[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4183959B2 - 水素吸蔵合金の製造方法 - Google Patents

水素吸蔵合金の製造方法 Download PDF

Info

Publication number
JP4183959B2
JP4183959B2 JP2002080199A JP2002080199A JP4183959B2 JP 4183959 B2 JP4183959 B2 JP 4183959B2 JP 2002080199 A JP2002080199 A JP 2002080199A JP 2002080199 A JP2002080199 A JP 2002080199A JP 4183959 B2 JP4183959 B2 JP 4183959B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
hydrogen
zone
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002080199A
Other languages
English (en)
Other versions
JP2003277847A (ja
Inventor
裕信 荒島
孝 海老沢
秀明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2002080199A priority Critical patent/JP4183959B2/ja
Priority to US10/394,274 priority patent/US7691216B2/en
Priority to DE10313037A priority patent/DE10313037B4/de
Publication of JP2003277847A publication Critical patent/JP2003277847A/ja
Priority to US11/235,185 priority patent/US7413589B2/en
Application granted granted Critical
Publication of JP4183959B2 publication Critical patent/JP4183959B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素貯蔵用材料、熱変換用水素吸収材料、燃料電池用水素供給用材料、Ni−水素電池用負極材料、水素精製回収用材料、水素ガスアクチュエータ用水素吸収材料等に用いられる水素吸蔵合金に関するものであり、特に環境温度(20℃〜80℃)で優れた特性を有する合金の製造方法に関する。
【0002】
【従来の技術】
従来、水素の貯蔵・輸送用としてボンベ方式や液体水素方式があるが、これらの方式に代わって水素貯蔵合金を使った方式が注目されている。周知のように、水素貯蔵合金は水素と可逆的に反応して、反応熱の出入りを伴って水素を吸蔵、放出する性質を有している。この化学反応を利用して水素を貯蔵、運搬する技術の実用化が図られており、さらに反応熱を利用して、熱貯蔵、熱輸送システム等を構成する技術の開発、実用化が進められている。代表的な水素吸蔵合金としては、LaNi、TiFe、TiMn1.5等がよく知られている。
【0003】
各種用途の実用化においては、水素貯蔵材料の特性を一層向上させる必要があり、例えば、水素貯蔵量の増加、プラトー特性の改善、耐久性の向上などが大きな課題として挙げられている。
例えばV、TiVMn系、TiVCr系合金などの体心立方構造(以下BCC構造と呼ぶ)を有する金属は、すでに実用化されているAB型合金やAB型合金に比べ大量の水素を吸蔵することが古くから知られており、上記各種用途に使用可能な水素吸蔵合金としては有望視されている。
【0004】
【発明が解決しようとする課題】
しかし、上記BCC構造の水素吸蔵合金は、有効に吸蔵・放出できる水素量は理論上に水素量の半分程度であり、貯蔵用材料として実用化するには十分な特性であるとは言えない。
すなわち、BCC構造の水素吸蔵合金を含めてこの種の水素吸蔵合金は、主に溶解法によって製造され、熱処理や急冷凝固処理を行うことによって均質化が行われているが、多かれ少なかれ凝固偏析や析出物あるいは介在物が存在し完全に均質化することができない。このため、その偏析の割合によってプラトー性の悪化や有効水素吸蔵量の減少がみられるという欠点があり、さらに、水素の吸収・放出を繰返して行うと合金の劣化が大きく、吸収・放出の繰返しサイクル数が増加するほど、平衡解離圧が大きく低下してしまうという実用上の問題がある。特に上記したBCC構造の水素吸蔵合金においては上記欠点が顕著になるという傾向がある。
【0005】
本発明は、上記課題を解決することを基本的な目的とし、最終的に得ようとする水素吸蔵合金の溶湯を5℃/min.以下の徐冷により凝固させる、もしくは任意組成の合金を融点以上に加熱した後の冷却を5℃/min.以下の徐冷により行うことによって、凝固偏析や析出物あるいは介在物が低減された均質な合金を得ることにより、従来材に比べて優れた有効水素吸蔵量、プラトー特性ならびに耐久性を示す水素吸蔵合金を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記課題を解決するため本発明の水素吸蔵合金の製造方法のうち、請求項1記載の発明は、BCC構造単相あるいはBCC構造の結晶が体積率で15%以上である結晶構造を有する水素吸蔵合金を製造する方法であって、水素吸蔵合金溶湯を5℃/分以下の冷却速度によって徐冷しつつ凝固させることを特徴とする。
【0007】
請求項2記載の発明は、BCC構造単相あるいはBCC構造の結晶が体積率で15%以上である結晶構造を有する水素吸蔵合金を融点以上の温度に加熱した後、5℃/分以下の冷却速度により徐冷して均質化処理を行うことを特徴とする。
【0008】
請求項3記載の発明は、請求項2記載の発明において、前記水素吸蔵合金を帯溶融処理によって均質化する方法であって、帯溶融域の温度を融点〜融点+100℃の温度とし、帯溶融域の移動速度を1mm/時間〜40mm/時間とすることを特徴とする。
【0010】
すなわち、本発明によれば、BCC構造単相あるいはBCC構造の結晶が体積率で15%以上である結晶構造を有する水素吸蔵合金を製造する方法であって、水素吸蔵合金溶湯の凝固を5℃/分以下の冷却速度による徐冷、もしくは合金を融点以上に加熱した後の冷却を5℃/分以下の冷却速度による徐冷で行うことによって、従来の溶解法での合金製造や均質化熱処理では困難であった、均一な成分組成を得ることや凝固偏析・析出を抑制することが可能になる。上記の結果、プラトー性が改善され、さらに有効水素吸蔵量が増大する効果がある。さらに、水素の吸収・放出の繰返しによる合金の劣化、平衡解離圧の低下が抑制され、合金の耐久性が向上する。
なお、上記冷却速度は5℃/分を超えると、上記作用が充分に得られないため、冷却速度は5℃/分以下にする。
【0011】
また、上記溶製時の冷却制御と均質化処理は、本発明としてはいずれか一方を採用することによって上記所望の作用を得ることができ、本発明としては、両方の構成を含むことが必要とされるものではない。
上記溶湯の凝固および均質化処理は、冷却速度を規制する他は常法により行うことができ、真空治金法、帯溶融法、単結晶作製法などにより実施可能である。
【0012】
また請求項3で示す帯溶融処理により均質化処理を行えば、水素吸蔵合金を部分的に溶融して再度凝固させることによって、上記徐冷による作用を得ることができる。さらに、帯溶融処理では、不可避的な不純物成分を金属の外部に排出させることで介在物の現出を抑制する効果も得られる。これによって得られた合金はより均一な成分組成を有することになるので、水素吸蔵サイトすべてに水素を取り込むことができ、多くの水素を吸放出する。また、均一な成分組成を得ることによって平坦で大きなプラトー部が得られ、有効に吸蔵・放出できる水素量が増大する。また、金属欠陥が抑制されるので、水素の吸収・放出の繰返しによる劣化が一層軽減され、耐久性が向上する。
【0013】
上記帯溶融処理では、帯溶融域を得るために温度を融点以上とする。一方、溶融体の温度が融点+100℃を越えると、溶湯が流れ落ちたりすることにより供給バランスが崩れ溶融帯の保持が困難になるため、溶融体温度を融点〜融点+100℃の範囲内にするのが望ましい。さらに上記と同様の理由により、帯溶融域温度は融点+50℃以下が一層望ましい。また、帯溶融域の移動速度は不純物成分の排出のために1mm/hr以上が必要である。一方、移動速度が速すぎて40mm/hrを越えると、合金の冷却速度が5℃/分を超えることになり、充分な均質化処理作用が得られない。このため、帯溶融域の移動速度は1mm/hr〜40mm/hrが望ましい。上記と同様の理由により、移動速度は20mm/hr以下が一層望ましい。
【0014】
なお、本発明が適用される水素吸蔵合金は、その組成が特に限定されるものではなく、前記溶湯の凝固または均質化処理では、任意組成の溶湯もしくは任意組成の合金を対象とすることができる。
ただし、本発明の作用はBCC構造単相あるいはBCC構造を主相とする結晶構造を有する前記水素吸蔵合金において顕著となるので該水素吸蔵合金に限定する。BCC構造を主相とするものとしてはBCC構造の結晶が体積率で15%以上であるものとする。BCC構造の水素吸蔵合金としては、V、TiVMn系、TiVCr系合金などを例示することができる。ただし、本発明としては、BCC構造の水素吸蔵合金がこれら例示されたものに限定されるものではない。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態を説明する。
Ti、V、Crの組成比が1対1対1となるように原料を配合し、この配合物を真空アーク溶解装置のるつぼ内に収容し、高純度Arガス雰囲気下でアーク溶解し、その後、装置内で室温まで冷却して凝固させる。
溶製された合金を出発物として帯溶融炉に設置し、1×10−4Torr以下に真空引きし、その後、高純度Arガス雰囲気で合金を加熱し帯溶融処理を行う。
図1は、上記帯溶融炉内を示す概略図であり、1は出発物、2は帯溶融炉の加熱コイル、3は帯溶融域、4は高純度化された合金である。
【0016】
帯溶融炉内では、上記出発物1を加熱コイル2の内部に設置し、該加熱コイル2によって帯溶融域3の温度が出発物1の融点〜融点+100℃の範囲になるように加熱する。この加熱に際しては、出発物1を加熱コイル2の軸方向に沿って1mm/hr〜40mm/hrの移動速度で移動させ、帯溶融域3を5℃/min.以下の冷却速度で徐冷して出発物1の高純度化と均質化を行う。
【0017】
処理済みの水素吸蔵合金は、必要に応じて粉末化等の処理を施して、各種の用途に使用することができる。なお、この実施形態では溶製された水素吸蔵合金に均質化処理する場合について説明したが、溶製時に徐冷凝固させて均質化処理を省くものであってもよく、両方を採用するものであってもよい。
【0018】
【実施例】
以下に本発明の実施例を比較例と対比しつつ説明する。
上記実施形態において、帯溶融炉内を1.0×10−4Torrに真空引きし、帯溶融域の温度を出発物の融点+50℃、帯溶融域移動速度を20mm/hrとして帯溶融処理を施して発明合金を得た。また、上記実施形態と同様にして得た出発物に1450℃で60秒の均質化熱処理を施し水冷(冷却速度約500℃/秒程度)したものを比較合金とした。
【0019】
得られた合金中の成分分布について調査するため、電子プローブ微小分析法を利用して、電子線を二次元操作してバナジウム元素濃度のマッピング像(EPMAマッピング像)を得た。図2に発明合金の像を、図3に比較合金の像を示した。
これら図から明らかなように、発明合金では、成分の濃淡がほとんどなく、帯溶融処理によって成分が均質化され凝固偏析がほとんどないことが判明した。一方、比較合金では、バナジウム元素の濃淡が明瞭に観察され、熱処理を行っても凝固偏析が残存していることが判明した。
【0020】
次に、得られた合金中の析出物や介在物、転位といった欠陥の存在状態について調査するため、透過型電子顕微鏡を利用して、薄片化した合金に電子線を透過させ、透過電子像(TEM像)を得た。図4に発明合金の像を、図5に比較合金の像を示した。
これら図から明らかなように、発明合金では、析出物や介在物、転位といった欠陥の存在を表すコントラストがほとんど認められず、帯溶融処理によって精製され成分が均質化していることが判明した。一方、比較合金では、欠陥の存在を表すコントラストが明瞭に観察された。
【0021】
さらに、発明合金および比較合金の水素吸蔵特性について調査するため、これら合金を約50〜200メッシュの範囲に粉砕し、水素ガス雰囲気における水素吸放出測定(P(水素圧力)−C(組成)−T(温度))を行って、平衡水素圧力−水素吸収(放出)量−等温曲線を求めた。また比較合金として、水冷処理を施した試料の他に上記と同組成の材料を更に冷却速度の速い単ロール急冷凝固装置等(冷却速度1000℃/秒以上)によって溶製し、均質化熱処理を省いた急冷凝固合金を用意し、水素化特性の測定試験を行った。
図6に測定温度が50℃の場合の発明合金と比較合金および急冷凝固合金の水素化特性をそれぞれグラフに示した。
図6から明らかなように発明合金においては帯溶融処理による成分の均質化により水素吸蔵量が約20%増大した。また、プラトー部も平坦化しており、有効水素移動量が増大した。一方、比較合金および急冷凝固合金では酸素含有量が非常に多くなるため、水素吸蔵量の減少とプラトー性の悪化が確認された。
【0022】
【発明の効果】
以上のように、本発明によればBCC構造単相あるいはBCC構造の結晶が体積率で15%以上である結晶構造を有する水素吸蔵合金を製造する際の水素吸蔵合金溶湯またはBCC構造単相あるいはBCC構造の結晶が体積率で15%以上である結晶構造を有する水素吸蔵合金を5℃/min.以下の冷却速度で徐冷を行うことにより均質化されるので、均一な合金成分が得られるとともに凝固偏析や析出物あるいは介在物が低減され、より優れた有効水素移動量、プラトーの平坦性ならびに耐久性を有した水素吸蔵合金が得られる効果がある。また、従来よりも優れた均質組成の合金が得られ、本来の水素吸蔵サイトに水素を取り込むことができるので、高容量の水素吸蔵合金を製造できる効果がある。
【0023】
さらに、均質化処理に際し、帯溶融処理を採用し、かつ帯溶融炉の加熱帯温度を融点〜融点+100℃の範囲とし、移動速度を1mm/hr〜40mm/hrとすることにより、高容量で有効に吸蔵・放出できる水素量が多く、水素の吸収・放出を繰返しの際の耐久性に優れた水素吸蔵合金を製造できる効果がある。
【図面の簡単な説明】
【図1】 本発明の一実施形態において使用する帯溶融炉内の加熱帯と出発物の縦断面図を示す図である。
【図2】 本発明合金におけるバナジウム成分分布状態を示すEPMAマッピング像を示す図である。
【図3】 比較合金におけるバナジウム成分分布状態を示すEPMAマッピング像を示す図である。
【図4】 本発明合金におけるTEM像を示す図である。
【図5】 比較合金におけるTEM像を示す図である。
【図6】 本発明の実施例と比較例における平衡水素圧力−水素吸収(放出)量−等温曲線の比較図を示す図である。
【符号の説明】
1 出発物
2 加熱コイル
3 帯溶融域
4 高純度化された合金

Claims (3)

  1. BCC構造単相あるいはBCC構造の結晶が体積率で15%以上である結晶構造を有する水素吸蔵合金を製造する方法であって、水素吸蔵合金溶湯を5℃/分以下の冷却速度によって徐冷しつつ凝固させることを特徴とする水素吸蔵合金の製造方法。
  2. BCC構造単相あるいはBCC構造の結晶が体積率で15%以上である結晶構造を有する水素吸蔵合金を融点以上の温度に加熱した後、5℃/分以下の冷却速度により徐冷して均質化処理を行うことを特徴とする水素吸蔵合金の製造方法。
  3. 前記水素吸蔵合金を帯溶融処理によって均質化する方法であって、帯溶融域の温度を融点〜融点+100℃の温度とし、帯溶融域の移動速度を1mm/時間〜40mm/時間とすることを特徴とする請求項2記載の水素吸蔵合金の製造方法。
JP2002080199A 2002-03-22 2002-03-22 水素吸蔵合金の製造方法 Expired - Fee Related JP4183959B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002080199A JP4183959B2 (ja) 2002-03-22 2002-03-22 水素吸蔵合金の製造方法
US10/394,274 US7691216B2 (en) 2002-03-22 2003-03-24 Method of producing hydrogen storage alloy
DE10313037A DE10313037B4 (de) 2002-03-22 2003-03-24 Verfahren zur Herstellung einer Wasserstoffspeicherlegierung
US11/235,185 US7413589B2 (en) 2002-03-22 2005-09-27 Method of producing hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080199A JP4183959B2 (ja) 2002-03-22 2002-03-22 水素吸蔵合金の製造方法

Publications (2)

Publication Number Publication Date
JP2003277847A JP2003277847A (ja) 2003-10-02
JP4183959B2 true JP4183959B2 (ja) 2008-11-19

Family

ID=28035696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080199A Expired - Fee Related JP4183959B2 (ja) 2002-03-22 2002-03-22 水素吸蔵合金の製造方法

Country Status (3)

Country Link
US (2) US7691216B2 (ja)
JP (1) JP4183959B2 (ja)
DE (1) DE10313037B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11761713B2 (en) 2019-02-18 2023-09-19 Hyundai Motor Company Heat conduction fin and solid state hydrogen storage device having same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183959B2 (ja) 2002-03-22 2008-11-19 株式会社日本製鋼所 水素吸蔵合金の製造方法
CN101120111B (zh) * 2004-12-07 2012-02-22 昆士兰州大学 用于储氢的镁合金
WO2006093334A1 (ja) * 2005-03-02 2006-09-08 Japan Metals And Chemicals Co., Ltd. 高蒸気圧金属含有合金の溶解方法
JP2007152386A (ja) * 2005-12-05 2007-06-21 Japan Steel Works Ltd:The 水素吸蔵合金およびその製造方法
US8227144B2 (en) * 2006-01-09 2012-07-24 SOCIéTé BIC Cellular reservoir and methods related thereto
BR112012020936A2 (pt) 2010-02-24 2017-01-31 Hydrexia Pty Ltd sistema para descarregar hidrogenio a partir de um ou mais recipientes de armazenamento de hidrogênio, sistema para entrega de um abastecimento de hidrogênio em uma linha de abastecimento de hidrogênio e método de abastecimento de hidrogênio a partir de um sistema de entrega de hidrogênio para uma linha de abastecimento de hidrogênio .
CA2991310C (en) 2015-07-23 2023-08-08 Hydrexia Pty Ltd Mg-based alloy for hydrogen storage

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411011C2 (de) 1984-03-24 1986-04-03 GfE Gesellschaft für Elektrometallurgie mbH, 4000 Düsseldorf Verfahren zur Herstellung einer titanenthaltenden Wasserstoffspeicherlegierung
US4948423A (en) * 1989-07-21 1990-08-14 Energy Conversion Devices, Inc. Alloy preparation of hydrogen storage materials
JPH03230860A (ja) 1990-02-06 1991-10-14 Mazda Motor Corp 加圧鋳造方法
JP3071003B2 (ja) 1991-10-24 2000-07-31 三洋電機株式会社 水素吸蔵合金電極及びその製造方法
JPH0657358A (ja) * 1992-08-06 1994-03-01 Furukawa Electric Co Ltd:The 電極材料用水素貯蔵合金とその製造方法
JP2735752B2 (ja) 1992-10-14 1998-04-02 品川白煉瓦株式会社 単結晶育成法
JPH06151132A (ja) 1992-10-29 1994-05-31 Mitsubishi Materials Corp 異方性磁石材料粉末の製造方法およびその製造方法により得られた異方性磁石材料粉末を用いた磁石の製造方法
JP3301792B2 (ja) * 1992-11-19 2002-07-15 三洋電機株式会社 水素吸蔵合金電極
JP2931742B2 (ja) 1993-09-24 1999-08-09 信越石英株式会社 オパ−ルグラスセラミックおよびその製造方法
JP2935806B2 (ja) * 1994-03-14 1999-08-16 株式会社日本製鋼所 水素貯蔵材料
JPH0969362A (ja) 1995-06-23 1997-03-11 Hitachi Ltd 二次電池及び二次電池を用いた電源
JP3415333B2 (ja) * 1995-07-13 2003-06-09 トヨタ自動車株式会社 水素吸蔵合金
JP3626298B2 (ja) * 1996-10-03 2005-03-02 トヨタ自動車株式会社 水素吸蔵合金およびその製造方法
DE19645636C1 (de) * 1996-11-06 1998-03-12 Telefunken Microelectron Leistungsmodul zur Ansteuerung von Elektromotoren
JPH10245663A (ja) * 1997-03-04 1998-09-14 Toyota Motor Corp 水素吸蔵合金の製造方法
JP3106182B2 (ja) 1997-09-22 2000-11-06 科学技術庁金属材料技術研究所長 バルク単結晶の製造方法
JP3528599B2 (ja) 1998-05-21 2004-05-17 トヨタ自動車株式会社 水素吸蔵合金
US6461766B1 (en) 1998-08-27 2002-10-08 Ovonic Battery Company, Inc. Hydrogen storage powder and process for preparing the same
US6270719B1 (en) * 1999-04-12 2001-08-07 Ovonic Battery Company, Inc. Modified electrochemical hydrogen storage alloy having increased capacity, rate capability and catalytic activity
US6210478B1 (en) 1999-07-09 2001-04-03 General Electric Company Refining and analysis of material using horizontal cold-crucible induction levitation melting
KR100659247B1 (ko) * 1999-07-09 2006-12-18 히데오 나카지마 다공질 금속체의 제조 방법
DE60022629T2 (de) * 1999-12-17 2006-07-13 Tohoku Techno Arch Co., Ltd., Sendai Verfahren zur herstellung einer wasserstoffspeicherlegierung
JP4183959B2 (ja) * 2002-03-22 2008-11-19 株式会社日本製鋼所 水素吸蔵合金の製造方法
US7431756B2 (en) * 2002-05-09 2008-10-07 Ovonic Hydrogen Systems Llc Modular metal hydride hydrogen storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11761713B2 (en) 2019-02-18 2023-09-19 Hyundai Motor Company Heat conduction fin and solid state hydrogen storage device having same

Also Published As

Publication number Publication date
DE10313037B4 (de) 2008-09-25
DE10313037A1 (de) 2003-10-09
US20060027041A1 (en) 2006-02-09
US7691216B2 (en) 2010-04-06
US7413589B2 (en) 2008-08-19
US20040060388A1 (en) 2004-04-01
JP2003277847A (ja) 2003-10-02

Similar Documents

Publication Publication Date Title
JP4838963B2 (ja) 水素吸蔵合金の製造方法
JP4183959B2 (ja) 水素吸蔵合金の製造方法
JP5449989B2 (ja) 水素吸蔵合金及びその製造方法、並びに、水素貯蔵装置
JP2017008358A (ja) 水素吸蔵合金及びその製造方法
TWI396753B (zh) 儲氫合金及其製造方法
JP3845057B2 (ja) 水素吸蔵合金および水素吸蔵合金の熱処理方法
WO2007034704A1 (ja) 水素吸蔵合金の製造方法
JP3775639B2 (ja) 水素吸蔵合金の製造方法
JPS58217654A (ja) チタン−クロム−バナジウム系水素吸蔵用合金
JP2002030374A (ja) 水素吸蔵合金およびその製造方法
WO2002042507A1 (en) Hydrogen-occluding alloy and method for production thereof
JP3953138B2 (ja) 水素吸蔵合金
KR101583297B1 (ko) 티타늄-지르코늄계 수소저장합금 및 그 제조방법
JP2002146446A (ja) 水素吸蔵合金の回復方法及び水素燃料タンク
JP4062819B2 (ja) 水素吸蔵合金およびその製造方法
JPH11246923A (ja) 水素吸蔵合金及びその製造方法
JP2004027247A (ja) 水素吸蔵合金及びその製造方法
CN117265359A (zh) 一种Ti-V-Fe-Cr-Nb高熵储氢合金及其制备方法
JP2004277829A (ja) 水素吸蔵合金
JP2004068049A (ja) 水素移動量に優れたbcc固溶体型水素貯蔵合金および該水素貯蔵合金の製造方法
JP2003064435A (ja) 水素吸蔵合金
JP5704087B2 (ja) 水素吸蔵合金
JP2006028621A (ja) 水素吸蔵合金の熱処理方法
JPS60135538A (ja) 水素貯蔵合金
JP2004183076A (ja) 水素吸蔵合金及びそれを用いた水素貯蔵システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4183959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees