[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4181384B2 - Welding current control method for pulse arc welding - Google Patents

Welding current control method for pulse arc welding Download PDF

Info

Publication number
JP4181384B2
JP4181384B2 JP2002329587A JP2002329587A JP4181384B2 JP 4181384 B2 JP4181384 B2 JP 4181384B2 JP 2002329587 A JP2002329587 A JP 2002329587A JP 2002329587 A JP2002329587 A JP 2002329587A JP 4181384 B2 JP4181384 B2 JP 4181384B2
Authority
JP
Japan
Prior art keywords
current
value
period
welding
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002329587A
Other languages
Japanese (ja)
Other versions
JP2004160496A (en
Inventor
紅軍 仝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2002329587A priority Critical patent/JP4181384B2/en
Priority to CN 200310113614 priority patent/CN1280056C/en
Publication of JP2004160496A publication Critical patent/JP2004160496A/en
Application granted granted Critical
Publication of JP4181384B2 publication Critical patent/JP4181384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、消耗電極式パルスアーク溶接の溶接電流制御方法に関し、特に、溶接ワイヤと母材との短絡に伴うワイヤ溶融量の変動を補償してアーク長の変動を抑制し、良好な溶接品質を確保するための溶接電流制御方法に関する。
【0002】
【従来の技術】
消耗電極式アーク溶接において、溶接中のアーク長を適正値に維持することは良好な溶接品質を得るために重要である。アーク長は、ワイヤ送給速度Ws[mm/s](以下、送給速度という)とワイヤ溶融速度Ms[mm/s](以下、溶融速度という)との差によって定まる。すなわち、アーク長は、Ws=Msのときには変化しないで一定のままであり、Ws>Msのときには短くなる方向に変化し、Ws<Msのときには長くなる方向に変化する。したがって、送給速度Wsが設定されると、アーク長は溶融速度Msによって定まることになる。この溶融速度Msは、下式で定まることが知られている。
Ms=α・Iaa+β・L・Iwa・Iwa …(1)式
ここで、Iaa[A]はアーク電流の平均値であり、Iwa[A]はアーク電流及び短絡電流を含む溶接電流の平均値であり、L[mm]はワイヤ突出し長さであり、αはアーク電流によるアーク熱のワイヤ溶融への寄与度を示す係数であり、βは溶接電流によるジュール熱のワイヤ溶融への寄与度を示す係数である。
【0003】
したがって、消耗電極式アーク溶接では、アーク長を溶接電圧Vwの平均値Vavで検出し、この検出値が予め定めた電圧設定値Vrと略等しくなるように溶接電流Iwを制御し、この結果として上記(1)式に示すように溶融速度Msが変化してアーク長を制御する。アーク溶接の一つであるパルスアーク溶接においても、上述したことはそのまま当てはまる。以下、従来技術1(例えば、特許文献1参照)として、パルスアーク溶接の溶接電流制御方法について説明する。
【0004】
図7は、パルスアーク溶接の電圧・電流波形図であり、同図(A)は溶接電圧Vwの波形であり、同図(B)は溶接電流Iwの波形である。以下、同図を参照して説明する。
【0005】
▲1▼ 時刻t1〜t2のピーク期間Tp
ピーク期間Tp中は、同図(B)に示すように、溶接ワイヤをスプレー移行させるために臨界電流値以上に予め定めたピーク電流設定値Iprに相当するピーク電流Ipを通電し、同図(A)に示すように、アーク長に対応したピーク電圧Vpが印加する。このピーク期間Tp及びピーク電流Ipの値は、溶接ワイヤの種類、シールドガスの種類等に応じていわゆる1パルス1溶滴移行の良好な溶滴移行状態となる適正値に設定される。
【0006】
▲2▼ 時刻t2〜t3のベース期間Tb
ベース期間Tb中は、同図(B)に示すように、上記の臨界電流値未満の数十A程度のベース電流設定値Ibrに相当するベース電流Ibを通電し、同図(A)に示すように、アーク長に対応したベース電圧Vbが印加する。このベース期間Tbは、溶接電圧Vwの平均値が電圧設定値と略等しくなるようにフィードバック制御によって定まる。このようにしてベース期間Tbを制御することによって、上述したように溶接電流Iwの平均値(アーク電流の平均値を含む)を変化させて溶融速度Msを変化させ、アーク長を制御している。
【0007】
▲3▼ 時刻t21〜t22の短絡期間Ts
上記のベース期間Tb中に短絡が発生すると、同図(A)に示すように、溶接電圧Vwは数V程度の短絡電圧値となり、同図(B)に示すように、短絡を早期に解除するためにベース電流Ibよりも大きい値に予め定めた短絡電流Isを通電する。
【0008】
上記のピーク期間Tpと上記のベース期間Tbとから成るパルス周期Tfを繰り返して溶接を行う。パルス周期Tf中に短絡が発生すると、短絡期間Ts中の溶接電圧は短絡電圧値に変化するために、溶接電圧の平均値は変化する。上述したように、溶接電圧の平均値をフィードバック制御してベース期間Tbが決まるので、溶接電圧の平均値が変化するとベース期間Tbが変化する。しかし、通常はフィードバック制御系の安定性を確保するために、溶接電圧の平均値を算出する時定数は数百ms(十数〜数十パルス周期)と大きな値に設定されている。このために、1回の短絡の発生による溶接電圧の平均値の変化は小さな値となるので、ベース期間Tbの変化は小さい。したがって、パルス周期Tfの変化も小さい。
【0009】
時刻t1〜t3のパルス周期Tf中の溶融量Ms1[mm]は、上記(1)式に基づいて下式によって算出することができる。
Ms1=(α・Iaa1+β・L・Iwa1・Iwa1)・Tf …(2)式
但し、アーク電流平均値Iaa1及び溶接電流平均値Iwa1はパルス周期Tf中の平均値である。
【0010】
ここで、パルス周期Tf中に短絡が発生しなかった場合を想定すると、短絡期間Ts中はベース電流設定値Ibrに相当するベース電流Ibが通電する。このときのアーク電流平均値をIaa2とし、溶接電流平均値をIwa2とし、上述したように短絡の有無によってもパルス周期Tfは略等しいとすると、溶融量Ms2は下式で算出することができる。
Ms2=(α・Iaa2+β・L・Iwa2・Iwa2)・Tf …(3)式
【0011】
短絡が発生しなかった想定のときに、アーク長は適正値に維持されていたとすると、パルス周期Tf中の送給量Ws2[mm]=Ms2が成立する。したがって、短絡発生時の溶融量Ms1=Ms2となれば短絡が発生してもアーク長は変動せず適正値に維持することができることになる。ここで、溶融量変動値ΔMs=Ms1−Ms2とする。また、短絡電流Isとベース電流Ibとの差は大きくないために、短絡有無による溶接電流平均値Iwa1=Iwa2とみなすことができるので、溶融量変動値ΔMsは上記(2)式から上記(3)式を減算して下式となる。
ΔMs=α・Tf・(Iaa1−Iaa2)
【0012】
ここで、
Iaa1=(Tp・Ip+(Tb−Ts)・Ib)/Tf
Iaa2=(Tp・Ip+Tb・Ib)/Tf
であるので、上式に代入すると下式となる。
ΔMs=−1・α・Ts・Ib=−1・α・Sb …(4)式
但し、ベース短絡積分値Sb=Ts・Ibである。したがって、短絡が発生すると、パルス周期Tf中の溶融量がΔMs変動してアーク長はΔMs[mm]短くなる。
【0013】
図8は、ピーク期間Tp中に短絡が発生したときの上記の図7と同様の電圧・電流波形図である。時刻t11〜t12の短絡期間Ts中、同図(B)に示すように、短絡電流Isが通電する。この場合の溶融量変動値ΔMsは上記(4)式と同様にして算出されて下式となる。
ΔMs=−1・α・Ts・Ip=−1・α・Sp …(5)式
但し、ピーク短絡積分値Sp=Ts・Ipである。したがって、短絡が発生すると、パルス周期Tf中の溶融量がΔMs変動してアーク長はΔMs[mm]短くなる。
【0014】
次に、従来技術2では、パルスアーク溶接の場合ではないが炭酸ガスアーク溶接において、溶接ワイヤと母材との短絡が解除されてアークが再発生したタイミングで溶接電流を増大させて、比較的高レベルの電流値に保持し、続いて溶接ワイヤと母材とが短絡するまで溶接電流を比較的低レベルの電流値に保持する溶接電流制御方法が開示されている(例えば、特許文献2参照)。
【0015】
従来技術2では、上記の高レベルの溶接電流(アーク電流)の通電によって溶接ワイヤを溶融して、1回の短絡移行に伴う溶滴を形成する。これに続く低レベルの溶接電流(アーク電流)の通電はアーク力を弱めて短絡に導くためであり、溶接ワイヤの溶融にはほとんど寄与しない(寄与しないような値に設定される)。したがって、高レベルの溶接電流の通電期間は、直前の短絡期間の長さとは関係なく1回の溶滴移行量によって決定される。すなわち、送給速度が決まればそれに対応する1回の溶滴移行量(溶融量)が決まるので、高レベルの溶接電流値及び通電期間が定まる。
【0016】
【特許文献1 】
特許第2819607号公報
【特許文献2】
特公平4−4074号公報
【0017】
【発明が解決しようとする課題】
上述したように、従来技術1では、短絡が発生すると上記(4)式及び(5)式に示すようにΔMsだけ溶融量が変動してアーク長がΔMs[mm]だけ短くなる方向に変動する。アーク長が変動して適正値から外れると、スパッタの発生量の増加、ビード外観の悪化、数十msを超える長期短絡の発生等によるアーク切れの発生等によって溶接品質が悪くなる。この問題は、適正アーク長がもともと短い高速溶接時に顕著である。また、溶接ワイヤの材質がアルミニウム、アルミニウム合金等のようにワイヤ抵抗値が低い材質の場合には、アーク熱による溶融への寄与度が高いために、同じ短絡期間に対する溶融量変動値ΔMsが大きくなりアーク長の変動幅も大きくなるので、上記の問題点が顕著となる。
【0018】
従来技術2では、短絡解除後に高レベルの溶接電流を通電するが、上述したように、この通電は短絡期間の長さと関係なく通電され、さらにこの通電によって1回の溶滴移行量の溶融を行う。しかし、パルスアーク溶接では、図7で上述したように、パルス周期Tfの全期間で1回の溶滴移行量を溶融する。したがって、従来技術2の溶接電流制御方法によっては、上記の従来技術1の問題を解決することはできない。
【0019】
そこで、本発明では、パルスアーク溶接中に短絡が発生してもそれに起因するアーク長の変動を抑制することができるパルスアーク溶接の溶接電流制御方法を提供する。
【0020】
【課題を解決するための手段】
請求項1の発明は、溶接ワイヤを母材に送給すると共に、ピーク期間中のピーク電流及びベース期間中のベース電流を通電するパルスアーク溶接の溶接電流制御方法において、
前記ベース期間中に前記溶接ワイヤと前記母材との短絡が発生したときは予め定めた短絡電流を通電すると共に、この短絡期間中の前記ベース電流の設定値を積分してベース短絡積分値を算出し、前記短絡が解除されてアークが再発生したときは前記ベース電流値に電流増加値を加算した溶融補償電流を予め定めた補償期間だけ通電し、その後は前記ベース電流の通電に戻し、前記電流増加値は前記ベース短絡積分値に予め定めた増幅率を乗じた値を前記補償期間で除算した値であることを特徴とするパルスアーク溶接の溶接電流制御方法である。
【0021】
請求項2の発明は、請求項1記載の溶融補償電流の通電を、再アークの発生から予め定めた遅延時間が経過した後から開始することを特徴とするパルスアーク溶接の溶接電流制御方法である。
【0022】
請求項3の発明は、溶接ワイヤを母材に送給すると共に、ピーク期間中のピーク電流及びベース期間中のベース電流を通電するパルスアーク溶接の溶接電流制御方法において、
前記ピーク期間中に前記溶接ワイヤと前記母材との短絡が発生したときは予め定めた短絡電流を通電すると共に、この短絡期間中の前記ピーク電流の設定値を積分してピーク短絡積分値を算出し、前記短絡が解除されてアークが再発生し前記ピーク期間が終了したときは前期ベース電流値に予め定めた電流増加値を加算した溶融補償電流を補償期間だけ通電し、その後は前記ベース電流の通電に戻し、前記補償期間は前記ピーク短絡積分値に予め定めた増幅率を乗じた値を前記電流増加値で除算した値であることを特徴とするパルスアーク溶接の溶接電流制御方法である。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
[実施の形態1]
図1は、本発明の実施の形態1における上述した図7に対応する電圧・電流波形図であり、同図(A)は溶接電圧Vwの波形であり、同図(B)は溶接電流Iwの波形である。以下、同図を参照して説明する。
【0024】
同図に示すように、ベース期間Tb中の時刻t21に短絡が発生したときは、短絡電流Isを通電すると共に、この短絡期間Ts中のベース電流の設定値Ibrを積分してベース短絡積分値Sbを算出する。その後、短絡が時刻t22に解除されてアークが再発生したときは、ベース電流値Ibに電流増加値Iuを加算した溶融補償電流Ihを予め定めた補償期間Thだけ通電し、その後の時刻t23からはベース電流Ibの通電に戻す。上記の電流増加値Iuは、上記のベース短絡積分値Sbに予め定めた増幅率Kを乗じた補償積分値Shを上記の補償期間Thで除算した値として短絡解除ごとに算出する。
【0025】
上記(4)式に示すように、ベース期間Tb中に短絡が発生すると、溶融量変動値ΔMs=−1・α・Ts・Ib=−1・α・Sbだけ溶融量が変動する。そこで、短絡期間Ts中においてベース電流Ibを設定するベース電流設定値Ibrを積分してベース短絡積分値Sb=∫Ibr・dt=Ts・Ibrを算出する。そして、短絡解除時点でこのベース短絡積分値Sbに予め定めた増幅率Kを乗じて補償積分値Sh=K・Sbを算出し、この補償積分値Shを予め定めた補償期間Thで除算して電流増加値Iu=Sh/Thを算出し、この電流増加値Iuをベース電流設定値Ibrに加算して溶融補償電流値Ihを算出する。続いて、この溶融補償電流Ihを補償期間Thの間だけ通電する。これによって、溶融量変動値ΔMsを短絡解除後に補償することになるので、アーク長は変動せず適正値を維持することができる。
【0026】
上記の増幅率Kを乗じる理由は、フィードバック制御の増幅率を調整して制御系の安定化を図るのと同様である。この増幅率Kは、溶接ワイヤの種類、シールドガスの種類等に応じて適正値に設定する。例えば、アルミニウムワイヤのときの値は0.6〜1.5程度であり、鉄鋼ワイヤのときの値は0.3〜1.0程度である。また、上記の補償期間Thは、0.2〜2ms程度が適正範囲である。この値があまり短いと電流増加値Iuが大きくなり過ぎる場合があり、逆にこの値があまり長いとベース期間中の補償が終了しない場合が生じ、どちらの場合もよくない。
【0027】
[実施の形態2]
図2は、本発明の実施の形態2における上述した図1に対応する電圧・電流波形図であり、同図(A)は溶接電圧Vwの波形であり、同図(B)は溶接電流Iwの波形である。以下、同図を参照して説明する。
【0028】
同図に示すように、溶融補償電流Ihの通電を、時刻t22の再アークの発生から予め定めた遅延時間Tdが経過した後の時刻t23から開始するパルスアーク溶接の溶接電流制御方法である。補償期間Th及び溶融補償電流Ihの値は実施の形態1と同様にして設定及び算出される。これによって、短絡に伴う溶融量の変動を補償することができ、アーク長の変動を抑制することができる。上記において、遅延時間Tdを設ける理由は、短絡解除直後に大電流値になることもある溶融補償電流Ihを通電すると、大粒のスパッタが発生する場合がときたまあるためである。この遅延時間Tdの値は、0.1〜2ms程度である。
【0029】
[実施の形態3]
図3は、本発明の実施の形態3における上述した図8に対応する電圧・電流波形図であり、同図(A)は溶接電圧Vwの波形であり、同図(B)は溶接電流Iwの波形である。以下、同図を参照して説明する。
【0030】
同図に示すように、ピーク期間Tp中に溶接ワイヤと母材との短絡が時刻t11に発生したときは、予め定めた短絡電流Isを通電すると共に、この短絡期間Ts中のピーク電流の設定値Iprを積分してピーク短絡積分値Spを算出する。短絡が時刻t12に解除されてアークが再発生し、時刻t12にピーク期間Tpが終了したときは、ベース電流値Ibに予め定めた電流増加値Iuを加算した溶融補償電流Ihを補償期間Thだけ通電し、その後の時刻t21はベース電流Ibの通電に戻す。そして、上記の補償期間Thは、上記のピーク短絡積分値Spに予め定めた増幅率Kを乗じた補償積分値Shを上記の電流増加値Iuで除算した値として短絡解除ごとに算出する。
【0031】
上記(5)式に示すように、ピーク期間Tp中に短絡が発生すると、溶融量変動値ΔMs=−1・α・Ts・Ip=−1・α・Spだけ溶融量が変動する。そこで、短絡期間Ts中においてピーク電流Ipを設定するピーク電流設定値Iprを積分してピーク短絡積分値Sp=∫Ipr・dt=Ts・Iprを算出する。そして、短絡解除時点でこのピーク短絡積分値Spに予め定めた増幅率Kを乗じて補償積分値Sh=K・Spを算出し、この補償積分値Shを予め定めた電流増加値Iuで除算して補償期間Th=Sh/Iuを算出する。そして、短絡が解除されてアークが再発生してピーク期間Tpが終了した後に、上記の電流増加値Iuをベース電流設定値Ibrに加算した溶融補償電流Ihを上記の補償期間Thの間だけ通電する。これによって、溶融量変動値ΔMsを短絡解除後に補償することになるので、アーク長は変動せず適正値を維持することができる。
【0032】
上記において、溶融補償電流Ihを実施の形態1〜2のときのように短絡解除の後に通電しないでピーク期間Tpが終了した後に通電する理由は、以下のとおりである。すなわち、ピーク期間Tp中のピーク電流値Ipは350〜600Aと大きな値であるために、これに電流増加値Iuを加算した溶融補償電流値Ihは場合によっては1000Aを超える値となる。通常、このような大きな値は溶接電源装置の最大出力範囲外になるために、出力することができない。さらに、700Aを超える溶融補償電流Ihを通電すると、溶滴及び溶融池の状態が不安定になることが多いために、溶接品質がかえって悪くなる。そして、ピーク期間Tpは通常数ms程度であるので、短絡解除からピーク期間Tpの終了までの時間(時刻t12〜t2)は数ms程度となり、結果的には短絡解除後に遅延時間を設ける実施の形態2とほぼ同様の動作となる。
【0033】
上記の増幅率Kは、上述した実施の形態1のときと同様にして適正値に設定される。また、上記の電流増加値Iuは、溶融補償電流値Ihがピーク電流値Ipよりもあまり大きな値にならないように設定される。
【0034】
[溶接電源装置]
図4は、上述した実施の形態1〜3を実施するための溶接電源装置のブロック図である。以下、同図を参照して各回路について説明する。
【0035】
電源主回路PMCは、商用電源(3相200V等)を入力として、後述する電流誤差増幅信号Eiに従ってインバータ制御、サイリスタ位相制御等の出力制御によってアーク負荷に適した溶接電流Iw及び溶接電圧Vwを出力する。溶接ワイヤ1は、ワイヤ送給装置の送給ロール5の回転によって溶接トーチ4を通って送給されて、母材2との間でアーク3が発生する。
【0036】
電圧検出回路VDは、溶接電圧Vwを検出して電圧検出信号Vdを出力する。電圧平滑回路VAVは、上記の電圧検出信号Vdを平滑して電圧平均値信号Vavを出力する。電圧設定回路VRは、所望値の電圧設定信号Vrを出力する。電圧誤差増幅回路EVは、上記の電圧設定信号Vrと上記の電圧平均値信号Vavとの誤差を増幅して、電圧誤差増幅信号Evを出力する。V/F変換回路VFは、上記の電圧誤差増幅信号Evの値に応じて定まる周波数ごとに短時間Highレベルとなるパルス周期信号Ttfを出力する。ピーク期間タイマ回路TTPは、上記のパルス周期信号TtfがHighレベルに変化した時点から予め定めたピーク期間TpだけHighレベルとなるピーク期間信号Ttpを出力する。
【0037】
ピーク電流設定回路IPRは、所望値のピーク電流設定信号Iprを出力する。ベース電流設定回路IBRは、所望値のベース電流設定信号Ibrを出力する。切換回路SWは、上記のピーク期間信号Ttpを入力として、Highレベル(ピーク期間)のときには上記のピーク電流設定信号Iprを電流切換設定信号Iswとして出力し、Lowレベル(ベース期間)のときには上記のベース電流設定信号Ibrを電流切換設定信号Iswとして出力する。
【0038】
短絡判別回路SDは、上記の電圧検出信号Vdの値によって短絡を判別し、短絡期間中はHighレベルとなりそれ以外の期間中はLowレベルとなる短絡判別信号Sdを出力する。短絡積分値算出回路SSは、上記の短絡判別信号SdがHighレベル(短絡)のときに上記の電流切換設定信号Iswの値を積分して、短絡積分値信号Ssを出力する。ここで、ベース期間中に短絡が発生したときは、上記のピーク期間信号TtpはLowレベル(ベース期間)となっているので電流切換設定信号Isw=Ibrとなる。この結果、上記の短絡積分値信号Ssの値は、上記の(4)式の積分を行っていることになるので、ベース短絡積分値Sbとなる。同様にして、ピーク期間中に短絡が発生したときの上記の短絡積分値信号Ssの値は、上記の(5)式の算出値であるピーク短絡積分値Spとなる。
【0039】
実施の形態2の補償回路MHは、上記のピーク期間信号TtpがLowレベル(ベース期間)のときに上記の短絡判別信号SdがHighレベル(短絡)となったときは、上記の短絡積分値信号Ss、予め定めたベース短絡時の補償期間Tbh及び予め定めた増幅率Kによって電流増加信号Iu=Ss・K/Tbhを算出して、上記の短絡判別信号SdがLowレベル(アーク)に変化した時点から予め定めた遅延時間Tdが経過した時点から上記の補償期間Tbhだけ上記の電流増加信号Iuを出力する。実施の形態1の補償回路MHでは、上記の遅延時間Td=0とすればよい。また、実施の形態3の補償回路MHは、上記のピーク期間信号TtpがHighレベル(ピーク期間)のときに上記の短絡判別信号SdがHighレベル(短絡)となったときは、上記の短絡積分値信号Ss、予め定めたピーク短絡時の電流増加値Ipu及び予め定めた増幅率Kによって補償期間Th=Ss・K/Ipuを算出して、上記のピーク期間信号TtpがLowレベル(ベース期間)に変化した時点から上記の補償期間Thだけ電流増加信号Iu=Ipuを出力する。
【0040】
加算回路ADは、上記の電流切換設定信号Iswと上記の電流増加信号Iuとを加算して、電流制御設定信号Ircを出力する。電流検出回路IDは、溶接電流Iwを検出して電流検出信号Idを出力する。電流誤差増幅回路EIは、上記の電流制御設定信号Ircと上記の電流検出信号Idとの誤差を増幅して、電流誤差増幅信号Eiを出力する。
【0041】
ところで、一般的に、パルスアーク溶接には交流パルスアーク溶接も含まれる。図5は、交流パルスアーク溶接に上述した実施の形態1を適用したときの電流波形図である。交流パルスアーク溶接では、ベース期間Tbの一部の期間の電極極性を反転させて電極マイナス期間Tenとし、電極マイナス電流Ienを通電する。
【0042】
電極マイナス期間Ten中の時刻t21〜t22の間、短絡が発生すると、短絡期間Ts中の電極マイナス電流Ienの設定値を積分して電極マイナス短絡積分値Seを算出する。時刻t22に短絡が解除されると、この電極マイナス短絡積分値Seに予め定めた増幅率Kを乗じて補償積分値Shを算出し、予め定めた補償期間Thによって電流増加値Iu=Sh/Thを算出する。そして、補償期間Thの間溶融補償電流Ih=Ien+Iuを通電する。これによって、短絡に伴う溶融量の変動を補償することができるので、アーク長は変動せず適正値を維持することができる。上記のパルスアーク溶接の場合も、実施の形態1又は2に含まれている。
【0043】
[効果]
図6は、本発明の効果の一例を示すスパッタ発生量の比較図である。同図は、直径1.2mmのアルミニウム合金ワイヤを使用して、溶接電流平均値100A、溶接電圧平均値16VでMIGパルスアーク溶接を行い、本発明と従来技術とのスパッタ発生量を比較したものである。同図から明らかなように、従来技術では0.85g/minのスパッタが発生している。これに対して、本発明では、1/4以下の0.2g/minのスパッタ発生量に大幅に削減されている。これは、1秒間に数回〜数十回発生する短絡によってもアーク長がほとんど変動しないためである。
【0044】
【発明の効果】
請求項1又は3記載のパルスアーク溶接の溶接電流制御方法によれば、短絡の発生に伴う溶融量の変動を溶融補償電流を通電することによって補償することができるので、アーク長の変動が抑制されて良好な溶接品質を得ることができる。
【0045】
請求項2記載のパルスアーク溶接の溶接電流制御方法によれば、上記の効果に加えて、ベース期間中の短絡解除直後の溶融補償電流の通電開始を遅延させることによって、短絡解除直後のスパッタの発生を抑制することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る電圧・電流波形図である。
【図2】本発明の実施の形態2に係る電圧・電流波形図である。
【図3】本発明の実施の形態3に係る電圧・電流波形図である。
【図4】本発明を実施するための溶接電源装置のブロック図である。
【図5】実施の形態1を交流パルスアーク溶接に適用したときの電流波形図である。
【図6】本発明の効果の一例を示すスパッタ発生量の比較図である。
【図7】従来技術においてベース期間中に短絡が発生したときの電圧・電流波形図である。
【図8】従来技術においてピーク期間中に短絡が発生したときの電圧・電流波形図である。
【符号の説明】
1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
AD 加算回路
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
Iaa アーク電流平均値
Ib ベース電流
IBR ベース電流設定回路
Ibr ベース電流設定(値/信号)
ID 電流検出回路
Id 電流検出信号
Ien 電極マイナス電流
Ih 溶融補償電流
Ip ピーク電流
IPR ピーク電流設定回路
Ipr ピーク電流設定(値/信号)
Ipu ピーク短絡時の電流増加値
Irc 電流制御設定信号
Is 短絡電流
Isw 電流切換設定信号
Iu 電流増加(値/信号)
Iw 溶接電流
Iwa 溶接電流平均値
K 増幅率
MH 補償回路
Ms 溶融速度
PMC 電源主回路
Sb ベース短絡積分値
SD 短絡判別回路
Sd 短絡判別信号
Se 電極マイナス短絡積分値
Sh 補償積分値
Sp ピーク短絡積分値
SS 短絡積分値算出回路
Ss 短絡積分値信号
SW 切換回路
Tb ベース期間
Tbh ベース短絡時の補償期間
Td 遅延時間
Ten 電極マイナス期間
Tf パルス周期
Th 補償期間
Tp ピーク期間
Ts 短絡期間
Ttf パルス周期信号
TTP ピーク期間タイマ回路
Ttp ピーク期間信号
VAV 電圧平滑回路
Vav 溶接電圧平均値/電圧平均値信号
Vb ベース電圧
VD 電圧検出回路
Vd 電圧検出信号
VF V/F変換回路
Vp ピーク電圧
VR 電圧設定回路
Vr 電圧設定(値/信号)
Vw 溶接電圧
Ws 送給速度
α 係数
β 係数
ΔMs 溶融量変動値
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a welding current control method for consumable electrode type pulse arc welding, and in particular, compensates for fluctuations in the amount of wire melt caused by a short circuit between a welding wire and a base metal, thereby suppressing fluctuations in arc length, and good welding quality The present invention relates to a welding current control method for ensuring the above.
[0002]
[Prior art]
In consumable electrode arc welding, maintaining the arc length during welding at an appropriate value is important for obtaining good welding quality. The arc length is determined by the difference between the wire feeding speed Ws [mm / s] (hereinafter referred to as the feeding speed) and the wire melting speed Ms [mm / s] (hereinafter referred to as the melting speed). That is, the arc length does not change when Ws = Ms and remains constant, changes in a shorter direction when Ws> Ms, and changes in a longer direction when Ws <Ms. Therefore, when the feeding speed Ws is set, the arc length is determined by the melting speed Ms. It is known that the melting rate Ms is determined by the following equation.
Ms = α · Iaa + β · L · Iwa · Iwa (1)
Here, Iaa [A] is an average value of arc current, Iwa [A] is an average value of welding current including arc current and short-circuit current, L [mm] is a wire protrusion length, and α is A coefficient indicating the degree of contribution of arc heat to wire melting by the arc current, and β is a coefficient indicating the degree of contribution of Joule heat to wire melting by the welding current.
[0003]
Therefore, in the consumable electrode type arc welding, the arc length is detected by the average value Vav of the welding voltage Vw, and the welding current Iw is controlled so that the detected value becomes substantially equal to the predetermined voltage setting value Vr. As shown in the above equation (1), the melting rate Ms changes to control the arc length. The same applies to pulse arc welding, which is one of arc welding. Hereinafter, as a prior art 1 (for example, refer to Patent Document 1), a welding current control method of pulse arc welding will be described.
[0004]
FIG. 7 is a voltage / current waveform diagram of pulse arc welding, where FIG. 7A is a waveform of the welding voltage Vw, and FIG. 7B is a waveform of the welding current Iw. Hereinafter, a description will be given with reference to FIG.
[0005]
(1) Peak period Tp between times t1 and t2
During the peak period Tp, as shown in FIG. 5B, a peak current Ip corresponding to a preset peak current value Ipr greater than the critical current value is energized in order to spray the welding wire. As shown in A), a peak voltage Vp corresponding to the arc length is applied. The values of the peak period Tp and the peak current Ip are set to appropriate values for achieving a good droplet transfer state of so-called one pulse / one droplet transfer according to the type of welding wire, the type of shield gas, and the like.
[0006]
(2) Base period Tb between times t2 and t3
During the base period Tb, as shown in FIG. 5B, a base current Ib corresponding to a base current set value Ibr of about several tens of A less than the above critical current value is energized and shown in FIG. Thus, the base voltage Vb corresponding to the arc length is applied. The base period Tb is determined by feedback control so that the average value of the welding voltage Vw is substantially equal to the voltage setting value. By controlling the base period Tb in this manner, the arc length is controlled by changing the average value of the welding current Iw (including the average value of the arc current) to change the melting rate Ms as described above. .
[0007]
(3) Short-circuit period Ts from time t21 to t22
When a short circuit occurs during the base period Tb, the welding voltage Vw becomes a short circuit voltage value of about several volts as shown in FIG. 5A, and the short circuit is released early as shown in FIG. For this purpose, a predetermined short-circuit current Is is applied to a value larger than the base current Ib.
[0008]
Welding is performed by repeating a pulse period Tf composed of the peak period Tp and the base period Tb. When a short circuit occurs during the pulse period Tf, the welding voltage during the short circuit period Ts changes to the short circuit voltage value, so the average value of the welding voltage changes. As described above, since the base period Tb is determined by feedback control of the average value of the welding voltage, the base period Tb changes when the average value of the welding voltage changes. However, normally, in order to ensure the stability of the feedback control system, the time constant for calculating the average value of the welding voltage is set to a large value of several hundred ms (ten to several tens of pulses). For this reason, since the change in the average value of the welding voltage due to the occurrence of one short circuit is a small value, the change in the base period Tb is small. Therefore, the change in the pulse period Tf is also small.
[0009]
The melt amount Ms1 [mm] during the pulse period Tf at times t1 to t3 can be calculated by the following equation based on the above equation (1).
Ms1 = (α · Iaa1 + β · L · Iwa1 · Iwa1) · Tf (2)
However, the arc current average value Iaa1 and the welding current average value Iwa1 are average values during the pulse period Tf.
[0010]
Here, assuming that no short circuit occurs during the pulse period Tf, the base current Ib corresponding to the base current set value Ibr is energized during the short circuit period Ts. If the arc current average value at this time is Iaa2, the welding current average value is Iwa2, and the pulse period Tf is substantially equal depending on whether or not there is a short circuit as described above, the melting amount Ms2 can be calculated by the following equation.
Ms2 = (α · Iaa2 + β · L · Iwa2 · Iwa2) · Tf (3)
[0011]
Assuming that no short circuit occurred, assuming that the arc length is maintained at an appropriate value, the feed amount Ws2 [mm] = Ms2 during the pulse period Tf is established. Accordingly, if the melting amount Ms1 at the time of occurrence of the short circuit is Ms1 = Ms2, even if a short circuit occurs, the arc length does not change and can be maintained at an appropriate value. Here, the melting amount fluctuation value ΔMs = Ms1−Ms2. Further, since the difference between the short-circuit current Is and the base current Ib is not large, it can be considered that the welding current average value Iwa1 = Iwa2 due to the presence or absence of a short-circuit, the melt amount fluctuation value ΔMs is calculated from the above equation (2) from the above (3 ) Is subtracted to obtain the following formula.
ΔMs = α · Tf · (Iaa1−Iaa2)
[0012]
here,
Iaa1 = (Tp · Ip + (Tb−Ts) · Ib) / Tf
Iaa2 = (Tp · Ip + Tb · Ib) / Tf
Therefore, substituting into the above formula gives the following formula.
ΔMs = −1 · α · Ts · Ib = −1 · α · Sb (4)
However, the base short-circuit integral value Sb = Ts · Ib. Therefore, when a short circuit occurs, the melting amount during the pulse period Tf varies by ΔMs, and the arc length is shortened by ΔMs [mm].
[0013]
FIG. 8 is a voltage / current waveform diagram similar to FIG. 7 when a short circuit occurs during the peak period Tp. During the short-circuit period Ts from time t11 to t12, the short-circuit current Is is energized as shown in FIG. In this case, the fluctuation amount ΔMs of the melting amount is calculated in the same manner as the above equation (4), and becomes the following equation.
ΔMs = −1 · α · Ts · Ip = −1 · α · Sp (5)
However, the peak short-circuit integral value Sp = Ts · Ip. Therefore, when a short circuit occurs, the melting amount during the pulse period Tf varies by ΔMs, and the arc length is shortened by ΔMs [mm].
[0014]
Next, in the prior art 2, although not in the case of pulse arc welding, in the carbon dioxide arc welding, the welding current is increased at the timing when the short circuit between the welding wire and the base material is released and the arc is regenerated, so A welding current control method is disclosed in which a welding current is held at a relatively low level until the welding wire and the base material are short-circuited (see, for example, Patent Document 2). .
[0015]
In Prior Art 2, the welding wire is melted by energizing the above-described high level welding current (arc current) to form droplets accompanying one short-circuit transition. The subsequent energization of a low level welding current (arc current) is to weaken the arc force and lead to a short circuit, and hardly contributes to melting of the welding wire (set to a value that does not contribute). Therefore, the energization period of the high level welding current is determined by the amount of droplet transfer once regardless of the length of the immediately preceding short-circuit period. That is, if the feeding speed is determined, a single droplet transfer amount (melting amount) corresponding to the feeding speed is determined, so that a high level welding current value and energization period are determined.
[0016]
[Patent Document 1]
Japanese Patent No. 2819607
[Patent Document 2]
Japanese Patent Publication No. 4-4074
[0017]
[Problems to be solved by the invention]
As described above, in the related art 1, when a short circuit occurs, the melting amount varies by ΔMs and the arc length decreases by ΔMs [mm] as shown in the above equations (4) and (5). . If the arc length fluctuates and deviates from the appropriate value, the welding quality deteriorates due to an increase in the amount of spatter, deterioration of the bead appearance, arc breakage due to the occurrence of a long-term short circuit exceeding several tens of ms, and the like. This problem is remarkable during high-speed welding where the proper arc length is originally short. In addition, when the material of the welding wire is a material having a low wire resistance value such as aluminum or an aluminum alloy, since the contribution to melting by arc heat is high, the melting amount fluctuation value ΔMs for the same short-circuit period is large. Since the fluctuation range of the arc length becomes large, the above problem becomes remarkable.
[0018]
In Prior Art 2, a high level welding current is applied after the short circuit is released. As described above, this energization is performed regardless of the length of the short circuit period, and this energization further melts the droplet transfer amount once. Do. However, in the pulse arc welding, as described above with reference to FIG. 7, the droplet transfer amount is melted once in the entire period of the pulse period Tf. Therefore, the welding current control method of the prior art 2 cannot solve the problem of the prior art 1.
[0019]
Accordingly, the present invention provides a welding current control method for pulse arc welding that can suppress fluctuations in arc length caused by a short circuit during pulse arc welding.
[0020]
[Means for Solving the Problems]
The invention according to claim 1 is a welding current control method of pulse arc welding in which a welding wire is fed to a base material, and a peak current during a peak period and a base current during a base period are supplied.
When a short circuit between the welding wire and the base material occurs during the base period, a predetermined short circuit current is applied, and a set value of the base current during the short circuit period is integrated to obtain a base short circuit integrated value. When the arc is regenerated after the short circuit is released, the melt compensation current obtained by adding the current increase value to the base current value is energized for a predetermined compensation period, and thereafter the energization of the base current is restored. The current increase value is a value obtained by multiplying the base short-circuit integral value by a predetermined amplification factor and dividing the value by the compensation period.
[0021]
According to a second aspect of the present invention, there is provided a welding current control method for pulse arc welding, wherein energization of the melt compensation current according to the first aspect is started after a predetermined delay time has elapsed from the occurrence of re-arcing. is there.
[0022]
The invention of claim 3 is a welding current control method of pulse arc welding in which a welding wire is fed to a base material and a peak current during a peak period and a base current during a base period are energized.
When a short circuit occurs between the welding wire and the base material during the peak period, a predetermined short circuit current is applied, and a set value of the peak current during the short circuit period is integrated to obtain a peak short circuit integrated value. When the short circuit is released and the arc is regenerated and the peak period ends, a melting compensation current obtained by adding a predetermined current increase value to the previous base current value is applied for the compensation period, and thereafter the base period is Returning to energization of current, the compensation period is a value obtained by multiplying the peak short-circuit integral value by a predetermined amplification factor divided by the current increase value. is there.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
FIG. 1 is a voltage / current waveform diagram corresponding to FIG. 7 described above in the first embodiment of the present invention. FIG. 1 (A) is a waveform of a welding voltage Vw, and FIG. 1 (B) is a welding current Iw. It is a waveform. Hereinafter, a description will be given with reference to FIG.
[0024]
As shown in the figure, when a short circuit occurs at time t21 during the base period Tb, the short circuit current Is is energized, and the set value Ibr of the base current during the short circuit period Ts is integrated to integrate the base short circuit integrated value. Sb is calculated. Thereafter, when the short circuit is released at time t22 and the arc is regenerated, the melting compensation current Ih obtained by adding the current increase value Iu to the base current value Ib is energized for a predetermined compensation period Th, and thereafter from time t23. Returns to energization of the base current Ib. The current increase value Iu is calculated every time the short circuit is released as a value obtained by dividing the compensation integral value Sh obtained by multiplying the base short-circuit integral value Sb by a predetermined amplification factor K by the compensation period Th.
[0025]
As shown in the above equation (4), when a short circuit occurs during the base period Tb, the melt amount fluctuates by the melt amount fluctuation value ΔMs = −1 · α · Ts · Ib = −1 · α · Sb. Therefore, the base short circuit integral value Sb = ∫Ibr · dt = Ts · Ibr is calculated by integrating the base current set value Ibr for setting the base current Ib during the short circuit period Ts. Then, when the short circuit is released, the base short circuit integral value Sb is multiplied by a predetermined amplification factor K to calculate a compensation integral value Sh = K · Sb, and this compensation integral value Sh is divided by a predetermined compensation period Th. The current increase value Iu = Sh / Th is calculated, and this current increase value Iu is added to the base current set value Ibr to calculate the melting compensation current value Ih. Subsequently, the melting compensation current Ih is energized only during the compensation period Th. As a result, the melt amount fluctuation value ΔMs is compensated after the short circuit is released, so that the arc length does not fluctuate and an appropriate value can be maintained.
[0026]
The reason for multiplying the amplification factor K is the same as that for stabilizing the control system by adjusting the amplification factor of the feedback control. The amplification factor K is set to an appropriate value according to the type of welding wire, the type of shield gas, and the like. For example, the value for an aluminum wire is about 0.6 to 1.5, and the value for an steel wire is about 0.3 to 1.0. The compensation period Th is in the appropriate range of about 0.2 to 2 ms. If this value is too short, the current increase value Iu may become too large. Conversely, if this value is too long, compensation during the base period may not be completed, which is not good in either case.
[0027]
[Embodiment 2]
FIG. 2 is a voltage / current waveform diagram corresponding to FIG. 1 described above in the second embodiment of the present invention. FIG. 2 (A) is a waveform of the welding voltage Vw, and FIG. 2 (B) is a welding current Iw. It is a waveform. Hereinafter, a description will be given with reference to FIG.
[0028]
As shown in the figure, the welding current control method of pulse arc welding starts energization of the melting compensation current Ih from time t23 after a predetermined delay time Td has elapsed from the occurrence of re-arcing at time t22. The values of the compensation period Th and the melting compensation current Ih are set and calculated in the same manner as in the first embodiment. As a result, it is possible to compensate for the fluctuation of the melt amount due to the short circuit, and to suppress the fluctuation of the arc length. In the above, the reason for providing the delay time Td is that, when the melt compensation current Ih, which may become a large current value immediately after the release of the short circuit, is energized, sometimes large spatter is generated. The value of this delay time Td is about 0.1 to 2 ms.
[0029]
[Embodiment 3]
FIG. 3 is a voltage / current waveform diagram corresponding to FIG. 8 described above in the third embodiment of the present invention. FIG. 3 (A) is a waveform of the welding voltage Vw, and FIG. 3 (B) is a welding current Iw. It is a waveform. Hereinafter, a description will be given with reference to FIG.
[0030]
As shown in the figure, when a short-circuit between the welding wire and the base material occurs at time t11 during the peak period Tp, a predetermined short-circuit current Is is applied and the peak current is set during the short-circuit period Ts. The peak short circuit integral value Sp is calculated by integrating the value Ipr. When the short circuit is released at time t12 and the arc is regenerated, and the peak period Tp ends at time t12, the melt compensation current Ih obtained by adding the predetermined current increase value Iu to the base current value Ib is only the compensation period Th. Energization is performed, and thereafter, at time t21, the base current Ib is returned to energization. The compensation period Th is calculated each time the short circuit is released as a value obtained by dividing the compensation integral value Sh obtained by multiplying the peak short-circuit integral value Sp by a predetermined amplification factor K by the current increase value Iu.
[0031]
As shown in the above equation (5), when a short circuit occurs during the peak period Tp, the melt amount fluctuates by the melt amount fluctuation value ΔMs = −1 · α · Ts · Ip = −1 · α · Sp. Therefore, the peak current set value Ipr for setting the peak current Ip during the short circuit period Ts is integrated to calculate the peak short circuit integrated value Sp = ∫Ipr · dt = Ts · Ipr. Then, when the short circuit is released, the peak short circuit integral value Sp is multiplied by a predetermined amplification factor K to calculate a compensation integral value Sh = K · Sp, and the compensation integral value Sh is divided by a predetermined current increase value Iu. Thus, the compensation period Th = Sh / Iu is calculated. Then, after the short circuit is released and the arc is regenerated and the peak period Tp ends, the melt compensation current Ih obtained by adding the current increase value Iu to the base current set value Ibr is energized only during the compensation period Th. To do. As a result, the melt amount fluctuation value ΔMs is compensated after the short circuit is released, so that the arc length does not fluctuate and an appropriate value can be maintained.
[0032]
In the above description, the reason why the melting compensation current Ih is energized after the peak period Tp is completed without energizing after the short circuit is released as in the first and second embodiments is as follows. That is, since the peak current value Ip during the peak period Tp is a large value of 350 to 600 A, the melting compensation current value Ih obtained by adding the current increase value Iu to the peak current value Ip exceeds 1000 A in some cases. Usually, such a large value is out of the maximum output range of the welding power source device, and therefore cannot be output. Furthermore, if a melting compensation current Ih exceeding 700 A is applied, the state of the droplets and the molten pool often becomes unstable, so that the welding quality is rather deteriorated. Since the peak period Tp is usually about several ms, the time from the cancellation of the short circuit to the end of the peak period Tp (time t12 to t2) is about several ms. As a result, a delay time is provided after the cancellation of the short circuit. The operation is almost the same as in the second mode.
[0033]
The amplification factor K is set to an appropriate value in the same manner as in the first embodiment. The current increase value Iu is set so that the melting compensation current value Ih does not become much larger than the peak current value Ip.
[0034]
[Welding power supply]
FIG. 4 is a block diagram of a welding power source device for carrying out the above-described first to third embodiments. Hereinafter, each circuit will be described with reference to FIG.
[0035]
The power supply main circuit PMC receives a commercial power supply (three-phase 200 V, etc.) and outputs a welding current Iw and a welding voltage Vw suitable for an arc load by output control such as inverter control and thyristor phase control according to a current error amplification signal Ei described later. Output. The welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 of the wire feeding device, and an arc 3 is generated between the welding wire 1 and the base material 2.
[0036]
The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The voltage smoothing circuit VAV smoothes the voltage detection signal Vd and outputs a voltage average value signal Vav. The voltage setting circuit VR outputs a voltage setting signal Vr having a desired value. The voltage error amplification circuit EV amplifies an error between the voltage setting signal Vr and the voltage average value signal Vav, and outputs a voltage error amplification signal Ev. The V / F conversion circuit VF outputs a pulse period signal Ttf that becomes a high level for a short time for each frequency determined according to the value of the voltage error amplification signal Ev. The peak period timer circuit TTP outputs a peak period signal Ttp that is at a high level for a predetermined peak period Tp from the time when the pulse period signal Ttf changes to a high level.
[0037]
The peak current setting circuit IPR outputs a peak current setting signal Ipr having a desired value. The base current setting circuit IBR outputs a base current setting signal Ibr having a desired value. The switching circuit SW receives the peak period signal Ttp as an input, outputs the peak current setting signal Ipr as the current switching setting signal Isw at the high level (peak period), and outputs the peak current setting signal Ipr at the low level (base period). The base current setting signal Ibr is output as the current switching setting signal Isw.
[0038]
The short circuit determination circuit SD determines a short circuit based on the value of the voltage detection signal Vd, and outputs a short circuit determination signal Sd that is at a high level during the short circuit period and at a low level during the other periods. The short circuit integral value calculation circuit SS integrates the value of the current switching setting signal Isw when the short circuit determination signal Sd is at a high level (short circuit), and outputs a short circuit integral value signal Ss. Here, when a short circuit occurs during the base period, the peak period signal Ttp is at the low level (base period), so that the current switching setting signal Isw = Ibr. As a result, the value of the short-circuit integrated value signal Ss is the base short-circuit integrated value Sb because the integration of the above equation (4) is performed. Similarly, the value of the short-circuit integrated value signal Ss when a short circuit occurs during the peak period is the peak short-circuit integrated value Sp that is the calculated value of the above equation (5).
[0039]
The compensation circuit MH according to the second embodiment, when the short circuit determination signal Sd is at a high level (short circuit) when the peak period signal Ttp is at a low level (base period), The current increase signal Iu = Ss · K / Tbh is calculated from Ss, the compensation period Tbh when the base is short-circuited, and the predetermined amplification factor K, and the short-circuit determination signal Sd is changed to the low level (arc). The current increase signal Iu is output during the compensation period Tbh from the time when a predetermined delay time Td has elapsed from the time. In the compensation circuit MH of the first embodiment, the delay time Td = 0 may be set. Further, the compensation circuit MH of the third embodiment is configured such that when the short circuit determination signal Sd is at a high level (short circuit) when the peak period signal Ttp is at a high level (peak period), the short circuit integration is performed. The compensation period Th = Ss · K / Ipu is calculated from the value signal Ss, the predetermined current increase value Ipu at the time of the peak short circuit and the predetermined amplification factor K, and the peak period signal Ttp is at the low level (base period). The current increase signal Iu = Ipu is output during the compensation period Th from the time when the change is made.
[0040]
The adder AD adds the current switching setting signal Isw and the current increase signal Iu, and outputs a current control setting signal Irc. The current detection circuit ID detects the welding current Iw and outputs a current detection signal Id. The current error amplification circuit EI amplifies an error between the current control setting signal Irc and the current detection signal Id, and outputs a current error amplification signal Ei.
[0041]
Incidentally, in general, pulsed arc welding includes AC pulsed arc welding. FIG. 5 is a current waveform diagram when the first embodiment described above is applied to AC pulsed arc welding. In AC pulse arc welding, the electrode polarity in a part of the base period Tb is reversed to form an electrode minus period Ten, and an electrode minus current Ien is applied.
[0042]
When a short circuit occurs between times t21 and t22 during the electrode minus period Ten, the set value of the electrode minus current Ien during the short circuit period Ts is integrated to calculate an electrode minus short circuit integrated value Se. When the short-circuit is released at time t22, the compensation integral value Sh is calculated by multiplying the electrode minus short-circuit integral value Se by a predetermined amplification factor K, and the current increase value Iu = Sh / Th is determined by a predetermined compensation period Th. Is calculated. Then, the melt compensation current Ih = Ien + Iu is applied during the compensation period Th. As a result, it is possible to compensate for the fluctuation of the melting amount due to the short circuit, so that the arc length does not fluctuate and an appropriate value can be maintained. The above-described pulse arc welding is also included in the first or second embodiment.
[0043]
[effect]
FIG. 6 is a comparison diagram of the amount of spatter generated showing an example of the effect of the present invention. In this figure, MIG pulse arc welding was performed using an aluminum alloy wire with a diameter of 1.2 mm at a welding current average value of 100 A and a welding voltage average value of 16 V, and the amount of spatter generated between the present invention and the prior art was compared. It is. As is apparent from the figure, the conventional technique generates 0.85 g / min of sputtering. On the other hand, in the present invention, the amount of spatter generated is 0.2 g / min which is 1/4 or less, which is greatly reduced. This is because the arc length hardly fluctuates even by a short circuit occurring several times to several tens of times per second.
[0044]
【The invention's effect】
According to the welding current control method of the pulse arc welding according to claim 1 or 3, the fluctuation of the melting amount due to the occurrence of the short circuit can be compensated by supplying the melting compensation current, so that the fluctuation of the arc length is suppressed. As a result, good welding quality can be obtained.
[0045]
According to the welding current control method for pulse arc welding according to claim 2, in addition to the above-described effect, the start of the melt compensation current immediately after the release of the short circuit during the base period is delayed, so that Occurrence can be suppressed.
[Brief description of the drawings]
FIG. 1 is a voltage / current waveform diagram according to a first embodiment of the present invention.
FIG. 2 is a voltage / current waveform diagram according to a second embodiment of the present invention.
FIG. 3 is a voltage / current waveform diagram according to a third embodiment of the present invention.
FIG. 4 is a block diagram of a welding power supply device for carrying out the present invention.
FIG. 5 is a current waveform diagram when the first embodiment is applied to AC pulse arc welding.
FIG. 6 is a comparative view of the amount of spatter generated showing an example of the effect of the present invention.
FIG. 7 is a voltage / current waveform diagram when a short circuit occurs during a base period in the prior art.
FIG. 8 is a voltage / current waveform diagram when a short circuit occurs during a peak period in the prior art.
[Explanation of symbols]
1 Welding wire
2 Base material
3 Arc
4 Welding torch
AD adder circuit
EI current error amplifier circuit
Ei Current error amplification signal
EV voltage error amplifier circuit
Ev Voltage error amplification signal
Iaa Arc current average value
Ib Base current
IBR base current setting circuit
Ibr Base current setting (value / signal)
ID current detection circuit
Id Current detection signal
Ien electrode negative current
Ih Melting compensation current
Ip peak current
IPR peak current setting circuit
Ipr Peak current setting (value / signal)
Ipu Current increase value at peak short circuit
Irc current control setting signal
Is short-circuit current
Isw current switching setting signal
Iu current increase (value / signal)
Iw welding current
Iwa welding current average value
K gain
MH compensation circuit
Ms Melting speed
PMC main circuit
Sb Base short circuit integral value
SD short-circuit detection circuit
Sd Short circuit detection signal
Se electrode minus short-circuit integral value
Sh Compensation integral value
Sp Peak short circuit integral value
SS Short-circuit integrated value calculation circuit
Ss Short-circuit integral value signal
SW switching circuit
Tb base period
Compensation period when Tbh base is shorted
Td delay time
Ten electrode minus period
Tf pulse period
Th compensation period
Tp peak period
Ts Short-circuit period
Ttf pulse period signal
TTP peak period timer circuit
Ttp peak period signal
VAV voltage smoothing circuit
Vav welding voltage average value / voltage average value signal
Vb Base voltage
VD voltage detection circuit
Vd Voltage detection signal
VF V / F conversion circuit
Vp peak voltage
VR voltage setting circuit
Vr Voltage setting (value / signal)
Vw welding voltage
Ws Feeding speed
α coefficient
β coefficient
ΔMs Melting amount fluctuation value

Claims (3)

溶接ワイヤを母材に送給すると共に、ピーク期間中のピーク電流及びベース期間中のベース電流を通電するパルスアーク溶接の溶接電流制御方法において、
前記ベース期間中に前記溶接ワイヤと前記母材との短絡が発生したときは予め定めた短絡電流を通電すると共に、この短絡期間中の前記ベース電流の設定値を積分してベース短絡積分値を算出し、前記短絡が解除されてアークが再発生したときは前記ベース電流値に電流増加値を加算した溶融補償電流を予め定めた補償期間だけ通電し、その後は前記ベース電流の通電に戻し、前記電流増加値は前記ベース短絡積分値に予め定めた増幅率を乗じた値を前記補償期間で除算した値であることを特徴とするパルスアーク溶接の溶接電流制御方法。
In the welding current control method of pulse arc welding in which the welding wire is fed to the base material and the peak current during the peak period and the base current during the base period are energized,
When a short circuit occurs between the welding wire and the base material during the base period, a predetermined short circuit current is applied, and a set value of the base current during the short circuit period is integrated to obtain a base short circuit integrated value. When the arc is regenerated after the short circuit is released, the melt compensation current obtained by adding the current increase value to the base current value is energized for a predetermined compensation period, and thereafter the energization of the base current is restored. The pulse current welding welding current control method, wherein the current increase value is a value obtained by multiplying the base short-circuit integral value by a predetermined amplification factor divided by the compensation period.
請求項1記載の溶融補償電流の通電を、再アークの発生から予め定めた遅延時間が経過した後から開始することを特徴とするパルスアーク溶接の溶接電流制御方法。The welding current control method of pulse arc welding, wherein energization of the melt compensation current according to claim 1 is started after a predetermined delay time has elapsed from the occurrence of re-arcing. 溶接ワイヤを母材に送給すると共に、ピーク期間中のピーク電流及びベース期間中のベース電流を通電するパルスアーク溶接の溶接電流制御方法において、
前記ピーク期間中に前記溶接ワイヤと前記母材との短絡が発生したときは予め定めた短絡電流を通電すると共に、この短絡期間中の前記ピーク電流の設定値を積分してピーク短絡積分値を算出し、前記短絡が解除されてアークが再発生し前記ピーク期間が終了したときは前期ベース電流値に予め定めた電流増加値を加算した溶融補償電流を補償期間だけ通電し、その後は前記ベース電流の通電に戻し、前記補償期間は前記ピーク短絡積分値に予め定めた増幅率を乗じた値を前記電流増加値で除算した値であることを特徴とするパルスアーク溶接の溶接電流制御方法。
In the welding current control method of pulse arc welding in which the welding wire is fed to the base material and the peak current during the peak period and the base current during the base period are energized,
When a short circuit occurs between the welding wire and the base material during the peak period, a predetermined short circuit current is applied, and a set value of the peak current during the short circuit period is integrated to obtain a peak short circuit integrated value. When the short circuit is released and the arc is regenerated and the peak period ends, a melting compensation current obtained by adding a predetermined current increase value to the previous base current value is applied for the compensation period, and thereafter the base period is Returning to energization of the current, the compensation period is a value obtained by dividing the peak short-circuit integral value by a predetermined amplification factor and dividing the value by the current increase value.
JP2002329587A 2002-11-13 2002-11-13 Welding current control method for pulse arc welding Expired - Fee Related JP4181384B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002329587A JP4181384B2 (en) 2002-11-13 2002-11-13 Welding current control method for pulse arc welding
CN 200310113614 CN1280056C (en) 2002-11-13 2003-11-13 Electric current controlling method of pulse electric arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329587A JP4181384B2 (en) 2002-11-13 2002-11-13 Welding current control method for pulse arc welding

Publications (2)

Publication Number Publication Date
JP2004160496A JP2004160496A (en) 2004-06-10
JP4181384B2 true JP4181384B2 (en) 2008-11-12

Family

ID=32807536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329587A Expired - Fee Related JP4181384B2 (en) 2002-11-13 2002-11-13 Welding current control method for pulse arc welding

Country Status (2)

Country Link
JP (1) JP4181384B2 (en)
CN (1) CN1280056C (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3844004B1 (en) * 2005-05-31 2006-11-08 松下電器産業株式会社 Pulse arc welding control method and pulse arc welding apparatus
JP4916759B2 (en) * 2006-04-20 2012-04-18 株式会社ダイヘン Polarity switching control method for consumable electrode AC pulse arc welding
US8373093B2 (en) * 2008-06-27 2013-02-12 Lincoln Global, Inc. Method and system to increase heat input to a weld during a short-circuit arc welding process
JP5070119B2 (en) * 2008-04-24 2012-11-07 株式会社ダイヘン Output control method of pulse arc welding
JP2010142823A (en) * 2008-12-17 2010-07-01 Daihen Corp Method of controlling arc length oscillation pulse arc welding
JP5918021B2 (en) * 2012-05-21 2016-05-18 株式会社ダイヘン AC pulse arc welding control method
CN102873435B (en) * 2012-09-25 2014-07-09 北京工业大学 Gas metal arc welding method and system
CN105750695A (en) * 2015-01-05 2016-07-13 株式会社达谊恒 Pulsed arc welding arcing control method
CN110076415B (en) * 2018-01-26 2021-11-19 株式会社达谊恒 Arc welding control method
CN110912418B (en) * 2019-11-25 2021-01-15 中冶京诚工程技术有限公司 Electric arc power supply system and electric arc power supply based on strong excitation trapezoidal wave signal
CN113687131B (en) * 2021-09-07 2023-05-09 成都卡诺普机器人技术股份有限公司 Stability detection method for short-circuit transition welding
CN113814525B (en) * 2021-10-29 2024-08-02 唐山松下产业机器有限公司 Pulse welding method and system

Also Published As

Publication number Publication date
CN1280056C (en) 2006-10-18
CN1500586A (en) 2004-06-02
JP2004160496A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4334930B2 (en) Arc length control method for pulse arc welding
EP0342691B1 (en) Pulse arc discharge welding apparatus
JP4181384B2 (en) Welding current control method for pulse arc welding
JP2003311409A (en) Method for controlling arch length in pulse arc welding
JP2006263757A (en) Method for controlling arc length in pulse arc welding
JPH10277740A (en) Pulse arc welding equipment
JP4319586B2 (en) AC pulse arc welding method
JP5154872B2 (en) Output control method of pulse arc welding
JP4472249B2 (en) Output control method for welding power supply
JPS6250221B2 (en)
JP4704612B2 (en) Output control method for pulse arc welding power supply
JP4704632B2 (en) Output control method for pulse arc welding power supply
JP4459768B2 (en) AC pulse arc welding welding current control method
JPH078434B2 (en) Short-circuit transfer welding power source control method and apparatus
JP4663309B2 (en) Arc length control method for pulse arc welding
JP3156032B2 (en) Consumable electrode pulse arc welding machine
JP4252636B2 (en) Consumable electrode gas shield arc welding method
JP2587343B2 (en) Power supply for pulse arc welding
JP2000015441A (en) Short circuit transfer type arc welding method
JP2024027931A (en) Feeding control method of pulse-arc welding
JP4028075B2 (en) Short-circuit transfer type arc welding method
JP4757426B2 (en) Pulse arc welding control method
JP2985552B2 (en) Consumable electrode type pulse arc welding equipment
JP4331284B2 (en) Short-circuit transfer arc welding method
JP2024021966A (en) Method of addressing magnetic blow in pulse arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

R150 Certificate of patent or registration of utility model

Ref document number: 4181384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees