[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4192904B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4192904B2
JP4192904B2 JP2005048755A JP2005048755A JP4192904B2 JP 4192904 B2 JP4192904 B2 JP 4192904B2 JP 2005048755 A JP2005048755 A JP 2005048755A JP 2005048755 A JP2005048755 A JP 2005048755A JP 4192904 B2 JP4192904 B2 JP 4192904B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
gas
pressure
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005048755A
Other languages
Japanese (ja)
Other versions
JP2006234263A (en
Inventor
多佳志 岡崎
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005048755A priority Critical patent/JP4192904B2/en
Publication of JP2006234263A publication Critical patent/JP2006234263A/en
Application granted granted Critical
Publication of JP4192904B2 publication Critical patent/JP4192904B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、超臨界流体を用いる冷凍サイクル装置に関するものであり、特に膨張機を利用する冷凍サイクル装置の構成に関するものである。   The present invention relates to a refrigeration cycle apparatus using a supercritical fluid, and particularly to a configuration of a refrigeration cycle apparatus using an expander.

以下、従来の膨張機を利用する冷凍装置の一例である。従来の冷凍装置は、膨張機を用いる冷凍装置において、各種運転条件で冷凍装置の運転を可能とし、冷凍装置のCOPを向上させるものである。   Hereinafter, it is an example of the freezing apparatus using the conventional expander. The conventional refrigeration apparatus is a refrigeration apparatus using an expander, which enables operation of the refrigeration apparatus under various operating conditions and improves the COP of the refrigeration apparatus.

具体的には、高圧冷媒の膨張により動力を発生させる膨張機と、この膨張機を駆動する第1電動機、更にこの膨張機と連結されてこれらで発生した動力により駆動されて冷媒を圧縮する第1圧縮機と、第1圧縮機に別個に設けられるとともに第2電動機と連結され、第2電動機で発生した動力により駆動されて冷媒を圧縮する容量可変の第2圧縮機を、第1圧縮機と並列に備えるものである。また、膨張機の入口側と出口側を連通させるバイパス配管を有しており、このバイパス配管には開度可変なバイパス弁が設けられている。   Specifically, an expander that generates power by the expansion of the high-pressure refrigerant, a first electric motor that drives the expander, and a first motor that is connected to the expander and is driven by the power generated by them to compress the refrigerant. A first compressor and a variable capacity second compressor that is separately provided to the first compressor and connected to the second motor and is driven by power generated by the second motor to compress the refrigerant. In parallel. Moreover, it has bypass piping which connects the inlet side and outlet side of an expander, and this bypass piping is provided with a bypass valve with variable opening.

このような従来の構造では、膨張機に連結されない第2圧縮機が第1圧縮機と並列に配置されており、膨張機に連結された第1圧縮機だけでは押しのけ量が不足するような運転条件においても、第2圧縮機を運転することで押しのけ量の不足分を補うことができ、適切な条件で冷凍サイクルを継続させることができるというものであった(例えば、特許文献1参照)。   In such a conventional structure, the second compressor that is not connected to the expander is arranged in parallel with the first compressor, and the first compressor connected to the expander alone is insufficient in displacement. Even under the conditions, by operating the second compressor, the shortage of displacement could be compensated, and the refrigeration cycle could be continued under appropriate conditions (see, for example, Patent Document 1).

他の従来例として、冷媒回路に膨張機と複数の利用側熱交換器が設けられた冷凍装置において、各室内熱交換器へ適切な量の冷媒を供給可能とし、各室内熱交換器における対象物の冷却を確実に行うものがある。従来例では、複数の室内熱交換器が並列接続された冷媒回路において、室内制御弁を各室内熱交換器に対応して1つずつ設けているので、各室内制御弁の開度をそれぞれ調節することにより、各室内への冷媒供給量を適切に制御でき、各室内熱交換器における対象物の冷却を確実に行うことができる。   As another conventional example, in a refrigeration apparatus in which an expander and a plurality of usage-side heat exchangers are provided in a refrigerant circuit, an appropriate amount of refrigerant can be supplied to each indoor heat exchanger, and the target in each indoor heat exchanger There are things that reliably cool things. In the conventional example, in the refrigerant circuit in which a plurality of indoor heat exchangers are connected in parallel, one indoor control valve is provided corresponding to each indoor heat exchanger, so the opening degree of each indoor control valve is adjusted individually. By doing so, the amount of refrigerant supplied to each room can be appropriately controlled, and the object in each indoor heat exchanger can be reliably cooled.

また、冷媒回路に低圧冷媒を液冷媒とガス冷媒とに分離する気液分離器を設けたので、気液二相状態の冷媒ではなく、流量制御が容易な単相の液冷媒を各室内熱交換器へ送ることが可能となり、室内熱交換器への冷媒供給量を一層適切に制御することができるというものであった。(例えば、特許文献2参照)。   In addition, since the gas-liquid separator that separates the low-pressure refrigerant into the liquid refrigerant and the gas refrigerant is provided in the refrigerant circuit, a single-phase liquid refrigerant that is easy to control the flow rate is used instead of the gas-liquid two-phase refrigerant. The refrigerant can be sent to the exchanger, and the refrigerant supply amount to the indoor heat exchanger can be more appropriately controlled. (For example, refer to Patent Document 2).

また、従来例として、冷媒に二酸化炭素を用い、室外ユニットと複数台の室内ユニットを有し、複数台の室内ユニットを同時に冷房運転もしくは暖房運転を可能とし、または、暖房運転と冷房運転を混在して実施可能とする冷凍装置がある。   In addition, as a conventional example, carbon dioxide is used as a refrigerant, and there are an outdoor unit and a plurality of indoor units, and a plurality of indoor units can be simultaneously operated for cooling or heating, or heating operation and cooling operation are mixed. There is a refrigeration apparatus that can be implemented.

従来の冷凍装置は、室外ユニットと複数台の室内ユニットとを、高圧ガス管と低圧ガス管と液管からなるユニット間配管で接続し、複数台の室内ユニットを同時に冷房運転もしくは暖房運転可能としている。また、冷媒に二酸化炭素を使用したので、圧縮機から吐出される冷媒蒸気が高圧ガス管内で凝縮することがなく、フロン系冷媒のように、液化して高圧ガス管内に寝込むといった不都合が解消される。従って、寝込み冷媒の回収用として従来必要であった、高圧ガス管と低圧ガス管との間のバイパス管等が不要になり、配管構造を複雑化させることなく、高圧ガス管内の冷媒寝込みを防止することができるというものであった(例えば、特許文献3参照)。 In the conventional refrigeration system, an outdoor unit and a plurality of indoor units are connected by inter-unit piping consisting of a high pressure gas pipe, a low pressure gas pipe, and a liquid pipe, and the plurality of indoor units can be simultaneously operated for cooling or heating. Yes. In addition, since carbon dioxide is used as the refrigerant, the refrigerant vapor discharged from the compressor does not condense in the high-pressure gas pipe, and the inconvenience of liquefying and sleeping in the high-pressure gas pipe like the chlorofluorocarbon refrigerant is eliminated. The This eliminates the need for a bypass pipe between the high-pressure gas pipe and the low-pressure gas pipe, which has been conventionally required for collecting the stagnant refrigerant, and prevents the refrigerant from stagnating in the high-pressure gas pipe without complicating the piping structure. (See, for example, Patent Document 3).

特開2004−212006号公報(請求項1、図1)Japanese Patent Laying-Open No. 2004-212006 (Claim 1, FIG. 1) 特開2003−121015号公報(0021欄、図1)Japanese Patent Laid-Open No. 2003-121015 (column 0021, FIG. 1) 特開2004−226018号公報(0032欄、図1)Japanese Unexamined Patent Publication No. 2004-226018 (column 0032, FIG. 1)

従来例では、膨張機を利用する冷凍サイクル装置において、第1圧縮機が第1電動機および膨張機と連結されており、構造が複雑になるとともに、膨張機からの回収動力を優先使用する複雑な制御が必要になるという課題があった。また、他の従来例では、膨張機の出口側に設けた気液分離器で分離したガス冷媒を圧縮機の吸入部に戻していたので、膨張機と連結される圧縮機はガス配管や液配管などの延長配管、減圧手段、熱交換器などを通過する際の圧力損失に相当する昇圧仕事を余分に行う必要があり、消費電力が増加するという課題があった。また、二酸化炭素を用い、高圧ガス管と低圧ガス管と液管の3管でユニット間を接続し、冷房運転と暖房運転を同時に行う冷媒回路構成(以下、3管式システムという)は従来例で示されているが、高圧管、低圧管のみから構成され(以下、2管式システムという)、全ての運転モードで膨張機の回収動力を利用する2管式システムの冷媒回路構成が難しいという課題があった。さらに、2段圧縮式冷凍サイクルの全ての運転モードで膨張機の回収動力を利用する冷媒回路の構成が示されていないという課題があった。   In the conventional example, in the refrigeration cycle apparatus using the expander, the first compressor is connected to the first electric motor and the expander, and the structure is complicated, and the recovery power from the expander is preferentially used. There was a problem that control was required. In another conventional example, since the gas refrigerant separated by the gas-liquid separator provided on the outlet side of the expander is returned to the suction portion of the compressor, the compressor connected to the expander can be a gas pipe or a liquid. It is necessary to perform extra pressure work corresponding to the pressure loss when passing through an extended pipe such as a pipe, a pressure reducing means, a heat exchanger, and the like, resulting in an increase in power consumption. In addition, a conventional refrigerant circuit configuration (hereinafter referred to as a three-pipe system) in which carbon dioxide is used, the units are connected by three pipes, a high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe, and cooling operation and heating operation are performed simultaneously. However, it is difficult to construct a refrigerant circuit for a two-pipe system that consists of only a high-pressure pipe and a low-pressure pipe (hereinafter referred to as a two-pipe system) and that uses the recovery power of the expander in all operation modes. There was a problem. Furthermore, there is a problem that the configuration of the refrigerant circuit that uses the recovery power of the expander is not shown in all the operation modes of the two-stage compression refrigeration cycle.

本発明は上記のような従来の課題を解決するためになされたもので、膨張機を利用する冷凍サイクル装置において、冷房運転と暖房運転を同時に行うことができ、または2段圧縮式冷凍サイクルにより2つの異なる蒸発温度(または凝縮温度)で運転することができるなど、各種運転条件で膨張動力を回収可能な冷凍サイクル装置を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and in a refrigeration cycle apparatus using an expander, a cooling operation and a heating operation can be performed simultaneously, or by a two-stage compression refrigeration cycle. An object of the present invention is to provide a refrigeration cycle apparatus that can recover expansion power under various operating conditions, such as being able to operate at two different evaporation temperatures (or condensation temperatures).

本発明の冷凍サイクル装置は、冷媒として高圧側にて超臨界の状態となる自然冷媒を用いる冷媒回路に設けられ、低圧冷媒を吸入し高圧冷媒を吐出して冷媒を循環させる第1圧縮機と、冷媒回路を循環する冷媒を凝縮もしくは蒸発させる熱源側熱交換器と、第1圧縮機から吐出される冷媒を熱源側熱交換器を介してもしくは熱源側熱交換器を介さずに負荷側へ循環させる様に冷媒回路の冷媒の流を切換えて冷却運転と加熱運転が個別に選択可能な複数設けられた負荷側熱交換器と、高圧冷媒の膨張動力を回収する膨張機と、膨張機にて膨張した冷媒を気液に分離させる気液分離器のガス側出口部と接続し、ガス側出口部からの冷媒を膨張機の回収した動力で圧縮する第2圧縮機と、を備え、第2圧縮機から吐出される冷媒を第1圧縮機の吐出側とを接続し高圧冷媒とするものである。   The refrigeration cycle apparatus of the present invention is provided in a refrigerant circuit using a natural refrigerant that becomes a supercritical state on the high-pressure side as a refrigerant, and a first compressor that sucks low-pressure refrigerant, discharges high-pressure refrigerant, and circulates the refrigerant. The heat source side heat exchanger that condenses or evaporates the refrigerant circulating in the refrigerant circuit, and the refrigerant discharged from the first compressor to the load side via the heat source side heat exchanger or not via the heat source side heat exchanger A plurality of load-side heat exchangers that can individually select a cooling operation and a heating operation by switching the refrigerant flow so as to circulate, an expander that recovers expansion power of the high-pressure refrigerant, and an expander A gas-liquid separator that separates the expanded refrigerant into a gas-liquid separator, and a second compressor that compresses the refrigerant from the gas-side outlet with the power recovered by the expander. 2 Refrigerant discharged from the compressor is discharged from the first compressor Connect the door is to the high-pressure refrigerant.

本発明の冷凍サイクル装置は、冷媒回路の高圧側と低圧側を接続する回路に第3圧縮機及び室内の空調を行う前記負荷側熱交換器とは異なる第2の負荷側熱交換器を並列に設けたものである。   In the refrigeration cycle apparatus according to the present invention, a circuit connecting the high-pressure side and the low-pressure side of the refrigerant circuit includes a third compressor and a second load-side heat exchanger different from the load-side heat exchanger that performs indoor air conditioning. Is provided.

この発明は、膨張機からの回収動力で駆動する第2圧縮機を介して気液分離器のガス側出口部と第1圧縮機の吐出部とを接続したので、各種の運転モードで膨張動力を回収できるとともに、消費電力を低減可能な冷凍サイクル装置を提供することができる。   In this invention, since the gas side outlet part of the gas-liquid separator and the discharge part of the first compressor are connected via the second compressor driven by the recovery power from the expander, the expansion power in various operation modes. Can be recovered, and a refrigeration cycle apparatus capable of reducing power consumption can be provided.

また、この発明は、第3圧縮機を介して別の空調用熱交換器を設けたので効率の良い広い用途に使用される装置が得られる。   Moreover, since this invention provided the another heat exchanger for an air conditioning through the 3rd compressor, the apparatus used for the efficient wide use is obtained.

実施の形態1.
以下、本発明の実施の形態1による冷凍サイクル装置について説明する。図1は、本発明の実施形態1に係る冷凍サイクル装置を示す模式図である。図において、本実施の形態に係る冷凍サイクル装置は、熱源側ユニットである室外ユニット100、分岐ユニット300、負荷側ユニットである室内ユニット200a、200b、200c、室外ユニット100と分岐ユニット300とを接続する配管である高圧管52および低圧管51とにより構成されている。従って、本発明の冷凍サイクル装置は、室内ユニット200a、200b、200cが個別に冷房運転および暖房運転が選択可能な2管式システムとなる。内部には冷媒として例えば臨界温度(約31℃)以上で超臨界状態となる二酸化炭素が封入されている。
Embodiment 1 FIG.
Hereinafter, the refrigeration cycle apparatus according to Embodiment 1 of the present invention will be described. FIG. 1 is a schematic diagram showing a refrigeration cycle apparatus according to Embodiment 1 of the present invention. In the figure, the refrigeration cycle apparatus according to the present embodiment connects the outdoor unit 100 that is a heat source side unit, the branch unit 300, the indoor units 200a, 200b, and 200c that are load side units, and the outdoor unit 100 and the branch unit 300. The high-pressure pipe 52 and the low-pressure pipe 51 are pipes to be connected. Therefore, the refrigeration cycle apparatus of the present invention is a two-pipe system in which the indoor units 200a, 200b, and 200c can individually select a cooling operation and a heating operation. For example, carbon dioxide that is in a supercritical state at a critical temperature (about 31 ° C.) or higher is enclosed as a refrigerant.

室外ユニット100内には、冷媒ガスを圧縮するための第1圧縮機1、冷房運転と暖房運転との第1冷媒流路切換え手段である四方弁2、熱源側熱交換器である室外熱交換器3、外気を強制的に室外熱交換器3の外表面に送風するための図示しない送風機、更には冷房運転、暖房運転ともに高圧管52に高圧ガス、低圧管51に低圧ガスを流すための逆止弁21a〜21dが収納されている。分岐ユニット300内には、冷媒を減圧して二相状態の湿り蒸気とする膨張機4、気液分離器5、気液分離器5の液側出口部に設けられた開度変更可能な第2減圧手段である電子膨張弁12、膨張機4と同軸に接続され膨張機4で回収した動力で駆動する第2圧縮機9、第2圧縮機の吐出ガスと第1圧縮機の吸入部を熱交換する内部熱交換器22、気液分離器5で分離されたガス冷媒を第2圧縮機9の吸入側へ導く吸入配管13、気液分離器5で分離されたガス冷媒を第1圧縮機1の吸入側へ導く第1バイパス配管14、第1バイパス配管中に設けられた開度変更可能な第3減圧手段である電子膨張弁10、冷房運転を行う負荷側ユニットが少ない場合に液冷媒を第1圧縮機1の吸入側へバイパスする第2バイパス配管19、第2バイパス配管中に設けられた開度変更可能な減圧手段である電子膨張弁20、冷房運転と暖房運転の切換え手段である開閉弁30、31、32、33、34、35、42、43、および逆止弁36、37、38、39、40、41およびこれらを接続するための配管が内蔵されている。   In the outdoor unit 100, there are a first compressor 1 for compressing the refrigerant gas, a four-way valve 2 which is a first refrigerant flow switching means for cooling operation and heating operation, and outdoor heat exchange which is a heat source side heat exchanger. 3, a blower (not shown) for forcing the outside air to the outer surface of the outdoor heat exchanger 3, and further for supplying high pressure gas to the high pressure pipe 52 and low pressure gas to the low pressure pipe 51 in both the cooling operation and the heating operation. Check valves 21a to 21d are accommodated. In the branch unit 300, the expansion degree 4 provided at the liquid side outlet of the expander 4, the gas-liquid separator 5, and the gas-liquid separator 5 that depressurizes the refrigerant to form wet steam in a two-phase state can be changed. 2 Electronic expansion valve 12 as decompression means, second compressor 9 connected coaxially with expander 4 and driven by power recovered by expander 4, discharge gas of second compressor and suction part of first compressor An internal heat exchanger 22 that exchanges heat, a suction pipe 13 that guides the gas refrigerant separated by the gas-liquid separator 5 to the suction side of the second compressor 9, and a first compression of the gas refrigerant separated by the gas-liquid separator 5 The first bypass pipe 14 that leads to the suction side of the machine 1, the electronic expansion valve 10 that is the third pressure reducing means provided in the first bypass pipe and that can change the opening degree, and there are few load-side units that perform the cooling operation. A second bypass pipe 19 for bypassing the refrigerant to the suction side of the first compressor 1; An electronic expansion valve 20 that is a pressure-reducing means that can be changed in opening degree, an on-off valve 30, 31, 32, 33, 34, 35, 42, 43 that is a switching means between cooling operation and heating operation, and a check Valves 36, 37, 38, 39, 40, 41 and piping for connecting them are incorporated.

四方弁2の第1口2aは圧縮機1の吐出側と、第2口2bは室外熱交換器3の一端と、第3口2cは圧縮機1の吸入側と、第4口2dは逆止弁21a、21d側とそれぞれ接続されている。   The first port 2a of the four-way valve 2 is the discharge side of the compressor 1, the second port 2b is one end of the outdoor heat exchanger 3, the third port 2c is the suction side of the compressor 1, and the fourth port 2d is reversed. They are connected to the stop valves 21a and 21d, respectively.

室内ユニット200a、200b、200cには、負荷側熱交換器である室内熱交換器7a、7b、7c、室内熱交換器7a、7b、7cへの冷媒分配を調節する第1減圧手段である電子膨張弁6a、6b、6c、室内空気を強制的に室内熱交換器7a、7b、7cの外表面に送風するための図示しない送風機およびそれらを接続するための配管が内蔵されている。室内熱交換器7a、7b、7cの一端は分岐ユニット300と接続され、他端は電子膨張弁6a、6b、6cを介して分岐ユニットに接続されている。なお、本実施の形態では、室内ユニット200a、200b、200cを3台としているが、2台以下あるいは4台以上としても良い。   The indoor units 200a, 200b, and 200c include an electronic unit that is a first decompression unit that adjusts refrigerant distribution to the indoor heat exchangers 7a, 7b, and 7c and the indoor heat exchangers 7a, 7b, and 7c that are load-side heat exchangers. The expansion valves 6a, 6b, 6c, a blower (not shown) for forcibly blowing room air to the outer surfaces of the indoor heat exchangers 7a, 7b, 7c, and piping for connecting them are incorporated. One end of the indoor heat exchangers 7a, 7b, 7c is connected to the branch unit 300, and the other end is connected to the branch unit via the electronic expansion valves 6a, 6b, 6c. In the present embodiment, three indoor units 200a, 200b, and 200c are provided, but two or less indoor units or four or more indoor units may be provided.

上記のように構成された冷凍サイクル装置について運転動作を説明する。まず、全室内ユニットが冷房運転を行う場合を図1と図2に基づいて説明する。図2は、図1の冷媒回路中に示した記号A〜Kにおける冷媒状態をP−h線図上に示したものである。全冷房運転では、室外ユニット100内部の四方弁2は第1口2aと第2口2bが連通し、第3口2cと第4口2dが連通するように設定される(図1中実線)。また、電磁弁31、33、35、43は閉止、他の電磁弁は開放され、第2バイパス配管19中の電子膨張弁20は全閉される。さらに、逆止弁21c、21d、36、38、40は閉止される。   The operation of the refrigeration cycle apparatus configured as described above will be described. First, the case where all indoor units perform cooling operation will be described with reference to FIGS. 1 and 2. FIG. 2 shows on the Ph diagram the refrigerant states at symbols A to K shown in the refrigerant circuit of FIG. In the cooling only operation, the four-way valve 2 in the outdoor unit 100 is set so that the first port 2a and the second port 2b communicate with each other and the third port 2c and the fourth port 2d communicate with each other (solid line in FIG. 1). . Further, the solenoid valves 31, 33, 35, 43 are closed, the other solenoid valves are opened, and the electronic expansion valve 20 in the second bypass pipe 19 is fully closed. Further, the check valves 21c, 21d, 36, 38, 40 are closed.

このとき、圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2の第1口2aから第2口2bを通って(状態B)、室外熱交換器3で被加熱媒体である空気に放熱し(状態C)、逆止弁21b、高圧管52、電磁弁42を通って膨張機4に流入する。膨張機4に流入した液冷媒は低圧低温の気液二相冷媒となり(状態D)、気液分離器5に流入する。気液分離器5で分離された液冷媒(状態E)は、電子膨張弁12、逆止弁37、39、41を通過して室内ユニット200a、200b、200cに流入する。   At this time, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the first port 2a of the four-way valve 2 through the second port 2b (state B), and the air that is the medium to be heated in the outdoor heat exchanger 3 (State C) and flows into the expander 4 through the check valve 21b, the high pressure pipe 52, and the electromagnetic valve 42. The liquid refrigerant flowing into the expander 4 becomes a low-pressure and low-temperature gas-liquid two-phase refrigerant (state D) and flows into the gas-liquid separator 5. The liquid refrigerant (state E) separated by the gas-liquid separator 5 passes through the electronic expansion valve 12 and the check valves 37, 39, 41 and flows into the indoor units 200a, 200b, 200c.

室内ユニット200a、200b、200cに流入した液冷媒は、電子膨張弁6a、6b、6cで各室内熱交換器7a、7b、7cに略均一に分配される。この液冷媒は、室内熱交換器7a、7b、7cで、図示しない室内空気から吸熱し、自らは蒸発気化する。この低温低圧のガス冷媒は、電磁弁30、32、34を通って(状態G)、気液分離器5で分離されたガス冷媒のうち、第2圧縮機9で吸引された残りのガス冷媒(状態H)と合流し(状態I)、内部熱交換器22を経て低圧管51、逆止弁21a、四方弁2の第4口2dから第3口2cを経て、第1圧縮機1の吸入側(状態A)へ戻る。この時、図示しない室内送風機によって室内熱交換器7a、7b、7cへ送り込まれた室内空気は、低温低圧の液冷媒により冷却されて室内へ吹き出され、室内を冷房する。   The liquid refrigerant that has flowed into the indoor units 200a, 200b, and 200c is distributed substantially uniformly to the indoor heat exchangers 7a, 7b, and 7c by the electronic expansion valves 6a, 6b, and 6c. This liquid refrigerant absorbs heat from indoor air (not shown) in the indoor heat exchangers 7a, 7b, and 7c, and evaporates itself. The low-temperature and low-pressure gas refrigerant passes through the solenoid valves 30, 32, and 34 (state G), and the remaining gas refrigerant sucked by the second compressor 9 among the gas refrigerant separated by the gas-liquid separator 5. (State H) merges (state I), passes through the internal heat exchanger 22, the low pressure pipe 51, the check valve 21 a, the fourth port 2 d of the four-way valve 2, the third port 2 c, and the first compressor 1. Return to the suction side (state A). At this time, the indoor air sent into the indoor heat exchangers 7a, 7b, and 7c by an indoor blower (not shown) is cooled by the low-temperature and low-pressure liquid refrigerant and blown into the room to cool the room.

一方、気液分離器5で分離されたガス冷媒(状態F)は、吸入配管13を通り、高圧管52の出口圧力まで第2圧縮機9で圧縮される(状態J)。第2圧縮機9から吐出されたガス冷媒は、内部熱交換器22で第1圧縮機1の吸入冷媒と熱交換した後(状態K)、高圧管52から流入した液冷媒と合流する。   On the other hand, the gas refrigerant (state F) separated by the gas-liquid separator 5 passes through the suction pipe 13 and is compressed by the second compressor 9 up to the outlet pressure of the high-pressure pipe 52 (state J). The gas refrigerant discharged from the second compressor 9 exchanges heat with the suction refrigerant of the first compressor 1 in the internal heat exchanger 22 (state K), and then merges with the liquid refrigerant flowing in from the high-pressure pipe 52.

図2に示したP−h線図上の冷凍サイクルでは、第2圧縮機9の吐出圧力は、第1圧縮機1の吐出圧力よりΔPdだけ低下し、第2圧縮機の吸入圧力は、第1圧縮機の吸入圧力よりΔPsだけ上昇する。これは、以下の理由による。すなわち、第1圧縮機1で圧縮された冷媒は、四方弁2、室外熱交換器3、逆止弁21b、高圧管52を通過する際に圧力損失が生じて吐出圧力が低下し、気液分離器5で分離された後、それぞれ電子膨張弁12、逆止弁37、39、41、電子膨張弁6a、6b、6c、室内熱交換器7a、7b、7c、内部熱交換器22、低圧管51、逆止弁21a、四方弁2を通過する際に圧力損失が生じて吸入圧力が低下するためである。したがって、第2圧縮機9は上記圧力損失に相当する昇圧仕事を行う必要がなく、第2圧縮機の9入力を低減して膨張機の回収動力を有効に利用することができる。   In the refrigeration cycle on the Ph diagram shown in FIG. 2, the discharge pressure of the second compressor 9 is lower than the discharge pressure of the first compressor 1 by ΔPd, and the suction pressure of the second compressor is It rises by ΔPs from the suction pressure of one compressor. This is due to the following reason. That is, when the refrigerant compressed by the first compressor 1 passes through the four-way valve 2, the outdoor heat exchanger 3, the check valve 21 b, and the high-pressure pipe 52, a pressure loss is generated and the discharge pressure is reduced. After being separated by the separator 5, the electronic expansion valve 12, the check valves 37, 39, 41, the electronic expansion valves 6a, 6b, 6c, the indoor heat exchangers 7a, 7b, 7c, the internal heat exchanger 22, and the low pressure, respectively. This is because a pressure loss occurs when passing through the pipe 51, the check valve 21a, and the four-way valve 2, and the suction pressure is reduced. Therefore, the second compressor 9 does not need to perform pressure increasing work corresponding to the pressure loss, and the input power of the expander can be effectively utilized by reducing the 9 inputs of the second compressor.

つぎに、全室内ユニットが暖房運転を行う場合について図3と図4に基づいて説明する。図4は、図3の冷媒回路中に示した記号A〜Jにおける冷媒状態をP−h線図上に示したものである。この場合、室外ユニット100内部の四方弁2は第1口2aと第4口2dが連通し、第2口2bと第3口2cが連通するように設定される(図3中の実線)。また、電磁弁30、32、34、42は閉止、他の電磁弁は開放され、電子膨張弁20は適切な開度に設定される。さらに、逆止弁21a、21b、37、39、41は閉止される。   Next, the case where all the indoor units perform the heating operation will be described with reference to FIGS. 3 and 4. FIG. 4 shows on the Ph diagram the refrigerant states at symbols A to J shown in the refrigerant circuit of FIG. In this case, the four-way valve 2 inside the outdoor unit 100 is set so that the first port 2a and the fourth port 2d communicate with each other and the second port 2b and the third port 2c communicate with each other (solid line in FIG. 3). Further, the electromagnetic valves 30, 32, 34, 42 are closed, the other electromagnetic valves are opened, and the electronic expansion valve 20 is set to an appropriate opening degree. Further, the check valves 21a, 21b, 37, 39, 41 are closed.

このとき、圧縮機1で圧縮され高温高圧の超臨界状態となった冷媒は四方弁2の第1口2aから第4口2d、逆止弁21d、高圧管52を経て分岐ユニット300に流入する。ここで、高温高圧の冷媒は、電磁弁31、33、35を通過し、室内ユニット200a、200b、200cにそれぞれ流入する。ここで、図示しない室内空気に放熱して室内を暖房すると共に自らは温度が低下する。この中温高圧の冷媒は、電子膨張弁6a、6b、6cを通過し(状態C)、逆止弁36、38、40を経て膨張機4に流入する。膨張機4で減圧された冷媒は気液分離器5に流入する(状態D)。気液分離器5で分離された液冷媒(状態E)は、電子膨張弁20で減圧され(状態G)、内部熱交換器22を通過した後、低圧管51、逆止弁21cを経て室外熱交換器3に流入する。一方、気液分離器5で分離されたガス冷媒(状態F)は、吸入配管13を通り、高圧管52の出口圧力まで第2圧縮機9で圧縮される(状態J)。第2圧縮機9の吐出ガスと第1圧縮機の吐出ガスは合流して状態Iとなる。このとき、冷媒は配管抵抗により内部熱交換器22へは流れない。   At this time, the refrigerant that has been compressed by the compressor 1 and is in a supercritical state of high temperature and pressure flows from the first port 2a of the four-way valve 2 to the branch unit 300 through the fourth port 2d, the check valve 21d, and the high pressure pipe 52. . Here, the high-temperature and high-pressure refrigerant passes through the electromagnetic valves 31, 33, and 35 and flows into the indoor units 200a, 200b, and 200c, respectively. Here, heat is released to indoor air (not shown) to heat the room, and the temperature itself decreases. This medium-temperature and high-pressure refrigerant passes through the electronic expansion valves 6a, 6b and 6c (state C), and flows into the expander 4 through the check valves 36, 38 and 40. The refrigerant decompressed by the expander 4 flows into the gas-liquid separator 5 (state D). The liquid refrigerant (state E) separated by the gas-liquid separator 5 is decompressed by the electronic expansion valve 20 (state G), passes through the internal heat exchanger 22, and then passes through the low-pressure pipe 51 and the check valve 21c. It flows into the heat exchanger 3. On the other hand, the gas refrigerant (state F) separated by the gas-liquid separator 5 passes through the suction pipe 13 and is compressed by the second compressor 9 up to the outlet pressure of the high-pressure pipe 52 (state J). The discharge gas of the second compressor 9 and the discharge gas of the first compressor merge to be in the state I. At this time, the refrigerant does not flow to the internal heat exchanger 22 due to the pipe resistance.

室外熱交換器3に流入した低温低圧の液冷媒(状態H)は、図示しない室外送風機によって送り込まれる外気から吸熱するとともに自らは蒸発する。蒸発したガス冷媒は、四方弁2の第2口2bから第3口2cを経て第1圧縮機1の吸入側へ戻る(状態A)。   The low-temperature and low-pressure liquid refrigerant (state H) flowing into the outdoor heat exchanger 3 absorbs heat from the outside air sent by an outdoor fan (not shown) and evaporates itself. The evaporated gas refrigerant returns from the second port 2b of the four-way valve 2 to the suction side of the first compressor 1 through the third port 2c (state A).

図4に示したP−h線図上の冷凍サイクルでは、第2圧縮機の吐出圧力は、第1圧縮機の吐出圧力よりΔPdだけ低下し、第2圧縮機の吸入圧力は、第1圧縮機の吸入圧力よりΔPsだけ上昇する。これは、以下の理由による。すなわち、第1圧縮機で圧縮された冷媒は、四方弁2、逆止弁21d、高圧管52を通過する際に圧力損失が生じて吐出圧力が低下し、一方、気液分離器5で分離された液冷媒は、電子膨張弁20、内部熱交換器22、低圧管51、逆止弁21c、室外熱交換器3、四方弁2を通過する際に圧力損失が生じて吸入圧力が低下するためである。したがって、第2圧縮機は上記圧力損失に相当する昇圧仕事を行う必要がなく、第2圧縮機の入力を低減して膨張機の回収動力を有効に利用することができる。   In the refrigeration cycle on the Ph diagram shown in FIG. 4, the discharge pressure of the second compressor is lower than the discharge pressure of the first compressor by ΔPd, and the suction pressure of the second compressor is the first compression. Increases by ΔPs from the suction pressure of the machine. This is due to the following reason. That is, the refrigerant compressed by the first compressor causes a pressure loss when passing through the four-way valve 2, the check valve 21 d, and the high-pressure pipe 52, and the discharge pressure is reduced. On the other hand, the refrigerant is separated by the gas-liquid separator 5. When the liquid refrigerant passes through the electronic expansion valve 20, the internal heat exchanger 22, the low pressure pipe 51, the check valve 21 c, the outdoor heat exchanger 3, and the four-way valve 2, a pressure loss occurs and the suction pressure decreases. Because. Therefore, the second compressor does not need to perform pressure increasing work corresponding to the pressure loss, and the input power of the second compressor can be reduced and the recovered power of the expander can be used effectively.

つぎに、室内ユニット200b、200cが冷房運転、200aが暖房運転となる冷房主体運転について図5と図6に基づいて説明する。図6は、図5の冷媒回路中に示した記号A〜Lにおける冷媒状態をP−h線図上に示したものである。この場合、室外ユニット100内部の四方弁2は第1口2aと第2口2bが連通し、第3口2cと第4口2dが連通するように設定される(図3中の実線)。また、電磁弁30、33、35、42は閉止、他の電磁弁は開放され、電子膨張弁20は全閉される。さらに、逆止弁21c、21d、36、38、41は閉止される。   Next, the cooling main operation in which the indoor units 200b and 200c are the cooling operation and the 200a is the heating operation will be described with reference to FIGS. FIG. 6 shows the refrigerant state of symbols A to L shown in the refrigerant circuit of FIG. 5 on the Ph diagram. In this case, the four-way valve 2 inside the outdoor unit 100 is set so that the first port 2a and the second port 2b communicate with each other and the third port 2c and the fourth port 2d communicate with each other (solid line in FIG. 3). Further, the electromagnetic valves 30, 33, 35, 42 are closed, the other electromagnetic valves are opened, and the electronic expansion valve 20 is fully closed. Further, the check valves 21c, 21d, 36, 38, 41 are closed.

このとき、圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2の第1口2aから第2口2bを通って(状態B)、室外熱交換器3で被加熱媒体である空気にある程度放熱して中温高圧の冷媒となり(状態C)、逆止弁21b、高圧管52、電磁弁31を通って室内ユニット200aに流入する。ここで、図示しない室内空気に更に放熱して室内を暖房すると共に自らは温度が低下する。この低温高圧の冷媒は、電子膨張弁6aを通過し(状態K)、逆止弁40を経て膨張機4に流入する。膨張機4に流入した低温高圧の冷媒は低温低圧の気液二相冷媒となり(状態D)、気液分離器5に流入する。気液分離器5で分離された液冷媒(状態E)は、電子膨張弁12、逆止弁37、39を通過して室内ユニット200b、200cに流入する。   At this time, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the first port 2a of the four-way valve 2 through the second port 2b (state B), and the air that is the medium to be heated in the outdoor heat exchanger 3 Radiates to a certain degree to become a medium-temperature and high-pressure refrigerant (state C), and flows into the indoor unit 200a through the check valve 21b, the high-pressure pipe 52, and the electromagnetic valve 31. Here, the room air is further radiated to the indoor air (not shown) to heat the room, and the temperature itself decreases. This low-temperature and high-pressure refrigerant passes through the electronic expansion valve 6a (state K) and flows into the expander 4 through the check valve 40. The low-temperature and high-pressure refrigerant flowing into the expander 4 becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant (state D) and flows into the gas-liquid separator 5. The liquid refrigerant (state E) separated by the gas-liquid separator 5 passes through the electronic expansion valve 12 and the check valves 37 and 39 and flows into the indoor units 200b and 200c.

室内ユニット200b、200cに流入した液冷媒は、電子膨張弁6b、6cで各室内熱交換器7b、7cに均一に分配される。この液冷媒は、室内熱交換器7b、7cで、図示しない室内空気から吸熱し、自らは蒸発気化する。この低温低圧のガス冷媒は、電磁弁32、34を通って(状態G)、気液分離器5で分離されたガス冷媒のうち、第2圧縮機9で吸引された残りのガス冷媒(状態H)と合流し(状態I)、内部熱交換器22を経て低圧管51、逆止弁21a、四方弁2の第4口2dから第3口2cを経て、第1圧縮機1の吸入側(状態A)へ戻る。この時、図示しない室内送風機によって室内熱交換器7b、7cへ送り込まれた室内空気は、低温低圧の液冷媒により冷却されて室内へ吹き出され、室内を冷房する。   The liquid refrigerant that has flowed into the indoor units 200b and 200c is uniformly distributed to the indoor heat exchangers 7b and 7c by the electronic expansion valves 6b and 6c. This liquid refrigerant absorbs heat from indoor air (not shown) in the indoor heat exchangers 7b and 7c, and evaporates itself. This low-temperature and low-pressure gas refrigerant passes through the solenoid valves 32 and 34 (state G), and among the gas refrigerant separated by the gas-liquid separator 5, the remaining gas refrigerant sucked by the second compressor 9 (state H) (state I), the low-pressure pipe 51, the check valve 21a, the four-way valve 2 through the fourth port 2d through the third port 2c through the internal heat exchanger 22, and the suction side of the first compressor 1 Return to (State A). At this time, the indoor air sent to the indoor heat exchangers 7b and 7c by an indoor blower (not shown) is cooled by the low-temperature and low-pressure liquid refrigerant and blown into the room to cool the room.

一方、気液分離器5で分離されたガス冷媒(状態F)は、吸入配管13を通り、高圧管52の出口圧力まで第2圧縮機9で圧縮される(状態J)。第2圧縮機9から吐出されたガス冷媒は、電磁弁43を通過して高圧管52から分岐ユニット300に流入した中温高圧の冷媒と合流する(状態L)。このとき、冷媒は配管抵抗により内部熱交換器22へは流れない。   On the other hand, the gas refrigerant (state F) separated by the gas-liquid separator 5 passes through the suction pipe 13 and is compressed by the second compressor 9 up to the outlet pressure of the high-pressure pipe 52 (state J). The gas refrigerant discharged from the second compressor 9 joins the medium-temperature and high-pressure refrigerant that has passed through the electromagnetic valve 43 and has flowed from the high-pressure pipe 52 into the branch unit 300 (state L). At this time, the refrigerant does not flow to the internal heat exchanger 22 due to the pipe resistance.

図6に示したP−h線図上の冷凍サイクルでは、第2圧縮機の吐出圧力は、第1圧縮機の吐出圧力よりΔPdだけ低下し、第2圧縮機の吸入圧力は、第1圧縮機の吸入圧力よりΔPsだけ上昇する。これは、以下の理由による。すなわち、第1圧縮機で圧縮された冷媒は、四方弁2、室外熱交換器3、逆止弁21b、高圧管52を通過する際に圧力損失が生じて吐出圧力が低下し、気液分離器5で分離された液冷媒は、電子膨張弁12、逆止弁37、39、電子膨張弁6b、6c、室内熱交換器7b、7c、電磁弁32、34、内部熱交換器22、低圧管51、逆止弁21a、四方弁2を通過する際に圧力損失が生じて吸入圧力が低下するためである。したがって、第2圧縮機は上記圧力損失に相当する昇圧仕事を行う必要がなく、第2圧縮機の入力を低減して膨張機の回収動力を有効に利用することができる。   In the refrigeration cycle on the Ph diagram shown in FIG. 6, the discharge pressure of the second compressor is lower than the discharge pressure of the first compressor by ΔPd, and the suction pressure of the second compressor is the first compression. Increases by ΔPs from the suction pressure of the machine. This is due to the following reason. That is, when the refrigerant compressed by the first compressor passes through the four-way valve 2, the outdoor heat exchanger 3, the check valve 21 b, and the high-pressure pipe 52, a pressure loss occurs and the discharge pressure decreases, and the gas-liquid separation The liquid refrigerant separated in the vessel 5 is the electronic expansion valve 12, check valves 37 and 39, electronic expansion valves 6b and 6c, indoor heat exchangers 7b and 7c, electromagnetic valves 32 and 34, internal heat exchanger 22, and low pressure. This is because a pressure loss occurs when passing through the pipe 51, the check valve 21a, and the four-way valve 2, and the suction pressure is reduced. Therefore, the second compressor does not need to perform pressure increasing work corresponding to the pressure loss, and the input power of the second compressor can be reduced and the recovered power of the expander can be used effectively.

つぎに、室内ユニット200a、200bが暖房運転、200cが冷房運転となる暖房主体運転について図7と図8に基づいて説明する。図8は、図7の冷媒回路中に示した記号A〜Kにおける冷媒状態をP−h線図上に示したものである。この場合、室外ユニット100内部の四方弁2は第1口2aと第4口2dが連通し、第2口2bと第3口2cが連通するように設定される(図7中の実線)。また、電磁弁30、32、35、42は閉止、他の電磁弁は開放され、電子膨張弁20はある開度に設定される。さらに、逆止弁21a、21b、36、39、41は閉止される。   Next, a heating main operation in which the indoor units 200a and 200b are in the heating operation and the 200c is in the cooling operation will be described with reference to FIGS. FIG. 8 shows the refrigerant state at symbols A to K shown in the refrigerant circuit of FIG. 7 on the Ph diagram. In this case, the four-way valve 2 inside the outdoor unit 100 is set so that the first port 2a and the fourth port 2d communicate with each other and the second port 2b and the third port 2c communicate with each other (solid line in FIG. 7). The electromagnetic valves 30, 32, 35, and 42 are closed, the other electromagnetic valves are opened, and the electronic expansion valve 20 is set to a certain opening. Further, the check valves 21a, 21b, 36, 39, 41 are closed.

このとき、圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2の第1口2aから第4口2dを通って(状態B)、逆止弁21d、高圧管52を経て分岐ユニット300に流入する。ここで、高温高圧の冷媒は、電磁弁31、33を通過し、室内ユニット200a、200bにそれぞれ流入する。ここで、図示しない室内空気に放熱して室内を暖房すると共に自らは温度が低下する。この中温高圧の冷媒は、電子膨張弁6a、6bを通過し(状態C)、逆止弁38、40を経て膨張機4に流入する。膨張機4で減圧された冷媒は気液分離器5に流入する(状態D)。気液分離器5で分離された液冷媒(状態E)の一部は、電子膨張弁20で減圧される(状態G)。他の一部は、電子膨張弁12を通って室内ユニット200cに流入する。   At this time, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes from the first port 2a to the fourth port 2d of the four-way valve 2 (state B), passes through the check valve 21d and the high-pressure pipe 52, and is branched. Flows into 300. Here, the high-temperature and high-pressure refrigerant passes through the electromagnetic valves 31 and 33 and flows into the indoor units 200a and 200b, respectively. Here, heat is released to indoor air (not shown) to heat the room, and the temperature itself decreases. This medium-temperature and high-pressure refrigerant passes through the electronic expansion valves 6a and 6b (state C) and flows into the expander 4 through the check valves 38 and 40. The refrigerant decompressed by the expander 4 flows into the gas-liquid separator 5 (state D). A part of the liquid refrigerant (state E) separated by the gas-liquid separator 5 is decompressed by the electronic expansion valve 20 (state G). The other part flows through the electronic expansion valve 12 into the indoor unit 200c.

室内ユニット200cに流入した液冷媒は、室内熱交換器7cで、図示しない室内空気から吸熱し、自らは蒸発気化する。この低温低圧のガス冷媒は電磁弁34を通り(状態H)、電子膨張弁20で減圧された気液二相冷媒に加え、気液分離器5で分離されたガス冷媒のうち第2圧縮機9で吸引された残りのガス冷媒と合流し、内部熱交換器22を経て低圧管51、逆止弁21cを通り、室外熱交換器3に流入する(状態K)。   The liquid refrigerant flowing into the indoor unit 200c absorbs heat from indoor air (not shown) in the indoor heat exchanger 7c and evaporates itself. This low-temperature and low-pressure gas refrigerant passes through the electromagnetic valve 34 (state H), and in addition to the gas-liquid two-phase refrigerant decompressed by the electronic expansion valve 20, the second compressor among the gas refrigerant separated by the gas-liquid separator 5 9 merges with the remaining gas refrigerant sucked in 9, passes through the internal heat exchanger 22, passes through the low pressure pipe 51 and the check valve 21 c, and flows into the outdoor heat exchanger 3 (state K).

室外熱交換器3に流入した低温低圧の液冷媒(状態K)は、図示しない室外送風機によって送り込まれる外気から吸熱するとともに自らは蒸発する。蒸発したガス冷媒は、四方弁2の第2口2bから第3口2cを経て第1圧縮機1の吸入側へ戻る(状態A)。   The low-temperature and low-pressure liquid refrigerant (state K) flowing into the outdoor heat exchanger 3 absorbs heat from the outside air sent by an outdoor fan (not shown) and evaporates itself. The evaporated gas refrigerant returns from the second port 2b of the four-way valve 2 to the suction side of the first compressor 1 through the third port 2c (state A).

一方、気液分離器5で分離されたガス冷媒(状態F)は、吸入配管13を通り、高圧管52の出口圧力まで第2圧縮機9で圧縮される(状態J)。第2圧縮機9から吐出されたガス冷媒は、電磁弁43を通過して高圧管52から分岐ユニット300に流入した高温高圧の冷媒と合流する。このとき、冷媒は配管抵抗により内部熱交換器22へは流れない。   On the other hand, the gas refrigerant (state F) separated by the gas-liquid separator 5 passes through the suction pipe 13 and is compressed by the second compressor 9 up to the outlet pressure of the high-pressure pipe 52 (state J). The gas refrigerant discharged from the second compressor 9 merges with the high-temperature and high-pressure refrigerant that has passed through the electromagnetic valve 43 and has flowed into the branch unit 300 from the high-pressure pipe 52. At this time, the refrigerant does not flow to the internal heat exchanger 22 due to the pipe resistance.

図8に示したP−h線図上の冷凍サイクルでは、第2圧縮機の吐出圧力は、第1圧縮機の吐出圧力よりΔPdだけ低下し、第2圧縮機の吸入圧力は、第1圧縮機の吸入圧力よりΔPsだけ上昇する。これは、以下の理由による。すなわち、第1圧縮機で圧縮された冷媒は、四方弁2、逆止弁21d、高圧管52を通過する際に圧力損失が生じて吐出圧力が低下し、気液分離器5で分離された液冷媒は、電子膨張弁12、逆止弁37、電子膨張弁6c、室内熱交換器7c、電磁弁34、内部熱交換器22、低圧管51、逆止弁21c、室外熱交換器3、四方弁2を通過する際に圧力損失が生じて吸入圧力が低下するためである。したがって、第2圧縮機は上記圧力損失に相当する昇圧仕事を行う必要がなく、第2圧縮機の入力を低減して膨張機の回収動力を有効に利用することができる。   In the refrigeration cycle on the Ph diagram shown in FIG. 8, the discharge pressure of the second compressor is reduced by ΔPd from the discharge pressure of the first compressor, and the suction pressure of the second compressor is the first compression. Increases by ΔPs from the suction pressure of the machine. This is due to the following reason. That is, the refrigerant compressed by the first compressor is separated by the gas-liquid separator 5 due to a pressure loss caused by passing through the four-way valve 2, the check valve 21 d, and the high-pressure pipe 52, thereby reducing the discharge pressure. The liquid refrigerant includes the electronic expansion valve 12, the check valve 37, the electronic expansion valve 6c, the indoor heat exchanger 7c, the electromagnetic valve 34, the internal heat exchanger 22, the low pressure pipe 51, the check valve 21c, the outdoor heat exchanger 3, This is because a pressure loss occurs when passing through the four-way valve 2 to reduce the suction pressure. Therefore, the second compressor does not need to perform pressure increasing work corresponding to the pressure loss, and the input power of the second compressor can be reduced and the recovered power of the expander can be used effectively.

つぎに、室内ユニット200a、200b、200cが全て暖房運転時のP−h線図である図9を用いて膨張機4での回収動力、気液分離器5で発生するガス発生量、第2圧縮機9での圧縮仕事を比較する。膨張機4を通過する冷媒流量をGr、膨張機4出入口でのエンタルピー差をΔH1とすれば、膨張機4での回収動力Weは以下の(1)式で表される。
We=Gr×ΔH1 (1)
同様に第2圧縮機での圧縮仕事W2は、冷媒流量をGr2、第2圧縮機9でのエンタルピー差をΔH2とすれば、以下の(2)式で表される。
W2=Gr2×ΔH2 (2)
回収動力が第2圧縮機9での圧縮仕事に等しい(We=W2)ことから、(1)、(2)式より、(3)式が得られる。
Gr2=Gr×(ΔH1/ΔH2) (3)
また、気液分離器5で分離されたガスの流量Gsは、F−E間のエンタルピー差ΔH0に対するD−E間のエンタルピー差ΔH3の比率、すなわち乾き度X(ΔH3/ΔH0)分だけ発生するから、(4)式で表される。
Gs=Gr×(ΔH3/ΔH0) (4)
ここで、(3)式中のΔH1/ΔH2は、圧縮機のエンタルピー差に対する膨張機のエンタルピー差の比であり、一般に0〜0.2程度である。また、(4)式中のΔH3/ΔH0は乾き度Xであり、冷媒がCO2の場合、一般に0.2〜0.6程度となる。したがって、(3)、(4)式よりGr2<Gsとなり、第2圧縮機9で必要な冷媒流量Gr2は気液分離器5で十分に供給することができるとともに、冷媒流量の差分(Gs−Gr2)が電子膨張弁10を通してバイパスされることになる。
Next, the indoor unit 200a, 200b, 200c is a Ph diagram during heating operation, and the recovery power in the expander 4, the amount of gas generated in the gas-liquid separator 5, The compression work in the compressor 9 is compared. If the refrigerant flow rate passing through the expander 4 is Gr and the enthalpy difference at the inlet / outlet of the expander 4 is ΔH1, the recovered power We in the expander 4 is expressed by the following equation (1).
We = Gr × ΔH1 (1)
Similarly, the compression work W2 in the second compressor is expressed by the following equation (2), where the refrigerant flow rate is Gr2 and the enthalpy difference in the second compressor 9 is ΔH2.
W2 = Gr2 × ΔH2 (2)
Since the recovered power is equal to the compression work in the second compressor 9 (We = W2), Equation (3) is obtained from Equations (1) and (2).
Gr2 = Gr × (ΔH1 / ΔH2) (3)
Further, the flow rate Gs of the gas separated by the gas-liquid separator 5 is generated by the ratio of the enthalpy difference ΔH3 between D and E to the enthalpy difference ΔH0 between FE, that is, the dryness X (ΔH3 / ΔH0). From this, it is expressed by equation (4).
Gs = Gr × (ΔH3 / ΔH0) (4)
Here, ΔH1 / ΔH2 in the equation (3) is a ratio of the enthalpy difference of the expander to the enthalpy difference of the compressor, and is generally about 0 to 0.2. Moreover, (DELTA) H3 / (DELTA) H0 in (4) Formula is the dryness X, and when a refrigerant | coolant is CO2, generally it will be about 0.2-0.6. Therefore, Gr2 <Gs from the equations (3) and (4), and the refrigerant flow rate Gr2 required by the second compressor 9 can be sufficiently supplied by the gas-liquid separator 5 and the difference in refrigerant flow rate (Gs− Gr2) will be bypassed through the electronic expansion valve 10.

一方、膨張機4と第2圧縮機9は、同軸で接続されており、第2圧縮機9は膨張機4と同一回転数で回転する。一例として、膨張機4と第2圧縮機9を両方とも押しのけ容積が一定の容積型流体機械であるスクロール型とし、それぞれの押しのけ容積比をε(=第2圧縮機排除容積/膨張機排除容積=Vc/Ve)とし、膨張機4と第2圧縮機9の吸入密度をそれぞれρe、ρcとすれば、回転数一定の条件から(5)式が得られる。
Gr2=Gr×ε×(ρc/ρe) (5)
(3)、(5)式より、(6)式が得られる。
ρc/ρe=(ΔH1/ΔH2)/ε (6)
以上から、第2圧縮機9の吸入密度ρc、エンタルピー差ΔH2、膨張機9の吸入密度ρe、出入口エンタルピー差ΔH1、ε(=Vc/Ve)のいずれかを(6)式が成立するように制御する必要がある。従来例では、膨張機4にバイパス弁を設け、膨張機4を通過する流量を制御する例が示されているが、これは上記εを調整することに相当する。
On the other hand, the expander 4 and the second compressor 9 are connected coaxially, and the second compressor 9 rotates at the same rotational speed as the expander 4. As an example, both the expander 4 and the second compressor 9 are of a scroll type that is a positive displacement fluid machine with a constant displacement volume, and the displacement volume ratio is ε (= second compressor displacement volume / expansion chamber displacement volume). = Vc / Ve), and the suction densities of the expander 4 and the second compressor 9 are ρe and ρc, respectively, the equation (5) can be obtained from the condition of constant rotation speed.
Gr2 = Gr × ε × (ρc / ρe) (5)
From the expressions (3) and (5), the expression (6) is obtained.
ρc / ρe = (ΔH1 / ΔH2) / ε (6)
From the above, the expression (6) is established so that any one of the suction density ρc and the enthalpy difference ΔH2 of the second compressor 9 and the suction density ρe of the expander 9 and the inlet / outlet enthalpy difference ΔH1 and ε (= Vc / Ve) is satisfied. Need to control. In the conventional example, an example in which a bypass valve is provided in the expander 4 and the flow rate passing through the expander 4 is controlled is shown. This corresponds to the adjustment of ε.

本実施の形態では、外気温度、室内温度、空調負荷などの環境条件によって気液分離器5から供給される冷媒流量Gsと第2圧縮機9の冷媒流量Gr2にアンバランスが生じた場合、その差分(Gs−Gr2)を電子膨張弁10でバイパスする。すなわち、電子膨張弁10の開度は、上記差分の冷媒流量が流れるように調節される。同様に、膨張機4の回収動力と第2圧縮機9の圧縮動力にアンバランスが生じた場合、電子膨張弁12の開度を(6)式が成立するように適正に制御する。すなわち、(6)式の右辺が大きい場合(ρc/ρe<(ΔH1/ΔH2)/ε)は、電子膨張弁12の開度を小さくし、図9に示す膨張機出口部と蒸発器入口部との圧力差ΔPeを大きくして、ρcを増加させる。このとき、(6)式右辺のΔH1/ΔH2も同時に変化するが、分母、分子ともに小さくなるため、ΔH1/ΔH2の変化は小さく、実用範囲では(6)式が成立するように動作する。一方、(6)式の左辺が大きい場合(ρc/ρe>(ΔH1/ΔH2)/ε)、電子膨張弁12の開度を大きくし、図9に示す膨張機出口部と蒸発器入口部との圧力差ΔPeを小さくして、ρcを減少させる。このとき、(6)式右辺のΔH1/ΔH2も同時に変化するが、分母、分子ともに大きくなるため、ΔH1/ΔH2の変化は小さく、(6)式が成立するように動作する。   In the present embodiment, when an imbalance occurs between the refrigerant flow rate Gs supplied from the gas-liquid separator 5 and the refrigerant flow rate Gr2 of the second compressor 9 due to environmental conditions such as the outside air temperature, the room temperature, and the air conditioning load, The difference (Gs−Gr2) is bypassed by the electronic expansion valve 10. That is, the opening degree of the electronic expansion valve 10 is adjusted so that the difference refrigerant flow rate flows. Similarly, when an imbalance occurs between the recovery power of the expander 4 and the compression power of the second compressor 9, the opening degree of the electronic expansion valve 12 is appropriately controlled so that the expression (6) is satisfied. That is, when the right side of the equation (6) is large (ρc / ρe <(ΔH1 / ΔH2) / ε), the opening of the electronic expansion valve 12 is decreased, and the expander outlet portion and the evaporator inlet portion shown in FIG. Is increased to increase ρc. At this time, ΔH1 / ΔH2 on the right side of equation (6) also changes at the same time, but both the denominator and numerator become smaller, so the change in ΔH1 / ΔH2 is small, and the operation is performed so that equation (6) is established in the practical range. On the other hand, when the left side of the equation (6) is large (ρc / ρe> (ΔH1 / ΔH2) / ε), the opening degree of the electronic expansion valve 12 is increased, and the expander outlet portion and the evaporator inlet portion shown in FIG. Ρc is decreased by reducing the pressure difference ΔPe. At this time, ΔH1 / ΔH2 on the right side of equation (6) also changes at the same time, but both the denominator and the numerator increase, so that the change in ΔH1 / ΔH2 is small, and the operation is performed so that equation (6) is established.

本実施の形態では、電子膨張弁12の開度を調整して、(6)式を成立させる例を示したが、これに限るものではなく、室内ユニット200a、200b、200c内の電子膨張弁6a、6b、6cの開度を調整して(6)式を成立させるように構成しても良い。また、第2圧縮機の吸入配管13中に第4減圧手段である電子膨張弁を設け、この電子膨張弁の開度を変更するようにしても良い。また、熱源側熱交換器および負荷側熱交換器として、空気熱交換器を用いる空気調和機の例を示したが、ブラインや水を被冷却媒体や被加熱媒体として用いる二重管式やプレート式などの液−液熱交換器を用い、チラーや給湯機を構成するようにしても良い。   In the present embodiment, the opening degree of the electronic expansion valve 12 is adjusted to establish the expression (6). However, the present invention is not limited to this, and the electronic expansion valve in the indoor units 200a, 200b, and 200c is shown. You may comprise so that (6) Formula may be materialized by adjusting the opening degree of 6a, 6b, 6c. Further, an electronic expansion valve that is a fourth pressure reducing means may be provided in the suction pipe 13 of the second compressor, and the opening degree of the electronic expansion valve may be changed. In addition, as an example of an air conditioner using an air heat exchanger as a heat source side heat exchanger and a load side heat exchanger, a double tube type or plate using brine or water as a cooling medium or a heating medium You may make it comprise a chiller or a water heater using liquid-liquid heat exchangers, such as a formula.

以上のように本実施の形態では、負荷側ユニットが冷房運転および暖房運転を個別に選択可能な冷凍サイクル装置であつて、全冷房運転、全暖房運転、冷房主体運転、暖房主体運転の全ての運転モードで膨張機を利用して膨張動力を回収することができる。また、膨張機と連結された第2圧縮機9に電動機を設けていないため、簡単な構成と制御で膨張機の回収動力を利用できる。このとき、膨張機の回収動力で駆動する第2圧縮機は、高圧管や低圧管などの延長配管、電子膨張弁、熱交換器、四方弁などを通過する際の圧力損失に相当する昇圧仕事を行う必要なく、第2圧縮機9の入力、すなわち消費電力が低減される。さらに、電子膨張弁12の開度を制御することで如何なる運転条件でも回収動力を利用可能な冷凍サイクル装置を提供できる。以上の説明では室外ユニット100が1台の場合を例にしたがこの室外ユニットが複数でも良い。また負荷側ユニットである室内ユニットをそれぞれ別個に設けても、あるいは一つの室内ユニットの中に複数の熱交換器と電子膨張弁を設けるなどの構成も可能である。更に分岐ユニット構成品を室外ユニットや室内ユニットに収納して配管で接続しても良いことは当然である。更に便宜状各機器、装置類を各ユニットに分けて説明したが、ユニット構成無しに必要な個所に必要な機器類を配置して高圧管、低圧管で接続するなどの冷凍サイクル構造であっても良いことは当然である。   As described above, in the present embodiment, the load side unit is a refrigeration cycle apparatus capable of individually selecting the cooling operation and the heating operation, and all of the cooling only operation, the heating only operation, the cooling main operation, and the heating main operation are performed. The expansion power can be recovered using the expander in the operation mode. Further, since the second compressor 9 connected to the expander is not provided with an electric motor, the recovery power of the expander can be used with a simple configuration and control. At this time, the second compressor driven by the recovery power of the expander is a boosting work corresponding to a pressure loss when passing through an extension pipe such as a high-pressure pipe or a low-pressure pipe, an electronic expansion valve, a heat exchanger, or a four-way valve. The input of the second compressor 9, that is, the power consumption is reduced. Furthermore, by controlling the opening degree of the electronic expansion valve 12, it is possible to provide a refrigeration cycle apparatus that can use recovered power under any operating conditions. In the above description, the case where there is one outdoor unit 100 is taken as an example, but a plurality of outdoor units may be provided. Also, it is possible to provide a configuration in which the indoor units that are load-side units are provided separately, or a plurality of heat exchangers and electronic expansion valves are provided in one indoor unit. Furthermore, it is natural that the branch unit component may be housed in an outdoor unit or an indoor unit and connected by piping. In addition, each equipment and device for convenience has been described separately for each unit. However, it has a refrigeration cycle structure in which necessary equipment is arranged at a required place without a unit configuration and connected with a high-pressure pipe and a low-pressure pipe. Of course it is good.

実施の形態2.
以下、本発明の実施の形態2による冷凍サイクル装置について説明する。図10は、本発明の実施形態2に係る冷凍サイクル装置を示す模式図である。図において、本実施の形態に係る冷凍サイクル装置は、冷房運転時は2つの異なる蒸発温度で運転し、暖房運転時は2つの異なる凝縮温度で運転する2段圧縮型冷凍サイクル装置である。冷房運転時には低段側で潜熱負荷を処理し、高段側で顕熱負荷を処理する。暖房運転時には低段側で中温風を吹き出し、高段側で高温風を吹き出す。本冷凍サイクル装置は、熱源側ユニットである室外ユニット100、第1負荷側ユニットである室内200a、200b、200c、第2負荷側ユニット300、室外ユニット100と第2負荷側ユニット300を接続する第1液管54および第1ガス管53、第2負荷側ユニット300と室内ユニット200a、200b、200cとを接続する第2液管56および第2ガス管55とにより構成されている。内部には冷媒として例えば臨界温度(約31℃)以上で超臨界状態となる二酸化炭素が封入されている。なお図1乃至図9にて説明した符号と同じ符号の部品や構成品などは実施の形態1で説明した構成と動作と同様なものである。又冷凍サイクル全体の動作も実施の形態1と同様なものである。
Embodiment 2. FIG.
Hereinafter, a refrigeration cycle apparatus according to Embodiment 2 of the present invention will be described. FIG. 10 is a schematic diagram showing a refrigeration cycle apparatus according to Embodiment 2 of the present invention. In the figure, the refrigeration cycle apparatus according to the present embodiment is a two-stage compression refrigeration cycle apparatus that operates at two different evaporation temperatures during cooling operation and operates at two different condensation temperatures during heating operation. During cooling operation, the latent heat load is processed on the low stage side, and the sensible heat load is processed on the high stage side. During heating operation, medium temperature air is blown out on the lower stage side, and hot air is blown out on the higher stage side. The refrigeration cycle apparatus includes an outdoor unit 100 that is a heat source side unit, indoors 200a, 200b, and 200c that are first load side units, a second load side unit 300, and a second load side unit 300 that connects the outdoor unit 100 and the second load side unit 300. The first liquid pipe 54, the first gas pipe 53, the second load side unit 300, and the second liquid pipe 56 and the second gas pipe 55 that connect the indoor units 200a, 200b, 200c are configured. For example, carbon dioxide that is in a supercritical state at a critical temperature (about 31 ° C.) or higher is enclosed as a refrigerant. Note that parts and components having the same reference numerals as those described in FIGS. 1 to 9 have the same configurations and operations as those described in the first embodiment. The operation of the entire refrigeration cycle is the same as that in the first embodiment.

室外ユニット100内には、冷房運転時に高段側圧縮機となる第1圧縮機1、冷房運転と暖房運転との第1冷媒流路切換え手段である四方弁2、熱源側熱交換器である室外熱交換器3、外気を強制的に室外熱交換器3の外表面に送風するための図示しない送風機が収納されている。第2負荷側ユニット300内には、冷房運転時に低段側圧縮機となる第3圧縮機63、第2流路切換え手段である四方弁61、第3流路切換え手段である四方弁60、第2負荷側熱交換器64、第2減圧手段である電子膨張弁65、冷媒を減圧して二相状態の湿り蒸気とする膨張機4、気液分離器5、気液分離器5の液側出口部に設けられた開度変更可能な第3減圧手段である電子膨張弁12、膨張機4と同軸に接続され膨張機4で回収した動力で駆動する第2圧縮機9、冷房運転時に第2圧縮機9の吐出ガスと第1圧縮機の吸入部を熱交換する内部熱交換器22、気液分離器5で分離されたガス冷媒を第2圧縮機9の吸入側へ導く吸入配管13、気液分離器5で分離されたガス冷媒を低圧側へ導く第1バイパス配管14、67、第1バイパス配管中に設けられた開度変更可能な第4減圧手段である電子膨張弁10、68、開閉弁66、およびこれらを接続するための配管が内蔵されている。   In the outdoor unit 100, there are a first compressor 1 that becomes a high stage side compressor during cooling operation, a four-way valve 2 that is a first refrigerant flow switching means between cooling operation and heating operation, and a heat source side heat exchanger. The outdoor heat exchanger 3 and a blower (not shown) for forcing the outside air to the outer surface of the outdoor heat exchanger 3 are housed. In the second load side unit 300, a third compressor 63 that is a low-stage side compressor during cooling operation, a four-way valve 61 that is a second flow path switching means, a four-way valve 60 that is a third flow path switching means, The second load-side heat exchanger 64, the electronic expansion valve 65 as the second decompression means, the expander 4, the gas-liquid separator 5, and the liquid of the gas-liquid separator 5 by depressurizing the refrigerant into a two-phase wet steam An electronic expansion valve 12, which is a third decompression means capable of changing the opening provided at the side outlet, a second compressor 9 connected coaxially with the expander 4 and driven by power recovered by the expander 4, during cooling operation An internal heat exchanger 22 for exchanging heat between the discharge gas of the second compressor 9 and the suction portion of the first compressor, and a suction pipe for guiding the gas refrigerant separated by the gas-liquid separator 5 to the suction side of the second compressor 9 13. First bypass pipes 14, 67 for guiding the gas refrigerant separated by the gas-liquid separator 5 to the low pressure side, the first bypass Electronic expansion valves 10,68 is a fourth pressure reducing means capable opening degree variation provided in the piping, the on-off valve 66, and piping for connecting them is incorporated.

四方弁2の第1口2aは圧縮機1の吐出側と、第2口2bは室外熱交換器3の一端と、第3口2cは圧縮機1の吸入側と、第4口2dは低圧管51とそれぞれ接続されている。四方弁60の第1口60aは第1液管54の出口側と、第2口60bは膨張機4の入口側と、第3口60cは第2液管56の入口側と、第4口60dは電子膨張弁12とそれぞれ接続されている。四方弁61の第1口61aは第3圧縮機63の吐出側と、第2口61bは内部熱交換器22と第2ガス管55の間に接続される配管と、第3口61cは第3圧縮機63の吸入側と、第4口60dは第2負荷側熱交換器64の一端とそれぞれ接続されている。   The first port 2a of the four-way valve 2 is the discharge side of the compressor 1, the second port 2b is one end of the outdoor heat exchanger 3, the third port 2c is the suction side of the compressor 1, and the fourth port 2d is a low pressure. Each is connected to a pipe 51. The first port 60a of the four-way valve 60 is the outlet side of the first liquid tube 54, the second port 60b is the inlet side of the expander 4, the third port 60c is the inlet side of the second liquid tube 56, and the fourth port. 60 d is connected to the electronic expansion valve 12. The first port 61a of the four-way valve 61 is the discharge side of the third compressor 63, the second port 61b is a pipe connected between the internal heat exchanger 22 and the second gas pipe 55, and the third port 61c is the second port 61c. The suction side of the three compressor 63 and the fourth port 60d are connected to one end of the second load side heat exchanger 64, respectively.

室内ユニット200a、200b、200cには、第1負荷側熱交換器である室内熱交換器7a、7b、7c、室内熱交換器への冷媒分配を調節する第1減圧手段である電子膨張弁6a、6b、6c、室内空気を強制的に室内熱交換器7a、7b、7cの外表面に送風するための図示しない送風機およびそれらを接続するための配管が内蔵されている。室内熱交換器7a、7b、7cの一端は第2負荷側ユニット300と接続され、他端は電子膨張弁6a、6b、6cを介して第2負荷側ユニットに接続されている。なお、本実施の形態では、室内ユニット200a、200b、200cを3台としているが、2台以下あるいは4台以上としても良い。   The indoor units 200a, 200b, and 200c include indoor heat exchangers 7a, 7b, and 7c that are first load-side heat exchangers, and an electronic expansion valve 6a that is first decompression means for adjusting refrigerant distribution to the indoor heat exchanger. 6b, 6c, a blower (not shown) for forcibly blowing room air to the outer surfaces of the indoor heat exchangers 7a, 7b, 7c and a pipe for connecting them are incorporated. One end of the indoor heat exchangers 7a, 7b, and 7c is connected to the second load side unit 300, and the other end is connected to the second load side unit via the electronic expansion valves 6a, 6b, and 6c. In the present embodiment, three indoor units 200a, 200b, and 200c are provided, but two or less indoor units or four or more indoor units may be provided.

上記のように構成された冷凍サイクル装置について運転動作を説明する。まず、冷房運転を行う場合を図10と図11に基づいて説明する。図11は、図10の冷媒回路中に示した記号A〜Oにおける冷媒状態をP−h線図上に示したものである。冷房運転では、室外ユニット100内部の四方弁2は第1口2aと第2口2bが連通し、第3口2cと第4口2dが連通するように設定され、第2負荷側ユニット300内部の四方弁60は第1口60aと第2口60bが連通し、第3口60cと第4口60dが連通するように設定され、四方弁61は第1口61aと第2口61bが連通し、第3口61cと第4口61dが連通するように設定される。また、電磁弁66は閉止、電子膨張弁68は全閉、電子膨張弁67は適切な開度に設定される。   The operation of the refrigeration cycle apparatus configured as described above will be described. First, the case where the cooling operation is performed will be described with reference to FIGS. 10 and 11. FIG. 11 shows the refrigerant state at symbols A to O shown in the refrigerant circuit of FIG. 10 on the Ph diagram. In the cooling operation, the four-way valve 2 inside the outdoor unit 100 is set so that the first port 2a and the second port 2b communicate with each other, and the third port 2c and the fourth port 2d communicate with each other. The four-way valve 60 is set so that the first port 60a and the second port 60b communicate with each other, and the third port 60c and the fourth port 60d communicate with each other. The four-way valve 61 communicates with the first port 61a and the second port 61b. The third port 61c and the fourth port 61d are set to communicate with each other. The electromagnetic valve 66 is closed, the electronic expansion valve 68 is fully closed, and the electronic expansion valve 67 is set to an appropriate opening degree.

このとき、圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2の第1口2aから第2口2bを通って(状態B)、室外熱交換器3で被加熱媒体である空気に放熱し(状態C)、第1液管54を通って第2負荷側ユニット300に流入する。第2負荷側ユニット300に流入した冷媒は、内部熱交換器22からの液冷媒と合流し(状態O)、四方弁60の第1口60aから第2口60bを通って、膨張機4に流入する。膨張機4に流入した液冷媒は低圧低温の気液二相冷媒となり(状態D)、気液分離器5に流入する。気液分離器5で分離された液冷媒(状態E)は、電子膨張弁12、四方弁60の第4口60dから第3口60cを経て(状態H)、一部が第2液管56へ供給され、室内ユニット200a、200b、200cに流入する。   At this time, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the first port 2a of the four-way valve 2 through the second port 2b (state B), and the air that is the medium to be heated in the outdoor heat exchanger 3 (State C) and flows into the second load side unit 300 through the first liquid pipe 54. The refrigerant flowing into the second load side unit 300 merges with the liquid refrigerant from the internal heat exchanger 22 (state O), passes through the first port 60a of the four-way valve 60 through the second port 60b, and enters the expander 4. Inflow. The liquid refrigerant flowing into the expander 4 becomes a low-pressure and low-temperature gas-liquid two-phase refrigerant (state D) and flows into the gas-liquid separator 5. The liquid refrigerant (state E) separated by the gas-liquid separator 5 passes through the electronic expansion valve 12 and the fourth port 60d of the four-way valve 60 through the third port 60c (state H), and a part thereof is the second liquid pipe 56. And flows into the indoor units 200a, 200b, 200c.

室内ユニット200a、200b、200cに流入した液冷媒は、電子膨張弁6a、6b、6cで各室内熱交換器7a、7b、7cに均一に分配される。この液冷媒は、室内熱交換器7a、7b、7cで、図示しない室内空気から吸熱し、自らは蒸発気化する。この低温低圧のガス冷媒(状態I)は、第2ガス管55を通過した後、第2負荷側ユニット300内で第3圧縮機63から吐出された冷媒(状態L)と合流し、内部熱交換器22を経て第1ガス管53、四方弁2の第4口2dから第3口2cを経て、第1圧縮機1の吸入側へ戻る(状態A)。この時、図示しない室内送風機によって室内熱交換器7a、7b、7cへ送り込まれた室内空気は、低温低圧の液冷媒により冷却されて室内へ吹き出され、室内を冷房する。   The liquid refrigerant flowing into the indoor units 200a, 200b, 200c is uniformly distributed to the indoor heat exchangers 7a, 7b, 7c by the electronic expansion valves 6a, 6b, 6c. This liquid refrigerant absorbs heat from indoor air (not shown) in the indoor heat exchangers 7a, 7b, and 7c, and evaporates itself. This low-temperature and low-pressure gas refrigerant (state I) merges with the refrigerant (state L) discharged from the third compressor 63 in the second load-side unit 300 after passing through the second gas pipe 55 to generate internal heat. It returns to the suction side of the first compressor 1 through the first gas pipe 53 and the fourth port 2d of the four-way valve 2 through the third port 2c through the exchanger 22 (state A). At this time, the indoor air sent into the indoor heat exchangers 7a, 7b, and 7c by an indoor blower (not shown) is cooled by the low-temperature and low-pressure liquid refrigerant and blown into the room to cool the room.

このとき、気液分離器5で分離されたガス冷媒(状態F)は、吸入配管13を通り、第1液管54の出口圧力まで第2圧縮機9で圧縮される(状態G)。第2圧縮機9から吐出されたガス冷媒は、内部熱交換器22で第1圧縮機1の吸入冷媒と熱交換した後(状態N)、第1液管54から流入した冷媒と合流する(状態O)。   At this time, the gas refrigerant (state F) separated by the gas-liquid separator 5 passes through the suction pipe 13 and is compressed by the second compressor 9 up to the outlet pressure of the first liquid pipe 54 (state G). The gas refrigerant discharged from the second compressor 9 exchanges heat with the intake refrigerant of the first compressor 1 in the internal heat exchanger 22 (state N), and then merges with the refrigerant flowing in from the first liquid pipe 54 ( State O).

また、第2負荷側ユニット300内では、第2液管56へ供給されない冷媒のほかの一部が電子膨張弁65から流入した冷媒(状態J)が第2負荷側熱交換器64で蒸発し、主に室内の潜熱負荷を処理する。蒸発したガス冷媒は(状態K)、四方弁61の第4口61dから第3口61cを通って、第3圧縮機63で圧縮される(状態L)。圧縮された冷媒は、第2ガス管55を通過して流入した冷媒と合流する(状態M)。   In addition, in the second load side unit 300, the refrigerant (state J) in which other part of the refrigerant not supplied to the second liquid pipe 56 flows from the electronic expansion valve 65 evaporates in the second load side heat exchanger 64. , Mainly dealing with indoor latent heat load. The evaporated gas refrigerant (state K) is compressed by the third compressor 63 from the fourth port 61d of the four-way valve 61 through the third port 61c (state L). The compressed refrigerant merges with the refrigerant that has flowed through the second gas pipe 55 (state M).

図11に示したP−h線図上の冷凍サイクルでは、第2圧縮機の吐出圧力は、第1圧縮機の吐出圧力よりΔPdだけ低下し、第2圧縮機の吸入圧力は、第1圧縮機の吸入圧力よりΔPsだけ上昇する。これは、以下の理由による。すなわち、第1圧縮機で圧縮された冷媒は、四方弁2、室外熱交換器3、第1液管54を通過する際に圧力損失が生じて吐出圧力が低下し、気液分離器5で分離された液冷媒は、電子膨張弁12、四方弁60、第2液管56、電子膨張弁6a、6b、6c、室内熱交換器7a、7b、7c、第2ガス管55、内部熱交換器22、第1ガス管53、四方弁2を通過する際に圧力損失が生じて吸入圧力が低下するためである。したがって、第2圧縮機は上記圧力損失に相当する昇圧仕事を行う必要がなく、第2圧縮機の入力を低減して膨張機の回収動力を有効に利用することができる。   In the refrigeration cycle on the Ph diagram shown in FIG. 11, the discharge pressure of the second compressor is lower than the discharge pressure of the first compressor by ΔPd, and the suction pressure of the second compressor is the first compression. Increases by ΔPs from the suction pressure of the machine. This is due to the following reason. That is, when the refrigerant compressed by the first compressor passes through the four-way valve 2, the outdoor heat exchanger 3, and the first liquid pipe 54, a pressure loss occurs and the discharge pressure decreases, and the gas-liquid separator 5 The separated liquid refrigerant includes the electronic expansion valve 12, the four-way valve 60, the second liquid pipe 56, the electronic expansion valves 6a, 6b, 6c, the indoor heat exchangers 7a, 7b, 7c, the second gas pipe 55, and the internal heat exchange. This is because a pressure loss occurs when passing through the vessel 22, the first gas pipe 53, and the four-way valve 2, and the suction pressure decreases. Therefore, the second compressor does not need to perform pressure increasing work corresponding to the pressure loss, and the input power of the second compressor can be reduced and the recovered power of the expander can be used effectively.

つぎに、暖房運転について図12と図13に基づいて説明する。図13は、図12の冷媒回路中に示した記号A〜H、J〜Mにおける冷媒状態をP−h線図上に示したものである。この場合、室外ユニット100内部の四方弁2は第1口2aと第4口2dが連通し、第2口2bと第3口2cが連通するように設定され、第2負荷側ユニット300内部の四方弁60は第1口60aと第4口60dが連通し、第2口60bと第3口60cが連通するように設定され、四方弁61は第1口61aと第4口61dが連通し、第2口61bと第3口61cが連通するように設定される。また、電磁弁66は開放、電子膨張弁10は全閉、電子膨張弁68は適切な開度に設定される。   Next, the heating operation will be described with reference to FIGS. FIG. 13 shows on the Ph diagram the refrigerant states at symbols A to H and J to M shown in the refrigerant circuit of FIG. In this case, the four-way valve 2 inside the outdoor unit 100 is set so that the first port 2a and the fourth port 2d communicate with each other, and the second port 2b and the third port 2c communicate with each other. The four-way valve 60 is set so that the first port 60a and the fourth port 60d communicate with each other, and the second port 60b and the third port 60c communicate with each other. The four-way valve 61 communicates with the first port 61a and the fourth port 61d. The second port 61b and the third port 61c are set to communicate with each other. The electromagnetic valve 66 is opened, the electronic expansion valve 10 is fully closed, and the electronic expansion valve 68 is set to an appropriate opening degree.

このとき、圧縮機1で圧縮され高温高圧の超臨界状態となった冷媒は四方弁2の第1口2aから第4口2d、第1ガス管53を経て第2負荷側ユニット300に流入する。第2負荷側ユニット300に流入した高温高圧の冷媒(状態B)は、内部熱交換器22を通過し(状態M)、室内ユニット200a、200b、200cの暖房負荷に応じた冷媒流量が第2ガス管55に供給され、室内ユニット200a、200b、200cにそれぞれ流入する。ここで、図示しない室内空気に放熱して室内を暖房すると共に自らは温度が低下する。この中温高圧の冷媒は、電子膨張弁6a、6b、6cを通過し(状態C)、第2液管56を経て、第2負荷側ユニット300に流入する。第2負荷側ユニット300に流入した冷媒は、四方弁60の第3口60c、第2口60bを経て膨張機4に流入する。膨張機4で減圧された冷媒は気液分離器5に流入する(状態D)。気液分離器5で分離された液冷媒(状態E)は、電子膨張弁12で減圧され、四方弁60の第4口60d、第1口60a、第1液管54を経て室外熱交換器3に流入する(状態H)。   At this time, the refrigerant that has been compressed by the compressor 1 and is in a supercritical state of high temperature and pressure flows from the first port 2a of the four-way valve 2 to the second load side unit 300 through the fourth port 2d and the first gas pipe 53. . The high-temperature and high-pressure refrigerant (state B) flowing into the second load side unit 300 passes through the internal heat exchanger 22 (state M), and the refrigerant flow rate according to the heating load of the indoor units 200a, 200b, and 200c is the second. The gas is supplied to the gas pipe 55 and flows into the indoor units 200a, 200b, and 200c. Here, heat is released to indoor air (not shown) to heat the room, and the temperature itself decreases. The medium-temperature and high-pressure refrigerant passes through the electronic expansion valves 6a, 6b, and 6c (state C), and flows into the second load side unit 300 through the second liquid pipe 56. The refrigerant that has flowed into the second load side unit 300 flows into the expander 4 via the third port 60c and the second port 60b of the four-way valve 60. The refrigerant decompressed by the expander 4 flows into the gas-liquid separator 5 (state D). The liquid refrigerant (state E) separated by the gas-liquid separator 5 is depressurized by the electronic expansion valve 12 and passes through the fourth port 60d, the first port 60a, and the first liquid pipe 54 of the four-way valve 60, and the outdoor heat exchanger. 3 (state H).

室外熱交換器3に流入した低温低圧の液冷媒(状態H)は、図示しない室外送風機によって送り込まれる外気から吸熱するとともに自らは蒸発する。蒸発したガス冷媒は、四方弁2の第2口2bから第3口2cを経て第1圧縮機1の吸入側へ戻る(状態A)。一方、気液分離器5で分離されたガス冷媒(状態F)は、内部熱交換器22の出口圧力(状態M)まで第2圧縮機9で圧縮される(状態G)。第2圧縮機9の吐出ガスは電磁弁66を通過し、第1圧縮機の吐出ガスと合流し、四方弁61に流入する。四方弁61の第2口61b、第3口61cを通過した冷媒は(状態L)、第3圧縮機63で更に圧縮され、四方弁61の第1口61a、第4口61dを経て第2負荷側熱交換器64に流入する(状態K)。第2負荷側熱交換器64で放熱した冷媒は(状態J)、電子膨張弁65で減圧されて第2液管56から第2負荷側ユニット300に流入した冷媒と合流する。   The low-temperature and low-pressure liquid refrigerant (state H) flowing into the outdoor heat exchanger 3 absorbs heat from the outside air sent by an outdoor fan (not shown) and evaporates itself. The evaporated gas refrigerant returns from the second port 2b of the four-way valve 2 to the suction side of the first compressor 1 through the third port 2c (state A). On the other hand, the gas refrigerant (state F) separated by the gas-liquid separator 5 is compressed by the second compressor 9 up to the outlet pressure (state M) of the internal heat exchanger 22 (state G). The discharge gas of the second compressor 9 passes through the electromagnetic valve 66, merges with the discharge gas of the first compressor, and flows into the four-way valve 61. The refrigerant that has passed through the second port 61b and the third port 61c of the four-way valve 61 (state L) is further compressed by the third compressor 63, and passes through the first port 61a and the fourth port 61d of the four-way valve 61 to be second. It flows into the load side heat exchanger 64 (state K). The refrigerant radiated by the second load-side heat exchanger 64 (state J) is decompressed by the electronic expansion valve 65 and merges with the refrigerant that has flowed into the second load-side unit 300 from the second liquid pipe 56.

図13に示したP−h線図上の冷凍サイクルでは、第2圧縮機の吐出圧力は、第1圧縮機の吐出圧力よりΔPdだけ低下し、第2圧縮機の吸入圧力は、第1圧縮機の吸入圧力よりΔPsだけ上昇する。これは、以下の理由による。すなわち、第1圧縮機1で圧縮された冷媒は、四方弁2、第2ガス管53、内部熱交換器22を通過する際に圧力損失が生じて吐出圧力が低下し、気液分離器5で分離された液冷媒は、電子膨張弁12、四方弁60、第1液管54、室外熱交換器3、四方弁2を通過する際に圧力損失が生じて吸入圧力が低下するためである。したがって、第2圧縮機は上記圧力損失に相当する昇圧仕事を行う必要がなく、第2圧縮機の入力を低減して膨張機の回収動力を有効に利用することができる。   In the refrigeration cycle on the Ph diagram shown in FIG. 13, the discharge pressure of the second compressor is lower than the discharge pressure of the first compressor by ΔPd, and the suction pressure of the second compressor is the first compression. Increases by ΔPs from the suction pressure of the machine. This is due to the following reason. That is, when the refrigerant compressed by the first compressor 1 passes through the four-way valve 2, the second gas pipe 53, and the internal heat exchanger 22, a pressure loss occurs and the discharge pressure decreases, and the gas-liquid separator 5 This is because the liquid refrigerant separated in the step passes through the electronic expansion valve 12, the four-way valve 60, the first liquid pipe 54, the outdoor heat exchanger 3, and the four-way valve 2, causing a pressure loss and reducing the suction pressure. . Therefore, the second compressor does not need to perform pressure increasing work corresponding to the pressure loss, and the input power of the second compressor can be reduced and the recovered power of the expander can be used effectively.

つぎに、暖房運転時のP−h線図である図14を用いて膨張機4での回収動力、気液分離器5で発生するガス発生量、第2圧縮機9での圧縮仕事を比較する。実施の形態1と同様に、膨張機4を通過する冷媒流量をGr、膨張機4出入口でのエンタルピー差をΔH1、第2圧縮機での冷媒流量をGr2、第2圧縮機9でのエンタルピー差をΔH2とすれば、膨張機4での回収動力と第2圧縮機での圧縮仕事が等しい条件より、以下の(7)式が得られる。
Gr2=Gr×(ΔH1/ΔH2) (7)
また、気液分離器5で分離されたガスの流量Gsは、乾き度X(ΔH3/ΔH0)分だけ発生するから、(8)式で表される。
Gs=Gr×(ΔH3/ΔH0) (8)
ここで、(7)式中のΔH1/ΔH2は一般に0〜0.2程度、(8)式中のΔH3/ΔH0は一般に0.2〜0.6程度となるから、Gr2<Gsとなり、第2圧縮機9で必要な冷媒流量Gr2は気液分離器5で十分に供給することができる。また、冷媒流量の差分(Gs−Gr2)が冷房運転時は電子膨張弁10を通してバイパスされ、暖房運転時は電子膨張弁68を通してバイパスされることになる。
Next, the recovery power in the expander 4, the amount of gas generated in the gas-liquid separator 5, and the compression work in the second compressor 9 are compared using FIG. 14 which is a Ph diagram during heating operation. To do. As in the first embodiment, the refrigerant flow rate passing through the expander 4 is Gr, the enthalpy difference at the inlet / outlet of the expander 4 is ΔH1, the refrigerant flow rate at the second compressor is Gr2, and the enthalpy difference at the second compressor 9 is Is ΔH2, the following expression (7) is obtained under the condition that the recovered power in the expander 4 and the compression work in the second compressor are equal.
Gr2 = Gr × (ΔH1 / ΔH2) (7)
Further, the flow rate Gs of the gas separated by the gas-liquid separator 5 is generated by the dryness X (ΔH3 / ΔH0), and is expressed by the equation (8).
Gs = Gr × (ΔH3 / ΔH0) (8)
Here, ΔH1 / ΔH2 in the equation (7) is generally about 0 to 0.2, and ΔH3 / ΔH0 in the equation (8) is generally about 0.2 to 0.6, so that Gr2 <Gs. The refrigerant flow rate Gr2 required by the two compressors 9 can be sufficiently supplied by the gas-liquid separator 5. Further, the refrigerant flow rate difference (Gs−Gr2) is bypassed through the electronic expansion valve 10 during the cooling operation, and is bypassed through the electronic expansion valve 68 during the heating operation.

一方、膨張機4と第2圧縮機9は、同軸で接続されており、膨張機4と第2圧縮機9のそれぞれの押しのけ容積比をε(=第2圧縮機排除容積/膨張機排除容積=Vc/Ve)とし、膨張機4と第2圧縮機9の吸入密度をそれぞれρe、ρcとすれば、回転数一定の条件から(9)式が得られる。
Gr2=Gr×ε×(ρc/ρe) (9)
(7)、(9)式より、(10)式が得られる。
ρc/ρe=(ΔH1/ΔH2)/ε (10)
以上から、第2圧縮機9の吸入密度ρc、エンタルピー差ΔH2、膨張機9の吸入密度ρe、出入口エンタルピー差ΔH1、ε(=Vc/Ve)のいずれかを(10)式が成立するように制御する必要がある。
On the other hand, the expander 4 and the second compressor 9 are coaxially connected, and the displacement ratio between the expander 4 and the second compressor 9 is ε (= second compressor excluded volume / expander expanded volume). = Vc / Ve), and the suction densities of the expander 4 and the second compressor 9 are ρe and ρc, respectively, the equation (9) can be obtained from the condition of constant rotation speed.
Gr2 = Gr × ε × (ρc / ρe) (9)
From the expressions (7) and (9), the expression (10) is obtained.
ρc / ρe = (ΔH1 / ΔH2) / ε (10)
From the above, the expression (10) is established so that any one of the suction density ρc and enthalpy difference ΔH2 of the second compressor 9, the suction density ρe of the expander 9, the inlet / outlet enthalpy difference ΔH1 and ε (= Vc / Ve) is satisfied. Need to control.

本実施の形態では、外気温度、室内温度、空調負荷などの環境条件によって気液分離器5から供給される冷媒流量Gsと第2圧縮機9の冷媒流量Gr2にアンバランスが生じた場合、その差分(Gs−Gr2)を電子膨張弁10、68でバイパスする。すなわち、冷房運転時では電子膨張弁10の開度を、暖房運転時では電子膨張弁68の開度を上記差分の冷媒流量が流れるように調節する。同様に、膨張機4の回収動力と第2圧縮機9の圧縮動力にアンバランスが生じた場合、電子膨張弁12の開度を(10)式が成立するように適正に制御する。すなわち、(10)式の右辺が大きい場合(ρc/ρe<(ΔH1/ΔH2)/ε)は、電子膨張弁12の開度を小さくし、図14に示す膨張機出口部と蒸発器入口部との圧力差ΔPeを大きくして、ρcを増加させる。このとき、(10)式右辺のΔH1/ΔH2も同時に変化するが、分母、分子ともに小さくなるため、ΔH1/ΔH2の変化は小さく、実用範囲では(10)式が成立するように動作する。一方、(10)式の左辺が大きい場合(ρc/ρe>(ΔH1/ΔH2)/ε)、電子膨張弁12の開度を大きくし、図14に示す膨張機出口部と蒸発器入口部との圧力差ΔPeを小さくして、ρcを減少させる。このとき、(10)式右辺のΔH1/ΔH2も同時に変化するが、分母、分子ともに大きくなるため、ΔH1/ΔH2の変化は小さく、(10)式が成立するように動作する。   In the present embodiment, when an imbalance occurs between the refrigerant flow rate Gs supplied from the gas-liquid separator 5 and the refrigerant flow rate Gr2 of the second compressor 9 due to environmental conditions such as the outside air temperature, the room temperature, and the air conditioning load, The difference (Gs−Gr2) is bypassed by the electronic expansion valves 10 and 68. That is, the opening degree of the electronic expansion valve 10 is adjusted during the cooling operation, and the opening degree of the electronic expansion valve 68 is adjusted during the heating operation so that the refrigerant flow rate having the above difference flows. Similarly, when an imbalance occurs between the recovery power of the expander 4 and the compression power of the second compressor 9, the opening degree of the electronic expansion valve 12 is appropriately controlled so that the expression (10) is satisfied. That is, when the right side of the equation (10) is large (ρc / ρe <(ΔH1 / ΔH2) / ε), the opening of the electronic expansion valve 12 is reduced, and the expander outlet portion and the evaporator inlet portion shown in FIG. Is increased to increase ρc. At this time, ΔH1 / ΔH2 on the right side of equation (10) also changes at the same time, but both the denominator and numerator become smaller, so the change in ΔH1 / ΔH2 is small, and the operation is performed so that equation (10) is established in the practical range. On the other hand, when the left side of equation (10) is large (ρc / ρe> (ΔH1 / ΔH2) / ε), the opening of the electronic expansion valve 12 is increased, and the expander outlet portion and the evaporator inlet portion shown in FIG. Ρc is decreased by reducing the pressure difference ΔPe. At this time, ΔH1 / ΔH2 on the right side of the equation (10) also changes at the same time, but both the denominator and the numerator increase, so the change in ΔH1 / ΔH2 is small and the operation is performed so that the equation (10) is established.

以上のように本実施の形態では、冷房運転時に2つの異なる蒸発温度を、暖房運転時に2つの異なる凝縮温度を生成する2段圧縮式の冷凍サイクル装置において、全運転モードに対し膨張動力を回収することができる。また、膨張機と連結された第2圧縮機9に電動機を設けていないため、簡単な構成と制御で膨張機の回収動力を利用できる。また、膨張機の回収動力で駆動する第2圧縮機は、ガス管や液管などの延長配管、電子膨張弁、熱交換器、四方弁などを通過する際の圧力損失に相当する昇圧仕事を行う必要なく、第2圧縮機9の入力、すなわち消費電力が低減される。さらに、電子膨張弁12の開度を制御することで如何なる運転条件でも回収動力を利用可能な冷凍サイクル装置を提供できる。   As described above, in the present embodiment, expansion power is recovered for all operation modes in a two-stage compression refrigeration cycle apparatus that generates two different evaporation temperatures during cooling operation and two different condensation temperatures during heating operation. can do. Further, since the second compressor 9 connected to the expander is not provided with an electric motor, the recovery power of the expander can be used with a simple configuration and control. In addition, the second compressor driven by the recovery power of the expander performs a boosting work corresponding to a pressure loss when passing through an extension pipe such as a gas pipe or a liquid pipe, an electronic expansion valve, a heat exchanger, or a four-way valve. There is no need to do so, and the input of the second compressor 9, that is, power consumption, is reduced. Furthermore, by controlling the opening degree of the electronic expansion valve 12, it is possible to provide a refrigeration cycle apparatus that can use recovered power under any operating conditions.

以上実施の形態1及び2で述べてきた様に、この発明の冷凍サイクル装置は、膨張機を利用するものであって、第1圧縮機1からの高圧側冷媒を膨張機4の膨張動力を回転力に変換し膨張した冷媒を気液分離機5にて分離し、このうちのガス冷媒を膨張機が駆動する第2圧縮機9にて圧縮して高圧側に戻し省エネルギーを図るもので、更に高圧側に戻す前の第2圧縮機で圧縮された冷媒を内部熱交換器22を通して効率の良い冷凍サイクル装置を得るものである。この場合膨張機は従来絞り装置で摩擦損失や渦損失の形で無駄に熱として捨てられていた流体の体積膨張に伴う膨張仕事、式(1)で示される様に膨張機4出入口でのエンタルピー差ΔH1である断熱熱落差を回収して機械エネルギー例えば回転動力や往復動力に変換し圧縮機の圧縮仕事として活用する。このように本発明では膨張機で駆動する第2圧縮機は室内の空調で冷房時、暖房時とも第1圧縮機の流量を減らす手段として動作させており、第1圧縮機の補助として、動力低減の手段として利用している。一方これに対し第1、第3圧縮機は電動機駆動のものを使用する。   As described in the first and second embodiments, the refrigeration cycle apparatus according to the present invention uses an expander, and uses the high-pressure side refrigerant from the first compressor 1 as the expansion power of the expander 4. The refrigerant converted into the rotational force is separated by the gas-liquid separator 5, and the gas refrigerant is compressed by the second compressor 9 driven by the expander and returned to the high pressure side for energy saving. Further, an efficient refrigeration cycle apparatus is obtained through the internal heat exchanger 22 through the refrigerant compressed by the second compressor before returning to the high pressure side. In this case, the expander is an expansion work associated with the volume expansion of the fluid that has been wasted as heat in the form of friction loss or vortex loss in the conventional throttle device, and the enthalpy at the inlet / outlet of the expander 4 as shown in equation (1). The adiabatic heat drop which is the difference ΔH1 is collected and converted into mechanical energy such as rotational power or reciprocating power and used as compression work of the compressor. As described above, in the present invention, the second compressor driven by the expander is operated as a means for reducing the flow rate of the first compressor both during cooling and during heating by indoor air conditioning. It is used as a means of reduction. On the other hand, the first and third compressors are motor driven.

本発明の冷凍装置として高圧で超臨界となる冷媒で、さらに地球環境によい自然冷媒を使用する。従来のHFC冷媒では高圧側が体積膨張の小さな液体であるとともに絞り装置出口に相当する低圧の乾き度も小さいため膨張損失は小さく膨張動力の回収動力が小さかったが、高圧で超臨界となる冷媒では高圧側の体積膨張が大きくなると共に、即ち密度減少が大きくなり低圧の乾き度が大きくなるため膨張損失が大きくなるので膨張動力を利用することが省エネルギーに有効である。その上この膨張動力のみを第2圧縮機の駆動力に利用し再び冷媒を高圧側に戻すことで更に省エネルギーを図ることが出来る。言いかえると高圧の流体が低圧に膨張する際に膨張仕事を行い、これに伴う従来熱として消費していた仕事を圧縮機の駆動力とする、特に超臨界状態となるCO2はガス状態に近いため大きな回収効果を得ようというものである。なおこのような仕事を行う冷媒としては空気、窒素、ヘリウムなどでも良く、あるいは炭酸ガス冷媒とHFC他の冷媒との混合冷媒でも良い。   As the refrigeration apparatus of the present invention, a natural refrigerant that is supercritical at high pressure and is also good for the global environment is used. In conventional HFC refrigerants, the high-pressure side is a liquid with a small volume expansion and the low-pressure dryness corresponding to the outlet of the expansion device is small, so the expansion loss is small and the recovery power of the expansion power is small. As the volume expansion on the high pressure side increases, that is, the density decrease increases and the dryness at low pressure increases, so that the expansion loss increases. Therefore, the use of expansion power is effective for energy saving. In addition, energy can be further saved by using only this expansion power as the driving force of the second compressor and returning the refrigerant to the high pressure side again. In other words, when the high-pressure fluid expands to a low pressure, the expansion work is performed, and the work consumed as conventional heat is used as the driving force of the compressor. Particularly, CO2 in a supercritical state is close to a gas state. Therefore, a large recovery effect is to be obtained. Note that the refrigerant that performs such work may be air, nitrogen, helium, or a mixed refrigerant of a carbon dioxide refrigerant and other refrigerants such as HFC.

本発明では膨張動力を回収し圧縮機に利用してガス冷媒を再び高圧に戻すことで効率向上を図るが、更に気液分離器出口のガスを吸引し、高圧や低圧部をバイパスさせて圧損を低減することで省エネルギーを図ることが出来る。図1や図10などにて示される膨張機4と第2の圧縮機9とは密閉容器の内部に一体となったスクロール構造で冷媒の膨張動力を冷媒圧縮に伝達させるものが最も効率的である。即ち密閉容器中の両端に膨張固定スクロールと第2圧縮固定スクロールが固定され、中心部には回転軸を支持する軸受が設けられる。この各固定スクロールに対向させて容器中央部に回転軸により揺動回転する各揺動スクロールが同一の変心で揺動回転する様に一体の回転子として設けられている。即ち膨張吸入管から膨張固定スクロールを通して膨張揺動スクロールとの噛合い空間の軸中心に近い個所に高圧冷媒が吸入されこの揺動スクロールを揺動させながら回転子を回転させ容器壁部に近い外側の噛合い空間から膨張吐出管へと吐出され気液分離器9へ冷媒が導かれる。気液分離された高圧ガスは同じ密閉容器に設けられた第2圧縮吸入管から第2圧縮固定スクロールを介して第2圧縮揺動スクロールとの噛合い空間の軸中心より外れた外側に近い個所にこのガス冷媒が吸入されこの第2圧縮揺動スクロールの揺動にともない、即ち膨張動力により回転子が回転させられることにより軸中心に近い内側の噛合い空間から第2圧縮吐出管へとガス圧力を上昇させられて吐出され高圧配管へ戻される。   In the present invention, the expansion power is recovered and used for the compressor to improve the efficiency by returning the gas refrigerant to high pressure again. However, the gas at the gas-liquid separator outlet is sucked in, and the pressure loss is caused by bypassing the high pressure and low pressure parts. It is possible to save energy by reducing. The expander 4 and the second compressor 9 shown in FIG. 1 and FIG. 10 are the most efficient ones that transmit the expansion power of the refrigerant to the refrigerant compression with a scroll structure integrated in the closed container. is there. That is, the expansion fixed scroll and the second compression fixed scroll are fixed to both ends of the sealed container, and a bearing for supporting the rotating shaft is provided at the center. Each oscillating scroll that oscillates and rotates by a rotating shaft at the center of the container so as to face each fixed scroll is provided as an integral rotor so as to oscillate and rotate with the same eccentricity. That is, the high pressure refrigerant is sucked from the expansion / intake pipe through the expansion / fixing scroll to a position close to the axial center of the meshing space with the expansion / swing scroll, and the rotor is rotated while swinging the swing scroll to be outside the container wall. The refrigerant is discharged from the meshing space to the expansion discharge pipe, and the refrigerant is guided to the gas-liquid separator 9. The gas-liquid separated high-pressure gas is located near the outer side away from the axial center of the meshing space with the second compression swing scroll from the second compression suction pipe provided in the same sealed container via the second compression fixed scroll. When the gas refrigerant is sucked into the second compression scroll and the second compression orbiting scroll is swung, that is, the rotor is rotated by the expansion power, the gas is transferred from the inner meshing space near the shaft center to the second compression discharge pipe. The pressure is increased and discharged and returned to the high pressure pipe.

また本発明では図10の様に高圧の流体が低圧に膨張する際に膨張仕事を行い、これに伴う従来熱として消費していた仕事を圧縮機の駆動力として冷媒圧力を高めたガス冷媒をモータにより駆動される第3圧縮機63により更に圧力を高め第2負荷側熱交換器、第2減圧手段を通すという暖房時の運転を行うと共に、冷却運転時には負荷側熱交換器で空調対象空間内にある空気の顕熱処理を行うと共に第2負荷側熱交換器で空調対象空間内にある空気の除湿処理を行うことが出来、潜熱と顕熱を分離した処理により更に省エネルギーを図ることが出来る。   Further, in the present invention, as shown in FIG. 10, when the high-pressure fluid expands to a low pressure, expansion work is performed, and the work that has been consumed as conventional heat is used as the driving force of the compressor to increase the refrigerant pressure. The third compressor 63 driven by the motor further increases the pressure to perform the heating operation in which the second load side heat exchanger and the second pressure reducing means are passed, and during the cooling operation, the load side heat exchanger performs the air conditioning target space. In addition to performing sensible heat treatment of the air inside, the second load side heat exchanger can dehumidify the air in the air-conditioning target space, and further energy saving can be achieved by separating latent heat from sensible heat. .

この発明は図1等に示す様に室外機である熱源側ユニット100に第1圧縮機1、室外熱交換器3、室外送風機などを設け、室内の複数の負荷側ユニット200との間の中間地点に分岐ユニット300を設け、この分岐ユニット300内に膨張機4、気液分離機5を設け暖房時は気液分離したガス冷媒を第2圧縮機9で昇圧しこの分岐ユニット内の高圧配管に接続する。又冷房時は第2圧縮機で昇圧した高圧ガスを分岐ユニット内で低圧ガス管と熱交換して高圧液として高圧液管に接続する。これにより2管式で全冷房運転、冷房主体運転、暖房主体運転、全暖房運転、等各種運転モードで常に膨張機を利用できる省エネルギー運転が可能になる。又第2圧縮機を含めた機器が分岐ユニット内に配置でき冷凍サイクル装置が簡単にまとめられると共に延長配管の圧損に伴う余分な圧縮仕事を低減することが出来る。即ち膨張機に直結された第2圧縮機が延長配管、熱交換器、弁類の圧損に相当する昇圧仕事分だけ低減し効率が向上する。   In the present invention, as shown in FIG. 1 and the like, a heat source side unit 100 that is an outdoor unit is provided with a first compressor 1, an outdoor heat exchanger 3, an outdoor blower, and the like, and is intermediate between a plurality of indoor load side units 200. A branch unit 300 is provided at the point, and the expander 4 and the gas-liquid separator 5 are provided in the branch unit 300. During heating, the gas refrigerant separated from the gas and liquid is pressurized by the second compressor 9, and the high-pressure pipe in the branch unit is provided. Connect to. During cooling, the high-pressure gas boosted by the second compressor is heat-exchanged with the low-pressure gas pipe in the branch unit and connected to the high-pressure liquid pipe as a high-pressure liquid. As a result, energy saving operation in which the expander can be used at all times in various operation modes such as a cooling only operation, a cooling main operation, a heating main operation, and a heating operation with a two-tube type is possible. In addition, equipment including the second compressor can be arranged in the branch unit, and the refrigeration cycle apparatus can be easily assembled, and excessive compression work due to pressure loss of the extension pipe can be reduced. In other words, the second compressor directly connected to the expander reduces the pressure boosting work corresponding to the pressure loss of the extension pipe, heat exchanger, and valves, thereby improving the efficiency.

又本発明は室外に設けられた第2負荷側ユニット300内の膨張機出口部に気液分離機を設け、気液分離後のガス冷媒をこの室外ユニット100とは別のユニット300内の高圧配管に接続する。即ち暖房時は第2圧縮機であるサブ圧縮機で昇圧した高圧ガスをユニット300内で潜熱用圧縮機である第3の圧縮機の吸入側である高圧ガス管に接続する。冷房時はサブ圧縮機で昇圧した高圧ガスをユニット300内の低圧ガス管と熱交換した後で高圧液としてユニット300内の高圧液管に接続する。これにより冷房及び暖房運転で膨張機を利用でき省エネルギー運転が行える。   Further, according to the present invention, a gas-liquid separator is provided at the outlet of the expander in the second load side unit 300 provided outside, and the gas refrigerant after the gas-liquid separation is used as a high pressure in a unit 300 different from the outdoor unit 100. Connect to piping. That is, during heating, the high-pressure gas boosted by the sub-compressor that is the second compressor is connected in the unit 300 to the high-pressure gas pipe that is the suction side of the third compressor that is the latent heat compressor. During cooling, the high pressure gas boosted by the sub-compressor is heat-exchanged with the low pressure gas pipe in the unit 300 and then connected to the high pressure liquid pipe in the unit 300 as a high pressure liquid. As a result, the expander can be used for cooling and heating operation, and energy saving operation can be performed.

したがって潜熱と顕熱を分離し処理するビル用マルチなどの室外配置の空気調和機ユニット100に設けられる第1圧縮機の圧縮仕事を大幅に低減し効率を向上させることが出来る。又ユニット300に第2圧縮機を配置しており延長配管の圧損に伴う余分な圧縮仕事を低減でき、更に気液分離器により低圧側に流れる冷媒流量を低減したため低圧圧損に伴う圧縮仕事も低減でき効率の良い装置とすることができる。   Therefore, the compression work of the first compressor provided in the outdoor air conditioner unit 100 such as a building mulch that separates and processes latent heat and sensible heat can be greatly reduced and the efficiency can be improved. In addition, the second compressor is arranged in the unit 300, so that excessive compression work due to pressure loss of the extension pipe can be reduced, and further, the flow of refrigerant flowing to the low pressure side is reduced by the gas-liquid separator, so the compression work due to low pressure loss is also reduced. And an efficient device.

以上実施の形態1及び2で述べてきた様に、この発明の冷凍サイクル装置は、冷媒を圧縮する第1圧縮機、冷媒を凝縮又は蒸発させる熱源側熱交換器、負荷の運転状態に応じて冷媒の流れを切換える第1流路切換え手段からなる熱源側ユニットと、熱源側ユニットもしくは負荷側からの高圧冷媒により回転力を得て膨張させる膨張機を通した冷媒の気液を分離させる気液分離器からなる分岐ユニットと、第1減圧手段、負荷側熱交換器からなる複数の負荷側ユニットを有し、冷媒として二酸化炭素等超臨界状態の様に非常に高い圧力差を有する自然冷媒を用いるとともに、複数の負荷側ユニットが個別に冷却運転と加熱運転を選択可能な冷凍サイクル装置で、膨張機からの回収動力のみ、即ち電動機を使用しないで駆動する第2圧縮機を介して気液分離器のガス側出口部と第1圧縮機の吐出部とを接続したことを特徴とするものである。   As described in the first and second embodiments, the refrigeration cycle apparatus according to the present invention includes the first compressor that compresses the refrigerant, the heat source side heat exchanger that condenses or evaporates the refrigerant, and the operating state of the load. A gas-liquid that separates the gas-liquid of the refrigerant through the heat source side unit comprising the first flow path switching means for switching the refrigerant flow and the expander that obtains the rotational force by the high-pressure refrigerant from the heat source side unit or the load side and expands. A natural refrigerant having a very high pressure difference, such as a supercritical state such as carbon dioxide, having a branch unit made of a separator, a plurality of load side units made of a first pressure reducing means and a load side heat exchanger. And a refrigeration cycle apparatus in which a plurality of load-side units can individually select a cooling operation and a heating operation, through only a recovery power from the expander, that is, through a second compressor that is driven without using an electric motor. It is characterized in that connects the discharge portion of the gas-liquid separator of a gas-side outlet and the first compressor.

この発明の冷凍サイクル装置は、第2圧縮機の出口部と第1圧縮機の吸入部とを熱交換する内部熱交換器を設けたことを特徴とするものである。又この発明の冷凍サイクル装置は、気液分離器の液側出口部に第2減圧手段を設けたことを特徴とするものである。又この発明は、第1圧縮機の吸入部と気液分離器のガス側出口部とを、開度変更可能な第3減圧手段を介して第1バイパス配管で接続したことを特徴とするものである。又この発明の冷凍サイクル装置は、気液分離器のガス側出口部と第2圧縮機の吸入部との間に、開度変更可能な第4減圧手段を設けたことを特徴とするものである。   The refrigeration cycle apparatus of the present invention is characterized in that an internal heat exchanger for exchanging heat between the outlet portion of the second compressor and the suction portion of the first compressor is provided. The refrigeration cycle apparatus of the present invention is characterized in that the second pressure reducing means is provided at the liquid side outlet of the gas-liquid separator. Further, the present invention is characterized in that the suction portion of the first compressor and the gas side outlet portion of the gas-liquid separator are connected by a first bypass pipe via a third pressure reducing means whose opening degree can be changed. It is. The refrigeration cycle apparatus of the present invention is characterized in that a fourth pressure reducing means capable of changing the opening degree is provided between the gas side outlet of the gas-liquid separator and the suction part of the second compressor. is there.

また、この発明の冷凍サイクル装置は、低圧冷媒を圧縮して高圧冷媒を吐出する第1圧縮機、吐出され循環する冷媒を蒸発もしくは凝縮する熱源側熱交換器、循環する冷媒の流方向を切換える第1流路切換え手段からなる熱源側ユニットと、冷媒流量を調整可能な第1減圧手段を有する第1負荷側熱交換器が複数設けられた第1負荷側ユニットと、少なくとも第2圧縮機、第2負荷側熱交換器、第2流路切換え手段、膨張機、気液分離器からなる第2負荷側ユニットとを有し、冷媒として二酸化炭素を用いる2段圧縮式の冷凍サイクル装置で、膨張機からの回収動力のみで駆動する第2圧縮機を介して気液分離器のガス側出口部と第1圧縮機の吐出部とを接続したことを特徴とするものである。   Further, the refrigeration cycle apparatus of the present invention switches the first compressor that compresses the low-pressure refrigerant and discharges the high-pressure refrigerant, the heat source side heat exchanger that evaporates or condenses the discharged and circulated refrigerant, and switches the flow direction of the circulated refrigerant. A heat source side unit comprising a first flow path switching means, a first load side unit provided with a plurality of first load side heat exchangers having a first pressure reducing means capable of adjusting the refrigerant flow rate, at least a second compressor, A second load side heat exchanger, a second flow path switching means, an expander, a second load side unit comprising a gas-liquid separator, and a two-stage compression refrigeration cycle apparatus using carbon dioxide as a refrigerant, The gas-side outlet portion of the gas-liquid separator and the discharge portion of the first compressor are connected via a second compressor that is driven only by the recovery power from the expander.

この発明の冷凍サイクル装置は、第2圧縮機の出口部と第1圧縮機の吸入部とを熱交換する内部熱交換器を設けたことを特徴とするものである。又この発明の冷凍サイクル装置は、気液分離器の液側出口部に第2減圧手段を設けたことを特徴とするものである。又この発明の冷凍サイクル装置は、第1圧縮機の吸入部と気液分離器のガス側出口部とを、開度変更可能な第3減圧手段を介して第1バイパス配管で接続したことを特徴とするものである。又この発明の冷凍サイクル装置は、気液分離器のガス側出口部と第2圧縮機の吸入部との間に、開度変更可能な第4減圧手段を設けたことを特徴とするものである。又この発明の冷凍サイクル装置は、膨張機の入口部に第3流路切換え手段を設けたことを特徴とするものである。   The refrigeration cycle apparatus of the present invention is characterized in that an internal heat exchanger for exchanging heat between the outlet portion of the second compressor and the suction portion of the first compressor is provided. The refrigeration cycle apparatus of the present invention is characterized in that the second pressure reducing means is provided at the liquid side outlet of the gas-liquid separator. In the refrigeration cycle apparatus of the present invention, the suction portion of the first compressor and the gas side outlet portion of the gas-liquid separator are connected by the first bypass pipe via the third decompression means capable of changing the opening degree. It is a feature. The refrigeration cycle apparatus of the present invention is characterized in that a fourth pressure reducing means capable of changing the opening degree is provided between the gas side outlet of the gas-liquid separator and the suction part of the second compressor. is there. The refrigeration cycle apparatus of the present invention is characterized in that a third flow path switching means is provided at the inlet of the expander.

この発明の冷凍サイクル装置は、少なくとも第1圧縮機、熱源側熱交換器、第1流路切換え手段からなる熱源側ユニットと、少なくとも膨張機、気液分離器からなる分岐ユニットと、少なくとも第1減圧手段、負荷側熱交換器からなる複数の負荷側ユニットを有し、冷媒として二酸化炭素を用いるとともに、複数の負荷側ユニットが個別に冷却運転と加熱運転を選択可能な冷凍サイクル装置において、膨張機からの回収動力のみで駆動する第2圧縮機を介して気液分離器のガス側出口部と第1圧縮機の吐出部とを接続したので、全ての運転モードで膨張動力を回収できるとともに、消費電力を低減可能な冷凍サイクル装置を提供することができる。   The refrigeration cycle apparatus according to the present invention includes a heat source side unit including at least a first compressor, a heat source side heat exchanger, and a first flow path switching unit, a branch unit including at least an expander and a gas-liquid separator, and at least a first unit. Expansion in a refrigeration cycle apparatus having a plurality of load side units composed of decompression means and load side heat exchangers, using carbon dioxide as a refrigerant, and capable of individually selecting a cooling operation and a heating operation by the plurality of load side units Since the gas side outlet part of the gas-liquid separator and the discharge part of the first compressor are connected via the second compressor driven only by the recovery power from the compressor, the expansion power can be recovered in all operation modes. A refrigeration cycle apparatus capable of reducing power consumption can be provided.

また、この発明の冷凍サイクル装置は、第2圧縮機の出口部と第1圧縮機の吸入部とを熱交換する内部熱交換器を設けたので、全ての運転モードで膨張動力を回収可能な冷凍サイクル装置を提供することができる。   Further, the refrigeration cycle apparatus of the present invention is provided with an internal heat exchanger that exchanges heat between the outlet portion of the second compressor and the suction portion of the first compressor, so that expansion power can be recovered in all operation modes. A refrigeration cycle apparatus can be provided.

また、この発明の冷凍サイクル装置は、気液分離器の液側出口部に第2減圧手段を設けたので、膨張機での回収動力と第2圧縮機の圧縮動力にアンバランスが生じた場合でも適切に動力を調整することができる。   In the refrigeration cycle apparatus of the present invention, since the second pressure reducing means is provided at the liquid side outlet of the gas-liquid separator, there is an imbalance between the recovery power of the expander and the compression power of the second compressor. But you can adjust the power appropriately.

また、この発明の冷凍サイクル装置は、第1圧縮機の吸入部と気液分離器のガス側出口部とを、開度変更可能な第3減圧手段を介して第1バイパス配管で接続したので、気液分離器から供給される冷媒流量と第2圧縮機の冷媒流量にアンバランスが生じた場合でも適切に冷媒流量を調整することができる。   Further, in the refrigeration cycle apparatus of the present invention, the suction portion of the first compressor and the gas side outlet portion of the gas-liquid separator are connected by the first bypass pipe via the third decompression means capable of changing the opening degree. Even when an imbalance occurs between the refrigerant flow rate supplied from the gas-liquid separator and the refrigerant flow rate of the second compressor, the refrigerant flow rate can be adjusted appropriately.

また、この発明の冷凍サイクル装置は、気液分離器のガス側出口部と第2圧縮機の吸入部との間に、開度変更可能な第4減圧手段を設けたので、膨張機での回収動力と第2圧縮機の圧縮動力にアンバランスが生じた場合でも適切に動力を調整することができる。   In the refrigeration cycle apparatus according to the present invention, the fourth decompression means capable of changing the opening degree is provided between the gas side outlet portion of the gas-liquid separator and the suction portion of the second compressor. Even when an imbalance occurs between the recovered power and the compressed power of the second compressor, the power can be adjusted appropriately.

また、この発明の冷凍サイクル装置は、少なくとも第1圧縮機、熱源側熱交換器、第1流路切換え手段からなる熱源側ユニットと、少なくとも第1減圧手段と第1負荷側熱交換器からなる複数の第1負荷側ユニットと、少なくとも第3圧縮機、第2負荷側熱交換器、第2流路切換え手段、膨張機、気液分離器からなる第2負荷側ユニットとを有し、冷媒として二酸化炭素を用いる2段圧縮式の冷凍サイクル装置において、膨張機からの回収動力のみで駆動する第2圧縮機を介して気液分離器のガス側出口部と第1圧縮機の吐出部とを接続したので、2段圧縮式冷凍サイクルの全ての運転モードで膨張機の回収動力を利用することができる。   The refrigeration cycle apparatus of the present invention comprises at least a first compressor, a heat source side heat exchanger, a heat source side unit comprising first flow path switching means, and at least a first pressure reducing means and a first load side heat exchanger. A plurality of first load-side units, and a second load-side unit including at least a third compressor, a second load-side heat exchanger, a second flow path switching unit, an expander, and a gas-liquid separator; In the two-stage compression type refrigeration cycle apparatus using carbon dioxide as a gas outlet portion of the gas-liquid separator and a discharge portion of the first compressor via a second compressor driven only by recovery power from the expander Is connected, the recovered power of the expander can be used in all operation modes of the two-stage compression refrigeration cycle.

また、この発明の冷凍サイクル装置は、第2圧縮機の出口部と第1圧縮機の吸入部とを熱交換する内部熱交換器を設けたので、2段圧縮式冷凍サイクルの全ての運転モードで膨張機の回収動力を利用することができる。   Further, since the refrigeration cycle apparatus of the present invention includes the internal heat exchanger that exchanges heat between the outlet portion of the second compressor and the suction portion of the first compressor, all the operation modes of the two-stage compression refrigeration cycle are provided. The recovery power of the expander can be used.

また、この発明の冷凍サイクル装置は、気液分離器の液側出口部に第2減圧手段を設けたので、膨張機での回収動力と第2圧縮機の圧縮動力にアンバランスが生じた場合でも適切に動力を調整することができる。   In the refrigeration cycle apparatus of the present invention, since the second pressure reducing means is provided at the liquid side outlet of the gas-liquid separator, there is an imbalance between the recovery power of the expander and the compression power of the second compressor. But you can adjust the power appropriately.

また、この発明の冷凍サイクル装置は、第1圧縮機の吸入部と気液分離器のガス側出口部とを、開度変更可能な第3減圧手段を介して第1バイパス配管で接続したので、気液分離器から供給される冷媒流量と第2圧縮機の冷媒流量にアンバランスが生じた場合でも適切に冷媒流量を調整することができる。   Further, in the refrigeration cycle apparatus of the present invention, the suction portion of the first compressor and the gas side outlet portion of the gas-liquid separator are connected by the first bypass pipe via the third decompression means capable of changing the opening degree. Even when an imbalance occurs between the refrigerant flow rate supplied from the gas-liquid separator and the refrigerant flow rate of the second compressor, the refrigerant flow rate can be adjusted appropriately.

また、この発明の冷凍サイクル装置は、気液分離器のガス側出口部と第2圧縮機の吸入部との間に、開度変更可能な第4減圧手段を設けたので、膨張機での回収動力と第2圧縮機の圧縮動力にアンバランスが生じた場合でも適切に動力を調整することができる。   In the refrigeration cycle apparatus according to the present invention, the fourth decompression means capable of changing the opening degree is provided between the gas side outlet portion of the gas-liquid separator and the suction portion of the second compressor. Even when an imbalance occurs between the recovered power and the compressed power of the second compressor, the power can be adjusted appropriately.

また、この発明の冷凍サイクル装置は、膨張機の入口部に第3流路切換え手段を設けたので、全ての運転モードで膨張機での回収動力を利用することができる。   Moreover, since the refrigeration cycle apparatus of the present invention is provided with the third flow path switching means at the inlet of the expander, the recovery power of the expander can be used in all operation modes.

本発明の実施の形態1に係る冷凍サイクル装置の全冷房運転の冷媒流れを示す図である。It is a figure which shows the refrigerant | coolant flow of the cooling only operation of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るP−h線図上での全冷房運転の動作を示す図である。It is a figure which shows the operation | movement of the cooling only operation on the Ph diagram which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の全暖房運転の冷媒流れを示す図である。It is a figure which shows the refrigerant | coolant flow of the heating only operation | movement of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るP−h線図上での全暖房運転の動作を示す図である。It is a figure which shows the operation | movement of the heating only operation on the Ph diagram which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の冷房主体運転の冷媒流れを示す図である。It is a figure which shows the refrigerant | coolant flow of the cooling main operation | movement of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るP−h線図上での冷房主体運転の動作を示す図である。It is a figure which shows the operation | movement of the cooling main operation | movement on the Ph diagram which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の暖房主体運転の冷媒流れを示す図である。It is a figure which shows the refrigerant | coolant flow of the heating main driving | operation of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るP−h線図上での暖房主体運転の動作を示す図である。It is a figure which shows the operation | movement of the heating main driving | operation on the Ph diagram which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る膨張機での回収動力、第2圧縮機での圧縮動力、膨張機、第2圧縮機、気液分離器の冷媒流量の関係を説明する図である。It is a figure explaining the relationship of the recovery power in the expander which concerns on Embodiment 1 of this invention, the compression power in a 2nd compressor, the refrigerant | coolant flow rate of an expander, a 2nd compressor, and a gas-liquid separator. 本発明の実施の形態2に係る冷凍サイクル装置の冷房運転の冷媒流れを示す図である。It is a figure which shows the refrigerant | coolant flow of the cooling operation of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るP−h線図上での冷房運転の動作を示す図である。It is a figure which shows the operation | movement of the air_conditionaing | cooling operation on the Ph diagram which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の暖房運転の冷媒流れを示す図である。It is a figure which shows the refrigerant | coolant flow of the heating operation of the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るP−h線図上での暖房運転の動作を示す図である。It is a figure which shows the operation | movement of the heating operation on the Ph diagram which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る膨張機での回収動力、第2圧縮機での圧縮動力、膨張機、第2圧縮機、気液分離器の冷媒流量の関係を説明する図である。It is a figure explaining the relationship of the recovery power in the expander which concerns on Embodiment 2 of this invention, the compression power in a 2nd compressor, the refrigerant | coolant flow rate of an expander, a 2nd compressor, and a gas-liquid separator.

符号の説明Explanation of symbols

1 第1圧縮機、 2、60、61 四方弁、 3 熱源側熱交換器、 4 膨張機、 5 気液分離器、 6a、6b、6c、10、12、20、65、68 電子膨張弁、 7a、7b、7c 室内熱交換器、 9 第2圧縮機、 13 吸入配管、 14、67 第1バイパス配管、 19 第2バイパス配管、 21a、21b、21c、21d、36、37、38、39、40、41 逆止弁、 22 内部熱交換器、 30、31、32、33、34、35、42、43、66 電磁弁、 51 高圧管、 52 低圧管、 53 第1ガス管、 54 第1液管、 55 第2ガス管、 56 第2液管、 63 第3圧縮機、 64 第2負荷側熱交換器、 100 室外ユニット、 200a、200b、200c 室内ユニット、 300 分岐ユニットあるいは第2負荷側ユニット。   DESCRIPTION OF SYMBOLS 1 1st compressor, 2, 60, 61 Four-way valve, 3 Heat source side heat exchanger, 4 Expansion machine, 5 Gas-liquid separator, 6a, 6b, 6c 10, 12, 20, 65, 68 Electronic expansion valve, 7a, 7b, 7c Indoor heat exchanger, 9 Second compressor, 13 Suction pipe, 14, 67 First bypass pipe, 19 Second bypass pipe, 21a, 21b, 21c, 21d, 36, 37, 38, 39, 40, 41 Check valve, 22 Internal heat exchanger, 30, 31, 32, 33, 34, 35, 42, 43, 66 Solenoid valve, 51 High pressure pipe, 52 Low pressure pipe, 53 First gas pipe, 54 First Liquid pipe, 55 second gas pipe, 56 second liquid pipe, 63 third compressor, 64 second load side heat exchanger, 100 outdoor unit, 200a, 200b, 200c indoor unit, 300 branch unit Rui second load unit.

Claims (10)

冷媒として高圧側にて超臨界の状態となる自然冷媒を用いる冷媒回路に設けられ、低圧冷媒を吸入し高圧冷媒を吐出して前記冷媒を循環させる第1圧縮機と、前記冷媒回路を循環する冷媒を凝縮もしくは蒸発させる熱源側熱交換器と、前記第1圧縮機から吐出される冷媒を前記熱源側熱交換器を介してもしくは前記熱源側熱交換器を介さずに負荷側へ循環させる様に前記冷媒回路の冷媒の流を切換えて冷却運転と加熱運転が個別に選択可能な複数設けられた負荷側熱交換器と、前記高圧冷媒の膨張動力を回収する膨張機と、前記膨張機にて膨張した冷媒を気液に分離させる気液分離器のガス側出口部と接続し、前記ガス側出口部からの冷媒を前記膨張機の回収した動力で圧縮する第2圧縮機と、を備え、前記第2圧縮機から吐出される冷媒を前記第1圧縮機の吐出側とを接続し高圧冷媒とすることを特徴とする冷凍サイクル装置。 A first compressor that is provided in a refrigerant circuit that uses natural refrigerant that is in a supercritical state on the high-pressure side as a refrigerant, sucks low-pressure refrigerant, discharges high-pressure refrigerant, and circulates the refrigerant, and circulates through the refrigerant circuit. A heat source side heat exchanger that condenses or evaporates the refrigerant, and a refrigerant discharged from the first compressor is circulated to the load side through the heat source side heat exchanger or not through the heat source side heat exchanger. A plurality of load-side heat exchangers capable of individually selecting a cooling operation and a heating operation by switching the refrigerant flow in the refrigerant circuit, an expander for recovering the expansion power of the high-pressure refrigerant, and the expander A gas-liquid separator that separates the expanded refrigerant into a gas-liquid separator, and a second compressor that compresses the refrigerant from the gas-side outlet with the power recovered by the expander. The refrigerant discharged from the second compressor Serial refrigerating cycle apparatus characterized by a high-pressure refrigerant connects the discharge side of the first compressor. 前記冷媒回路の高圧側と低圧側を接続する回路に第3圧縮機及び室内の空調を行う前記負荷側熱交換器とは異なる第2の負荷側熱交換器を並列に設けたことを特徴とする請求項1記載の冷凍サイクル装置。 A circuit connecting the high pressure side and the low pressure side of the refrigerant circuit is provided with a third load and a second load side heat exchanger different from the load side heat exchanger that performs indoor air conditioning in parallel. The refrigeration cycle apparatus according to claim 1. 前記負荷側熱交換器と前記第2の負荷側熱交換器は冷房運転時もしくは暖房運転時に異なる圧力で運転されることを特徴とする請求項2記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the load-side heat exchanger and the second load-side heat exchanger are operated at different pressures during cooling operation or heating operation. 前記第2圧縮機の出口部と前記第1圧縮機の吸入部とを熱交換する内部熱交換器を設けたことを特徴とする請求項1又は2記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, further comprising an internal heat exchanger for exchanging heat between the outlet portion of the second compressor and the suction portion of the first compressor. 前記気液分離器の液側出口部に減圧手段を設けたことを特徴とする請求項1乃至請求項4のいずれかに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein a decompression means is provided at a liquid side outlet of the gas-liquid separator. 前記第1圧縮機の吸入部と前記気液分離器のガス側出口部とを、開度変更可能な減圧手段を介してバイパス配管で接続したことを特徴とする請求項1乃至5のいずれかに記載の冷凍サイクル装置。 6. The suction unit of the first compressor and the gas side outlet of the gas-liquid separator are connected to each other by a bypass pipe through a decompression unit capable of changing an opening degree. The refrigeration cycle apparatus described in 1. 前記気液分離器のガス側出口部と前記第2圧縮機の吸入部との間を開度変更可能な減圧手段を介してバイパス配管で接続したことを特徴とする請求項1乃至6のいずれかに記載の冷凍サイクル装置。 7. The gas pipe according to claim 1, wherein the gas side outlet of the gas-liquid separator and the suction part of the second compressor are connected by a bypass pipe through a pressure reducing means capable of changing an opening degree. The refrigeration cycle apparatus according to crab. 前記膨張機の入口部に流路切換手段を設けたことを特徴とする請求項1乃至7のいずれかに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein a flow path switching means is provided at an inlet of the expander. 少なくとも前記第1圧縮機と前記熱源側熱交換器を設けられた熱源側ユニットと、室内に設けられ複数の前記負荷側熱交換器からなる負荷側ユニットと、少なくとも前記第2圧縮機、前記膨張機及び前記気液分離器を設けられた分岐ユニットと、を備え、冷媒として二酸化炭素を用い、前記分岐ユニットに配置される機器は前記冷媒回路の高圧側配管と低圧側配管に接続されることを特徴とする請求項1又は2記載の冷凍サイクル装置。 A heat source side unit provided with at least the first compressor and the heat source side heat exchanger, a load side unit comprising a plurality of the load side heat exchangers provided in the room, at least the second compressor, and the expansion And a branch unit provided with the gas-liquid separator, carbon dioxide is used as a refrigerant, and the equipment disposed in the branch unit is connected to the high-pressure side pipe and the low-pressure side pipe of the refrigerant circuit. The refrigeration cycle apparatus according to claim 1 or 2. 前記分岐ユニットに前記負荷側熱交換器とは異なる負荷側熱交換器を設け、前記室内の空調を行うことを特徴とする請求項9記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 9, wherein a load-side heat exchanger different from the load-side heat exchanger is provided in the branch unit to perform air conditioning in the room.
JP2005048755A 2005-02-24 2005-02-24 Refrigeration cycle equipment Expired - Fee Related JP4192904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048755A JP4192904B2 (en) 2005-02-24 2005-02-24 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048755A JP4192904B2 (en) 2005-02-24 2005-02-24 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2006234263A JP2006234263A (en) 2006-09-07
JP4192904B2 true JP4192904B2 (en) 2008-12-10

Family

ID=37042122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048755A Expired - Fee Related JP4192904B2 (en) 2005-02-24 2005-02-24 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4192904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151350A (en) * 2017-12-20 2018-06-12 广东美的暖通设备有限公司 Three control multi-line systems and its control method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192045A (en) * 2017-06-26 2017-09-22 珠海格力电器股份有限公司 Air conditioning system
WO2021200788A1 (en) * 2020-03-31 2021-10-07 ダイキン工業株式会社 Air conditioning apparatus
JP7469621B2 (en) * 2020-03-31 2024-04-17 ダイキン工業株式会社 Air Conditioning Equipment
CN114353376B (en) * 2020-12-28 2024-04-19 中科广能能源研究院(重庆)有限公司 Multi-press operation control method for gas heat pump air conditioning system
CN114345079B (en) * 2022-02-25 2024-06-18 中国电力工程顾问集团西北电力设计院有限公司 Temperature and pressure swing adsorption device and method for capturing carbon dioxide in flue gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151350A (en) * 2017-12-20 2018-06-12 广东美的暖通设备有限公司 Three control multi-line systems and its control method

Also Published As

Publication number Publication date
JP2006234263A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4813599B2 (en) Refrigeration cycle equipment
JP4952210B2 (en) Air conditioner
JP4321095B2 (en) Refrigeration cycle equipment
JP3897681B2 (en) Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
JP5018496B2 (en) Refrigeration equipment
JP3863480B2 (en) Refrigeration cycle equipment
US9222706B2 (en) Refrigeration cycle apparatus and operating method of same
JP2001116371A (en) Air conditioner
JP2007255889A (en) Refrigerating air conditioning device
JP4457928B2 (en) Refrigeration equipment
JP4906963B2 (en) Refrigeration cycle equipment
EP1645818B1 (en) Air-conditioner with a dual-refrigerant circuit
JP4192904B2 (en) Refrigeration cycle equipment
JP2003074990A (en) Refrigerating unit
JP5895662B2 (en) Refrigeration equipment
JP2006242491A (en) Refrigerating cycle device
JP4617958B2 (en) Air conditioner
JP4901916B2 (en) Refrigeration air conditioner
JP2008002743A (en) Refrigerating device
JP3863555B2 (en) Refrigeration cycle equipment
JP2001066006A (en) Refrigerant circuit for air conditioner
JP2010038408A (en) Outdoor heat exchanger and refrigerating cycle device mounted with the same
JP4581795B2 (en) Refrigeration equipment
Hiwata et al. A study of cycle performance improvement with expander-compressor in air-conditioning systems
JP4644278B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R151 Written notification of patent or utility model registration

Ref document number: 4192904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees