JP4194314B2 - Light amount adjusting device, lens device, and imaging device - Google Patents
Light amount adjusting device, lens device, and imaging device Download PDFInfo
- Publication number
- JP4194314B2 JP4194314B2 JP2002218418A JP2002218418A JP4194314B2 JP 4194314 B2 JP4194314 B2 JP 4194314B2 JP 2002218418 A JP2002218418 A JP 2002218418A JP 2002218418 A JP2002218418 A JP 2002218418A JP 4194314 B2 JP4194314 B2 JP 4194314B2
- Authority
- JP
- Japan
- Prior art keywords
- filter
- optical axis
- optical
- aperture
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Lens Barrels (AREA)
- Diaphragms For Cameras (AREA)
- Blocking Light For Cameras (AREA)
- Studio Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ビデオカメラやデジタルスチルカメラ等の撮像装置に用いられるレンズ装置に関するものである。
【0002】
【従来の技術】
ビデオカメラ用のズームレンズとしては、被写体側から順に、固定の凸、可動の凹、固定の凸、可動の凸の4つのレンズ群から構成されるものが良く知られている。
【0003】
また、デジタルスチルカメラ用のレンズとしては、上記ビデオで一般的な光学タイプにこだわらず種々のものが知られている。特に、デジタルスチルカメラ用のレンズでは、撮影を行わないときに沈胴動作により全長が短縮されるような構成がとられる場合もある。
【0004】
図7(A),(B)には、一般的な4群レンズ構成のズームレンズの鏡筒構造を示している。なお、(B)は(A)におけるA−A線断面を示している。
【0005】
このズームレンズを構成する4つのレンズ群201a〜201dは、固定された前玉レンズ201a、光軸に沿って移動することで変倍動作を行うバリエーターレンズ群201b、固定されたアフォーカルレンズ201c、および光軸に沿って移動することで変倍時の焦点面維持と焦点合わせを行うフォーカシングレンズ群201dからなる。
【0006】
ガイドバー203,204a,204bは光軸205と平行に配置され、移動するレンズ群の案内および回り止めを行う。DCモータ206はバリエーターレンズ群201bを移動させる駆動源となる。
【0007】
前玉レンズ201aは前玉鏡筒202に保持され、バリエーターレンズ群201bはV移動環211に保持されている。また、アフォーカルレンズ201cは中間枠215に、フォーカシングレンズ群201dはRR移動環214に保持されている。
【0008】
前玉鏡筒202は、後部鏡筒216に位置決め固定されており、両鏡筒202,216によってガイドバー203が位置決め支持されているとともに、ガイドスクリュー軸208が回転可能に支持されている。このガイドスクリュー軸208は、DCモータ206の出力軸206aの回転がギア列207を介して伝達されることにより回転駆動される。
【0009】
バリエーターレンズ群201bを保持するV移動環211は、押圧ばね209とこの押圧ばね209の力でガイドスクリュー軸208に形成されたスクリュー溝208aに係合するボール210とを有しており、DCモータ206によってガイドスクリュー軸208が回転駆動されることにより、ガイドバー203にガイドおよび回転規制されながら光軸方向に進退移動する。
【0010】
後部鏡筒216とこの後部鏡筒216に位置決めされた中間枠215にはガイドバー204a,204bが嵌合支持されている。RR移動環214は、これらガイドバー204a,204bによってガイドおよび回転規制されながら光軸方向に進退可能である。
【0011】
フォーカシングレンズ群201dを保持するRR移動環214には、ガイドバー204a,204bにスライド可能に嵌合するスリーブ部が形成されており、またラック213が光軸方向についてRR移動環214と一体的となるように組み付けられている。
【0012】
ステッピングモータ212は、その出力軸に一体形成されたリードスクリュー212aを回転駆動する。リードスクリュー212aにはRR移動環214に組み付けられたラック213が係合しており、リードスクリュー212aが回転することによって、RR移動環214がガイドバー204a,204bによりガイドされながら光軸方向に移動する。
【0013】
なお、バリエーターレンズ群の駆動源としては、フォーカシングレンズ群の駆動源と同様にステッピングモータを用いてもよい。
【0014】
そして、前玉鏡筒202、中間枠215および後部鏡筒216により、レンズ等を略密閉収容するレンズ鏡筒本体が形成される。
【0015】
また、このようなステッピングモータを用いてレンズ群保持枠を移動させる場合には、フォトインタラプタ等を用いて保持枠が光軸方向の1つの基準位置に位置することを検出した後に、ステッピングモータに与える駆動パルスの数を連続的にカウントすることにより、保持枠の絶対位置を検出する。
【0016】
ところで、撮像装置に用いられる撮像素子であるCCDは、民生用ビデオカメラでは1/3インチ型、1/4インチ型と称される、対角寸法が6mm、4mm程度といったものが主流となってきている。この大きさの中に例えば31万個の画素を有している。
【0017】
また、デジタルスチルカメラでは、1/2インチ型(対角8mm)程度のCCDで、200〜300万個の画素を有するようなものも使われている。
【0018】
このような高画素のCCDを用いたデジタルカメラにおいては、よく普及している小型のプリントサイズでは、従来のフイルムカメラで撮影した写真と条件が同じであれば遜色のない画質が確保できるようになってきている。
【0019】
このようなビデオカメラにおいて、許容錯乱円径は12〜15μm程度、またデジタルスチルカメラでは7〜8μm程度と、従来の135フイルムフォーマットの許容錯乱円33〜35μmと比較するとはるかに小さな数字となる。これは画面対角寸法が上述のように135フイルムフォーマットの43mmに比べるとはるかに小さいためである。また、この数字はCCDの画素サイズが更に小さくなることによって、より小さな数字となると予想される。
【0020】
また、別の観点から考えると、このようなCCDを用いる撮像装置で、135フイルムカメラと同じ画角を得るための焦点距離は、イメージサイズが小さいことで短くなる。例えば、135フイルムカメラで40mmの標準焦点距離で得られる画角は、1/4インチのCCDを用いた撮像装置では4mmとなる。このため、同じF値で撮影しているときの被写界深度は、フイルムカメラと比較すると、CCDを用いた撮像装置ではきわめて深くなる。
【0021】
一方、焦点深度は、よく知られているように、片側で、許容錯乱円径×F値(絞り値)で求められるから、例えばF2のとき、135フイルムカメラの焦点深度(片側)は0.035×2=0.07mmであるのに対し、1/2インチ型の撮像装置では0.007×2=0.014mmと狭くなる。
【0022】
上述のように対角寸法が、同じ例えば6mmの1/3インチ型のCCDでも、100万画素からさらに200万、300万と画素数を多くして、解像感を上げる目的としたものから、一方では画素の大きさをむやみに小さくはせず、ダイナミックレンジや感度を重視したものなど、CCD撮像素子にも種々の仕様のものが知られている。
【0023】
そして、CCD撮像素子をイメージセンサとして用いた撮像装置においては、CCDの輝度信号のレベルがある定まった範囲となるように、絞り装置により絞り開口を制御して自動的に最適な露出を得る方法が一般的である。絞り装置としては、開口形状がひし形となる2枚の絞り羽根を有するものから、5枚や6枚の絞り羽根を用いた虹彩絞りなどが知られている。
【0024】
また、絞り開口径が小さくなると、回折により画質が劣化するという問題が発生することが知られている。このため、これらの撮像装置では、画質劣化が発生しない、もしくは発生してもはそれほど問題とならない範囲に絞り開口径の制御範囲を制限することが多い。これは、現在の絞り値をマイクロコンピュータが把握し、定められた所定のF値より小絞り側は使用しないとするものである。
【0025】
但し、使用できる絞り範囲に上記のような制限をかけると、実際の被写界の有する広範囲な明るさに対して絞りだけで最適な光量を調節するのが困難となる。このため、絞り羽根に一体的にND(Neutral Density )フィルタを貼り付けて、絞り径が小さくなると絞り開口をNDフィルタが覆うように構成することで、同じ開口制御(例えば開放〜F8)で調整可能な明るさ範囲を広げたり、CCDの電荷蓄積時間(シャッター速度)を可変としたりすることを組み合わせて光量制御が行われている。
【0026】
NDフィルタは、上述したように絞り羽根に一体的に貼り付ける方式のものだけでなく、専用の駆動源を有し、絞り羽根とは別に駆動されて光路内への挿入量を制御する方式も知られている。このようにNDフィルタと絞り羽根とを独立に駆動するものは、絞り値とNDフィルタの挿入量とを独立にコントロールできるので、撮影レンズもしくは撮像装置全体の露出制御の自由度を増すことができる。
【0027】
【発明が解決しようとする課題】
しかしながら、NDフィルタを光軸に直交する面上に配置すると、例えばCCDのカバーガラスにて反射して被写体側に戻った光線が、再びNDフィルタで反射してCCD側に向かい、その光がCCDで撮像されてしまい、ゴーストやフレアとなる場合がある。
【0028】
【課題を解決するための手段】
上記の課題を解決するために、本発明の光量調節装置は、開閉動作して光路を通過する光量を調節する絞り羽根及び光路に対して挿入・退避動作する光学フィルタを光軸直交面に対して傾斜させており、絞り羽根と光学フィルタとの間に配置され、絞り羽根と光学フィルタとが動作可能に取り付けられるベース部材と、ベース部材を挟んで絞り羽根とは光軸方向反対側に配置され、絞り駆動レバーを介して絞り羽根を開閉動作させる絞り駆動源と、ベース部材を挟んで光学フィルタとは光軸方向反対側に配置され、フィルタ駆動レバーを介して光学フィルタを挿入・退避動作させるフィルタ駆動源とを有している。そして、絞り羽根の光軸直交面に対する傾斜角度を、光学フィルタの光軸直交面に対する傾斜角度よりも小さくしている。
【0029】
このように絞り羽根及び光学フィルタを光軸直交面に対して傾斜させることにより、撮像素子等で反射して光量調節装置に戻ってきた光が、絞り羽根及び光学フィルタで再び撮像素子に向けて反射しないようにすることが可能となり、ゴーストやフレアの発生を抑えることが可能となる。このとき、絞り羽根の光軸直交面に対する傾斜角度を、光学フィルタの光軸直交面に対する傾斜角度よりも小さくすることで、周辺光量にアンバランスを生じることを回避することができる。しかも、絞り駆動源をベース部材を挟んで絞り羽根とは光軸方向反対側に配置し、フィルタ駆動源をベース部材を挟んで光学フィルタとは光軸方向反対側に配置することで、絞り羽根と光学フィルタとの間のスペースを利用して絞り駆動レバーとフィルタ駆動レバーをレイアウトすることができ、該光量調節装置が光軸方向に大型化するのを防ぐことができる。
【0030】
本発明は、特に光学フィルタが絞り羽根よりも像面側に配置されている場合に有効である。
【0031】
また、絞り羽根も光軸直交面に対して傾斜させてもよいが、光学フィルタと平行になるように傾斜させると光量調節装置の光軸方向寸法が大きくなるので、絞り羽根と光学フィルタとを非平行関係にする(望ましくは、絞り羽根を光軸直交面上に配置する)ことにより、光量調節装置の大型化、ひいてはこれを搭載するレンズ装置や撮像装置の大型化を防止するようにしてもよい。
【0032】
さらに、上記光量調節装置を1つのユニットとして構成するにあたり、絞り羽根と光学フィルタとの間に配置されたベース部材に、光学フィルタを光軸直交面に対して傾斜した方向に動作案内するガイド部を設けるとよい。
【0033】
【発明の実施の形態】
(第1実施形態)
図1および図2には、本発明の第1実施形態である光量調節装置を示している。本実施形態の光量調節装置9は、6枚の絞り羽根を有するいわゆる虹彩型絞りと光学フィルタとしてのNDフィルタとを有するものである。
【0034】
これらの図において、9aは光量調節装置9のベース部材となる地板であり、中央には開放開口9a2が形成されている。9dは後述する6枚の絞り羽根を開閉動作させる風車リングであり、地板9aの被写体側の面における開放開口9aの周囲で光軸Lを中心して回転可能に地板9aに取り付けられている。
【0035】
9eは6枚の絞り羽根であり、各絞り羽根9eには、地板9aの周方向6箇所に設けられた固定軸部9a1が嵌合する穴部9e1と、風車リング9dの周方向6箇所に設けられた駆動軸部9d1が嵌合する長穴部9e2とが形成されている。
【0036】
また、風車リング9dの周方向一箇所に形成された腕部の先端には長穴部9d2が形成されており、この長穴部9d2には、地板9aの像面側から、地板9aに形成された円弧穴部9a3を貫通して被写体側に延びた絞り駆動レバー9cの駆動軸部9c1が係合する。
【0037】
絞り駆動レバー9cはステッピングモータからなる絞りモータ(絞り駆動源)9bの出力軸に連結されている。このため、絞りモータ9bが回転して絞り駆動レバー9cが回転すると、風車リング9dが回転し、6枚の絞り羽根9eに駆動軸部9d1を介して風車リング9dの回転力が伝達される。このため、6枚の絞り羽根9eは固定軸部9a1を中心に回動し、これら6枚の絞り羽根9eによって形成される絞り開口の開口径が変化して光量の調節が行われる。なお、図2に示す9iは押さえ板であり、地板9aからの絞り羽根9eの脱落を防止するものである。
【0038】
一方、地板9aの像面側には、フィルタ保持部材9h1が配置されている。図2(B)に示すように、このフィルタ保持部材9h1の被写体側の面の下部には、単濃度(透過率32%)のNDフィルタ9h2が貼られている。また、フィルタ保持部材9h1の像面側の中間部から下部にかけては、32%と10%の2種類の透過率を有する光学膜が蒸着された2濃度NDフィルタ9h3が貼られている。なお、光学膜における透過率32%の領域と10%の領域の境界は、NDフィルタ9h2の上端とNDフィルタ9h3の上端との中間に位置する。
【0039】
このように、単濃度のNDフィルタ9h2と2濃度NDフィルタ9h3をフィルタ保持部材9h1を挟んで光軸方向両側に配置することより、図1および図2(B)に示すように、透過率が32%であるNDエリア9h7と、透過率が10%であるNDエリア9h8と、透過率が3%であるNDエリア9h9の計3種類の透過率を有したNDフィルタをフィルタ保持部材9h1で保持したNDユニット9hが構成される。
【0040】
また、各NDエリアは、透過率が高い順、すなわちNDエリア9h7、NDエリア9h8、NDエリア9h9の順で光路内に挿入されるように形成されている。
【0041】
なお、本実施形態のNDユニット9hは、2種類以上の濃度エリアを形成するための例に過ぎず、実際には単濃度フィルタを2枚組み合わせてもよいし、2種類以上の透過率を有したフィルタを1枚貼るだけでもよく、最終的にNDフィルタユニットとして2種類以上の透過率を有し、光路に透過率が高い(濃度が低い)側から順に挿入されるようにすればよい。
【0042】
フィルタ保持部材9h1の下端部には長穴部9h11が形成されており、この長穴部9h11には、ステッピングモータからなるNDモータ(フィルタ駆動源)9fの出力軸に連結されたND駆動レバー(フィルタ駆動レバー)9gの駆動軸部9g1が係合している。
【0043】
また、フィルタ保持部材9h1の側部には、長穴部9h12,9h13が形成されており、これら長穴部9h12,9h13にはそれぞれ、地板9aに設けられた2箇所のガイド突起部(図示せず)が係合している。このため、NDモータ9fが回転してND駆動レバー9gが回転すると、NDユニット9hは、図中に9h14で示す方向に往復動作し、絞り羽根9eによって形成される絞り開口を通過する光路に対して挿入・退避動作し、挿入状態においてフィルタ濃度に応じた光量調節を行う。
【0044】
なお、本実施形態の光量調節装置9では、絞り羽根9eと絞りモータ9bとが地板9aを挟んで互いに光軸方向反対側に配置されている。こうすることによって、絞り羽根9eとNDユニット9hとの間のスペースを利用して絞り駆動レバー9cをレイアウトすることができ、光量調節装置9が光軸方向に大型化するのを防ぐことができる。
【0045】
また、NDユニット9hとNDモータ9fも、地板9aを挟んで互いに光軸方向反対側に配置されている。こうすることによって、絞り羽根9eとNDユニット9hとの間のスペースを利用してND駆動レバー9gをレイアウトすることができ、光量調節装置9が光軸方向に大型化するのを防ぐことができる。
【0046】
さらに、本実施形態の光量調節装置9では、図2(A)に示すように、絞り羽根9eは光軸Lに直交する面A上に配置されているが、NDユニット9hは、光軸Lに直交する面A’に対して角度N°傾斜した面Bに平行に配置されている。すなわち、NDユニット9hは、光軸直交面A’に対して角度N°だけ傾斜して配置されている。
【0047】
光軸直交面A’は面Bに対して、ND駆動レバー9gの駆動軸部9g1の位置で交差するように設定され、NDユニット9hは絞り羽根9eに対して平行ではなく角度N°を保った状態で駆動される。
【0048】
そして、NDユニット9hを面Bに平行に駆動ガイドするために、地板9aのNDユニット9hに対向する部分には、光軸直交面A’に対して角度N°を有するガイド面を有するガイド突起部12が一体形成されている。
【0049】
図3は、地板9aを図2(A)中の矢印C方向から見た図であり、ガイド突起部12は地板9aにおける開放開口9a2の回りの3箇所に形成されている。なお、ガイド突起部12の数は必ずしも3箇所でなくてもよい。
【0050】
また、図2(a)に示すカバー13は、NDユニット9hを地板9aとの間に挟むように、光軸直交面に対して角度N°傾いて地板9aに取り付けられている。
【0051】
例えば、金属の板でカバー13を作成する場合、半抜き加工によってガイド突起部14を、地板9aのガイド突起部12と同様の箇所に設ける。そして、これら両ガイド突起部12,14によって、NDユニット9hを挟み込む。
【0052】
したがって、ND駆動レバー9gの駆動軸部9g1は光軸直交面A’上で回転するが、NDユニット9hは両ガイド突起部12,14によって面Bに平行にガイドされ、光軸直交面A’に対して角度N°を保った状態で駆動される。
【0053】
図4には、図1〜図3で説明した光量調節装置を撮影光学系内に配置した、ビデオカメラやデジタルスチルカメラ等の撮像装置の構成を示している。
【0054】
▲1▼は凸レンズとしての第1群(前玉)レンズであり、前玉鏡筒1に保持されている。この前玉鏡筒1は固定鏡筒2にビス1aにより結合されている。▲2▼は光軸方向に移動して変倍を行う凹レンズとしての第2群レンズであり、2群保持枠3により保持されている。▲3▼は凸レンズとしての第3群レンズであり、固定鏡筒2に対して係合部4aにて係合固定された3群保持枠4によって保持されている。▲4▼は光軸方向に移動して変倍時の焦点面維持と焦点合わせを行う、凸レンズとしての第4群レンズであり、4群保持枠5に固定されている。
【0055】
なお、2群保持枠3と4群保持枠5はそれぞれ不図示の駆動機構によって光軸方向に駆動される。
【0056】
6はローパスフィルタ、15はCCDやCMOSセンサ等の撮像素子、16は撮像素子15の受光面を覆うカバーガラスであり、これらは固定鏡筒2の後端部に保持されている。
【0057】
上記2群保持枠3と3群保持枠4との間には、本実施形態の光量調節装置9が配置されている。
【0058】
ここで、図5には、上記撮像装置における電気的構成を示している。この図において、図1〜図4にて説明した構成要素については、これらの図と同符号を付して説明に代える。
【0059】
132は本カメラの制御を司るCPUである。128はカメラ信号処理回路であり、撮像素子15の出力に対して所定の増幅やガンマ補正などを施す。これらの所定の処理を受けた映像信号のコントラスト信号は、AEゲート129およびAFゲート130を通過する。即ち、露出決定およびピント合わせのために最適な信号の取り出し範囲が全画面内のうちこのゲートで設定される。このゲートの大きさは可変であったり、複数設けられたりする場合がある。
【0060】
131はAF(オートフォーカス)のためのAF信号を処理するAF信号処理回路であり、映像信号の高周波成分に関する1つもしくは複数の出力を生成する。133は撮影者によって操作されるズームスイッチ、134はズームトラッキングメモリである。ズームトラッキングメモリ134は、変倍に際して被写体距離とバリエーターレンズ(第2群レンズ▲2▼)の位置に応じてセットすべきフォーカシングレンズ位置の情報を記憶する。なお、ズームトラッキングメモリとしてCPU132内のメモリを使用してもよい。
【0061】
例えば、撮影者によりズームスイッチ133が操作されると、CPU132は、ズームトラッキングメモリ134の情報をもとに算出したバリエーターレンズとフォーカシングレンズ(第4群レンズ▲4▼)の所定の位置関係が保たれるように、現在のバリエーターレンズの光軸方向位置と算出されたバリエーターレンズのセットすべき位置、および現在のフォーカスレンズの光軸方向位置と算出されたフォーカスレンズのセットすべき位置がそれぞれ一致するように、ズームモータ10とフォーカスモータ127を駆動制御する。
【0062】
また、オートフォーカス動作では、CPU132は、AF信号処理回路231の出力がピークを示すようにフォーカスモータ127を駆動制御する。
【0063】
さらに、適正露出を得るために、CPU132は、AEゲート129を通過したY信号の出力の平均値に基づいて絞りモータ9bを駆動制御して、開口径をコントロールする。また、Y信号の出力の平均値が高い場合には、その程度に応じてNDモータ9fを駆動制御して、NDユニット9hを光路内に挿入する。
【0064】
そして、本実施形態の撮像装置においては、上述したように、NDユニット9hが光軸Lに対して直交する面Aに対して傾斜した面Bに平行に配置されている(NDユニット9hが光軸直交面Aに対して傾斜するように配置されている)ことにより、例えば、第1群レンズ▲1▼、第2群レンズ▲2▼、光量調節装置9の絞り開口、第3群レンズ▲3▼および第4群レンズ▲4▼を通過して撮像素子15側に向かった被写体からの光が、ローパスフィルタ6、カバーガラス16および撮像素子15の受光面で反射して光量調整装置9側に戻り、NDユニット9hの撮像面側に配置されたNDフィルタ9h3等で再度反射しても、この光が撮像素子15に入射してしまうことを防止することができる。
【0065】
具体的には、例えば、図4中の点17(ここでは、カバーガラス16の表面)に高輝度被写体(太陽など)が結像し、その光が光軸Lと平行な矢印18の方向に反射した場合、仮にNDフィルタが光軸直交面上にあると、光はNDフィルタで反射して矢印18とは反対方向に戻り、撮像素子15に入射することになる。しかし、本実施形態のように、NDユニット9h(NDフィルタ9h3等)を光軸直交面に対して傾けることにより、矢印19に示す方向に反射する、すなわちNDユニット9hでの反射光を撮像素子15の受光画面外へ誘導することができる。
【0066】
したがって、NDユニット9hで反射した光によるフレアやゴーストの発生を抑えることができる。
【0067】
なお、本実施形態では、NDユニット9hで反射した光によるフレアやゴーストの発生を抑えるための基本的考え方を示したが、実際の撮像装置に光量調節装置9を搭載する場合は、高輝度被写体が存在する確率の高い場所がどちらであるかや個々の光学設計値によって、NDユニット9hを傾ける角度や方向が定められることになる。
【0068】
また、絞り羽根9eでも同様に反射光によるゴースト等の発生の可能性があるため、絞り羽根9eも光軸直交面Aに対して傾斜させてもよい。但し、絞り羽根9eまでNDユニット9hと平行になる角度傾斜させてしまうと、光量調節装置9が図4中の斜線部20の範囲まで占めるようになる、すなわち光量調節装置9の光軸方向の厚みが増加してしまい、第2群レンズ▲2▼と干渉を避けるために、撮像装置の大型化を招くことになる。また、絞り羽根9eを傾けすぎると、絞り開口の上端と下端の光軸方向位置が大きく異なるため、周辺光量にアンバランスを生じるおそれもある。
【0069】
このため、絞り羽根9eを光軸直交面Aに対して角度N°よりも浅い角度傾斜させる(つまり、絞り羽根9eとNDユニット9hとを互いに非平行関係となるように傾斜させる)、言い換えれば絞り羽根9eの光軸直交面Aに対する傾斜角度を、NDユニット9h(光学フィルタ)の光軸直交面Aに対する傾斜角度よりも小さくするか、本実施形態のように光軸直交面A上に配置して反射防止塗料を塗布する等で対処するようにするのが好ましい。
【0070】
(第2実施形態)
上述した第1実施形態では、絞り羽根を6枚用いた虹彩型絞りを有する光量調節装置について説明したが、本発明は、図5に示すように、2枚羽根絞りを有する光量調節装置にも適用することができる。
【0071】
なお、本実施形態の構成要素のうち第1実施形態と共通する構成要素には第1実施形態と同符号を付して説明に代える。
【0072】
本実施形態では、地板9a’の被写体側の面に2つの固定軸部9a4’を設け、これら固定軸部9a4’に2枚の絞り羽根9jに形成された穴部9j1を嵌合させる。
【0073】
2枚の絞り羽根9jにはそれぞれ長穴部9j2が形成されており、2枚の絞り羽根9jはこれら長穴部9j2が重なるように配置される。そして、これら重なった長穴部9j2には、地板9a’の像面側から、地板9a’に形成された円弧穴部9a3’を貫通して被写体側に延びた絞り駆動レバー9cの先端が係合する。
【0074】
このため、絞りモータ9bが回転して絞り駆動レバー9cが回転すると、2枚の絞り羽根9jは固定軸部9a4’を中心に回動し、略菱形の絞り開口の面積を変化させる。
【0075】
このような絞りと第1実施形態にて説明したNDユニット9hとを組み合わせ、絞り羽根9jを光軸直交面上に配置するとともに、NDユニット9hを光軸直交面に対して傾斜させて配置することにより、第1実施形態と同様に、NDユニット9hでの反射光によるゴースト等の発生を防止することができる。
【0076】
さらに、本発明は、ビデオカメラ等の絞りとして最も一般的に用いられる、2枚の羽根が互いに離間もしくは接近する方向に直線的に駆動するタイプの絞りを有する光量調節装置にも適用することができる。
【0077】
なお、上記各実施形態にて説明した光量調節装置の構成は例に過ぎず、光量調節装置が搭載される撮影レンズや撮像装置に求められるサイズその他の要求などに応じて適宜変更が可能である。
【0078】
また、上記各実施形態では、絞り羽根とNDフィルタとが独立して駆動される光量調節装置について説明したが、本発明は、絞り羽根にNDフィルタが貼り付けられて両者が一体的に駆動される光量調節装置にも適用することができる。この場合、光軸直交面上に配置した絞り羽根に対して角度を付けてNDフィルタを貼り付けるようにすればよい。
【0079】
また、上記各実施形態では、光学フィルタとしてNDフィルタを用いた場合について説明したが、NDフィルタ以外の光学フィルタを備えた光量調節装置にも本発明を適用することは可能である。
【0080】
さらに、上記各実施形態では、光量調節装置を搭載した撮像装置について説明したが、交換タイプの撮影レンズ装置に搭載される光量調節装置にも本発明を適用することができる。
【0081】
【発明の効果】
以上説明したように、本発明によれば、絞り羽根及び光学フィルタを光軸直交面に対して傾斜させているので、撮像素子等で反射して光量調節装置に戻ってきた光が絞り羽根及び光学フィルタで再び撮像素子に向けて反射されないようにすることができ、ゴーストやフレアの発生を抑えることができる。また、絞り羽根の光軸直交面に対する傾斜角度を、光学フィルタの光軸直交面に対する傾斜角度よりも小さくすることで、周辺光量にアンバランスを生じることを回避することができる。しかも、絞り駆動源をベース部材を挟んで絞り羽根とは光軸方向反対側に配置し、フィルタ駆動源をベース部材を挟んで光学フィルタとは光軸方向反対側に配置することで、絞り羽根と光学フィルタとの間のスペースを利用して絞り駆動レバーとフィルタ駆動レバーをレイアウトすることができ、光量調節装置が光軸方向に大型化するのを防ぐことができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態である光量調節装置の分解斜視図。
【図2】上記光量調節装置の側面図およびNDユニットの拡大図。
【図3】上記光量調節装置の背面図。
【図4】上記光量調節装置を搭載した撮像装置の断面図。
【図5】上記撮像装置の電気回路構成を示すブロック図。
【図6】本発明の第2実施形態である光量調節装置の分解斜視図。
【図7】従来の撮像装置の断面図。
【符号の説明】
1 前玉鏡筒
2 固定鏡筒
6 ローパスフィルタ
9、9’ 光量調節装置
9a、9a’ 地板
9e、9j 絞り羽根
9h NDユニット
9h2,9h3 NDフィルタ
12、14 ガイド突起部
15 撮像素子
16 カバーガラス
A、A’ 光軸直交面
B 光軸直交面に対して傾斜した面
▲1▼〜▲4▼ レンズ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lens apparatus used in an imaging apparatus such as a video camera or a digital still camera.
[0002]
[Prior art]
As a zoom lens for a video camera, a lens composed of four lens groups of a fixed convex, a movable concave, a fixed convex, and a movable convex in order from the subject side is well known.
[0003]
Various lenses for digital still cameras are known regardless of the general optical type in the video. In particular, a lens for a digital still camera may be configured such that the total length is shortened by a retracting operation when shooting is not performed.
[0004]
FIGS. 7A and 7B show a lens barrel structure of a zoom lens having a general four-group lens configuration. In addition, (B) has shown the AA sectional view in (A).
[0005]
The four
[0006]
[0007]
The
[0008]
The
[0009]
The
[0010]
[0011]
The
[0012]
The stepping
[0013]
Note that a stepping motor may be used as a driving source for the variator lens group, similarly to the driving source for the focusing lens group.
[0014]
The
[0015]
Further, when moving the lens group holding frame using such a stepping motor, after detecting that the holding frame is positioned at one reference position in the optical axis direction using a photo interrupter or the like, the stepping motor The absolute position of the holding frame is detected by continuously counting the number of applied driving pulses.
[0016]
By the way, CCDs, which are image pickup elements used in image pickup apparatuses, are called 1/3 inch type and 1/4 inch type in consumer video cameras and have diagonal dimensions of about 6 mm and 4 mm. ing. For example, 310,000 pixels are included in this size.
[0017]
In digital still cameras, CCDs of about 1/2 inch type (diagonal 8 mm) having 2 to 3 million pixels are also used.
[0018]
In such a digital camera using a high-pixel CCD, a small print size that is widely used can ensure a comparable image quality if the conditions are the same as those of a photograph taken with a conventional film camera. It has become to.
[0019]
In such a video camera, the permissible circle of confusion is about 12-15 μm, and the digital still camera is about 7-8 μm, which is a much smaller number than the permissible circle of confusion 33-35 μm of the conventional 135 film format. This is because the diagonal dimension of the screen is much smaller than 43 mm of the 135 film format as described above. This number is expected to be smaller as the CCD pixel size is further reduced.
[0020]
From another viewpoint, the focal length for obtaining the same angle of view as that of the 135 film camera in such an imaging apparatus using a CCD is shortened due to the small image size. For example, the angle of view obtained with a standard focal length of 40 mm with a 135 film camera is 4 mm with an imaging device using a 1/4 inch CCD. For this reason, the depth of field when photographing with the same F value is extremely deep in an imaging device using a CCD, as compared with a film camera.
[0021]
On the other hand, as is well known, the depth of focus is obtained by the permissible circle of confusion diameter × F value (aperture value) on one side. For example, at F2, the depth of focus (one side) of the 135 film camera is 0. In contrast to 035 × 2 = 0.07 mm, in a 1/2 inch type imaging apparatus, the width is narrowed to 0.007 × 2 = 0.014 mm.
[0022]
As described above, even with a 1/3 inch CCD having the same diagonal size, for example, 6 mm, the number of pixels is increased from 1 million to 2 million or 3 million to increase resolution. On the other hand, various types of CCD image sensors are known, such as those that do not reduce the size of the pixels unnecessarily, but emphasize the dynamic range and sensitivity.
[0023]
In an image pickup apparatus using a CCD image pickup device as an image sensor, a method of automatically obtaining an optimum exposure by controlling the aperture opening with an aperture device so that the level of the luminance signal of the CCD is in a certain range. Is common. As a diaphragm device, an iris diaphragm using five or six diaphragm blades is known from one having two diaphragm blades having a rhombus opening shape.
[0024]
Further, it is known that when the aperture diameter is small, there is a problem that the image quality deteriorates due to diffraction. For this reason, in these imaging apparatuses, the control range of the aperture diameter is often limited to a range in which the image quality does not deteriorate or does not cause much problem. This is because the microcomputer grasps the current aperture value and does not use a smaller aperture than a predetermined F value.
[0025]
However, if the above-described restriction is applied to the usable aperture range, it becomes difficult to adjust the optimum light amount with only the aperture for a wide range of brightness of the actual field. For this reason, an ND (Neutral Density) filter is affixed integrally to the aperture blades, and the aperture opening is covered by the ND filter when the aperture diameter is reduced, so that adjustment is performed with the same aperture control (for example, open to F8). Light amount control is performed by combining a wide range of possible brightness and a variable charge accumulation time (shutter speed) of the CCD.
[0026]
As described above, the ND filter is not only one that is attached to the diaphragm blades integrally, but also has a dedicated drive source, and a method that is driven separately from the diaphragm blades to control the amount of insertion into the optical path. Are known. In this way, the ND filter and the diaphragm blades that are driven independently can independently control the aperture value and the amount of insertion of the ND filter, so that the degree of freedom of exposure control of the photographic lens or the entire imaging apparatus can be increased. .
[0027]
[Problems to be solved by the invention]
However, when the ND filter is arranged on a plane orthogonal to the optical axis, for example, the light beam reflected by the cover glass of the CCD and returned to the subject side is reflected again by the ND filter and directed to the CCD side, and the light is reflected on the CCD. May cause a ghost or flare.
[0028]
[Means for Solving the Problems]
In order to solve the above problems, the light quantity adjusting device of the present invention is a diaphragm blade that adjusts the quantity of light passing through the optical path by opening and closing.as well asOptical filter that can be inserted into and retracted from the optical pathTheA base member that is inclined with respect to the plane perpendicular to the optical axis, is disposed between the diaphragm blade and the optical filter, and the diaphragm blade and the optical filter are operatively mounted. An aperture drive source that is arranged on the opposite side in the axial direction and opens and closes the aperture blades via the aperture drive lever, and an optical filter that is located on the opposite side of the optical axis across the base member, and optically passes through the filter drive lever. A filter driving source for inserting and retracting the filter.The inclination angle of the diaphragm blades with respect to the optical axis orthogonal plane is made smaller than the inclination angle of the optical filter with respect to the optical axis orthogonal plane.
[0029]
in this wayDiaphragm blades andBy tilting the optical filter with respect to the plane orthogonal to the optical axis,Light control deviceThe light that came back toDiaphragm blades andIt is possible to prevent the optical filter from reflecting again toward the image sensor, and it is possible to suppress the occurrence of ghosts and flares.At this time, by making the inclination angle of the diaphragm blade with respect to the optical axis orthogonal plane smaller than the inclination angle of the optical filter with respect to the optical axis orthogonal plane, it is possible to avoid unbalance in the peripheral light amount.In addition, the diaphragm driving source is disposed on the opposite side of the optical axis direction from the diaphragm blade with the base member interposed therebetween, and the diaphragm driving source is disposed on the opposite side of the optical filter direction with respect to the optical filter with the base member interposed therebetween. The aperture driving lever and the filter driving lever can be laid out using the space between the optical filter and the optical filter, and the light quantity adjusting device can be prevented from being enlarged in the optical axis direction.
[0030]
The present invention is particularly effective when the optical filter is disposed on the image plane side with respect to the aperture blade.
[0031]
The diaphragm blades may also be tilted with respect to the plane orthogonal to the optical axis. However, if the tilt blades are tilted so as to be parallel to the optical filter, the dimension in the optical axis direction of the light quantity adjusting device increases. Non-parallel relationship (preferably the diaphragm blades are orthogonal to the optical axisUpTo place)ByFurther, it is possible to prevent an increase in the size of the light amount adjusting device and, in turn, an increase in the size of the lens device or imaging device on which the light amount adjusting device is mounted.
[0032]
Further, when the light quantity adjusting device is configured as one unit, a guide portion for guiding the operation of the optical filter in a direction inclined with respect to the plane orthogonal to the optical axis is provided on a base member disposed between the diaphragm blade and the optical filter. It is good to provide.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
1 and 2 show a light amount adjusting device according to the first embodiment of the present invention. The light
[0034]
In these drawings,
[0035]
[0036]
Further, a long hole portion 9d2 is formed at the tip of the arm portion formed at one place in the circumferential direction of the
[0037]
The
[0038]
On the other hand, a filter holding member 9h1 is disposed on the image plane side of the
[0039]
In this way, by arranging the single-concentration ND filter 9h2 and the two-concentration ND filter 9h3 on both sides in the optical axis direction with the filter holding member 9h1 interposed therebetween, as shown in FIG. 1 and FIG. The filter holding member 9h1 holds ND filters having a total of three types of transmittance: an ND area 9h7 having a transmittance of 32%, an ND area 9h8 having a transmittance of 10%, and an ND area 9h9 having a transmittance of 3%. The
[0040]
Each ND area is formed so as to be inserted into the optical path in the descending order of transmittance, that is, ND area 9h7, ND area 9h8, and ND area 9h9.
[0041]
The ND unit of this embodiment9hIs merely an example for forming two or more types of density areas. Actually, two single density filters may be combined, or only one filter having two or more types of transmittance may be pasted. Finally, the ND filter unit has two or more types of transmittance, and may be inserted into the optical path in order from the side with the higher transmittance (low density).
[0042]
An elongate hole 9h11 is formed at the lower end of the filter holding member 9h1, and this elongate hole 9h11 has an ND motor composed of a stepping motor.(Filter drive source)ND drive lever connected to 9f output shaft(Filter drive lever)The 9g drive shaft portion 9g1 is engaged.
[0043]
Further, elongated holes 9h12 and 9h13 are formed on the side of the filter holding member 9h1, and the elongated holes 9h12 and 9h13 each have two guide protrusions provided on the base plate 9a.(Not shown)Are engaged. For this reason, when the
[0044]
In the light
[0045]
The
[0046]
Further, in the light
[0047]
The optical axis orthogonal plane A ′ is set so as to intersect the plane B at the position of the drive shaft portion 9g1 of the
[0048]
In order to drive and guide the
[0049]
FIG. 3 is a view of the
[0050]
Also, the
[0051]
For example, when the
[0052]
Therefore, the drive shaft portion 9g1 of the
[0053]
FIG. 4 shows a configuration of an image pickup apparatus such as a video camera or a digital still camera in which the light amount adjusting device described in FIGS. 1 to 3 is arranged in the photographing optical system.
[0054]
(1) is a first group (front lens) lens as a convex lens, and is held by the front lens barrel 1. This front lens barrel 1 is coupled to a fixed barrel 2 by
[0055]
The second group holding frame 3 and the fourth
[0056]
6 is a low-pass filter, 15 is an image sensor such as a CCD or CMOS sensor, and 16 is a cover glass that covers the light receiving surface of the
[0057]
Between the second group holding frame 3 and the third group holding frame 4, the light
[0058]
Here, FIG. 5 shows an electrical configuration of the imaging apparatus. In this figure, the components described in FIGS. 1 to 4 are given the same reference numerals as those in FIG.
[0059]
[0060]
[0061]
For example, when the photographer operates the
[0062]
In the autofocus operation, the
[0063]
Further, in order to obtain proper exposure, the
[0064]
In the imaging apparatus of the present embodiment, as described above, the
[0065]
Specifically, for example, a high-brightness subject (such as the sun) forms an image at a
[0066]
Therefore, the occurrence of flare and ghost due to the light reflected by the
[0067]
In the present embodiment, the basic idea for suppressing the occurrence of flare and ghost due to the light reflected by the
[0068]
Similarly, the
[0069]
Therefore, the
[0070]
(Second Embodiment)
In the first embodiment described above, the light amount adjusting device having an iris diaphragm using six diaphragm blades has been described. However, the present invention is also applicable to a light amount adjusting device having two blade diaphragms as shown in FIG. Can be applied.
[0071]
Of the constituent elements of the present embodiment, constituent elements common to the first embodiment are assigned the same reference numerals as in the first embodiment and are not described.
[0072]
In the present embodiment, two fixed shaft portions 9a4 'are provided on the subject side surface of the
[0073]
The two
[0074]
For this reason, when the
[0075]
Such an aperture and the ND unit described in the first embodiment9hAnd the
[0076]
Furthermore, the present invention can also be applied to a light amount adjustment device having a diaphragm of a type that is linearly driven in a direction in which two blades are separated or approach each other, which is most commonly used as a diaphragm of a video camera or the like. it can.
[0077]
Note that the configuration of the light amount adjustment device described in each of the above embodiments is merely an example, and can be changed as appropriate according to the size and other requirements required for the imaging lens on which the light amount adjustment device is mounted and the imaging device. .
[0078]
In each of the above-described embodiments, the light amount adjusting device in which the diaphragm blade and the ND filter are driven independently has been described. However, in the present invention, the ND filter is attached to the diaphragm blade and the both are integrally driven. The present invention can also be applied to a light amount adjusting device. In this case, the ND filter may be attached at an angle to the diaphragm blades arranged on the plane orthogonal to the optical axis.
[0079]
In each of the above embodiments, the case where an ND filter is used as an optical filter has been described. However, the present invention can also be applied to a light amount adjusting device including an optical filter other than the ND filter.
[0080]
Furthermore, in each of the above-described embodiments, the imaging device including the light amount adjusting device has been described. However, the present invention can also be applied to a light amount adjusting device mounted on an interchangeable photographing lens device.
[0081]
【The invention's effect】
As explained above, according to the present invention,Diaphragm blades andSince the optical filter is inclined with respect to the plane orthogonal to the optical axis, it is reflected by the image sensor, etc.Light control deviceThe light that came back toDiaphragm blades andIt can be prevented from being reflected again toward the image sensor by the optical filter, and generation of ghost and flare can be suppressed.Further, by making the inclination angle of the diaphragm blade with respect to the optical axis orthogonal plane smaller than the inclination angle of the optical filter with respect to the optical axis orthogonal plane, it is possible to avoid unbalance in the peripheral light amount.In addition, the diaphragm driving source is disposed on the opposite side of the optical axis direction from the diaphragm blade with the base member interposed therebetween, and the diaphragm driving source is disposed on the opposite side of the optical filter direction with respect to the optical filter with the base member interposed therebetween. The aperture driving lever and the filter driving lever can be laid out using the space between the optical filter and the optical filter, and the light quantity adjusting device can be prevented from being enlarged in the optical axis direction.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a light amount adjusting device according to a first embodiment of the present invention.
FIG. 2 is a side view of the light amount adjusting device and an enlarged view of an ND unit.
FIG. 3 is a rear view of the light amount adjusting device.
FIG. 4 is a cross-sectional view of an image pickup apparatus equipped with the light amount adjusting device.
FIG. 5 is a block diagram showing an electric circuit configuration of the imaging apparatus.
FIG. 6 is an exploded perspective view of a light amount adjusting device according to a second embodiment of the present invention.
FIG. 7 is a cross-sectional view of a conventional imaging device.
[Explanation of symbols]
1 Front lens barrel
2 Fixed lens barrel
6 Low-pass filter
9, 9 'Light intensity adjustment device
9a, 9a 'ground plate
9e, 9j Aperture blade
9h ND unit
9h2, 9h3 ND filter
12, 14 Guide protrusion
15 Image sensor
16 Cover glass
A, A 'Optical axis orthogonal plane
B Surface inclined with respect to the optical axis orthogonal plane
▲ 1 ▼ ~ ▲ 4 ▼ Lens
Claims (4)
前記絞り羽根と前記光学フィルタとの間に配置され、前記絞り羽根と前記光学フィルタとが動作可能に取り付けられるベース部材と、
前記ベース部材を挟んで前記絞り羽根とは光軸方向反対側に配置され、絞り駆動レバーを介して前記絞り羽根を開閉動作させる絞り駆動源と、
前記ベース部材を挟んで前記光学フィルタとは光軸方向反対側に配置され、フィルタ駆動レバーを介して前記光学フィルタを挿入・退避動作させるフィルタ駆動源とを有し、
前記絞り羽根の前記光軸直交面に対する傾斜角度が、前記光学フィルタの前記光軸直交面に対する傾斜角度よりも小さいことを特徴とする光量調節装置。A diaphragm blade that adjusts the amount of light that passes through the optical path by opening and closing, and an optical filter that is inserted into and retracted from the optical path, and the diaphragm blade and the optical filter are inclined with respect to the plane orthogonal to the optical axis. A light quantity adjusting device,
A base member disposed between the aperture blade and the optical filter, to which the aperture blade and the optical filter are operatively attached;
An aperture drive source disposed on the opposite side to the aperture blade in the optical axis direction across the base member, and opening and closing the aperture blade via an aperture drive lever;
Wherein the said optical filter across the base member is disposed on the optical axis opposite possess a filter drive source for inserting and retracting operation of the optical filter via the filter drive lever,
The light quantity adjusting device , wherein an inclination angle of the diaphragm blade with respect to the optical axis orthogonal plane is smaller than an inclination angle of the optical filter with respect to the optical axis orthogonal plane .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002218418A JP4194314B2 (en) | 2002-07-26 | 2002-07-26 | Light amount adjusting device, lens device, and imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002218418A JP4194314B2 (en) | 2002-07-26 | 2002-07-26 | Light amount adjusting device, lens device, and imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004061740A JP2004061740A (en) | 2004-02-26 |
JP4194314B2 true JP4194314B2 (en) | 2008-12-10 |
Family
ID=31939615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002218418A Expired - Fee Related JP4194314B2 (en) | 2002-07-26 | 2002-07-26 | Light amount adjusting device, lens device, and imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4194314B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6685041B2 (en) * | 2015-12-24 | 2020-04-22 | カムイ・イノベーション株式会社 | Ghost reduction device, image pickup apparatus including the same, ghost reduction method, and image pickup optical system |
-
2002
- 2002-07-26 JP JP2002218418A patent/JP4194314B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004061740A (en) | 2004-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5382650B2 (en) | Lens barrel and imaging device | |
JP3861815B2 (en) | Camera with image stabilization function | |
JP4154223B2 (en) | LENS DEVICE AND IMAGING DEVICE | |
US7493030B2 (en) | Adaptive optical plane formation with rolling shutter | |
JP5461119B2 (en) | Lens barrel and imaging device | |
US7099555B2 (en) | Light amount adjusting apparatus, optical equipment, optical filter and image-taking apparatus | |
JP3372714B2 (en) | Imaging device | |
JP4973478B2 (en) | Imaging device and imaging apparatus | |
US7844173B2 (en) | Image capturing apparatus | |
JP5719989B2 (en) | Lens barrel and imaging device | |
JP4684386B2 (en) | Light amount adjusting device and optical apparatus | |
JP4348118B2 (en) | Solid-state imaging device and imaging device | |
JP4190086B2 (en) | Electronic imaging device | |
JP2010152405A (en) | Optical apparatus and light quantity regulating device | |
JP4194314B2 (en) | Light amount adjusting device, lens device, and imaging device | |
JP4464184B2 (en) | Optical filter | |
JP4309716B2 (en) | camera | |
JP2003222918A (en) | Lens barrel and imaging device using the same | |
JP4074799B2 (en) | camera | |
JP2005017699A (en) | Camera | |
JP2002182263A (en) | Light controller, photographic lens barrel and imaging device | |
JP3036067B2 (en) | Camera device | |
JP2008054072A (en) | Imaging apparatus | |
JP2002014384A (en) | Quantity-of-light adjusting device | |
JP3017796B2 (en) | Camera device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080909 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080922 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |