JP4178923B2 - Appearance inspection method and appearance inspection apparatus - Google Patents
Appearance inspection method and appearance inspection apparatus Download PDFInfo
- Publication number
- JP4178923B2 JP4178923B2 JP2002343093A JP2002343093A JP4178923B2 JP 4178923 B2 JP4178923 B2 JP 4178923B2 JP 2002343093 A JP2002343093 A JP 2002343093A JP 2002343093 A JP2002343093 A JP 2002343093A JP 4178923 B2 JP4178923 B2 JP 4178923B2
- Authority
- JP
- Japan
- Prior art keywords
- inspection
- image
- differential
- pixel
- boundary line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、欠陥が検査対象物の端部付近に存在する場合であっても欠陥を検出できる画像処理を用いた外観検査方法及び外観検査装置に関する。
【0002】
【従来の技術】
従来の欠陥検出方法の一例を図19に示す。この例は、検査対象の周縁部分を検査ウィンドウに含ませることにより、周縁部分に存在する欠陥をも検出できる欠陥検出方法を提供している。その欠陥検出方法は、検査対象を撮像した濃淡画像を微分することにより輝度変化の大きい画素を検出する方法であり、検査領域を表す検査ウィンドウをその他の領域から分離するように濃淡画像を2値化する2値化工程(S1)と、前記検査ウィンドウから検査画像のみを抽出する抽出工程(S2)と、前記検査画像の周縁部分と同程度の輝度の画素を前記検査画像の周囲に配置させた拡大画像を作成する画像拡大工程(S3)と、前記拡大画像を微分し、2値化してエッジ2値画像を作成する微分2値化工程(S4)とを含んでいる。前記エッジ2値画像のうち、検査ウィンドウに含まれる領域全体が検出範囲とされる(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平11−64236号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述したような従来例においては、周縁部分の検査が可能になるが、検査対象物の周縁部分(以下、端部又は輪郭ともいう)に曲面がある場合、つまり検査対象物の周縁部分の撮像面が撮像装置に対して傾斜してその傾斜が一定でない場合、傾斜面からの光量の違いにより周縁近傍で画像上に濃淡が現れるため、その濃淡部分に実際の欠陥が存在するとその検出が困難になるという問題がある。
【0005】
本発明は、上記課題を解消するものであって、検査対象物の周縁部分が曲面である場合でも、周縁部分を含めて精度良い欠陥検出を実現できる外観検査方法及び外観検査装置を提供することを目的とする。
【0006】
【課題を解決するための手段及び発明の効果】
上記課題を達成するために、請求項1の発明は、輪郭に曲面を有する検査対象物を撮像し、その撮像画像に該対象物の端部から内部にかけて生じる濃淡分布を利用して検査対象物の外観を検査する外観検査方法において、検査対象物を撮像して得た濃淡画像の各画素について微分処理して微分画像を生成し、微分画像上で所定の微分値以上となる画素を端部画素として抽出する過程と、抽出した各端部画素により連結される領域を端部領域として抽出する過程と、前記端部領域において、検査対象物の端側の境界線と、該対象物の内側の境界線をそれぞれ所定の微分値のしきい値で2値化した画像をもとに決定し、前記端側の境界線を第1の境界線とし、前記内側の境界線を第2の境界線とする境界線決定過程と、前記各境界線に基づき第1の検査領域と第2の検査領域を決定する検査領域決定過程と、を有し、前記第1の検査領域と第2の検査領域をそれぞれ異なる検査条件で検査する外観検査方法である。
【0007】
上記検査方法においては、周縁部分近傍と、周縁部分から離れた検査対象物内側部分の領域を分けて、異なる検査条件を設定して画像処理、および判定処理するので、検査対象物の輪郭部分が曲面を有し、検査対象物の端部から内部にかけて濃淡変化が発生して、その部分に欠陥が存在する場合においても検出が容易となる。
【0009】
また、上記検査方法においては、微分2値化処理及び第1、第2の境界線を決定するためのしきい値を予め別々に設定する値に基づいて行うことにより、単純な処理で高速に境界線を抽出することが可能である。
【0014】
請求項2の発明は、請求項1記載の外観検査方法において、第1の検査領域の検査判定レベルを第1の境界線に近いほど緩く、又は厳しくするように傾斜的とするものである。
【0015】
上記検査方法においては、端部領域はもともと濃淡変化があり、検査レベルを厳しく設定すると欠陥を過検出する可能性があるので、端側に近いほど検査レベルを緩和することで過検出を回避できる。また、端部に近いほど厳しく判定したい場合は、端側に近いほど検査レベルを傾斜的に厳しく設定することで検査精度を向上できる。
【0016】
請求項3の発明は、請求項1記載の外観検査方法において、抽出した端部領域が不連続になる場合、不連続部分の画素における濃度勾配方向に直交する方向値として定義される微分方向値に基づき不連続部分を連結して端部領域を再抽出するものである。
【0017】
上記検査方法においては、検査対象物の微妙な凹凸や表面性状の変化により、端部領域で局所的に微分値が低くなり、しきい値処理した際に欠落して不連続になってしまう場合があるが、近傍画素の微分方向値をもとに連結処理することで安定した端部領域の抽出が可能となる。
【0018】
請求項4の発明は、請求項1記載の外観検査方法において、最初の端部画素を抽出した後、端部画素における濃度勾配方向に直交する方向値として定義される微分方向値に基づき、端部画素の近傍を検索して次に連続する端部画素を追跡、抽出し、抽出した画素の微分値が所定のしきい値を越える場合、当該画素を端部画素に含めて端部領域を決定するものである。
【0019】
上記検査方法においては、各画素の濃淡変化の方向を考慮して端部領域を決定するので、精度良く効率的に端部画素の追跡が行え、端部領域を高速に抽出できる。
【0020】
請求項5の発明は、請求項1記載の外観検査方法において、予め基準検査領域が設定されており、第1及び第2の検査領域を決定した後、第1及び第2の検査領域を前記基準検査領域に重ねて表示し、第1及び第2の検査領域と前記基準検査領域の位置のずれが所定量を超えたときアラーム出力する、又は基準検査領域への合わせ込みを指示する自動調整指示信号出力により、自動的に照明条件及び又は撮像条件を調節するものである。
【0021】
上記検査方法においては、もともと基準とすべき検査領域の輪郭に対して、実際に撮像した画像においては、照明や撮像条件により端部領域がずれてしまう可能性があるが、画像処理によって抽出した端部領域と基準とすべき領域とのずれを明瞭にし、照明・撮像条件の合わせ込みをしやすくできる。また、撮像画像から抽出した端部領域が、基準とすべき検査領域からずれている場合に、そのことを示す出力をすることにより、照明・撮像条件修正の必要性が認識しやすくなる。また、撮像画像から抽出した端部領域が、基準とすべき検査領域からずれている場合に、自動的に調整させることで、照明・撮像条件の合わせ込みを効率化できる。
【0022】
請求項6の発明は、請求項1記載の外観検査方法において、検査対象物の端部領域に照明の正反射が発生する場合に、照明角度を切り替えた2種以上の画像を撮像し、複数画像間で対象物の同一部位の画素で最大輝度の画素の輝度値を除いて正反射除去画像を生成し、この正反射除去画像を用いて前記第1及び第2の検査領域を決定するものである。
【0023】
上記検査方法においては、照明条件によっては端部領域に正反射が発生するのが避けられない場合に、その影響を除去した正確な検査が可能となる。
【0024】
請求項7の発明は、請求項6記載の外観検査方法において、前記正反射除去画像を用いて検査するものである。
【0025】
上記検査方法においては、正反射成分を除去して検査領域を設定した上で、その正反射成分除去画像を用いて検査することで、一度の検査で正反射のあった部分の検査が可能である。
【0026】
請求項8の発明は、請求項6記載の外観検査方法において、正反射部分の検査は正反射していない方の画像を用いて検査するものである。
【0027】
上記検査方法においては、正反射成分を除去して検査領域を設定した上で、その設定に用いた複数画像の正反射成分を含まない部分をそれぞれ原画像について検査することにより精度の低下なく検査をすることができる。
【0028】
請求項9の発明は、請求項1記載の外観検査方法において、検査対象物を各端部に適した照明撮像条件にて複数の領域に分けて撮像し、各画像毎にそれぞれの端部部分に対応する第1及び第2検査領域を決定し、各画像毎にそれぞれの第1及び第2の検査領域で検査して、その後、その検査結果を統合して判定するものである。
【0029】
上記検査方法においては、検査対象物を検査する際、一通りの照明撮像条件では検査領域の設定が上手くいかない場合に、複数の条件で撮像し、それぞれの画像をもとに検査領域を設定するので、最適な検査領域の設定が可能となる。
【0030】
請求項10の発明は、請求項9記載の外観検査方法において、撮像する複数領域について、各検査領域に重なりを持たせるものである。
【0031】
上記検査方法においては、検査対象物を検査する際、一通りの照明撮像条件では検査領域の設定が上手くいかない場合で、複数の条件で撮像し、それぞれの画像をもとに検査領域を設定する場合、その時各画像上の検査領域に重なり部分を設けることによって領域間の連続性を保持した状態で検査できる。
【0032】
請求項11の発明は、請求項1記載の外観検査方法において、第1又は第2の各検査領域内のさらに小領域毎の各画素における濃度勾配方向に直交する方向値として定義される微分方向値の分布データに基づき、各小領域における欠陥候補部分の微分方向値別に欠陥判定しきい値を切り替えるものである。
【0033】
上記検査方法においては、検査領域を設定する際に微分処理を行うが、その時に算出される微分方向値を用いて、その後の検査において検査領域内の欠陥における微分方向値に特徴がある場合(例えば連続性、方向性がある、など)に検出しやすいようなしきい値を設定することで、検査精度を向上できる。
【0034】
請求項12の発明は、請求項11記載の外観検査方法において、前記微分方向値の分布データに基づき、多数を占める微分方向値を持つ画素の検出感度を他の画素より低く設定するものである。
【0035】
上記検査方法においては、検査領域内に模様として特定の微分方向値を持つ画素の並びがある場合、その方向成分は欠陥と認識しないようにしきい値を高くして検出感度を低くするので模様を過検出することなく模様以外の欠陥検出精度を向上できる。
【0036】
請求項13の発明は、輪郭に曲面を有する検査対象物を撮像し、その撮像画像に該対象物の端部から内部にかけて生じる濃淡分布を利用して検査対象物の外観を検査する外観検査装置において、検査対象物を撮像して得た濃淡画像の各画素について微分処理して微分画像を生成し、微分画像上で所定の微分値以上となる画素を端部画素として抽出する端部画素抽出手段と、抽出した各端部画素により連結される領域を端部領域として抽出する端部領域抽出手段と、前記端部領域において、検査対象物の端側の境界線と、該対象物の内側の境界線をそれぞれ所定の微分値のしきい値で2値化した画像をもとに決定し、前記端側の境界線を第1の境界線とし、前記内側の境界線を第2の境界線とする境界線決定手段と、前記各境界線に基づき第1の検査領域と第2の検査領域を決定する検査領域決定手段と、前記各検査領域をそれぞれ異なる検査条件で検査する検査・判定手段と、を有する外観検査装置である。
【0037】
上記構成においては、検査対象物の輪郭部分が曲面を有し、検査対象物の端部から内部にかけて濃淡変化が発生してその部分に欠陥が存在する場合であっても、端部近傍と内部とを分離して別々の検査条件で検査するので欠陥検出が容易となる。
【0038】
【発明の実施の形態】
以下、本発明の一実施形態に係る外観検査方法及び外観検査装置について、図面を参照して説明する。図面中の共通する部材には同一符号を付して重複説明を省略する。まず、外観検査方法の概要を説明する。図1は外観検査方法のプロセスフローを示す。外観検査の対象物は輪郭部(端部)に曲面を有しており、その曲面部を検査範囲として含んでいる場合が前提であり、その曲面部を含んだ画像撮影が行われ、濃度強度(白の濃度の強度、明度)eをデータとする濃淡分布画像である検査対象画像P0が得られる(S101)。得られた検査対象画像P0の濃度強度eの分布に対し微分演算が行われ微分強度fの画像である微分画像P1が得られる(S102)。次に、微分画像P1上の各画素から所定の微分値以上となる画素が抽出され、所定の微分値より小さい画素と選別する端部画素抽出処理が行われ、2値化画像P2が得られる(S103)。また、抽出した各端部画素により連結される領域が端部領域とされる(S104)。次に、前記端部領域において、検査対象物の端側の画素からなる第1の境界線と、対象物の内側の画素からなる第2の境界線が決定される(S105)。次に、前記各境界線に基づき、端部側の領域である第1の検査領域A1と、内部側の領域である第2の検査領域A2とが決定される(S106)。そして、第1の検査領域A1と第2の検査領域A2とにおいてそれぞれ異なる検査条件で検査する画像処理が行われる(S107)。このように各検査領域毎に異なる検査条件で検査することで過誤検知や検知抜けのない、欠陥検出精度の高い外観検査が可能となる。次に、外観検査方法及び装置の詳細説明をする。
【0039】
外観検査装置の構成を画像データの流れに沿って説明する。図2は外観検査装置の構成を示す。機構部5に載置された検査対象物4に照明装置Lから照明が照射され、検査対象物4の表面がCCDカメラ2によって撮像され、そのデータが外観検査装置本体3にケーブル23を介して送られる。撮像された画像データは外観検査装置本体3に取り込まれ、画像処理及び外観検査に係る良否判定の結果が機構部5に送られる。機構部5は、良否判定の結果に基づき不良品排出制御を行う。
【0040】
上記、外観検査装置本体3は主に画像処理を行っている。図3は外観検査装置本体3のブロック構成を示す。CCDカメラ2によって撮像された画像データの流れに沿って外観検査装置3を説明する。画像データはCCDカメラ2からA/D変換部31を介して多階調に変換したデジタル画像データとされ、画像メモリ(VRAM)32に記憶される。画像処理を行う演算部36が使用する主記憶部(RAM)34の画像処理プログラムメモリ領域34dには、予め、検査領域設定のためのプログラムを含む画像処理プログラムが記憶媒体(ROM)35からロードされている。演算部36は、画像メモリ(VRAM)32から主記憶部34の画像メモリ領域34aに入力される画像データに対して各種の画像処理を行い、必要な途中データ(微分画像、微分方向画像など)を逐次、微分画像メモリ領域34b、微分方向画像メモリ領域34cに保存する。また、演算部36は、外観検査の判定結果の出力を行い、外部制御39を介して外部の機構部5の動作制御(例えば、良否に応じて検査対象物の排出方法を変える)を行う。信号制御37は、メモリ32、34及び演算部36の間のデータの制御を行うものである。また、画像メモリ(VRAM)32の画像データはD/A変換部38を介してアナログ信号とされ、モニタMに表示される。
【0041】
検査対象物4について説明する。図4は検査対象物の部分断面図を示す。検査対象物4は、その端部に曲面40を有している。このような端部に曲面を有する検査対象物4に上方から照明光L1を照射して、上方に位置するCCDカメラ2により撮像すると、検査対象物4の側面42は暗部となり、曲面40は下方から上方に向かって次第に明部となり、内部上面41は明部となる。検査対象物4を載置した機構部の上面51は平坦部であり、前記内部上面41と同様に明部となる。
【0042】
前記曲面40を含んで撮像した画像を説明する。図5(a)は撮像された濃淡画像、図5(b)は画像濃度を示す。検査対象画像P0は、左方から背景画像51a、側面画像42a、次第に暗から明に変化する曲面画像40a、そして明部である内部上面画像41aから成っている。検査対象画像P0を左右に横切る走査線x上の画像濃度eの分布は図5(b)のようになる。濃淡画像において、濃部は画像信号強度が大きく、明るく、白い部分であり、淡部は画像信号強度が小さく、暗く、黒い部分である。つまり、濃度と言う場合、白の濃度を表し、濃度が大きいほど明るいものとしている。
【0043】
上記の検査対象画像P0の微分処理について説明する。図6(a)は図5(a)の濃淡画像を微分した画像、図6(b)は微分強度を示す。濃淡画像を微分処理すると、濃淡変化の大きい部分が明るく、また変化の少ない部分が暗くなり、図6(a)の微分画像P1が得られる。ここで微分処理は、原画像P0を例えば3×3画素のx方向微分オペレータ及びy方向微分オペレータでx方向(画像の水平方向)及びy方向(画像の上下方向)の走査し、得られたx方向、y方向の微分値を合成して各画素における微分強度を算出して行われている。微分画像P1は、左方から背景微分画像51b、側面微分画像42b、次第に明から暗に変化する曲面微分画像40bそして暗部である内部上面微分画像41bから成っている。微分画像P1を左右に横切る走査線x上の微分強度fの分布は図6(b)のようになる。
【0044】
次に、微分画像P1の2値化処理と端部画素抽出処理について説明する。図7(a)は2値化画像、図7(b)は微分しきい値を示す微分強度を示す。検査対象画像P0を微分した結果の微分画像P1において、微分値があらかじめ設定しておいた微分しきい値f0以上の部分を端部領域とする。また、このようにして求めた端部領域の中で、検査対象物の端側(外部側)に位置する画素からなる第1の境界線S1を設定し、さらに端部領域の中で検査対象物の内部側の画素からなる第2の境界線S2を設定する。このとき、第1及び第2の境界線S1,S2を決定するための微分しきい値を予め別々に設定した値に基づいて行うこともできる。第1の境界線S1は通常、検査対象物の側面部分となる。検査対象画像P0において、背景画像と検査対象物の画像の境界が側面画像(輪郭画像)としてあらわれる。一般に、この輪郭画像は濃度変化が大きい部分に対応しているとすることができる。また、背景からの光を調整することでそのように調整できる。
【0045】
次に、検査領域の設定について説明する。図8(a)は検査対象画像と検査領域の関係、図8(b)は微分しきい値を示す微分強度を示す。第1の境界線S1と第2の境界線S2とで挟まれた部分で検査が必要な部分に第1の検査領域A1を設定し、第2の境界線S2より検査対象物の内側の部分で検査が必要な部分に第2の検査領域A2を設定する。第1の検査領域A1に欠陥X1、第2の検査領域A2には欠陥X2があるものとする。
【0046】
次に、欠陥検出について説明する。図9(a)は欠陥検出画像、図9(b)は欠陥検出しきい値を含む画像濃度を示す。画像処理による欠陥検出において、濃淡画像の中で欠陥部分は他の部分に比べて濃淡の程度が異なることが検出原理とされる。ここでは、欠陥部分の濃度が他の部分に比べて低い、つまり暗い場合を仮定して説明する。このような場合、欠陥を検出するために検査対象画像P0を所定の画像濃度しきい値で2値化処理を行うことにより、図9(a)に示すように、欠陥部分X1,X2を暗部として欠陥検出画像P3に浮き彫りにすることができる。本発明の場合、第1の検査領域A1、及び第2の検査領域A2においてそれぞれ別々の2値化しきい値(画像濃度しきい値、欠陥検出しきい値)、例えば検査領域A1にはしきい値TH1を、検査領域A2にはしきい値TH2を設定している。ここで、領域A1における平均画像濃度e1、領域A2における平均画像濃度e2、欠陥部の画像濃度exに対して、しきい値の大小関係は、
ex≦TH1≦e1(領域A1)、
ex≦TH2≦e2(領域A2)、
である。ところで、検査領域を分けないでしきい値を一律にTHxとした場合、第1の検査領域A1に相当する部分が全て欠陥となってしまう。このように、検査領域を分けてそれぞれ別々の2値化しきい値を用いることで、端部領域や対象物内側の領域に欠陥が存在する場合でも、それぞれに適した検査条件による検査が可能となる。
【0047】
次に、欠陥抽出のための画像処理のフローを説明する。図10はその処理のフローを示す。まず、検査対象画像P0の検査領域A1についてしきい値TH1で2値化して欠陥検出を行う(S201)。欠陥を検出した場合(S202でYes)、欠陥を記録する(S203)。次に、検査領域A2についてしきい値TH2で2値化して欠陥検出を行う(S204)。欠陥を検出した場合(S205でYes)、欠陥を記録する(S206)。次に、検査領域A1、A2ともに欠陥記録がない場合(S207でYes)、欠陥なしと判定し(S208)、検査領域A1、A2のいずれかに欠陥記録がある場合(S207でNo)、欠陥ありと判定する(S209)。
【0048】
次に、第2の境界線を決定する他の方法について説明する。図11(a)は境界線を決めるための2値化画像、図11(b)は微分強度を示す。前述したように、検査対象画像P0を微分した微分画像P1について、微分値があらかじめ設定しておいたしきい値以上の部分を端部領域として、端部領域の中で検査対象の端側(外側)に第1の境界線S1が決められる。このとき、図11(a)に示すように、第1の境界線S1と直交する方向の前記端部領域の幅W1を求め、その幅W1をパラメータとして、第1の境界線S1を基準に第2の境界線S2を決定する。例えば、境界線S1とS2の距離W2をW2=1.2×W1のような条件に基づいて決定する。第1の境界線S1と直交する方向とは、境界線上の画素における濃度勾配の方向であるので、端部領域における微妙な曲面部分の幅にも追従した境界線の設定ができる。
【0049】
また、さらに他の方法として、第1の境界線S1を基準に第1の検査領域を決定し、第1の境界線S1上の各端部画素において第1の境界線S1と直交する方向を求め、その方向の線上における各画素について微分処理を行い、その線上で微分値(微分強度値)が所定のしきい値以下になる位置を基準に第2の境界線S2及び第2の検査領域A2を決定してもよい。このようにすると、端部領域における濃淡変化によく追従した検査領域の設定ができる。
【0050】
次に、欠陥検出のしきい値の他の例について説明する。図12(a)(b)は欠陥検出しきい値を含む画像濃度を示す。図中に示すように第1の検査領域A1において画像濃度e0は一定ではないため、一定の値の検査判定レベル(微分値のしきい値)とする代わりに、第1の境界線に近いほどレベルを下げた欠陥検出のしきい値TH3とすることで、より現実に即した欠陥検査をすることができる。このように、端部領域はもともと濃淡変化があり、検査レベルを厳しく設定すると欠陥を過検出する可能性があるので、端側に近いほど検査レベルを緩和することで過検出を回避できる。また、第1の検査領域A1の検査判定レベルを第1の境界線に近いほど厳しくすると、検査対象物の端部特有に発生する特殊な欠陥に対する欠陥見逃しを回避することができる。
【0051】
次に、端部領域における画素の連結について説明する。図13は端部領域における局所拡大図を示す。検査対象画像P0を微分して2値化した画像P2から抽出した端部領域において、ある画素px1が、その周囲の画素pxが全て端部領域に含まれているにもかかわらず、端部領域の画素とならずに不連続な画素となる場合、例えば、端部領域画素を抽出する際に、微分2値化のしきい値を下回ってしまい、端部画像に連なる(含まれる)ことができない場合がある。このように不連続になってしまった画素px1については、その微分方向値を調べて、周囲の端部画素に連なる方向(微分方向値が所定の範囲内で同じ)であれば、端部領域に加えることとする。ここで、微分方向値とは、濃淡画像における濃度勾配ベクトルNに直交する方向(接線方向ベクトルT)である。検査対象物の微妙な凹凸や表面性状の変化により、端部領域で局所的に微分値が低くなり、しきい値処理した際に欠落して不連続になってしまった画素に対し、このような画素の連結処理をすることにより、安定した端部領域の抽出が可能となる。
【0052】
次に、端部領域生成の他の方法について説明する。例えば、前述の第1の境界線S1を決定した後に、第1の境界線S1を構成する画素を最初の端部画素として抽出し、この端部画素における濃度勾配方向に直交する方向値として定義される微分方向値に基づき、端部画素の近傍を検索して次に連続する端部画素を追跡、抽出し、抽出した画素の微分値が所定のしきい値を越える場合、当該画素を端部画素に含めて端部領域を決定する。このように、端部画素に含まれる画素を抽出する際に、最初に抽出した画素の微分方向値から連なる部分の画素の微分値を調べて端部画素とするかどうかを判断していく。この処理を繰り返すことで、端部画素群を抽出して、端部領域として抽出する。これによると、各画素の濃淡変化の方向を考慮して端部領域を決定するので、精度良く、効率的に端部画素の追跡が行え、端部領域を高速に抽出できる。
【0053】
次に、照明・撮像条件の合わせ込みについて説明する。図14は外観検査装置の構成及び画面表示を示す。予め基準検査領域B(B1,B2)を設定しておき、第1及び第2の検査領域A(A1,A2)を決定した後、第1及び第2の検査領域Aを前記基準検査領域Bに重ねて表示し、第1及び第2の検査領域Aと前記基準検査領域Bの位置のずれが所定量を超えたとき、外観検査装置本体3がアラーム出力する。又は、アラーム出力と共に、外観検査装置本体3が自動調整指示信号出力又は不良信号出力を行い、自動的に照明装置Lの照明条件及び又はCCDカメラ2の撮像条件を調節することとする。もともと基準とすべき検査領域の輪郭に対して、実際に撮像した画像においては、照明や撮像条件により端部領域がずれてしまう可能性がある。この方法により、画像処理によって抽出した端部領域と、基準とすべき領域とのずれを明瞭にし、照明・撮像条件の合わせ込みをしやすくできる。また、撮像画像から抽出した端部領域が基準とすべき検査領域からずれている場合に、そのことを示す出力をすることにより、照明・撮像条件修正の必要性が認識しやすくなる。また、撮像画像から抽出した端部領域が、基準とすべき検査領域からずれている場合に、自動的に調整させることで、照明・撮像条件の合わせ込みを効率化できる。
【0054】
次に、照明の正反射成分の処理について図15及び図16を参照して説明する。図15は正反射光を含む濃淡画像、図16は正反射光を含む画像濃度を示す。図15に示すように、検査対象物の検査対象画像P01に正反射DR1が含まれ、照明条件の異なる検査対象画像P02に正反射DR2が含まれる場合、2つの検査対象画像P01,P02から正反射成分DR1,DR2を除いた検査対象画像P0が得られる。このような正反射除去画像P0は、図16に示されるように、各画像P01,P02の同一箇所の画素における画像濃度ee1,ee2を比較し、小さい方を正反射除去画像P0の画像濃度e0とすることで得られる。このような正反射除去画像P0を用いて検査を行うことができる。また、予め正反射除去画像P0を用いて検査領域を設定し、実際の欠陥検出検査は正反射あり画像P01、P02における正反射がない部分について行うこととしてもよい。
【0055】
次に、検査対象物の分割検査について説明する。図17は検査対象物の照明撮像条件を示す。検査対象物Mの撮像面の4辺近傍4a〜4dについて、それぞれ別々の照明条件により撮像したほうが良い場合に、各照明条件にて撮像した画像についてそれぞれ別々に検査領域設定を行った上で、欠陥検出検査を行う。検査対象物の欠陥検査による判定結果はあくまでも複数画像それぞれの検査結果を統合して行うこととする。また、照明条件を変えて複数画像を撮像する場合、それぞれの検査対象はあくまでひと連なりの物体に属するものであるので、検査領域に連続性を持たせるために各画像間に重複する部分を設定して撮像することとする。
【0056】
次に、欠陥ではない特定の模様による影響除去について説明する。図18は模様がある場合の検査対象画像及び微分画像を示す。図18(a)の検査対象画像P0に示されるように、元々検査対象物の表面に縞状の模様stがあり、その模様の間に欠陥部(黒点)X3がある場合、この画像を微分すると図18(b)の微分画像P11に示されるように欠陥部X31と共に縞模様st1のそれぞれのもとの画像濃度において濃度が急変する部分の微分強度が高くなり、それらの部分に対応する微分画像P11の部分の濃度が高くなる。このような場合、縞模様st、st1方向の微分方向値を持つ画素の欠陥判定しきい値を甘く(縞模様を検出しないような条件に)設定すると、微分画像P12に示すように、縞模様の成分の画像を除去することができ、欠陥部のみを検出することが可能となる。
【0057】
また、縞模様がある表面を持つ検査対象の場合、その微分方向画像(各画素に微分方向値を対応させた画像)においては、縞模様成分の方向を持つ画素の頻度が高くなるので、その画素の検出感度を低くすることで、縞模様方向以外の微分方向成分を持つ欠陥部を検出しやすくすることができる。このように、特定の方向性を有する模様等について微分処理を施す場合、その方向性の情報を、x方向微分値とy方向微分値を合成して微分強度を算出するときに各方向における重み付けとして取り込むことで、欠陥検出の精度を向上することができる。
【0058】
なお、本発明は、上記構成に限られることなく種々の変形が可能である。また、濃淡画像の微分処理においては標準的な3×3画素を用いる方法以外に他の方法を用いることができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態による外観検査方法のフロー図。
【図2】 本発明の一実施形態による外観検査装置の構成図。
【図3】 同上外観検査装置のブロック構成図。
【図4】 外観検査対象物の部分断面斜視図。
【図5】 (a)は同上外観検査装置により得られた濃淡画像、(b)は(a)の走査方向xにおける画像濃度図。
【図6】 (a)は同上濃淡画像図の微分画像、(b)は(a)の走査方向xにおける微分強度図。
【図7】 (a)は同上の微分画像の2値化画像、(b)は(a)の走査方向xにおける微分強度図。
【図8】 (a)は同上外観検査装置により得られた濃淡画像に検査領域を設定した図、(b)は(a)の走査方向xにおける微分強度図。
【図9】 (a)は同上外観検査装置により得られた濃淡画像と欠陥の図、(b)は(a)の走査方向xにおける平均画像濃度及び2値化しきい値の図。
【図10】 同上外観検査方法における欠陥抽出処理フロー図。
【図11】 (a)は同上外観検査方法に係る微分強度2値化画像図、(b)は(a)の走査方向xにおける微分強度図。
【図12】 (a)は同上外観検査方法に係る微分強度2値化しきい値設定を示す図、(b)は同しきい値の他の設定を示す図。
【図13】 同上外観検査方法に係る境界線画素の連結方法を説明する図。
【図14】 同上外観検査方法に係る外観検査装置の構成及び画面表示の説明図。
【図15】 同上外観検査方法に係る正反射光を含む画像の処理を説明する濃淡画像図。
【図16】 (a)(b)は同上正反射光を含む画像の画像濃度図、(c)は正反射光除去画像の画像濃度図。
【図17】 同上外観検査方法に係る撮像方法を説明する検査対象物の斜視図。
【図18】 (a)は縞状模様を含む検査対象物の濃淡画像図、(b)は(a)の微分強度画像図、(c)は同上外観検査方法による(a)の微分強度図。
【図19】 従来方法における欠陥検出フロー図。
【符号の説明】
3 外観検査装置本体
4 検査対象物
A1 第1の検査領域
A2 第2の検査領域
P0,P01,P02 濃淡画像
P1 微分画像
P2 2値化画像
px 端部画素
S1 第1の境界線
S2 第2の境界線
TH1〜TH4 検査判定レベル(しきい値)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an appearance inspection method and an appearance inspection apparatus using image processing capable of detecting a defect even when a defect exists near the end of an inspection object.
[0002]
[Prior art]
An example of a conventional defect detection method is shown in FIG. This example provides a defect detection method capable of detecting defects present in the peripheral portion by including the peripheral portion of the inspection target in the inspection window. The defect detection method is a method of detecting a pixel having a large luminance change by differentiating a grayscale image obtained by imaging an inspection object, and the grayscale image is binarized so as to separate an inspection window representing the inspection region from other regions. A binarization step (S1) to be converted, an extraction step (S2) to extract only the inspection image from the inspection window, and pixels having the same luminance as the peripheral portion of the inspection image are arranged around the inspection image. The image enlarging step (S3) for creating an enlarged image and the differential binarizing step (S4) for differentiating the enlarged image and binarizing it to create an edge binary image are included. Of the edge binary image, the entire region included in the inspection window is set as a detection range (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-64236
[0004]
[Problems to be solved by the invention]
However, in the conventional example as described above, the peripheral portion can be inspected. However, when the peripheral portion of the inspection object (hereinafter also referred to as an end portion or a contour) has a curved surface, that is, the peripheral portion of the inspection object. If the image pickup surface is inclined with respect to the image pickup device and the inclination is not constant, light and shade appear on the image near the periphery due to the difference in the amount of light from the inclined surface, so that an actual defect is detected in the light and dark portion. There is a problem that becomes difficult.
[0005]
The present invention solves the above-mentioned problems, and provides an appearance inspection method and an appearance inspection apparatus capable of realizing accurate defect detection including a peripheral portion even when the peripheral portion of an inspection object is a curved surface. With the goal.
[0006]
[Means for Solving the Problems and Effects of the Invention]
In order to achieve the above object, the invention of
[0007]
In the above inspection method, the vicinity of the peripheral portion and the region of the inner portion of the inspection object that is separated from the peripheral portion are divided, and different inspection conditions are set for image processing and determination processing. It has a curved surface, changes in shading from the end of the inspection object to the inside, and detection is easy even when there is a defect in that portion.
[0009]
Also, In the above inspection method, the boundary line can be quickly obtained by simple processing by performing differential binarization processing and a threshold value for determining the first and second boundary lines separately based on values set in advance. Can be extracted.
[0014]
[0015]
In the above inspection method, the edge region originally has a light and shade change, and if the inspection level is set strictly, there is a possibility of overdetecting the defect. Therefore, it is possible to avoid overdetection by relaxing the inspection level closer to the end side. . Also, when it is desired to make a stricter determination as it is closer to the end portion, the inspection accuracy can be improved by setting the inspection level to be stricter in an inclined manner as it is closer to the end side.
[0016]
[0017]
In the above inspection method, the differential value is locally low in the edge region due to subtle unevenness or surface property change of the inspection object, and it becomes missing and discontinuous when threshold processing is performed However, a stable end region can be extracted by performing a connection process based on the differential direction values of neighboring pixels.
[0018]
[0019]
In the above inspection method, the end region is determined in consideration of the direction of change in shading of each pixel. Therefore, the end pixel can be tracked accurately and efficiently, and the end region can be extracted at high speed.
[0020]
[0021]
In the above inspection method, the edge region of the actually captured image may be shifted depending on the illumination or imaging conditions with respect to the contour of the inspection region that should be the reference. It is possible to clarify the deviation between the end region and the region to be used as a reference, and to easily adjust the illumination / imaging conditions. In addition, when the end region extracted from the captured image is deviated from the inspection region to be used as a reference, an output indicating this is made easier to recognize the necessity of illumination / imaging condition correction. In addition, when the edge region extracted from the captured image is shifted from the inspection region to be used as a reference, the adjustment of the illumination / imaging conditions can be made efficient by automatically adjusting the edge region.
[0022]
Claim 6 The invention of
[0023]
In the above inspection method, when it is unavoidable that regular reflection occurs in the end region depending on the illumination condition, an accurate inspection can be performed with the influence removed.
[0024]
Claim 7 The invention of claim 6 In the appearance inspection method described above, inspection is performed using the regular reflection-removed image.
[0025]
In the above inspection method, the specular reflection component is removed and the inspection area is set, and then the specular reflection component-removed image is used to inspect the portion that has undergone specular reflection in one inspection. is there.
[0026]
Claim 8 The invention of claim 6 In the appearance inspection method described, the specular reflection portion is inspected using the image that is not specularly reflected.
[0027]
In the above inspection method, the specular reflection component is removed and the inspection region is set, and then the original image is inspected without reducing the accuracy by inspecting the portions of the plurality of images used for the setting that do not include the specular reflection component. Can do.
[0028]
Claim 9 According to the first aspect of the present invention, in the visual inspection method according to
[0029]
In the above inspection method, when inspecting an object to be inspected, if the inspection area setting is not successful under a single illumination imaging condition, images are taken under a plurality of conditions, and the inspection area is set based on each image. As a result, an optimum inspection area can be set.
[0030]
Claim 10 The invention of claim 9 In the appearance inspection method described above, each inspection region is overlapped with respect to a plurality of regions to be imaged.
[0031]
In the above inspection method, when inspecting an inspection object, if the inspection area setting is not successful under a single illumination imaging condition, the image is captured under a plurality of conditions, and the inspection area is set based on each image. In this case, it is possible to inspect while maintaining the continuity between the areas by providing an overlapping portion in the inspection area on each image.
[0032]
Claim 11 The invention of
[0033]
In the above inspection method, differentiation processing is performed when setting the inspection area, and the differential direction value calculated at that time is used to characterize the differential direction value in the defect in the inspection area in the subsequent inspection ( For example, the inspection accuracy can be improved by setting a threshold value that is easy to detect, such as continuity and directionality.
[0034]
Claim 12 The invention of claim 11 In the appearance inspection method described above, detection sensitivity of pixels having differential direction values that occupy a large number is set lower than other pixels based on the distribution data of the differential direction values.
[0035]
In the above inspection method, when there is an array of pixels having a specific differential direction value as a pattern in the inspection area, the direction component is increased so that the detection sensitivity is lowered so that the direction component is not recognized as a defect. Defect detection accuracy other than the pattern can be improved without overdetection.
[0036]
Claim 13 The present invention provides an appearance inspection apparatus that images an inspection object having a curved surface in an outline, and inspects the appearance of the inspection object using a gray-scale distribution generated from an end portion of the object to the inside of the captured image. End pixel extraction means for generating a differential image by performing differential processing on each pixel of the grayscale image obtained by imaging the object, and extracting pixels that are equal to or higher than a predetermined differential value on the differential image as end pixels; An end area extracting means for extracting an area connected by each extracted end pixel as an end area, and an end side of the inspection object in the end area; of Border and inside the object of Border Based on images binarized with a predetermined differential threshold value Decision The boundary line on the end side is a first boundary line, and the inner boundary line is a second boundary line. Boundary line determination means for performing inspection, inspection area determination means for determining a first inspection area and a second inspection area based on the boundary lines, and inspection / determination means for inspecting the inspection areas under different inspection conditions And an appearance inspection apparatus.
[0037]
In the above configuration, even if the contour portion of the inspection object has a curved surface, and a change in density occurs from the end to the inside of the inspection object and a defect exists in that portion, the vicinity of the end and the inside Since these are separated and inspected under different inspection conditions, defect detection becomes easy.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an appearance inspection method and an appearance inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings. Common members in the drawings are denoted by the same reference numerals, and redundant description is omitted. First, an outline of the appearance inspection method will be described. FIG. 1 shows a process flow of an appearance inspection method. The object of the appearance inspection is assumed to have a curved surface at the contour portion (end portion) and include the curved surface portion as an inspection range, and image capturing including the curved surface portion is performed, and the density intensity An inspection target image P0, which is a light and shade distribution image using (the intensity and brightness of white density) e as data, is obtained (S101). A differential operation is performed on the distribution of the density intensity e of the obtained inspection target image P0 to obtain a differential image P1 that is an image of the differential intensity f (S102). Next, a pixel having a predetermined differential value or more is extracted from each pixel on the differential image P1, and an end pixel extraction process for selecting a pixel smaller than the predetermined differential value is performed to obtain a binarized image P2. (S103). Further, an area connected by the extracted end pixels is set as an end area (S104). Next, in the end region, a first boundary line composed of pixels on the end side of the inspection object and a second boundary line composed of pixels inside the object are determined (S105). Next, based on each boundary line, a first inspection area A1 that is an end-side area and a second inspection area A2 that is an inner-side area are determined (S106). Then, image processing is performed in which inspection is performed under different inspection conditions in the first inspection region A1 and the second inspection region A2 (S107). Thus, by performing inspection under different inspection conditions for each inspection region, it is possible to perform an appearance inspection with high defect detection accuracy without erroneous detection or missing detection. Next, the appearance inspection method and apparatus will be described in detail.
[0039]
The configuration of the appearance inspection apparatus will be described along the flow of image data. FIG. 2 shows the configuration of the appearance inspection apparatus. The
[0040]
The appearance inspection apparatus
[0041]
The
[0042]
An image captured including the
[0043]
The differential processing of the inspection target image P0 will be described. 6A shows an image obtained by differentiating the grayscale image shown in FIG. 5A, and FIG. 6B shows the differential intensity. When the grayscale image is subjected to differential processing, a portion with a large shade change becomes bright and a portion with little change becomes dark, and a differential image P1 in FIG. 6A is obtained. Here, the differential processing is obtained by scanning the original image P0 in the x direction (horizontal direction of the image) and the y direction (vertical direction of the image) with, for example, a 3 × 3 pixel x direction differential operator and a y direction differential operator. The differential intensity in each pixel is calculated by combining the differential values in the x and y directions. The differential image P1 includes a background
[0044]
Next, the binarization process and the end pixel extraction process of the differential image P1 will be described. FIG. 7A shows a binarized image, and FIG. 7B shows differential intensity indicating a differential threshold. In the differential image P1 obtained by differentiating the inspection object image P0, a portion having a differential value equal to or higher than a differential threshold f0 set in advance is defined as an end region. Further, in the end region thus obtained, a first boundary line S1 composed of pixels located on the end side (external side) of the inspection object is set, and the inspection object is further detected in the end region. A second boundary line S2 composed of pixels inside the object is set. At this time, the differential threshold value for determining the first and second boundary lines S1 and S2 can be determined based on values set separately in advance. The first boundary line S1 is usually a side surface portion of the inspection object. In the inspection object image P0, the boundary between the background image and the image of the inspection object appears as a side image (contour image). In general, it can be assumed that this contour image corresponds to a portion where the density change is large. It can also be adjusted by adjusting the light from the background.
[0045]
Next, setting of the inspection area will be described. FIG. 8A shows the relationship between the image to be inspected and the inspection area. 8 (B) shows the differential intensity | strength which shows a differential threshold value. A first inspection region A1 is set in a portion between the first boundary line S1 and the second boundary line S2 that needs to be inspected, and the portion inside the inspection object from the second boundary line S2 Then, the second inspection area A2 is set in the portion that needs to be inspected. It is assumed that there is a defect X1 in the first inspection area A1 and a defect X2 in the second inspection area A2.
[0046]
Next, defect detection will be described. FIG. 9A shows a defect detection image, and FIG. 9B shows an image density including a defect detection threshold. In the defect detection by image processing, the detection principle is that the defect portion in the grayscale image has a different shade level compared to other portions. Here, the description will be made on the assumption that the density of the defective portion is lower than that of the other portion, that is, a dark portion. In such a case, by performing binarization processing on the inspection target image P0 with a predetermined image density threshold value in order to detect a defect, FIG. 9 As shown to (a), it can emboss on defect detection image P3 by making defect part X1, X2 into a dark part. In the case of the present invention, separate binarization threshold values (image density threshold value, defect detection threshold value) in the first inspection area A1 and the second inspection area A2, for example, the threshold value in the inspection area A1. A value TH1 is set, and a threshold value TH2 is set in the inspection area A2. Here, with respect to the average image density e1 in the area A1, the average image density e2 in the area A2, and the image density ex of the defective portion, the magnitude relationship of the threshold is:
ex ≦ TH1 ≦ e1 (region A1),
ex ≦ TH2 ≦ e2 (region A 2 ),
It is. By the way, if the threshold value is uniformly set to THx without dividing the inspection area, all portions corresponding to the first inspection area A1 are defective. In this way, by dividing the inspection area and using different binarization threshold values, even if there are defects in the edge area or the area inside the object, it is possible to inspect according to the inspection conditions suitable for each. Become.
[0047]
Next, the flow of image processing for defect extraction will be described. FIG. 10 shows the flow of the processing. First, the defect detection is performed by binarizing the inspection area A1 of the inspection target image P0 with the threshold value TH1 (S201). When a defect is detected (Yes in S202), the defect is recorded (S203). Next, the inspection area A2 is binarized with the threshold value TH2 to detect a defect (S204). If a defect is detected (Yes in S205), the defect is recorded (S206). Next, if there is no defect record in both the inspection areas A1 and A2 (Yes in S207), it is determined that there is no defect (S208), and if there is a defect record in any of the inspection areas A1 and A2 (No in S207), the defect It is determined that there is (S209).
[0048]
Next, another method for determining the second boundary line will be described. FIG. 11A shows a binarized image for determining the boundary line, and FIG. 11B shows the differential intensity. As described above, with respect to the differential image P1 obtained by differentiating the inspection target image P0, a portion where the differential value is equal to or larger than a preset threshold value is defined as an end region, and the end side (outside) of the inspection target in the end region. ) Determines the first boundary line S1. At this time, as shown in FIG. 11A, the width W1 of the end region in the direction orthogonal to the first boundary line S1 is obtained, and the width W1 is used as a parameter, with the first boundary line S1 as a reference. A second boundary line S2 is determined. For example, the distance W2 between the boundary lines S1 and S2 is determined based on a condition such as W2 = 1.2 × W1. Since the direction orthogonal to the first boundary line S1 is the direction of the density gradient in the pixels on the boundary line, it is possible to set the boundary line following the width of the delicate curved surface portion in the end region.
[0049]
As yet another method, the first inspection region is determined with reference to the first boundary line S1, and the direction perpendicular to the first boundary line S1 is determined at each end pixel on the first boundary line S1. The second boundary line S2 and the second inspection region are obtained with reference to the position where the differential value (differential intensity value) is not more than a predetermined threshold value on the line. A2 may be determined. In this way, it is possible to set the inspection area that closely follows the change in shading in the end area.
[0050]
Next, another example of the defect detection threshold will be described. 12A and 12B show the image density including the defect detection threshold. As shown in the figure, the image density e0 is not constant in the first inspection area A1, so that the closer to the first boundary, the closer to the first boundary line, instead of a constant inspection determination level (differential value threshold). By setting the defect detection threshold value TH3 to a lower level, it is possible to carry out a defect inspection that is more realistic. In this way, the end region originally has a change in shading, and if the inspection level is set strictly, there is a possibility of overdetecting a defect. Therefore, the closer to the end side, the overdetection can be avoided by relaxing the inspection level. Further, if the inspection determination level of the first inspection area A1 is made stricter as it is closer to the first boundary line, it is possible to avoid missing a defect for a special defect that occurs peculiar to the end of the inspection object.
[0051]
Next, connection of pixels in the end region will be described. FIG. 13 shows a local enlarged view in the end region. In the end region extracted from the image P2 obtained by differentiating the inspection target image P0 and binarized, the end region is obtained even though a certain pixel px1 includes all the surrounding pixels px in the end region. For example, when the end region pixel is extracted, the pixel becomes lower than the threshold for differential binarization and is connected (included) to the end image. There are cases where it is not possible. Like this Communicating For the pixel px1 that has been continued, the differential direction value is examined, and if it is a direction (differential direction value is the same within a predetermined range) connected to surrounding end pixels, end It will be added to the partial area. Here, the differential direction value is a direction (tangential direction vector T) orthogonal to the density gradient vector N in the grayscale image. Due to subtle unevenness and surface properties of the inspection object, the differential value is locally low in the edge region, and this is the case for pixels that have become discontinuous due to threshold processing. By performing the pixel connection processing, it is possible to extract a stable end region.
[0052]
Next, another method for generating the end region will be described. For example, after determining the first boundary line S1, the pixels constituting the first boundary line S1 are extracted as the first end pixel, and defined as the direction value orthogonal to the density gradient direction at the end pixel. Based on the differential direction value to be searched, the vicinity of the end pixel is searched and the next consecutive end pixel is tracked and extracted, and when the differential value of the extracted pixel exceeds a predetermined threshold value, The edge region is determined including the partial pixel. As described above, when extracting the pixels included in the end pixels, it is determined whether or not the end pixels are determined by examining the differential values of the pixels that are continuous from the differential direction values of the first extracted pixels. By repeating this process, an end pixel group is extracted and extracted as an end region. According to this, since the edge region is determined in consideration of the direction of change in shading of each pixel, the edge pixel can be tracked accurately and efficiently, and the edge region can be extracted at high speed.
[0053]
Next, adjustment of illumination / imaging conditions will be described. FIG. 14 shows the configuration and screen display of the appearance inspection apparatus. After the reference inspection area B (B1, B2) is set in advance and the first and second inspection areas A (A1, A2) are determined, the first and second inspection areas A are defined as the reference inspection area B. When the displacement between the first and second inspection areas A and the reference inspection area B exceeds a predetermined amount, the appearance inspection apparatus
[0054]
Next, processing of the regular reflection component of illumination will be described with reference to FIGS. 15 and 16. FIG. 15 shows a grayscale image including regular reflection light, and FIG. 16 shows an image density including regular reflection light. As shown in FIG. 15, when the inspection target image P01 of the inspection target includes the regular reflection DR1 and the inspection target image P02 having different illumination conditions includes the regular reflection DR2, the normal inspection is performed from the two inspection target images P01 and P02. An inspection target image P0 excluding the reflection components DR1 and DR2 is obtained. As shown in FIG. 16, the regular reflection removed image P0 compares the image densities ee1 and ee2 of the pixels at the same location in the images P01 and P02, and the smaller one is the image density e0 of the regular reflection removed image P0. Is obtained. An inspection can be performed using such a regular reflection removal image P0. Alternatively, an inspection area may be set in advance using the regular reflection removal image P0, and the actual defect detection inspection may be performed on a portion where there is regular reflection and there is no regular reflection in the images P01 and P02.
[0055]
Next, the division inspection of the inspection object will be described. FIG. 17 shows illumination imaging conditions for the inspection object. In the case where it is better to image the four sides near 4a to 4d of the imaging surface of the inspection object M under different illumination conditions, after setting the inspection area separately for the images captured under the respective illumination conditions, Perform defect detection inspection. The determination result by the defect inspection of the inspection object is performed by integrating the inspection results of the plurality of images. Also, when multiple images are taken under different illumination conditions, each inspection object belongs to a series of objects, so an overlapping part is set between each image in order to provide continuity in the inspection area And imaging.
[0056]
Next, the removal of the influence by a specific pattern that is not a defect will be described. FIG. 18 shows an inspection target image and a differential image when there is a pattern. As shown in the inspection object image P0 in FIG. 18A, when the surface of the inspection object originally has a striped pattern st and there is a defective portion (black dot) X3 between the patterns, the image is differentiated. Then, as shown in the differential image P11 of FIG. 18B, the differential intensity of the portion where the density suddenly changes in each of the original image densities of the stripe pattern st1 together with the defect portion X31 increases, and the differential corresponding to those portions. The density of the portion of the image P11 increases. In such a case, when the defect determination threshold value of the pixels having the differential direction values in the streak patterns st and st1 directions is set softly (under the condition that the striped pattern is not detected), as shown in the differential image P12, the striped pattern is obtained. It is possible to remove the image of this component, and it is possible to detect only the defective portion.
[0057]
In addition, in the case of an inspection object having a surface with a stripe pattern, the frequency of pixels having the direction of the stripe pattern component is high in the differential direction image (image in which the differential direction value is associated with each pixel). By reducing the pixel detection sensitivity, it is possible to easily detect a defective portion having a differential direction component other than the stripe pattern direction. In this way, when a differential process is applied to a pattern having a specific directionality, the directionality information is weighted in each direction when the differential intensity is calculated by combining the x-direction differential value and the y-direction differential value. As a result, it is possible to improve the accuracy of defect detection.
[0058]
The present invention is not limited to the above-described configuration, and various modifications can be made. In addition, in the grayscale image differentiation process, other methods can be used in addition to the standard 3 × 3 pixel method.
[Brief description of the drawings]
FIG. 1 is a flowchart of an appearance inspection method according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of an appearance inspection apparatus according to an embodiment of the present invention.
FIG. 3 is a block configuration diagram of the same appearance inspection apparatus.
FIG. 4 is a partial cross-sectional perspective view of an appearance inspection object.
5A is a grayscale image obtained by the same appearance inspection apparatus, and FIG. 5B is an image density diagram in the scanning direction x of FIG. 5A.
6A is a differential image of the same gray image diagram, and FIG. 6B is a differential intensity diagram in the scanning direction x of FIG.
7A is a binarized image of the differential image, and FIG. 7B is a differential intensity diagram in the scanning direction x of FIG.
8A is a diagram in which an inspection region is set in a grayscale image obtained by the visual inspection apparatus, and FIG. 8B is a differential intensity diagram in the scanning direction x of FIG. 8A.
9A is a diagram of a grayscale image and a defect obtained by the visual inspection apparatus same as the above, and FIG. 9B is a diagram of an average image density and a binarization threshold value in the scanning direction x of FIG.
FIG. 10 is a flowchart of defect extraction processing in the external appearance inspection method.
11A is a differential intensity binarized image diagram according to the same appearance inspection method, and FIG. 11B is a differential intensity diagram in the scanning direction x of FIG.
FIG. 12A is a diagram showing differential intensity binarization threshold setting according to the above-described appearance inspection method, and FIG. 12B is a diagram showing another setting of the threshold.
FIG. 13 is a diagram for explaining a boundary pixel connecting method according to the appearance inspection method according to the embodiment;
FIG. 14 is an explanatory diagram of a configuration and screen display of an appearance inspection apparatus according to the appearance inspection method described above.
FIG. 15 is a grayscale image diagram illustrating processing of an image including specularly reflected light according to the external appearance inspection method.
FIGS. 16A and 16B are image density diagrams of an image including regular reflection light, and FIG. 16C is an image density diagram of a regular reflection light-removed image.
FIG. 17 is a perspective view of an inspection object for explaining an imaging method according to the external appearance inspection method.
18A is a grayscale image of an inspection object including a striped pattern, FIG. 18B is a differential intensity image of FIG. 18A, and FIG. 18C is a differential intensity diagram of FIG. .
FIG. 19 is a flowchart of defect detection in a conventional method.
[Explanation of symbols]
3 Visual inspection equipment
4 Inspection object
A1 First inspection area
A2 Second inspection area
P0, P01, P02 Grayscale image
P1 differential image
P2 binarized image
px end pixel
S1 First boundary line
S2 Second boundary line
TH1 to TH4 Inspection judgment level (threshold)
Claims (13)
検査対象物を撮像して得た濃淡画像の各画素について微分処理して微分画像を生成し、微分画像上で所定の微分値以上となる画素を端部画素として抽出する過程と、
抽出した各端部画素により連結される領域を端部領域として抽出する過程と、
前記端部領域において、検査対象物の端側の境界線と、該対象物の内側の境界線をそれぞれ所定の微分値のしきい値で2値化した画像をもとに決定し、前記端側の境界線を第1の境界線とし、前記内側の境界線を第2の境界線とする境界線決定過程と、
前記各境界線に基づき第1の検査領域と第2の検査領域を決定する検査領域決定過程と、を有し、
前記第1の検査領域と第2の検査領域をそれぞれ異なる検査条件で検査することを特徴とする外観検査方法。In an appearance inspection method for inspecting an appearance of an inspection object by imaging a test object having a curved surface in an outline and using a gray-scale distribution generated from an end portion of the object to the inside of the captured image,
A process of differentiating each pixel of the grayscale image obtained by imaging the inspection object to generate a differential image, and extracting a pixel having a predetermined differential value or more on the differential image as an end pixel;
Extracting a region connected by each extracted end pixel as an end region;
In the end region, and it determines the end side of the boundary line of the inspection object, an image binarized by threshold for each predetermined differential value inside the boundary line of the object on the basis of said end A boundary determination process in which a side boundary line is a first boundary line and the inner boundary line is a second boundary line ;
An inspection area determination process for determining a first inspection area and a second inspection area based on each boundary line;
An appearance inspection method characterized by inspecting the first inspection region and the second inspection region under different inspection conditions.
検査対象物を撮像して得た濃淡画像の各画素について微分処理して微分画像を生成し、微分画像上で所定の微分値以上となる画素を端部画素として抽出する端部画素抽出手段と、
抽出した各端部画素により連結される領域を端部領域として抽出する端部領域抽出手段と、
前記端部領域において、検査対象物の端側の境界線と、該対象物の内側の境界線をそれぞれ所定の微分値のしきい値で2値化した画像をもとに決定し、前記端側の境界線を第1の境界線とし、前記内側の境界線を第2の境界線とする境界線決定手段と、
前記各境界線に基づき第1の検査領域と第2の検査領域を決定する検査領域決定手段と、
前記各検査領域をそれぞれ異なる検査条件で検査する検査・判定手段と、を有することを特徴とする外観検査装置。In an appearance inspection apparatus that images an inspection object having a curved surface in an outline, and inspects the appearance of the inspection object using a gray-scale distribution generated from an end portion of the object to the inside of the captured image,
End pixel extraction means for generating a differential image by performing differential processing on each pixel of the grayscale image obtained by imaging the inspection object, and extracting a pixel having a predetermined differential value or more on the differential image as an end pixel; ,
End region extraction means for extracting the region connected by each extracted end pixel as an end region;
In the end region, and it determines the end side of the boundary line of the inspection object, an image binarized by threshold for each predetermined differential value inside the boundary line of the object on the basis of said end Boundary line determining means having a side boundary line as a first boundary line and the inner boundary line as a second boundary line ;
Inspection area determining means for determining a first inspection area and a second inspection area based on each boundary line;
An appearance inspection apparatus comprising: inspection / determination means for inspecting each inspection region under different inspection conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002343093A JP4178923B2 (en) | 2002-11-26 | 2002-11-26 | Appearance inspection method and appearance inspection apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002343093A JP4178923B2 (en) | 2002-11-26 | 2002-11-26 | Appearance inspection method and appearance inspection apparatus |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008156724A Division JP4743231B2 (en) | 2008-06-16 | 2008-06-16 | Appearance inspection method and appearance inspection apparatus |
JP2008156706A Division JP4743230B2 (en) | 2008-06-16 | 2008-06-16 | Appearance inspection method and appearance inspection apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004177238A JP2004177238A (en) | 2004-06-24 |
JP4178923B2 true JP4178923B2 (en) | 2008-11-12 |
Family
ID=32704948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002343093A Expired - Fee Related JP4178923B2 (en) | 2002-11-26 | 2002-11-26 | Appearance inspection method and appearance inspection apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4178923B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007086610A (en) * | 2005-09-26 | 2007-04-05 | Lasertec Corp | Differential interference microscope and defect inspecting device |
JP4658779B2 (en) * | 2005-11-11 | 2011-03-23 | 新日本製鐵株式会社 | Haze detection method, apparatus, and computer program |
JP2007170838A (en) * | 2005-12-19 | 2007-07-05 | Ryusyo Industrial Co Ltd | Visual inspection apparatus |
CN108447070B (en) * | 2018-03-15 | 2021-08-10 | 中国科学院沈阳自动化研究所 | Industrial part defect detection algorithm based on pixel vector invariant relation features |
CN110579474B (en) * | 2019-09-24 | 2024-10-18 | 中国科学院力学研究所 | Device for simultaneously observing morphology of crystal and measuring concentration field around crystal |
-
2002
- 2002-11-26 JP JP2002343093A patent/JP4178923B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004177238A (en) | 2004-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100819412B1 (en) | Defect detecting method and defect detecting device | |
US5379347A (en) | Method of inspecting the surface of a workpiece | |
JP2004294202A (en) | Defect detection method and device of screen | |
JP4776308B2 (en) | Image defect inspection apparatus, image defect inspection system, defect classification apparatus, and image defect inspection method | |
JPWO2007074770A1 (en) | Defect inspection equipment that performs defect inspection by image analysis | |
JP4743231B2 (en) | Appearance inspection method and appearance inspection apparatus | |
JP2002148195A (en) | Surface inspection apparatus and surface inspection method | |
JP4743230B2 (en) | Appearance inspection method and appearance inspection apparatus | |
JP2009198290A (en) | Flaw detection method and detector | |
JP4178923B2 (en) | Appearance inspection method and appearance inspection apparatus | |
JP3357001B2 (en) | Pattern inspection apparatus and pattern inspection method for semiconductor integrated device | |
JP2003167529A (en) | Method and device for picture defect detection, and program for picture defect detection | |
JP3890844B2 (en) | Appearance inspection method | |
JP7003669B2 (en) | Surface inspection equipment and surface inspection method | |
JP4322230B2 (en) | Surface defect inspection apparatus and surface defect inspection method | |
JP2710527B2 (en) | Inspection equipment for periodic patterns | |
JP3159063B2 (en) | Surface defect inspection equipment | |
JP5136277B2 (en) | Defect detection method for netted or lined glass | |
JP2003329428A (en) | Device and method for surface inspection | |
JP4978215B2 (en) | Machining surface defect judgment method | |
JP4403036B2 (en) | Soot detection method and apparatus | |
JP4244046B2 (en) | Image processing method and image processing apparatus | |
JP2014106141A (en) | Defect inspection device and defect inspection method | |
JP2004069673A (en) | Visual inspection apparatus and method thereof | |
JP2004286708A (en) | Defect detection apparatus, method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080229 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080805 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080818 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130905 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |