[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4186677B2 - Surface acoustic wave device and manufacturing method thereof - Google Patents

Surface acoustic wave device and manufacturing method thereof Download PDF

Info

Publication number
JP4186677B2
JP4186677B2 JP2003098172A JP2003098172A JP4186677B2 JP 4186677 B2 JP4186677 B2 JP 4186677B2 JP 2003098172 A JP2003098172 A JP 2003098172A JP 2003098172 A JP2003098172 A JP 2003098172A JP 4186677 B2 JP4186677 B2 JP 4186677B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
wave element
substrate
base substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003098172A
Other languages
Japanese (ja)
Other versions
JP2004304722A (en
Inventor
入江  祐二
克弘 筏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003098172A priority Critical patent/JP4186677B2/en
Publication of JP2004304722A publication Critical patent/JP2004304722A/en
Application granted granted Critical
Publication of JP4186677B2 publication Critical patent/JP4186677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、弾性表面波装置に係わり、特にパッケージに弾性表面波素子を搭載した弾性表面波装置に関する。
【0002】
【従来の技術】
近年、自動車電話機や携帯電話機といった移動体通信機器の小型化、軽量化、高周波化に伴い、これらの移動体通信機器に搭載されるフィルタとして、小型で軽量な弾性表面波装置が多用されている。
【0003】
水晶やLiTaO3、LiNbO3等の圧電基板上に、Alなどの金属からなる、くし型電極部を形成してなる弾性表面波装置においては、くし型電極部や圧電基板の弾性表面波の伝搬部分などの振動空間を確保すると共に、くし型電極部を水分や埃などから保護する必要がある。
【0004】
よって、従来の弾性表面波装置は、アルミナなどからなるパッケージの底面にダイボンド剤を塗布し、弾性表面波素子をダイボンドでパッケージに搭載し、パッケージ内部の端子と弾性表面波素子の電極パッドをワイヤボンディングにより接続した後、リッドによって封止されていた(特許文献1参照)。また、小型化のために、アルミナなどからなるパッケージの底面に電極ランドを形成し、弾性表面波素子をパッケージにフリップチップボンディングで搭載し、パッケージをリッドによって封止することも行なわれていた(特許文献2参照)。
【0005】
しかし、上記のような構造では、弾性表面波素子を小型化したところで、パッケージが小型化されない限り、弾性表面波装置の小型化・低背化ができないという問題がある。また、小型のパッケ−ジにかかるコストが高いという問題もあった。
【0006】
そこで、近年、チップサイズパッケージの弾性表面波装置が検討されている。例えば、図7に示すように、特許文献3においては、外部端子51、電極ランド49、外部端子51と電極ランド49とを接続するビアホール50を有するベース基板48に、電極パッド46にバンプ47を形成した弾性表面波素子42をフリップチップボンディングで実装し、実装した弾性表面波素子42を封止樹脂53で覆うことで封止するという構造が開示されている。このとき、弾性表面波素子42及びベース基板48の少なくとも一方には樹脂からなるダム70が設けられており、このダム70が弾性表面波素子42における、くし型電極部44などからなる弾性表面波が伝搬する部分(機能部)への封止樹脂53の流入を防止する。
【0007】
また、図8に示すように、特許文献4においては、図7の従来例と同様に、外部端子51、電極ランド49、外部端子51と電極ランド49とを接続するビアホール50を有するベース基板48に、電極パッド46にバンプ47を形成した弾性表面波素子42をフリップチップボンディングで実装し、ベース基板48に実装した弾性表面波素子42を、樹脂や金属などからなるフィルム80で覆うことで封止した上で、更に封止樹脂53で覆う構造が開示されている。
【0008】
【特許文献1】
特開平7−283684号公報
【特許文献2】
特開2000−91880号公報
【特許文献3】
特開平10−321666号公報
【特許文献4】
特表2002−504773公報
【0009】
【発明が解決しようとする課題】
しかしながら、図7に示すような構造では、弾性表面波素子42及びベース基板48に、ダム70を形成しなければならないので、弾性表面波素子42におけるくし型電極部44の配置などの設計の自由度が制限されるという問題がある。また、くし型電極部44などからなる弾性表面波が伝搬する部分(機能部)に封止樹脂53が流入するのを確実に防止するために、ベース基板48に弾性表面波素子42をフリップチップボンディングで実装する前に、弾性表面波素子42及びベース基板48の少なくとも一方にダム70を高い精度で形成しなければならないので、複雑なダム形成プロセスを用いる必要があるという問題があった。
【0010】
また、図8に示すような構造では、ベース基板48に実装された弾性表面波素子42をフィルム80で完全に覆うため、ベース基板48とフィルム80との間で応力が発生する。この応力により、ベース基板48が変形したり、フィルム80の機械的強度が劣化したり、弾性表面波素子42の変形によって、くし型電極部44同士の間隔やくし型電極部44の電極指の間隔が変化することによる周波数が変動するなどの問題があった。
【0011】
本発明の弾性表面波装置は、上述の問題を鑑みてなされたものであり、これらの問題を解決し、小型、低背で且つ信頼性の高い弾性表面波装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明の弾性表面波装置は、圧電基板と該圧電基板に形成された少なくとも1つのくし型電極部からなる機能部分を有する弾性表面波素子と、接合部材と、ベース基板とを備え、前記弾性表面波素子は、くし型電極部が形成された面を対向させた状態で前記接合部材を介して前記ベース基板に実装される弾性表面波装置であって、前記ベース基板に実装された弾性表面波素子の周囲のベース基板上には、樹脂流入阻止部材が形成されていると共に、前記弾性表面波素子と樹脂流入阻止部材との隙間が封止部材で覆われており、かつ、前記弾性表面波素子上にも前記樹脂流入阻止部材が形成されていることを特徴とする。
【0013】
前記樹脂流入阻止部材が膜状に形成され、その天面が、前記弾性表面波素子と前記ベース基板の間に形成された空間の高さよりも低い位置にあることが好ましい。
【0014】
また、前記ベース基板は、外部端子と、電極ランドと、該外部端子と電極ランドを接続するビアホールとを有することが好ましい。
【0015】
また、本発明の弾性表面波装置の製造方法は、圧電基板上に少なくとも1つのくし型電極部を形成してなる複数の弾性表面波素子を用意する工程と、複数のベース基板の集合体である集合基板を用意する工程と、前記複数の弾性表面波素子又は集合基板に接合部材を形成する工程と、前記複数の弾性表面波素子をくし型電極部が形成された面を対向させた状態で前記接合部材を介して前記集合基板に実装する工程と、前記集合基板に実装された弾性表面波素子の周囲と前記弾性表面波素子上に樹脂流入阻止部材を形成する工程と、封止部材によって前記弾性表面波素子と樹脂流入阻止部材との隙間を覆う工程と、前記集合基板から切り出す工程とを有することを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明の実施例を、図に基づいて説明する。
図1は本発明の実施例における弾性表面波装置の断面図、図2は本発明の実施例に用いる弾性表面波素子の平面図、図3は本発明の実施例における弾性表面波装置の製造方法の各工程図、図4は本発明の実施例における集合基板(接合基板)に実装された弾性表面波素子の平面図、図5は本発明の実施例の変形例を示す断面図、図6は本発明の実施例の変形例を示す断面図である。
【0017】
本発明の弾性表面波装置1は、図1に示すように、弾性表面波素子2、ベース基板8、バンプ7、樹脂流入阻止部材12、封止樹脂13(封止部材)とで構成されている。
【0018】
図2に示すように、弾性表面波素子2は、圧電基板3と、この圧電基板3上に形成されたくし型電極部4、リフレクタ5、電極パッド6で構成されている。また、ベース基板8は、電極ランド9と、ビアホール10と、外部端子11とを有している。弾性表面波素子2はベース基板8に対して、くし型電極部4を有する面を対向させた状態で、電極パッド6上に形成されたバンプ7を介して接合される。なお、ベース基板8は、複数の層からなる構造(多層構造)を有するものであっても良い。
【0019】
実装された弾性表面波素子2の周囲のベース基板8上には、膜状の樹脂流入阻止部材12が形成されていると共に、弾性表面波素子2と樹脂流入阻止部材12は封止樹脂13で覆われている。詳細には、弾性表面波素子2と樹脂流入阻止部材12との隙間が、封止樹脂13で覆われている。これにより、くし型電極部4や圧電基板3の弾性表面波の伝搬部分などの振動空間が封止されている。つまり、くし型電極部4や圧電基板3の弾性表面波の伝搬部分などの振動空間が確保されると共に、くし型電極部を水分や埃などから保護されている。
【0020】
このとき、樹脂流入阻止部材12の天面は、弾性表面波素子2とベース基板8の間に形成された空間の高さよりも低い位置にあるため、樹脂流入阻止部材12と弾性表面波素子2とは接触していない。よって、弾性表面波素子2に対して、樹脂流入阻止部材12による応力がかかることはない。
【0021】
なお、樹脂流入阻止部材12と弾性表面波素子2との隙間の大きさは、樹脂流入阻止部材12の厚みを変えることで調整できる。よって、封止樹脂13の粘度等に合わせて、樹脂流入阻止部材12と弾性表面波素子2との隙間の大きさを適宜調整することで、封止樹脂13がくし型電極部4などからなる弾性表面波が伝搬する部分(機能部)に流入することを防止することが出来る。
【0022】
本発明に係る弾性表面波装置1の製造方法を図1、図3を用いて説明する。
【0023】
まず、圧電基板3上に、レジストを塗布した後、マスクを用いて露光するというフォトリソグラフィー技術を用いて、所望の開口パターンを有するリフトオフ用レジストパターン(図示せず)を形成する。
【0024】
次に、電極材料金属であるAlを蒸着法などにより成膜した後、レジスト剥離液に浸漬・揺動させてレジストパターンを剥離(リフトオフ)することで、図2に示すように、圧電基板3上にくし型電極部4、リフレクタ5、電極パッド6や引き回し配線などを有する弾性表面波素子2を作製する。
【0025】
圧電基板3としては、目標特性に応じて、LiTaO3、LiNbO3、水晶等を用いる。また、電極材料としては、Al以外に、Au、Cu、Ni、Ta、W等の金属材料を用いることが可能である。
【0026】
続けて、弾性表面波素子2の電極パッド6上に、Auからなるバンプ7を形成する。本実施例では、バンプ7としてAuからなるバンプを用いたが、これに限らず、半田からなるバンプを用いても良い。但し、Au−Sn系やSn−Ag系の半田からなるバンプを用いる場合には、半田からなるバンプの密着層として、電極パッド6上にNi層を形成することが好ましい。
【0027】
アルミナなどからなり、ベース基板8となる集合基板20を用意する。集合基板20(ベース基板8)には、弾性表面波素子2の電極パッド6に対応する電極ランド9、外部端子11、電極ランド9と外部端子11とを電気的に接続するビアホール10が形成されている。電極ランド9の表面は、Auめっきされていることが好ましい。バンプ7もAuからなるため、弾性表面波素子2とベース基板8とを接合する際、接合強度を高めることが出来る。
【0028】
そして、図3(a)に示すように、用意した集合基板20に、複数の弾性表面波素子2をフリップチップボンディングで実装する。弾性表面波素子2の電極パッド6と集合基板20(ベース基板8)の電極ランド9は、バンプ7を介して電気的にも機械的にも接続される。なお、図3では、1つの弾性表面波素子2しか示されてはいないが、図4に示すように、複数の弾性表面波素子2が集合基板20(ベース基板8)に実装されている。
【0029】
図3(b)に示すように、蒸着法などの真空成膜法によって、弾性表面波素子2が実装された集合基板20(ベース基板8)の上方から、後に、その一部が樹脂流入阻止部材12となる堆積膜14を形成する。堆積膜14は、集合基板20(ベース基板8)上だけではなく、弾性表面波素子2上にも形成される。このとき、堆積膜14の厚みは、その天面が弾性表面波素子2とベース基板8の間に形成された空間の高さよりも低い位置にあるようにし、堆積膜14と弾性表面波素子2とが接触しない程度にする。樹脂流入阻止部材12となる堆積膜14と弾性表面波素子2との隙間の大きさは、後の工程で使用する封止樹脂13の粘度等に合わせて、堆積膜14の厚みによって調整する。
【0030】
図3(c)に示すように、堆積膜14が形成された集合基板20(ベース基板8)の上から、エポキシ系の樹脂をスクリーン印刷などの方法によって塗布し、熱硬化させることで封止樹脂13を形成する。封止樹脂13は、少なくとも樹脂流入阻止部材12となる堆積膜14と弾性表面波素子2との隙間を覆うように形成される。このとき、上述のように、樹脂流入阻止部材12となる堆積膜14と弾性表面波素子2との隙間の大きさが封止樹脂13はの粘度等に合わせて調整されているので、封止樹脂13が、くし型電極部4などからなる弾性表面波が伝搬する部分(機能部)に流入することを防止することはない。
【0031】
最後に、図3(d)に示すように、ダイシングによって、集合基板20からチップ単位に個片化することで、図1に示す弾性表面波装置1が得られる。
【0032】
本発明で、樹脂流入阻止部材12となる堆積膜14に用いる材料としては、Al、Cu、ZnOなどの金属、SiO2、Si34、Al23などの絶縁物がある。堆積膜14として金属を用いた場合、弾性表面波装置1の天面にレーザーで印字を行なう際、レーザー光を弾性表面波素子2上に形成された堆積膜14が吸収するので、レーザー光がLiTaO3、LiNbO3、水晶などの透明性のある圧電基板3を透過して、くし型電極部4を破壊することを防止することが出来る。また、堆積膜14として絶縁物を用いた場合、ベース基板8と弾性表面波素子2を接合するバンプ7と堆積膜14が接触しても絶縁物であるため、ショートすることがない。
【0033】
本発明の実施例における変形例の一つを図5に示す。図5では、樹脂流入阻止部材12と弾性表面波素子2との隙間を小さくされている。これは、ECRスパッタ装置などを用いて、堆積膜14の成膜方向を弾性表面波素子2が実装された集合基板20(ベース基板8)の上方からではなく、斜め方向とした上で、弾性表面波素子2が実装された集合基板20(ベース基板8)を水平方向に回転させながら堆積膜14を成膜したものである。堆積膜14の成膜方向が斜め方向であるため、樹脂流入阻止部材がベース基板8と弾性表面波素子2との間にも若干形成されるものの、樹脂流入阻止部材12に盛り上がりができるので、樹脂流入阻止部材12と弾性表面波素子2との隙間を小さくすることができる。
【0034】
本発明の実施例における変形例の一つを図6に示す。図6では、樹脂流入阻止部材12と弾性表面波素子2との隙間を埋めるように、弾性表面波素子2の側面の部分にのみ、封止樹脂13が形成されており、弾性表面波素子2上に形成された堆積膜14は露出している。本発明は、図6のように、封止樹脂13は必ずしも弾性表面波素子2全体を覆うように形成される必要はなく、樹脂流入阻止部材12とと弾性表面波素子2の隙間が完全に覆われていれば、弾性表面波素子2の一部が露出していても良い。このような構造にすることで、弾性表面波装置1を低背化することが出来る。更に、弾性表面波素子2上に形成された堆積膜14に金属膜を用いた場合は、弾性表面波素子2上に形成された堆積膜14に対してレーザー印字を行うことが出来る。
【0035】
【発明の効果】
以上のように、本発明の弾性表面波装置は、圧電基板と該圧電基板に形成された少なくとも1つのくし型電極部からなる機能部分を有する弾性表面波素子と、接合部材と、電極ランドとベース基板とを有し、前記弾性表面波素子は、くし型電極部が形成された面を対向させた状態で前記接合部材を介して前記ベース基板に実装される弾性表面波装置であって、前記ベース基板に実装された弾性表面波素子の周囲のベース基板上には、樹脂流入阻止部材が形成されていると共に、前記弾性表面波素子と樹脂流入阻止部材は封止部材で覆われており、かつ、前記弾性表面波素子上にも前記樹脂流入阻止部材がが形成されている。
本発明では、ダムを弾性表面波素子に設けないので、弾性表面波素子のくし型電極部の配置などの設計を自由にすることが出来る。
【0036】
特に、樹脂流入阻止部材の天面が、前記弾性表面波素子と前記ベース基板の間に形成された空間の高さよりも低い位置にある場合、樹脂流入阻止部材は、弾性表面波素子と接触していないことから、弾性表面波素子に応力がほとんどかかることはない。よって、弾性表面波素子の変形による周波数変動や、ベース基板の変形が発生することなく、信頼性の高い弾性表面波装置を得ることが出来る。
【0037】
また、本発明の弾性表面波装置の製造方法は、圧電基板上に少なくとも1つのくし型電極部を形成してなる複数の弾性表面波素子を用意する工程と、複数のベース基板の集合体である集合基板を用意する工程と、前記複数の弾性表面波素子又は集合基板に接合部材を形成する工程と、前記複数の弾性表面波素子をくし型電極部が形成された面を対向させた状態で前記接合部材を介して前記集合基板に実装する工程と、前記集合基板に実装された弾性表面波素子の周囲と前記弾性表面波素子上に樹脂流入阻止部材を形成する工程と、封止部材によって前記弾性表面波素子と樹脂流入阻止部材とを封止する工程と、前記集合基板から切り出す工程とを有する。
本発明では,樹脂流入阻止部材は、蒸着などの真空成膜法で形成された堆積膜をパターニングすることなく用いるので、容易に形成することが出来る。
【図面の簡単な説明】
【図1】本発明の実施例における弾性表面波装置の断面図である。
【図2】本発明の実施例に用いる弾性表面波素子の平面図である。
【図3】本発明の実施例における弾性表面波装置の製造方法の各工程図である。
【図4】本発明の実施例における集合基板(接合基板)に実装された弾性表面波素子の平面図である。
【図5】本発明の実施例の変形例を示す断面図である。
【図6】本発明の実施例の変形例を示す断面図である。
【図7】従来の弾性表面波装置の断面図である。
【図8】従来の弾性表面波装置の断面図である。
【符号の説明】
1、41、61 弾性表面波装置
2、42 弾性表面波素子
3、43 圧電基板
4、44 くし型電極部
5 リフレクタ
6、46 電極パッド
7、47 バンプ
8、48 ベース基板
9、49 電極ランド
10、50 ビアホール
11、51 外部端子
12 樹脂流入阻止部材
13、53 封止樹脂
14 堆積膜
20 集合基板
70 ダム
80 フィルム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave device in which a surface acoustic wave element is mounted on a package.
[0002]
[Prior art]
In recent years, along with downsizing, weight reduction, and high frequency of mobile communication devices such as automobile phones and mobile phones, small and light surface acoustic wave devices are frequently used as filters mounted on these mobile communication devices. .
[0003]
The crystal or LiTaO 3, LiNbO 3 or the like of the piezoelectric substrate made of a metal such as Al, comb in the electrode portion is formed by a surface acoustic wave device of the propagation of the surface acoustic wave interdigital transducer or a piezoelectric substrate It is necessary to secure a vibration space such as a portion and to protect the comb-shaped electrode portion from moisture and dust.
[0004]
Therefore, in the conventional surface acoustic wave device, a die bond agent is applied to the bottom surface of a package made of alumina or the like, the surface acoustic wave element is mounted on the package by die bonding, and the terminals inside the package and the electrode pads of the surface acoustic wave element are wired. After being connected by bonding, it was sealed with a lid (see Patent Document 1). In order to reduce the size, an electrode land is formed on the bottom surface of a package made of alumina or the like, a surface acoustic wave element is mounted on the package by flip chip bonding, and the package is sealed with a lid ( Patent Document 2).
[0005]
However, in the structure as described above, there is a problem that the surface acoustic wave device cannot be reduced in size and height unless the surface acoustic wave device is downsized and the package is downsized. There is also a problem that the cost for a small package is high.
[0006]
Therefore, in recent years, surface acoustic wave devices for chip size packages have been studied. For example, as shown in FIG. 7, in Patent Document 3, bumps 47 are formed on electrode pads 46 on a base substrate 48 having external terminals 51, electrode lands 49, and via holes 50 that connect the external terminals 51 and the electrode lands 49. A structure is disclosed in which the formed surface acoustic wave element 42 is mounted by flip chip bonding, and the mounted surface acoustic wave element 42 is covered with a sealing resin 53 to be sealed. At this time, at least one of the surface acoustic wave element 42 and the base substrate 48 is provided with a dam 70 made of resin, and the dam 70 is a surface acoustic wave made of a comb-shaped electrode portion 44 in the surface acoustic wave element 42. Prevents the sealing resin 53 from flowing into the part (function part) where the light propagates.
[0007]
As shown in FIG. 8, in Patent Document 4, as in the conventional example of FIG. 7, a base substrate 48 having an external terminal 51, an electrode land 49, and a via hole 50 that connects the external terminal 51 and the electrode land 49. Further, the surface acoustic wave element 42 having the bump 47 formed on the electrode pad 46 is mounted by flip chip bonding, and the surface acoustic wave element 42 mounted on the base substrate 48 is covered with a film 80 made of resin, metal, or the like. A structure that is further covered with a sealing resin 53 is disclosed.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-283684 [Patent Document 2]
JP 2000-91880 A [Patent Document 3]
JP-A-10-321666 [Patent Document 4]
Japanese translation of PCT publication No. 2002-504773
[Problems to be solved by the invention]
However, in the structure as shown in FIG. 7, the dam 70 must be formed on the surface acoustic wave element 42 and the base substrate 48, so the design freedom such as the arrangement of the comb-shaped electrode portion 44 in the surface acoustic wave element 42 is free. There is a problem that the degree is limited. Further, in order to reliably prevent the sealing resin 53 from flowing into the portion (functional portion) where the surface acoustic wave is propagated, which is composed of the comb-shaped electrode portion 44, the surface acoustic wave element 42 is flip-chiped on the base substrate 48. Prior to mounting by bonding, the dam 70 must be formed with high accuracy on at least one of the surface acoustic wave element 42 and the base substrate 48, so that a complicated dam formation process has to be used.
[0010]
Further, in the structure as shown in FIG. 8, the surface acoustic wave element 42 mounted on the base substrate 48 is completely covered with the film 80, so that stress is generated between the base substrate 48 and the film 80. Due to this stress, the base substrate 48 is deformed, the mechanical strength of the film 80 is deteriorated, or the surface acoustic wave element 42 is deformed, so that the distance between the comb-shaped electrode portions 44 and the distance between the electrode fingers of the comb-shaped electrode portions 44 are reduced. There has been a problem that the frequency fluctuates due to the change of.
[0011]
The surface acoustic wave device of the present invention has been made in view of the above-mentioned problems, and aims to solve these problems and provide a surface acoustic wave device that is small, low-profile and highly reliable. .
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a surface acoustic wave device according to the present invention includes a surface acoustic wave element having a functional portion including a piezoelectric substrate and at least one comb-shaped electrode portion formed on the piezoelectric substrate, a bonding member, and a base. A surface acoustic wave device mounted on the base substrate via the bonding member in a state in which the surface on which the comb-shaped electrode portion is formed is opposed to the surface acoustic wave device. A resin inflow prevention member is formed on a base substrate around the surface acoustic wave element mounted on the substrate, and a gap between the surface acoustic wave element and the resin inflow prevention member is covered with a sealing member. In addition, the resin inflow prevention member is also formed on the surface acoustic wave element .
[0013]
It is preferable that the resin inflow prevention member is formed in a film shape, and a top surface thereof is at a position lower than a height of a space formed between the surface acoustic wave element and the base substrate.
[0014]
The base substrate preferably includes an external terminal, an electrode land, and a via hole that connects the external terminal and the electrode land.
[0015]
The method for manufacturing a surface acoustic wave device according to the present invention includes a step of preparing a plurality of surface acoustic wave elements formed by forming at least one comb electrode portion on a piezoelectric substrate, and an assembly of a plurality of base substrates. A state in which a step of preparing a certain aggregate substrate, a step of forming a bonding member on the plurality of surface acoustic wave elements or the aggregate substrate, and a surface on which the comb-shaped electrode portion is formed are opposed to the plurality of surface acoustic wave elements. Mounting on the collective substrate via the bonding member, forming a resin inflow blocking member around and on the surface acoustic wave element mounted on the collective substrate, and a sealing member And a step of covering the gap between the surface acoustic wave element and the resin inflow prevention member and a step of cutting out from the collective substrate.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 is a cross-sectional view of a surface acoustic wave device according to an embodiment of the present invention, FIG. 2 is a plan view of a surface acoustic wave element used in the embodiment of the present invention, and FIG. 3 is a production of the surface acoustic wave device according to the embodiment of the present invention. FIG. 4 is a plan view of a surface acoustic wave element mounted on a collective substrate (bonding substrate) in an embodiment of the present invention, and FIG. 5 is a cross-sectional view showing a modification of the embodiment of the present invention. 6 is a cross-sectional view showing a modification of the embodiment of the present invention.
[0017]
As shown in FIG. 1, the surface acoustic wave device 1 according to the present invention includes a surface acoustic wave element 2, a base substrate 8, bumps 7, a resin inflow blocking member 12, and a sealing resin 13 (sealing member). Yes.
[0018]
As shown in FIG. 2, the surface acoustic wave element 2 includes a piezoelectric substrate 3, a comb-shaped electrode portion 4 formed on the piezoelectric substrate 3, a reflector 5, and an electrode pad 6. The base substrate 8 has electrode lands 9, via holes 10, and external terminals 11. The surface acoustic wave element 2 is bonded to the base substrate 8 via the bumps 7 formed on the electrode pads 6 with the surface having the comb-shaped electrode portions 4 facing each other. The base substrate 8 may have a structure composed of a plurality of layers (multilayer structure).
[0019]
A film-like resin inflow prevention member 12 is formed on the base substrate 8 around the mounted surface acoustic wave element 2, and the surface acoustic wave element 2 and the resin inflow prevention member 12 are made of a sealing resin 13. Covered. Specifically, the gap between the surface acoustic wave element 2 and the resin inflow prevention member 12 is covered with the sealing resin 13. As a result, vibration spaces such as the comb-shaped electrode portion 4 and the surface acoustic wave propagation portion of the piezoelectric substrate 3 are sealed. That is, a vibration space such as a surface acoustic wave propagation portion of the comb-shaped electrode portion 4 and the piezoelectric substrate 3 is secured, and the comb-shaped electrode portion is protected from moisture and dust.
[0020]
At this time, since the top surface of the resin inflow blocking member 12 is at a position lower than the height of the space formed between the surface acoustic wave element 2 and the base substrate 8, the resin inflow blocking member 12 and the surface acoustic wave element 2. There is no contact. Therefore, the stress due to the resin inflow prevention member 12 is not applied to the surface acoustic wave element 2.
[0021]
Note that the size of the gap between the resin inflow prevention member 12 and the surface acoustic wave element 2 can be adjusted by changing the thickness of the resin inflow prevention member 12. Therefore, by appropriately adjusting the size of the gap between the resin inflow prevention member 12 and the surface acoustic wave element 2 according to the viscosity or the like of the sealing resin 13, the sealing resin 13 is made of an elastic material composed of the comb-shaped electrode portion 4 or the like. It is possible to prevent the surface wave from flowing into a portion (functional portion) through which the surface wave propagates.
[0022]
A method for manufacturing the surface acoustic wave device 1 according to the present invention will be described with reference to FIGS.
[0023]
First, a lift-off resist pattern (not shown) having a desired opening pattern is formed on the piezoelectric substrate 3 by using a photolithography technique in which a resist is applied and then exposed using a mask.
[0024]
Next, after forming a film of Al, which is an electrode material metal, by vapor deposition or the like, the resist pattern is peeled off (lifted off) by dipping and swinging in a resist stripping solution, thereby, as shown in FIG. The surface acoustic wave element 2 having the comb-shaped electrode portion 4, the reflector 5, the electrode pad 6, the lead wiring, and the like is manufactured.
[0025]
As the piezoelectric substrate 3, LiTaO 3 , LiNbO 3 , quartz, or the like is used according to the target characteristics. In addition to Al, a metal material such as Au, Cu, Ni, Ta, or W can be used as the electrode material.
[0026]
Subsequently, a bump 7 made of Au is formed on the electrode pad 6 of the surface acoustic wave element 2. In this embodiment, a bump made of Au is used as the bump 7. However, the present invention is not limited to this, and a bump made of solder may be used. However, when a bump made of Au—Sn or Sn—Ag solder is used, it is preferable to form a Ni layer on the electrode pad 6 as an adhesion layer of the bump made of solder.
[0027]
A collective substrate 20 made of alumina or the like and serving as the base substrate 8 is prepared. In the collective substrate 20 (base substrate 8), an electrode land 9 corresponding to the electrode pad 6 of the surface acoustic wave element 2, an external terminal 11, and a via hole 10 for electrically connecting the electrode land 9 and the external terminal 11 are formed. ing. The surface of the electrode land 9 is preferably plated with Au. Since the bumps 7 are also made of Au, the bonding strength can be increased when the surface acoustic wave element 2 and the base substrate 8 are bonded.
[0028]
Then, as shown in FIG. 3A, a plurality of surface acoustic wave elements 2 are mounted on the prepared aggregate substrate 20 by flip chip bonding. The electrode pads 6 of the surface acoustic wave element 2 and the electrode lands 9 of the collective substrate 20 (base substrate 8) are electrically and mechanically connected via the bumps 7. Although only one surface acoustic wave element 2 is shown in FIG. 3, a plurality of surface acoustic wave elements 2 are mounted on the collective substrate 20 (base substrate 8) as shown in FIG.
[0029]
As shown in FIG. 3B, a part of the resin substrate is prevented from flowing in from behind the collective substrate 20 (base substrate 8) on which the surface acoustic wave element 2 is mounted by a vacuum film formation method such as an evaporation method. A deposited film 14 to be the member 12 is formed. The deposited film 14 is formed not only on the collective substrate 20 (base substrate 8) but also on the surface acoustic wave element 2. At this time, the thickness of the deposited film 14 is set such that its top surface is at a position lower than the height of the space formed between the surface acoustic wave element 2 and the base substrate 8, and the deposited film 14 and the surface acoustic wave element 2. To the extent that it does not come into contact. The size of the gap between the deposited film 14 serving as the resin inflow blocking member 12 and the surface acoustic wave element 2 is adjusted by the thickness of the deposited film 14 in accordance with the viscosity of the sealing resin 13 used in the subsequent process.
[0030]
As shown in FIG. 3C, an epoxy-based resin is applied by a method such as screen printing on the aggregate substrate 20 (base substrate 8) on which the deposited film 14 is formed, and sealed by thermal curing. Resin 13 is formed. The sealing resin 13 is formed so as to cover at least a gap between the deposited film 14 serving as the resin inflow prevention member 12 and the surface acoustic wave element 2. At this time, as described above, since the size of the gap between the deposited film 14 serving as the resin inflow blocking member 12 and the surface acoustic wave element 2 is adjusted according to the viscosity of the sealing resin 13, It does not prevent the resin 13 from flowing into a portion (functional portion) where the surface acoustic wave including the comb-shaped electrode portion 4 propagates.
[0031]
Finally, as shown in FIG. 3D, the surface acoustic wave device 1 shown in FIG. 1 is obtained by dicing into pieces from the collective substrate 20 by dicing.
[0032]
In the present invention, examples of the material used for the deposited film 14 serving as the resin inflow blocking member 12 include metals such as Al, Cu, and ZnO, and insulators such as SiO 2 , Si 3 N 4 , and Al 2 O 3 . When a metal is used as the deposited film 14, the laser beam is absorbed by the deposited film 14 formed on the surface acoustic wave element 2 when printing on the top surface of the surface acoustic wave device 1 with a laser. It is possible to prevent the comb-shaped electrode portion 4 from being broken through the transparent piezoelectric substrate 3 such as LiTaO 3 , LiNbO 3 , or quartz. In addition, when an insulator is used as the deposited film 14, even if the bump 7 and the deposited film 14 that join the base substrate 8 and the surface acoustic wave element 2 come into contact with each other, the deposited film 14 is an insulator, so that there is no short circuit.
[0033]
One modification of the embodiment of the present invention is shown in FIG. In FIG. 5, the gap between the resin inflow blocking member 12 and the surface acoustic wave element 2 is reduced. This is because the deposition direction of the deposited film 14 is not from the upper side of the collective substrate 20 (base substrate 8) on which the surface acoustic wave element 2 is mounted, but an oblique direction using an ECR sputtering apparatus or the like. The deposited film 14 is formed while the collective substrate 20 (base substrate 8) on which the surface acoustic wave element 2 is mounted is rotated in the horizontal direction. Since the deposition direction of the deposited film 14 is oblique, the resin inflow blocking member is slightly formed between the base substrate 8 and the surface acoustic wave element 2, but the resin inflow blocking member 12 can be raised. The gap between the resin inflow prevention member 12 and the surface acoustic wave element 2 can be reduced.
[0034]
One modification of the embodiment of the present invention is shown in FIG. In FIG. 6, the sealing resin 13 is formed only on the side surface of the surface acoustic wave element 2 so as to fill the gap between the resin inflow blocking member 12 and the surface acoustic wave element 2. The deposited film 14 formed on the top is exposed. In the present invention, as shown in FIG. 6, the sealing resin 13 is not necessarily formed so as to cover the entire surface acoustic wave element 2, and the gap between the resin inflow blocking member 12 and the surface acoustic wave element 2 is completely formed. A part of the surface acoustic wave element 2 may be exposed as long as it is covered. With such a structure, the surface acoustic wave device 1 can be reduced in height. Further, when a metal film is used for the deposited film 14 formed on the surface acoustic wave element 2, laser printing can be performed on the deposited film 14 formed on the surface acoustic wave element 2.
[0035]
【The invention's effect】
As described above, the surface acoustic wave device of the present invention includes a surface acoustic wave element having a functional portion including a piezoelectric substrate and at least one comb-shaped electrode portion formed on the piezoelectric substrate, a bonding member, and an electrode land. A surface acoustic wave device mounted on the base substrate via the bonding member in a state in which the surface on which the comb-shaped electrode portion is formed is opposed to the surface acoustic wave device, wherein the base substrate is mounted the circumference of the base substrate of the surface acoustic wave device, with the resin inflow preventing member is formed, the surface acoustic wave element and the resin inlet blocking member is covered with a sealing member And the said resin inflow prevention member is formed also on the said surface acoustic wave element.
In the present invention, since the dam is not provided in the surface acoustic wave element, the design of the arrangement of the comb-shaped electrode portion of the surface acoustic wave element can be made free.
[0036]
In particular, when the top surface of the resin inflow blocking member is at a position lower than the height of the space formed between the surface acoustic wave element and the base substrate, the resin inflow blocking member is in contact with the surface acoustic wave element. Therefore, almost no stress is applied to the surface acoustic wave device. Therefore, a highly reliable surface acoustic wave device can be obtained without causing frequency fluctuations due to deformation of the surface acoustic wave element and deformation of the base substrate.
[0037]
The method for manufacturing a surface acoustic wave device according to the present invention includes a step of preparing a plurality of surface acoustic wave elements formed by forming at least one comb electrode portion on a piezoelectric substrate, and an assembly of a plurality of base substrates. A state in which a step of preparing a certain aggregate substrate, a step of forming a bonding member on the plurality of surface acoustic wave elements or the aggregate substrate, and a surface on which the comb-shaped electrode portion is formed are opposed to the plurality of surface acoustic wave elements. Mounting on the collective substrate via the bonding member, forming a resin inflow blocking member around and on the surface acoustic wave element mounted on the collective substrate, and a sealing member The step of sealing the surface acoustic wave element and the resin inflow blocking member, and the step of cutting out from the aggregate substrate.
In the present invention, the resin inflow blocking member can be easily formed because the deposited film formed by a vacuum film forming method such as vapor deposition is used without patterning.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a surface acoustic wave device according to an embodiment of the present invention.
FIG. 2 is a plan view of a surface acoustic wave element used in an embodiment of the present invention.
FIG. 3 is a process chart of a method for manufacturing a surface acoustic wave device according to an embodiment of the present invention.
FIG. 4 is a plan view of a surface acoustic wave element mounted on a collective substrate (bonding substrate) in an embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a modification of the embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a modification of the embodiment of the present invention.
FIG. 7 is a cross-sectional view of a conventional surface acoustic wave device.
FIG. 8 is a cross-sectional view of a conventional surface acoustic wave device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 41, 61 Surface acoustic wave apparatus 2, 42 Surface acoustic wave element 3, 43 Piezoelectric substrate 4, 44 Comb-type electrode part 5 Reflector 6, 46 Electrode pad 7, 47 Bump 8, 48 Base substrate 9, 49 Electrode land 10 , 50 Via hole 11, 51 External terminal 12 Resin inflow blocking member 13, 53 Sealing resin 14 Deposition film 20 Collective substrate 70 Dam 80 Film

Claims (4)

圧電基板と該圧電基板に形成された少なくとも1つのくし型電極部からなる機能部分を有する弾性表面波素子と、接合部材と、ベース基板とを備え、前記弾性表面波素子は、くし型電極部が形成された面を対向させた状態で前記接合部材を介して前記ベース基板に実装される弾性表面波装置であって、
前記ベース基板に実装された弾性表面波素子の周囲のベース基板上には、樹脂流入阻止部材が形成されていると共に、前記弾性表面波素子と樹脂流入阻止部材との隙間が封止部材で覆われており、かつ、前記弾性表面波素子上にも前記樹脂流入阻止部材が形成されていることを特徴とする、弾性表面波装置。
A surface acoustic wave element having a functional part including a piezoelectric substrate and at least one comb-shaped electrode portion formed on the piezoelectric substrate, a bonding member, and a base substrate. The surface acoustic wave element includes a comb-shaped electrode portion. A surface acoustic wave device mounted on the base substrate via the bonding member in a state where the surfaces on which the surface is formed are opposed to each other,
A resin inflow prevention member is formed on the base substrate around the surface acoustic wave element mounted on the base substrate, and a gap between the surface acoustic wave element and the resin inflow prevention member is covered with a sealing member. We have you is, and wherein said resin inlet blocking member also on the surface acoustic wave element is formed, a surface acoustic wave device.
前記樹脂流入阻止部材が膜状に形成され、その天面が、前記弾性表面波素子と前記ベース基板の間に形成された空間の高さよりも低い位置にあることを特徴とする、請求項1に記載の弾性表面波装置。  The resin inflow blocking member is formed in a film shape, and a top surface thereof is at a position lower than a height of a space formed between the surface acoustic wave element and the base substrate. A surface acoustic wave device according to claim 1. 前記ベース基板は、外部端子と、電極ランドと、該外部端子と電極ランドを接続するビアホールとを有することを特徴とする、請求項1又は2のいずれかに弾性表面波装置。  3. The surface acoustic wave device according to claim 1, wherein the base substrate includes an external terminal, an electrode land, and a via hole that connects the external terminal and the electrode land. 圧電基板上に少なくとも1つのくし型電極部を形成してなる複数の弾性表面波素子を用意する工程と、
複数のベース基板の集合体である集合基板を用意する工程と、
前記複数の弾性表面波素子又は集合基板に接合部材を形成する工程と、
前記複数の弾性表面波素子をくし型電極部が形成された面を対向させた状態で前記接合部材を介して前記集合基板に実装する工程と、
前記集合基板に実装された弾性表面波素子の周囲と前記弾性表面波素子上に樹脂流入阻止部材を形成する工程と、
封止部材によって前記弾性表面波素子と樹脂流入阻止部材との隙間を覆う工程と、
前記集合基板から切り出す工程とを有することを特徴とする、弾性表面波装置の製造方法。
Preparing a plurality of surface acoustic wave elements formed by forming at least one comb-shaped electrode portion on a piezoelectric substrate;
Preparing an aggregate substrate that is an aggregate of a plurality of base substrates;
Forming a bonding member on the plurality of surface acoustic wave elements or the aggregate substrate;
Mounting the plurality of surface acoustic wave elements on the collective substrate via the bonding member in a state where the surfaces on which the comb-shaped electrode portions are formed are opposed to each other;
Forming a resin inflow blocking member around the surface acoustic wave element mounted on the collective substrate and on the surface acoustic wave element;
A step of covering a gap between the surface acoustic wave element and the resin inflow blocking member with a sealing member;
A method of manufacturing a surface acoustic wave device, comprising: cutting out from the aggregate substrate.
JP2003098172A 2003-04-01 2003-04-01 Surface acoustic wave device and manufacturing method thereof Expired - Lifetime JP4186677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098172A JP4186677B2 (en) 2003-04-01 2003-04-01 Surface acoustic wave device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098172A JP4186677B2 (en) 2003-04-01 2003-04-01 Surface acoustic wave device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004304722A JP2004304722A (en) 2004-10-28
JP4186677B2 true JP4186677B2 (en) 2008-11-26

Family

ID=33409769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098172A Expired - Lifetime JP4186677B2 (en) 2003-04-01 2003-04-01 Surface acoustic wave device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4186677B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150717A (en) * 2004-11-29 2006-06-15 Toppan Printing Co Ltd Method for making gravure printing plate
WO2009075088A1 (en) 2007-12-11 2009-06-18 Murata Manufacturing Co., Ltd. Surface acoustic wave device and duplexer

Also Published As

Publication number Publication date
JP2004304722A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP6603377B2 (en) Elastic wave device and electronic component
KR100654054B1 (en) Piezoelectric component and method for manufacturing the same
KR100866433B1 (en) Elastic wave device and manufacturing method of the same
JP3905041B2 (en) Electronic device and manufacturing method thereof
US8436514B2 (en) Acoustic wave device comprising an inter-digital transducer electrode
JP4460612B2 (en) Surface acoustic wave device and manufacturing method thereof
KR101695495B1 (en) Piezoelectric component and manufacturing method thereof
US7586240B2 (en) Acoustic wave device
US8067879B2 (en) Piezoelectric device
US10200010B2 (en) Elastic wave filter device
JP5177516B2 (en) Electronic components
JP5206377B2 (en) Electronic component module
JP2004129224A (en) Piezoelectric component and manufacturing method thereof
WO2018216486A1 (en) Electronic component and module equipped with same
JP4186677B2 (en) Surface acoustic wave device and manufacturing method thereof
JP2004153412A (en) Surface acoustic wave device and manufacturing method thereof
JP4195605B2 (en) Surface acoustic wave device
JP2004207674A (en) Method for producing electronic component
JPH10215142A (en) Surface acoustic wave device
JP4684343B2 (en) Surface acoustic wave device
JP3652067B2 (en) Surface acoustic wave device
JP2003069377A (en) Surface acoustic wave device
KR100964719B1 (en) A SAW package having a wafer level sealing part and a manufacturing method therefor
JP2010273200A (en) Method for manufacturing piezoelectric component and piezoelectric component manufactured with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Ref document number: 4186677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

EXPY Cancellation because of completion of term