JP4180949B2 - Acid resistant cement composition - Google Patents
Acid resistant cement composition Download PDFInfo
- Publication number
- JP4180949B2 JP4180949B2 JP2003087451A JP2003087451A JP4180949B2 JP 4180949 B2 JP4180949 B2 JP 4180949B2 JP 2003087451 A JP2003087451 A JP 2003087451A JP 2003087451 A JP2003087451 A JP 2003087451A JP 4180949 B2 JP4180949 B2 JP 4180949B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- resistant
- cement
- alumina cement
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/006—Cement-clinker used in the unground state in mortar - or concrete compositions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/06—Aluminous cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5076—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
- C04B41/508—Aluminous cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/60—Agents for protection against chemical, physical or biological attack
- C04B2103/61—Corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/23—Acid resistance, e.g. against acid air or rain
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/56—Compositions suited for fabrication of pipes, e.g. by centrifugal casting, or for coating concrete pipes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、下水道および排水システム、パイプ、マンホールのライニング/再ライニングおよびその修復に有利に使用される耐酸性セメント組成物と耐酸性モルタル組成物、そして該モルタル組成物を利用するコンクリート腐食防止工法に関する。
【0002】
【従来の技術】
下水処理場や汚泥処理場の各種施設で用いられているコンクリート成形体の表面の大部分は常に酸性雰囲気に曝されている。従って、コンクリート成形体の表面部分の溶出すなわち腐食が発生しやすい。
【0003】
コンクリート成形体の腐食が進むと、下水の漏洩に繋がることはもとより、施設そのものの崩壊に繋がりかねないことから、コンクリート成形体の腐食の抑制は、下水道の発達した都市における重要な課題であり、既に腐食抑制の種々の方法が開示されている。
【0004】
例えば、耐酸性セメントを使用したモルタル、抗菌剤混入モルタル、超微粉スラグ混入モルタル等、構成成分によって耐腐食性を高める方法が既に知られており、そのような方法を利用した製品が市場に出ているが、その耐酸性は十分に高いものではなく、改善が要求されている。
【0005】
一方、耐酸性材料で防食被覆するライニング工法では、その効果は確かに高いものの、施工欠陥を生じ易く、且つ耐摩耗性に弱いため、所定の効果を再現または持続させることが困難である。また、施工期間、技術に制約があり、さらに、費用が嵩むという欠点がある。
【0006】
近年、アルミナセメント系材料を主成分とした材料が耐酸性能を有する材料として検討が進められている。例えば、特許文献1には、アルミナセメント、溶融スラグ粉末、水ガラス等を使用することにより、耐酸性および施工性の優れたモルタルを提供する技術が開示されている。
【0007】
特許文献2には、アルミナセメント中の微粒分割合を限定したスラリーにリチウム塩を加えることで、耐酸性に優れ、剥離が起こらず厚めの吹き付けが可能な吹き付け材を提供する技術が開示されている。
【0008】
しかし、これらの技術では強度発現性は十分であったとしても、コテ塗り、吹き付け作業性等の施工性については未だ改善が必要であり、さらに、コンクリート成形体への接着性が劣るという問題もあった。
【0009】
【特許文献1】
特開2001−240456号公報(2ページ)
【特許文献2】
特開2002−293603号公報(2ページ)
【0010】
【発明が解決しようとする課題】
本発明では、耐酸性、接着性に優れた耐酸性モルタル組成物の製造に有利な耐酸性セメント組成物を提供することを目的とする。また、そのモルタル組成物を用いるコンクリート成形体の腐食防止工法の提供を目的とする。
【0011】
【課題を解決するための手段】
本発明者は、水硬性成分として耐酸性に優れるアルミナセメントそしてアルミナセメントクリンカーを使用し、さらに、製鉄所の製鋼工程で発生するダスト(製鋼ダスト)を使用することにより、高い耐酸性を示しながら、コンクリート成形体表面への優れた接着性を示すモルタル組成物が得られることを見い出し、本発明を完成した。
【0012】
従って、本発明は、アルミナセメント、アルミナセメントクリンカー骨材および製鋼ダストを含有する耐酸性セメント組成物にある。
【0013】
本発明はまた、上記の耐酸性セメント組成物が水に分散されてなる耐酸性モルタル組成物にもある。
【0014】
本発明はまた、コンクリート成形体の表面に、請求項5に記載の耐酸性モルタル組成物を塗着し、乾燥硬化させることからなるコンクリート成形体の腐食防止工法にもある。
【0015】
【発明の実施の形態】
本発明では、耐酸性セメント組成物の水硬性成分として、耐酸性に優れたアルミナセメントを使用する。アルミナセメントは、鉱物組成の異なるものが数種知られていて、市販もされている。アルミナセメントの主成分はモノカルシウムアルミネート(CA)であって、何れの市販のアルミナセメントも使用することが出来るが、モノカルシウムアルミネート含有量が50質量%以上のものを使用することが好ましい。
【0016】
本発明の耐酸性セメント組成物の主骨材成分としては、アルミナセメントクリンカー骨材を使用する。アルミナセメントクリンカー骨材は、アルミナセメントと鉱物組成が基本的に同じであって、耐酸性に優れ、アルミナセメントとの結合性も非常に良好である。また、水和反応が継続して起こることから、アルミナセメント水和物の転移の抑制、耐腐食性の持続効果を向上させる。アルミナセメントクリンカー骨材は、アルミナセメント/アルミナセメントクリンカー骨材の質量比が0.3〜2.5の範囲となるように添加することが好ましい。アルミナセメントクリンカー骨材の量が少なすぎると、強度の発現が不充分になりやすく、一方、その量が多すぎると、収縮やクラックが発生しやすくなり、またモルタル塗着作業の作業性が低下する傾向がある。
【0017】
アルミナセメントクリンカー骨材は、粒径が150μm〜4mmの範囲にあるものであることが好ましく、吹き付け、鏝塗り作業性を著しく低下させないためには、粒径2.5mm以下のものを使用するのが更に好ましい。ここで言う粒径は、例えば150μm〜4mmは、目開き150μmと4mm二種の篩を用いて捕捉される粒分を言う。
【0018】
耐酸性セメント組成物を構成する材料として、製鉄所の製鋼工程で発生する製鋼ダストを使用することが本発明の特徴の一つである。製鋼ダストは、最多成分であるFe2O3の他にSi、MgFe2O3等を含む無機質粉体であり、1〜50μmの球状物質を多量に含む。この製鋼ダストを添加することにより、セメント組成物の硬化体表面が緻密になり接着性が向上する。その製鋼ダストの使用量は、アルミナセメント100質量部に対して1〜30質量部、特に2〜10重量部とするのが好ましい。1質量部よりも少ない場合は、添加効果が充分に発生せず、一方30質量部よりも多い場合は、耐酸性が低下する場合がある。
【0019】
製鋼ダストは、その発生源により、Fe2O3含有量が50質量%以下のものから、100質量%に近いものまで組成の異なるものが存在するが、コンクリート成形体表面への接着性の向上効果を考慮すると、Fe2O3含有量の多いものの使用が好ましく、Fe2O3含有量が50質量%以上のものが特に好ましい結果をもたらす。製鋼ダストの比重は、主にFe2O3含有量に依存しており、大きいものは5.2程度まで変化するが、添加効果からは、3.0以上のものの使用が好ましい。
【0020】
本発明の耐酸性セメント組成物は、アルミナセメント、アルミナセメントクリンカー骨材、そして製鋼ダストの存在だけで十分な耐酸性、接着性を示すモルタル組成物を与えることから、この必須三成分のみを含む組成物とすることでも、十分目的を達することができるが、モルタル調製の際に一般的に使用される減水剤、増粘剤、凝結調整剤、セメント混和用ポリマー等の市販混和剤の一種または二種以上を添加するのが好ましい。また、繊維を加えてもよい。
【0021】
減水剤の添加は、低い水/セメント比においても高い流動性を確保する効果が在り、また増粘剤は高い流動性下に於ける材料分離の抑制に効果を示す。凝結調整剤は、施工時の可使時間及び強度発現をコントロールする効果があり、セメント混和用ポリマーは、下地コンクリートとの接着性を高める効果を有している。また、繊維は、耐クラック性を向上させる効果を有している。
【0022】
混和剤を添加する場合、その添加量はアルミナセメント100質量部に対して10質量部以下とする。添加量が多すぎると初期強度発現にマイナス要因として働くだけでなく、高価な混和剤の浪費に繋がり不経済である。
【0023】
繊維の添加量は、アルミナセメント100質量部に対して10質量部以下とする。過剰な添加量は強度の低下に繋がると共に、下地コンクリートからの剥離の要因となる。
【0024】
本発明の耐酸性セメント組成物には、高炉スラグを添加することが出来る。高炉スラグは、それの持つ潜在水硬性による硬化体強度を向上させる効果と共に、アルミナセメントクリンカー骨材同様、アルミナセメント水和物の転移に起因する強度低下を抑制する効果を有する、化学的反応性、特に耐酸性に優れた添加物である。
【0025】
高炉スラグは、セメント混和材として一般的なものであり、市販されている。混和材として市販されている高炉スラグは、何れも問題なく使用できるが、JIS A 6206(コンクリート用高炉スラグ微粉末)の規格に適合するものが好ましい。また、その粉末度は、混和材用として市販されている物であれば特に制限されないが、2000〜10000cm2/gのブレーン比表面積を有する微粉末を使用するのが、添加効果発現性の面から好ましい。高炉スラグの過度の添加は、逆に強度発現性の低下に繋がることから、その量は、アルミナセメント100質量部当たり100質量部以下とするのが好ましく、10〜50質量部の添加がさらに好ましい。
【0026】
本発明の耐酸性セメント組成物には、更に、川砂、海砂、山砂等のシリカ質骨材を添加することができる。シリカ質骨材の添加は、耐腐食性に余り影響を与えることなくコストダウンに繋がる。ただし、添加量が多すぎると耐腐食性の低下を招く。
【0027】
本発明の耐酸性モルタル組成物では、水/セメント比を0.2〜0.6とするのが好ましい。水/セメント比が高すぎると強度発現性が不十分となり、一方低すぎると流動性が低すぎ、作業特性が低下するだけでなく、強度特性に劣る硬化体を与える場合がある。
【0028】
本発明の耐酸性モルタル組成物は、一般のモルタル同様、本発明の耐酸性セメント組成物の各粉末材料を混合したものに所定量の水を加え、一般的な混練機を用いて混練して調製することができる。
【0029】
調製後の耐酸性モルタル組成物は、コンクリート構造物などのコンクリート成形体の表面に塗着させ、その後に乾燥することにより硬化させる工程を利用して使用される。塗着施工は、モルタルの施工に一般的に用いられている、コテ塗りまたは吹付けで行なうことが出来る。吹付けで塗着させる場合には、モルタルポンプを用いて圧送するが、予めセメントノロを通し、圧送ホースとの摩擦を低減させておくのが好ましい。
【0030】
表面が腐食、中性化した既設コンクリート成形体においては、切削や研磨等の適当な手段で表面の劣化層を除去した後の表面に本発明のモルタル組成物を塗着させる補修材として使用する。この場合の塗膜厚みは、除去した劣化部の深さに依存することになる。
【0031】
また、新設のコンクリート成形体、あるいは既設のコンクリート成形体でも未だ表面の腐食や中性化を受けていないコンクリートの表面に予め塗着硬化させておくことで、コンクリート成形体表面における腐食、中性化を抑制するような使い方もできる。この場合の塗膜厚みは5mm以上とするのが好ましく、10〜20mmとすればより好ましい。
【0032】
【実施例】
以下では、具体的例を挙げて、本発明を更に詳しく説明する。
(1)使用材料
1)アルミナセメント:ラファージュ社製(ブレーン比表面積3200cm2/g、モノカルシウムアルミネート含有率 53質量%)
2)アルミナセメントクリンカー骨材:アルミナ含有率 40%、粒径2.5mm以下
3)製鋼ダスト:Fe2O3含有量:58質量%、比重:3.9
4)高炉スラグ:ブレーン比表面積 4500cm2/g
5)有機質混和剤:酢酸ビニル・べオバ共重合系樹脂粉末、メチルセルロース系増粘剤、ポリエチレングリコール基含有ポリエーテル系減水剤(Melflux PP100F)、ビニロン繊維、クエン酸ナトリウム
6)シリカ質骨材:粒度 4mm以下の山砂
【0033】
(2)モルタル調製、供試体の作製
上記原料成分と水とを第1表に示される量にて、ホバート社製モルタルミキサーで3分間混合してモルタルを得た。
【0034】
(3)供試体の作成
得られたモルタルを直径7.5cm×高さ15cmの円柱形鋼製型枠を用いて二層成形し、20℃−相対湿度65%の大気中に静置した。24時間経過後脱型し、20℃の水中に28日間浸漬を行い、供試体とした。
【0035】
(4)接着試験
得られたモルタルをコンクリート歩道板に塗りつけ、材齢28日後に接着試験を実施した。
【0036】
(5)モルタルの耐酸性試験
モルタルを塗着し、硬化させたコンクリート成形体の耐酸性の評価は、東京都下水道局施設監理部発行「コンクリート改修技術マニュアル(汚泥処理施設編、平成12年10月)に従って、5%硫酸浸漬試験により重量変化率(%)と硫酸浸透深さ(mm)を測定して行なった。
結果を表1に示す。
【0037】
【表1】
注:アルミナ骨材=アルミナセメントクリンカ骨材
セメント組成物には全て1質量%の有機質混和剤が含まれている。
比較例3では、アルミナセメントの代わりにポルトランドセメントを用いている。
水量は、セメント組成物100質量部に対して、実施例、比較例いずれも16.8質量部である。
【0038】
(6)評価結果
第1表に示されているように、本発明の耐酸性モルタル組成物を用いた場合には、5%硫酸浸積後の重量変化率、硫酸浸透深さ共に規格値を満足する程度に小さく、一方、コンクリート成形体に対する接着強度は規格値を満足する。
【0039】
【発明の効果】
本発明の耐酸性セメント組成物は、モルタルとして用いることにより、下水処理場や汚泥処理場あるいは化成品工場等耐酸性が必要な施設における表面腐食が生じたコンクリート成形体表面の信頼性の高い補修を可能にするのみではなく、下水道および排水システム、パイプ、マンホールのライニング/再ライニングおよびその修復に有利に使用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acid-resistant cement composition and an acid-resistant mortar composition which are advantageously used for sewerage and drainage systems, pipes, manhole lining / relining and repair thereof, and a concrete corrosion prevention method using the mortar composition. About.
[0002]
[Prior art]
Most of the surface of the concrete molding used in various facilities at sewage treatment plants and sludge treatment plants is always exposed to an acidic atmosphere. Therefore, elution, that is, corrosion of the surface portion of the concrete molded body is likely to occur.
[0003]
As the corrosion of the concrete molding progresses, it may lead to the leakage of the sewage, as well as the collapse of the facility itself. Various methods for inhibiting corrosion have already been disclosed.
[0004]
For example, mortars using acid-resistant cement, mortars containing antibacterial agents, mortars containing ultrafine powder slag, etc. have already been known to increase the corrosion resistance depending on their constituents, and products using such methods have been put on the market. However, its acid resistance is not sufficiently high, and improvement is required.
[0005]
On the other hand, in the lining method in which the anticorrosion coating is performed with the acid resistant material, the effect is surely high, but it is difficult to reproduce or sustain the predetermined effect because it is likely to cause a construction defect and is weak in wear resistance. In addition, there is a drawback in that the construction period and technology are limited and the cost is increased.
[0006]
In recent years, studies have been made on materials having an acid resistance performance as a material mainly composed of an alumina cement-based material. For example, Patent Document 1 discloses a technique for providing a mortar having excellent acid resistance and workability by using alumina cement, molten slag powder, water glass, or the like.
[0007]
Patent Document 2 discloses a technique for providing a spray material that is excellent in acid resistance and capable of being sprayed thickly without causing peeling by adding lithium salt to a slurry in which the proportion of fine particles in alumina cement is limited. Yes.
[0008]
However, even with these technologies, even if the strength development is sufficient, it is still necessary to improve the workability such as troweling, spraying workability, etc. there were.
[0009]
[Patent Document 1]
JP 2001-240456 A (2 pages)
[Patent Document 2]
JP 2002-293603 A (2 pages)
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide an acid-resistant cement composition advantageous for producing an acid-resistant mortar composition excellent in acid resistance and adhesiveness. Moreover, it aims at provision of the corrosion prevention construction method of the concrete molded object using the mortar composition.
[0011]
[Means for Solving the Problems]
The present inventor uses alumina cement and alumina cement clinker which are excellent in acid resistance as a hydraulic component, and further shows high acid resistance by using dust (steel making dust) generated in the steelmaking process of a steel mill. The present inventors have found that a mortar composition exhibiting excellent adhesion to the surface of a concrete molded body can be obtained, thereby completing the present invention.
[0012]
Accordingly, the present invention resides in an acid resistant cement composition containing alumina cement, alumina cement clinker aggregate and steelmaking dust.
[0013]
The present invention also resides in an acid resistant mortar composition obtained by dispersing the above acid resistant cement composition in water.
[0014]
The present invention also resides in a method for preventing corrosion of a concrete molded body, which comprises applying the acid-resistant mortar composition according to claim 5 to the surface of the concrete molded body and drying and curing the composition.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, an alumina cement having excellent acid resistance is used as the hydraulic component of the acid resistant cement composition. Several types of alumina cements with different mineral compositions are known and are commercially available. The main component of the alumina cement is monocalcium aluminate (CA), and any commercially available alumina cement can be used, but it is preferable to use a monocalcium aluminate content of 50% by mass or more. .
[0016]
As the main aggregate component of the acid resistant cement composition of the present invention, an alumina cement clinker aggregate is used. The alumina cement clinker aggregate has basically the same mineral composition as that of the alumina cement, has excellent acid resistance, and has very good binding properties with the alumina cement. In addition, since the hydration reaction continues, the suppression of the transition of the alumina cement hydrate and the sustained effect of corrosion resistance are improved. The alumina cement clinker aggregate is preferably added so that the mass ratio of alumina cement / alumina cement clinker aggregate is in the range of 0.3 to 2.5. If the amount of alumina cement clinker aggregate is too small, strength development tends to be insufficient, while if the amount is too large, shrinkage and cracking are likely to occur, and workability of mortar coating work is reduced. Tend to.
[0017]
The alumina cement clinker aggregate is preferably one having a particle size in the range of 150 μm to 4 mm. In order not to significantly reduce the spraying and glazing workability, one having a particle size of 2.5 mm or less is used. Is more preferable. The particle size referred to here is, for example, 150 μm to 4 mm, which is a particle size captured using two types of sieves having openings of 150 μm and 4 mm.
[0018]
It is one of the features of the present invention that steelmaking dust generated in the steelmaking process of an ironworks is used as a material constituting the acid-resistant cement composition. Steelmaking dust is an inorganic powder containing Si, MgFe 2 O 3 and the like in addition to Fe 2 O 3 which is the most abundant component, and contains a large amount of 1-50 μm spherical material. By adding this steelmaking dust, the surface of the hardened body of the cement composition becomes dense and the adhesion is improved. The amount of the steelmaking dust used is preferably 1 to 30 parts by weight, particularly 2 to 10 parts by weight with respect to 100 parts by weight of the alumina cement. When the amount is less than 1 part by mass, the effect of addition is not sufficiently generated. On the other hand, when the amount is more than 30 parts by mass, the acid resistance may be lowered.
[0019]
Depending on the source of steelmaking dust, there are those with different compositions ranging from those with Fe 2 O 3 content of 50% by mass or less to those with a content close to 100% by mass. In view of the effect, it is preferable to use a material having a high Fe 2 O 3 content, and a content having an Fe 2 O 3 content of 50% by mass or more brings about a particularly preferable result. The specific gravity of the steelmaking dust mainly depends on the content of Fe 2 O 3 , and a large one varies up to about 5.2, but from the effect of addition, it is preferable to use one of 3.0 or more.
[0020]
The acid-resistant cement composition of the present invention contains only these essential three components because it gives a mortar composition exhibiting sufficient acid resistance and adhesion only by the presence of alumina cement, alumina cement clinker aggregate, and steelmaking dust. Even if it is a composition, the purpose can be sufficiently achieved, but one kind of commercially available admixture such as a water reducing agent, thickener, setting modifier, cement admixing polymer or the like commonly used in mortar preparation or Two or more kinds are preferably added. Fibers may also be added.
[0021]
The addition of a water reducing agent has an effect of ensuring high fluidity even at a low water / cement ratio, and the thickener has an effect of suppressing material separation under high fluidity. The setting modifier has the effect of controlling the pot life and strength development during construction, and the cement-mixing polymer has the effect of increasing the adhesion to the underlying concrete. Moreover, the fiber has the effect of improving crack resistance.
[0022]
When adding an admixture, the addition amount shall be 10 mass parts or less with respect to 100 mass parts of alumina cements. If the amount added is too large, it not only acts as a negative factor in the initial strength development, but also leads to waste of expensive admixture, which is uneconomical.
[0023]
The addition amount of the fiber is 10 parts by mass or less with respect to 100 parts by mass of the alumina cement. An excessive amount of addition leads to a decrease in strength and causes peeling from the ground concrete.
[0024]
Blast furnace slag can be added to the acid resistant cement composition of the present invention. Blast furnace slag has the effect of suppressing the strength reduction caused by the transfer of alumina cement hydrate, as well as the effect of improving the strength of the hardened body due to its latent hydraulic properties, as well as the alumina cement clinker aggregate, chemical reactivity In particular, it is an additive excellent in acid resistance.
[0025]
Blast furnace slag is a common cement admixture and is commercially available. Although any blast furnace slag commercially available as an admixture can be used without any problem, it is preferably one that conforms to the standard of JIS A 6206 (fine powder for blast furnace slag for concrete). The fineness of the powder is not particularly limited as long as it is commercially available as an admixture, but the use of a fine powder having a Blaine specific surface area of 2000 to 10000 cm 2 / g is advantageous in terms of manifesting the effect of addition. To preferred. Since excessive addition of blast furnace slag leads to a decrease in strength development, the amount is preferably 100 parts by mass or less per 100 parts by mass of alumina cement, and more preferably 10 to 50 parts by mass. .
[0026]
Further, siliceous aggregates such as river sand, sea sand and mountain sand can be added to the acid resistant cement composition of the present invention. Addition of siliceous aggregate leads to cost reduction without significantly affecting the corrosion resistance. However, if the amount added is too large, the corrosion resistance is reduced.
[0027]
In the acid-resistant mortar composition of the present invention, the water / cement ratio is preferably 0.2 to 0.6. If the water / cement ratio is too high, the strength development will be insufficient, while if it is too low, the fluidity will be too low, and not only the working properties will be lowered, but also a cured product with poor strength properties may be provided.
[0028]
The acid-resistant mortar composition of the present invention, like general mortar, is added with a predetermined amount of water to a mixture of the powder materials of the acid-resistant cement composition of the present invention and kneaded using a general kneader. Can be prepared.
[0029]
The acid-resistant mortar composition after preparation is used by applying it to the surface of a concrete molded body such as a concrete structure and then curing it by drying. The application can be performed by ironing or spraying, which is generally used for mortar application. In the case of application by spraying, the mortar pump is used for pressure feeding, but it is preferable to reduce the friction with the pressure feeding hose in advance through a cement paste.
[0030]
In the existing concrete molded body whose surface is corroded and neutralized, it is used as a repair material for applying the mortar composition of the present invention to the surface after removing the deteriorated layer of the surface by suitable means such as cutting and polishing. . The coating thickness in this case depends on the depth of the removed deteriorated part.
[0031]
In addition, by pre-coating and curing the surface of concrete that has not yet been subjected to surface corrosion or neutralization even with a new concrete molded body or an existing concrete molded body, It can also be used to suppress the conversion. In this case, the thickness of the coating film is preferably 5 mm or more, more preferably 10 to 20 mm.
[0032]
【Example】
Hereinafter, the present invention will be described in more detail with specific examples.
(1) Materials used 1) Alumina cement: manufactured by Lafarge (Blaine specific surface area 3200 cm 2 / g, monocalcium aluminate content 53 mass%)
2) Alumina cement clinker aggregate: Alumina content 40%, particle size 2.5 mm or less 3) Steelmaking dust: Fe 2 O 3 content: 58 mass%, specific gravity: 3.9
4) blast furnace slag: Blaine specific surface area of 4500cm 2 / g
5) Organic admixture: vinyl acetate / veova copolymer resin powder, methylcellulose thickener, polyethylene glycol group-containing polyether water reducing agent (Melflux PP100F), vinylon fiber, sodium citrate 6) Silica aggregate: Mountain sand with a particle size of 4 mm or less
(2) Preparation of mortar and preparation of test specimen The raw material components and water were mixed in the amounts shown in Table 1 for 3 minutes with a mortar mixer manufactured by Hobart to obtain a mortar.
[0034]
(3) Preparation of Specimen The obtained mortar was formed into two layers using a cylindrical steel mold having a diameter of 7.5 cm and a height of 15 cm, and was left in the atmosphere at 20 ° C. and a relative humidity of 65%. After 24 hours, it was demolded and immersed in water at 20 ° C. for 28 days to obtain a specimen.
[0035]
(4) Adhesion test The obtained mortar was applied to a concrete sidewalk board, and an adhesion test was carried out after 28 days of age.
[0036]
(5) Acid resistance test of mortar The evaluation of acid resistance of a concrete molded body coated with mortar and hardened was published by the Tokyo Metropolitan Sewerage Bureau Facility Supervision Department, “Concrete Refurbishment Technology Manual (Sludge Treatment Facility, October 2000). The weight change rate (%) and sulfuric acid penetration depth (mm) were measured by a 5% sulfuric acid immersion test.
The results are shown in Table 1.
[0037]
[Table 1]
Note: Alumina aggregate = alumina cement clinker aggregate cement composition contains 1% by mass of organic admixture.
In Comparative Example 3, Portland cement is used instead of alumina cement.
The amount of water is 16.8 parts by mass in both Examples and Comparative Examples with respect to 100 parts by mass of the cement composition.
[0038]
(6) Evaluation results As shown in Table 1, when the acid-resistant mortar composition of the present invention is used, both the weight change rate after 5% sulfuric acid immersion and the sulfuric acid penetration depth are standard values. On the other hand, the bond strength to the concrete molded body satisfies the standard value.
[0039]
【The invention's effect】
By using the acid-resistant cement composition of the present invention as a mortar, the surface of a concrete molded body having a surface corrosion in a facility requiring acid resistance, such as a sewage treatment plant, a sludge treatment plant or a chemical plant, can be repaired with high reliability. Can be advantageously used for sewerage and drainage systems, pipes, manhole lining / relining and repair.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003087451A JP4180949B2 (en) | 2003-03-27 | 2003-03-27 | Acid resistant cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003087451A JP4180949B2 (en) | 2003-03-27 | 2003-03-27 | Acid resistant cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004292245A JP2004292245A (en) | 2004-10-21 |
JP4180949B2 true JP4180949B2 (en) | 2008-11-12 |
Family
ID=33401831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003087451A Expired - Fee Related JP4180949B2 (en) | 2003-03-27 | 2003-03-27 | Acid resistant cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4180949B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4634213B2 (en) * | 2005-04-27 | 2011-02-16 | 電気化学工業株式会社 | Alumina cement composition and repair method using the same |
JP4634212B2 (en) * | 2005-04-27 | 2011-02-16 | 電気化学工業株式会社 | Alumina cement composition and repair method using the same |
JP5085015B2 (en) * | 2005-05-26 | 2012-11-28 | 電気化学工業株式会社 | Anticorrosive composite and process for producing the same |
JP2007070153A (en) * | 2005-09-06 | 2007-03-22 | Japan Sewage Works Agency | Highly acid-resistant mortar composition having improved troweling operability |
JP5273761B2 (en) * | 2005-12-12 | 2013-08-28 | 太平洋マテリアル株式会社 | High durability cross-section repair material |
JP5144849B2 (en) * | 2007-02-21 | 2013-02-13 | 電気化学工業株式会社 | Cement composition, hardened cement concrete, and method for producing hardened cement concrete |
JP5078009B2 (en) * | 2007-09-10 | 2012-11-21 | 国立大学法人東京工業大学 | Ultra-high-strength hardened cement and method for producing the same |
CN105367003B (en) * | 2015-10-28 | 2017-10-13 | 张海涛 | One kind doping enhancing concrete and preparation method thereof |
-
2003
- 2003-03-27 JP JP2003087451A patent/JP4180949B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004292245A (en) | 2004-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101694807B1 (en) | Mortar with chloride resistance and acid resistance for repairing and reinforcing concrete using eco-friendly green cement, finishing materials for protecting concrete surface and method for repairing and reinforcing concrete using the same | |
KR101681596B1 (en) | Mortar composition of improving chemical resistance and durability for repairing and reinforcing concrete structures , and method of repairing and reinforcing concrete structures using the same | |
KR101141347B1 (en) | Eco-friendly geopolymer mortar compound for restoring cross section and method for repairing cross section of concrete controlling corrosion, salt-attack and neutralization and using the same | |
JP4403155B2 (en) | Concrete water channel repair method | |
JP6223813B2 (en) | Mortar composition | |
KR101135175B1 (en) | Protective mortar using calcium aluminate and oraganic-inorganic hybrid coating agent | |
KR101700133B1 (en) | Mortar composition for repairing and reinforcing concrete structures, and method of repairing and reinforcing concrete structures using the same | |
CN111333403B (en) | Preparation method and application of magnesium phosphate-based cement concrete coating protective material | |
JP3979130B2 (en) | Corrosion environment facility mortar composition and concrete structure corrosion prevention method | |
JP5938976B2 (en) | Repair method for concrete structures | |
JP5957944B2 (en) | Repair method for concrete structures | |
JP2007197301A (en) | Concrete channel repair method | |
JP4180949B2 (en) | Acid resistant cement composition | |
JP4647767B2 (en) | Hydraulic composition and its paste, mortar, concrete | |
JP2017226557A (en) | Repair method of concrete structure | |
JPH09263467A (en) | Corrosion resistant overcoating composition for concrete structure in water processing facility | |
JP4643318B2 (en) | Polymer cement concrete surface coating material and its construction method | |
KR101709982B1 (en) | A high early strength cement concrete composition having the improved self-healing, durability and strength for road pavement and a repairing method of road pavement using the same | |
JP5514790B2 (en) | Acid-resistant dry-type mortar material and method for producing the spray material | |
JP2011207634A (en) | Acid-proof cement composition | |
JP4634212B2 (en) | Alumina cement composition and repair method using the same | |
JP4441355B2 (en) | Acid resistant concrete products | |
JP4225873B2 (en) | Polymer cement acid-resistant repair material | |
JP4388250B2 (en) | Hydraulic composition and cured body thereof | |
JP2022053054A (en) | Cement composition, mortar composition, and repair method of concrete structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080801 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080828 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130905 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |