、ブランキングプレート104に電圧を印可して電子線2をOFFする。
次に、ステージを標準試料片119に移動し、Zセンサ113を有効として焦点をZセンサ113の検出値+オフセット112の一定に保ち、偏向器105をラスタスキャンし、スキャンに同期してブランキングプレート104の電圧を切り、電子線2を必要なときのみウェーハ100に照射し、二次電子偏向器30でウェーハ100より発生する二次電子7を4分割検出器31a〜31dに対してリング状に次々切り替えて入射させる。検出信号をそれぞれのプリアンプ32a〜32d、及びA/D変換器33a〜33dでデジタル画像とする。オフセット112を変更してデジタル画像を複数枚検出し、検出毎に全体制御部110で最も画像の微分値の画像内総和が最高となる最適オフセット111を現在のオフセット値として設定する。
次に、ステージ6を移動し、搭載したウェーハ100の検査すべき領域の走査開始位置に移動する。オフセット112に予め測定しておいたウェーハ固有のオフセットを加算して設定し、Zセンサ113を有効にし、図13に示した走査線153に沿ってステージ6をY方向走査し、ステージ走査に同期して偏向器105をX方向に走査し、有効走査時にブランキングプレート104の電圧を切り電子線2をウェーハ100に照射、走査する。ウェーハ100より発生する二次電子7を二次電子偏向器30でウェーハ100より発生する反射電子又は二次電子を4分割検出器31a〜31dに対して図11に示したサークルスキャン92で次々切り替えて入射させる。
検出信号をそれぞれのプリアンプ32a〜32d、及びA/D変換器33a〜33dでストライプ領域154のデジタル画像とし、メモリ109に記憶する。ステージ6の走査終了後Zセンサ113を無効とする。ステージ走査を繰り返すことで必要な領域全面の検査をする。ウェーハ100の全面を検査する場合には図14に示した順で検査する。画像処理回路10で検出位置A 155を検出している場合にはメモリ109に記憶した検出位置B 156の画像と比較し差がある場所をパターン欠陥11として抽出し、パターン欠陥11のリストを作成し、全体制御部110に送信する。
二次電子偏向器30、4分割検出器31a〜31d、プリアンプ32a〜32d、A/D変換器33a〜33dの動作を詳細に説明する。図10にタイミングチャートを示す。二次電子偏向器は400MHzで4分割検出器31a〜31dに二次電子7を偏向し、4分割検出器31a〜d、プリアンプ32a〜d、A/D変換器33a〜dでは、100Mspsでサンプリングし、デジタル画像とする。それらを順次並べて400Msps相当のデジタル画像データとしている。
なお、ここで説明した4分割検出器31a〜31dは、図3で説明したものと同じ構成のものである。
ビット補正テーブル130はA/D変換器33a〜d毎に、A/D変換の出力値xに対して補正後の値fa(x)〜fd(x)を出力する。基準のA/D変換器を33aとし、fa(x)=xとする。次に、各種材料でできたブランクウェーハの信号を検出、補正後の値が同一となるようにfb(x)〜fd(x)の関数形状を調整する。
本実施例によると、SEM画像を用いてウェーハ全面を検査してパターン欠陥11のみを検出し、それらをユーザに提示できる特徴がある。
本実施例の変形例について説明する。
第1の変形例は、二次電子偏向器30の走査方法を、図11に示した走査方法のうち、サークルスキャン92でなく、スイッチングスキャン93等を用いるものである。本変形例によれば、4分割検出器31a〜31d上での二次電子の走査がアナログ的な走査でないので、二次電子7の4分割検出器31a〜31d上での位置ドリフトなどの変動要因に対して強いという特徴がある。
第2の変形例は、ビット補正テーブル130の代わりに線形演算をする回路を設けて検出器やプリアンプの特性を補正するものである。本変形例によれば、より簡単な回路で、高速な処理を実現できるという特徴がある。
以上説明した第2の実施例とその変形例によれば、個々の検出器のもつ動作速度のN倍の検出速度を得ることが可能になるので、より高速な検出を行うことが可能になる。
[実施例3]
本発明の第3の実施例を説明する。図16に第3の実施例の構成を示す。電子線2を発生させる電子源1、及び電子源1からの電子線2を一定場所に収束させるコンデンサレンズ103とコンデンサレンズ103で収束した位置の近傍に設置し電子線2のON/OFFを制御をするブランキングプレート104と電子線2をXY方向に偏向する偏向器105と電子線2を対象物基板5上に収束させる対物レンズ4よりなる電子光学系106、及び対象物基板であるウェーハ100を真空に保持する試料室107、及びウェーハ100を搭載し任意の位置の画像検出を可能とするリターディング電圧108を印可したステージ6、及び対象物基板5からの二次電子7検出器8の方向に偏向させるExB13、及び偏向させた二次電子7を収束させる収束光学系51、及び収束光学系で収束させた二次電子7を
検出する200MHzの帯域を持った検出器8、及び200MHzの帯域を持ち、真空中に保持した試料室内に配置したプリアンプ52、及びプリアンプ52の出力を400MspsでA/D変換しデジタル画像を得るA/D変換器22、及びデジタル画像を記憶しておくメモリ109、及びメモリ109に記憶した記憶画像とA/D変換したデジタル画像を比較して、差がある場所をパターン欠陥11として検出する画像処理回路10、及び全体制御部110(全体制御部110からの制御線は図上では省略)、及びウェーハ100の高さを測定し対物レンズ4の電流値をオフセット112を加算して制御することで検出されるディジタル画像の焦点位置を一定に保つZセンサ113、及びカセット114内のウェーハ100を試料室107に出し入れするローダ116(非表示)、及びウェーハ100の外形形状を基準にウェーハ100を位置決めするオリフラ検出器117(非表示)、及びウェーハ100上のパターンを観察する為の光学式顕微鏡118、及びステージ6上に設けた標準試料片119よりなる。
ここで、検出器8は、図5に示したものと同じ構成である。
第3の実施例の動作を説明する。全体制御部110は各部に動作を以下の手順で指示する。ローダ116(非表示)に指示を出し、ローダ116はウェーハ100をカセット114から取出し、オリフラ検出器117(非表示)で外形形状を基準にウェーハを位置決めし、ステージ6にウェーハ100を搭載し、試料室107内を真空にする。搭載と共に、電子光学系106とリターディング電圧108、及びリターディング電圧108に応じた条件を収束光学系51に設定し、ブランキングプレート104に電圧を印可して電子線2をOFFする。
つぎに、ステージを標準試料片119に移動し、Zセンサ113を有効として焦点をZセンサ113の検出値+オフセット112の一定に保ち、偏向器105をラスタスキャンし、スキャンに同期してブランキングプレート104の電圧を切り、電子線2を必要なときのみウェーハ100に照射し、その時ウェーハ100より発生する二次電子7収束光学系51を介して検出器8で検出、A/D変換器22でデジタル画像とする。オフセット112を変更してデジタル画像を複数枚検出し、検出毎に全体制御部110で最も画像の微分値の画像内総和が最高となる最適オフセット111を現在のオフセット値として設定する。
次に、ステージ6を移動し、搭載したウェーハ100の検査すべき領域の走査開始位置に移動する。オフセット112に予め測定しておいたウェーハ固有のオフセットを加算して設定し、Zセンサ113を有効にし、図13に示した走査線153に沿ってステージ6をY方向走査し、ステージ走査に同期して偏向器105をX方向に走査し、有効走査時にブランキングプレート104の電圧を切り電子線2をウェーハ100に照射、走査する。ウェーハ100上のダイ152は最終的に切り離されて製品になる単位で同一の配線パターンを持っている。ウェーハ100より発生する二次電子7を検出器8で検出、プリアンプ52で増幅後、A/D変換器22でストライプ領域154のデジタル画像を得、メモリ109に記憶する。ステージ6の走査終了後Zセンサ113を無効とする。ステージ走査
を繰り返すことで必要な領域全面の検査をする。ウェーハ100の全面を検査する場合には図14に示した順で検査する。
画像処理回路10で検出位置A 155を検出している場合にはメモリ109に記憶した検出位置B 156の画像と比較し差がある場所をパターン欠陥11として抽出し、パターン欠陥11のリストを作成し、全体制御部110に送信する。
本実施例によると、SEM画像を用いてウェーハ全面を検査してパターン欠陥11のみを検出し、それらをユーザに提示することが可能になる。
また、本実施例によると収束光学系51でリターディング電圧108に応じた二次電子7の収束位置を調整し、200Msps帯域の検出器8を用いているため、高速性を持ち、しかも全ての二次電子等を検出器8に収束できる。
更に、本実施例によれば、1個の検出器で検出するので、検出信号のばらつきが少なく、安定して検出することが可能になる。また、それに伴って、信号処理回路を、比較的シンプルな構成で組むことが可能になる。
次に、本実施例の変形例を説明する。
第1の変形例は、リターディング電圧108に応じた二次電子7の収束位置の変化を、図5または図16の収束光学系51を用いて調整して検出器8に入射させる代わりに、図6に示したように、リターディング電圧108に応じた位置に複数個の検出器61a、61bを配置し、それらを切り替えて使用する例である。本変形例によれば、空間的な制約により検出器61a、61bを離れた位置に配置せざるをえない場合でも、対応が可能であるという特徴がある。
次に、第2の変形例は、図5または図16の集束光学系51を、図7に示したような、振り戻し偏向器71に置き換えたものである。本変形例によると、偏向器105の影響による二次電子7の変位を補正することができるので、より安定に二次電子7を検出器8に収束させることができるという特徴がある。
次に、第3の変形例は、図8に示したように、反射板81を追加して、この反射板81に二次電子7を衝突させ、そのとき発生する二次電子82を収束光学系51で検出器8に収束させるようにするものである。本変形例によると、より安定に二次電子7を検出器8に収束させて、効率良く検出することができる。
[Example 1]
A first embodiment of the present invention will be described. FIG. 12 shows the configuration of the first embodiment.
The
The detector 20 described in the present embodiment has the same configuration as that described in FIG.
The operation of the first embodiment will be described. The overall control unit 110 instructs each unit to operate according to the following procedure. An instruction is given to a loader 116 (not shown), the loader 116 takes out the
Next, the stage is moved to the standard sample piece 119, the Z sensor 113 is enabled, the focus is kept constant at the detected value of the Z sensor 113 + the offset 112, the deflector 105 is raster scanned, and blanking is synchronized with the scan. The voltage of the
Next, the
The dies 152 on the
Here, the quadrant detector 20 has the same configuration and operation as those shown in FIG.
When the detection position A 155 is detected by the
According to the present embodiment, the entire surface of the wafer is inspected using the SEM image to detect only the pattern defect 11 and present them to the user.
According to the present embodiment, since the quadrant detector 20 of the 200 MHz band is used, it has a sufficient area and high speed as a whole, and the preamplifiers 21a to 21d amplify while maintaining the respective bands, so that there is high speed. In addition, by adding them and performing A / D conversion, it is possible to obtain twice the S / N as compared with one detector.
Next, a first modification of the present embodiment will be described. In the first modification, a smart detector in which a quadrant sensor 20 as shown in FIG. 4, preamplifiers 21a to 21d, and a circuit that adds the outputs of the preamplifiers are integrated is used. According to the present modification, when the speed is increased to 400 Msps or more, the sensor and the preamplifier are integrated, and the output is one, so that the number of divisions can be easily increased. .
Next, a second modification of the present embodiment will be described. In this modification, a smart detector in which the quadrant sensor 20 and the preamplifiers 21a to 21d are integrated is used (not shown). That is, in this modified example, the addition circuit is separated from the smart detector of the first modified example as shown in FIG. 4, and the 4-division detection is performed in the configurations shown in FIGS. The unit 20 and the preamplifiers 21a to 21b are integrated. According to this modification, since the sensor and the preamplifier are integrated when the speed is increased to 400 Msps or more, the number of divisions can be easily increased. In addition, since the output of the preamplifier is output individually, there is a feature that it is easy to provide an arithmetic function in addition to addition.
Next, a third modification of the present embodiment will be described. In the present modification, in the configuration shown in FIG. 12, the quadrant sensor 20, preamplifiers 21a to 21d, an arithmetic circuit having one or a plurality of outputs, and outputs of one or a plurality of arithmetic circuits are respectively A / D. A smart detector in which an A / D converter to be converted is integrated is used. According to this modification, since the sensor and the preamplifier are integrated when the speed is increased to 400 Msps or more, the number of divisions can be easily increased.
Next, a fourth modification of the present embodiment will be described. In this modification, the order of addition and A / D conversion is changed with respect to that described in the first embodiment, and the outputs of the preamplifiers 21a to 21d are once A / D converted and A / D converted. Addition or operation is performed later. According to this modification, the characteristics of the quadrant detector 20 and the preamplifiers 21a to 21d can be corrected by calculation.
The first embodiment and its modification have been described above. In this embodiment and its modification, not only the outputs of the quadrant detector 20 are simply added, but also the outputs of the respective detection elements. Alternatively, linear or non-linear arithmetic processing may be performed.
In addition, by using the quadrant detector 20 as described in the present embodiment and its modifications, the light receiving surfaces of the elements have different angles to look at the object, so that their outputs are processed. Thus, it is possible to obtain information on the shape including the unevenness information of the object at high speed.
Furthermore, in the present embodiment and its modification, an example of the quadrant detector 20 is shown. However, the structure of the detector is as shown in FIG. May be.
According to the present embodiment described above and its modification, the structure of the optical system is relatively simple and does not require significant modification compared to the conventional apparatus, and the sampling frequency is more than double that of the conventional apparatus. It becomes possible to detect an SEM image.
In addition, according to the present embodiment and its modification, it is possible to detect the beam diameter of the secondary electrons with the same diameter as that of the conventional apparatus, so the degree of contamination of the detector surface is the same as in the conventional case. In particular, there is no problem that the life of the detector is shortened by high-speed detection.
Furthermore, according to the present embodiment and its modification, the configuration is such that the signals from the divided detectors are received at the same time and the signal is processed, so that the sensitivity of the divided detectors varies. However, since an output corresponding to the variation can be stably obtained, the output signal can be processed relatively easily.
[Example 2]
A second embodiment of the present invention will be described. FIG. 15 shows the configuration of the second embodiment.
The
The operation of the second embodiment will be described. First, a bit correction table is set by a method described later. The overall control unit 110 instructs each unit to operate according to the following procedure. An instruction is given to a loader 116 (not shown), the loader 116 takes out the
Next, the stage is moved to the standard sample piece 119, the Z sensor 113 is enabled, the focus is kept constant at the detected value of the Z sensor 113 + the offset 112, the deflector 105 is raster scanned, and blanking is performed in synchronization with the scan. The voltage of the
Next, the
The detection signal is converted into a digital image of the stripe region 154 by each of the preamplifiers 32 a to 32 d and the A / D converters 33 a to 33 d and stored in the
The operations of the
The quadrant detectors 31a to 31d described here have the same configuration as that described in FIG.
The bit correction table 130 outputs corrected values fa (x) to fd (x) for the output value x of A / D conversion for each of the A / D converters 33a to 33d. The reference A / D converter is 33a, and fa (x) = x. Next, the function shape of fb (x) to fd (x) is adjusted so that the signal of the blank wafer made of various materials is detected and the corrected value becomes the same.
According to the present embodiment, the entire surface of the wafer is inspected using the SEM image to detect only the pattern defect 11 and present them to the user.
A modification of this embodiment will be described.
In the first modification, the scanning method of the
In the second modification, a circuit for performing a linear operation is provided instead of the bit correction table 130 to correct the characteristics of the detector and the preamplifier. According to this modification, there is a feature that high-speed processing can be realized with a simpler circuit.
According to the second embodiment and the modification thereof described above, it is possible to obtain a detection speed N times the operation speed of each detector, and thus it is possible to perform a higher speed detection. .
[Example 3]
A third embodiment of the present invention will be described. FIG. 16 shows the configuration of the third embodiment. The
Here, the detector 8 has the same configuration as that shown in FIG.
The operation of the third embodiment will be described. The overall control unit 110 instructs each unit to operate according to the following procedure. An instruction is given to a loader 116 (not shown), the loader 116 takes out the
Next, the stage is moved to the standard sample piece 119, the Z sensor 113 is enabled, the focus is kept constant at the detected value of the Z sensor 113 + the offset 112, the deflector 105 is raster scanned, and blanking is synchronized with the scan. The voltage of the
Next, the
When the detection position A 155 is detected by the
According to this embodiment, it is possible to inspect the entire wafer surface using the SEM image to detect only the pattern defect 11 and present them to the user.
Further, according to the present embodiment, the convergence position of the
Furthermore, according to the present embodiment, since detection is performed by one detector, there is little variation in detection signals, and stable detection can be performed. Accordingly, the signal processing circuit can be assembled with a relatively simple configuration.
Next, a modification of the present embodiment will be described.
In the first modification, instead of adjusting the change of the convergence position of the
Next, in the second modification, the focusing optical system 51 of FIG. 5 or FIG. 16 is replaced with a swing back deflector 71 as shown in FIG. According to this modification, since the displacement of the
Next, as shown in FIG. 8, in the third modification, a reflecting plate 81 is added, and the
1・・・ 電子源 2・・・ 電子線 3・・・ 偏向器 4・・・ 対物レンズ 5・・・対象物基板 6・・・ステージ 7・・・二次電子 8・・・検出器 9・・・A/D変換器 10・・・画像処理回路 11・・・パターン欠陥 12・・・リターディング電圧 13・・・ExB 20・・・4分割検出器 30・・・二次電子偏向器 31・・・4分割検出器 33・・・A/D変換器 40・・・スマート検出器 51・・・収束光学系 61・・・検出器 62・・・プリアンプ 63・・・信号合成回路、71・・・偏向器 72・・・検出器 81・・・反射板 82・・・二次電子 283・・・収束光学系 104・・・ブランキングプレート 106・・・電子光学系 107・・・試料室 108・・・リターディング電圧 113・・・Zセンサ 118・・・光学式顕微鏡
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005333561A JP4111218B2 (en) | 2005-11-18 | 2005-11-18 | Electron beam image processing method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005333561A JP4111218B2 (en) | 2005-11-18 | 2005-11-18 | Electron beam image processing method and apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000226181A Division JP3767341B2 (en) | 2000-07-21 | 2000-07-21 | Pattern inspection method and apparatus using electron beam |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006162609A JP2006162609A (en) | 2006-06-22 |
JP2006162609A5 JP2006162609A5 (en) | 2007-08-30 |
JP4111218B2 true JP4111218B2 (en) | 2008-07-02 |
Family
ID=36664768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005333561A Expired - Fee Related JP4111218B2 (en) | 2005-11-18 | 2005-11-18 | Electron beam image processing method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4111218B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011108363A (en) * | 2009-11-12 | 2011-06-02 | Hitachi High-Technologies Corp | Charged particle beam device |
CZ2013115A3 (en) * | 2010-08-18 | 2013-04-03 | Hitachi High - Technologies Corporation | Electron beam apparatus |
JP5901549B2 (en) * | 2013-01-18 | 2016-04-13 | 株式会社日立ハイテクノロジーズ | Measurement inspection equipment |
JPWO2023139668A1 (en) * | 2022-01-19 | 2023-07-27 |
-
2005
- 2005-11-18 JP JP2005333561A patent/JP4111218B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006162609A (en) | 2006-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3767341B2 (en) | Pattern inspection method and apparatus using electron beam | |
JP5499282B2 (en) | Aberration correction method and aberration correction apparatus in scanning transmission electron microscope | |
TWI778512B (en) | Multi-beam digital scan and image acquisition | |
JP4111218B2 (en) | Electron beam image processing method and apparatus | |
JP4767270B2 (en) | Visual inspection apparatus equipped with scanning electron microscope and image data processing method using scanning electron microscope | |
US8253101B2 (en) | Method and system for acquisition of confocal STEM images | |
JP2019194975A (en) | Method for automatically aligning scanning transmission electron microscope for precession electron diffraction data mapping | |
JP5372445B2 (en) | Scanning electron microscope apparatus and focusing method thereof | |
CN113412531B (en) | Apparatus and method for operating a charged particle device having a plurality of beamlets | |
JP2022015158A (en) | Scanning transmission electron microscope | |
US11810749B2 (en) | Charged particle beam system, method of operating a charged particle beam system, method of recording a plurality of images and computer programs for executing the methods | |
JP7498212B2 (en) | Electron microscope and aberration measurement method | |
JP7428578B2 (en) | Multi-beam image generation device and multi-beam image generation method | |
JP7477364B2 (en) | Multi-beam image generating device and multi-beam image generating method | |
JP2019040726A (en) | Aberration measurement method and electron microscope | |
JP2002208369A (en) | Surface state observastion device | |
JP2006302523A (en) | Transmission electron microscope having scan image observation function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070718 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080331 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |