[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4176403B2 - Thin steel sheet for processing with excellent low-temperature bake hardenability and aging resistance - Google Patents

Thin steel sheet for processing with excellent low-temperature bake hardenability and aging resistance Download PDF

Info

Publication number
JP4176403B2
JP4176403B2 JP2002202631A JP2002202631A JP4176403B2 JP 4176403 B2 JP4176403 B2 JP 4176403B2 JP 2002202631 A JP2002202631 A JP 2002202631A JP 2002202631 A JP2002202631 A JP 2002202631A JP 4176403 B2 JP4176403 B2 JP 4176403B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
temperature
low
aging resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002202631A
Other languages
Japanese (ja)
Other versions
JP2004043884A (en
Inventor
隆史 岩間
哲雄 清水
敬 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002202631A priority Critical patent/JP4176403B2/en
Publication of JP2004043884A publication Critical patent/JP2004043884A/en
Application granted granted Critical
Publication of JP4176403B2 publication Critical patent/JP4176403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin steel sheet for working which has excellent low temperature seizure hardenability and aging resistance, and also has satisfactory workability. <P>SOLUTION: The steel sheet has a composition comprising, by mass, 0.0020 to 0.010% C, &le;1.0% Si, 0.05 to 1.5% Mn, &le;0.05% P, &le;0.02% S, &le;0.005% N, Al: 15&times;N(%) to 0.10% Al and Nb: 0.5&times;(93/12)&times;C(%) to (93/12)&times;(C(%)-0.001), and the balance Fe with inevitable impurities. The mean crystal grain diameter d of the steel sheet is controlled to 2 to 12 &mu;m, and also the low temperature seizure hardening index A expressed by the following formula (1) is controlled to &le;10: the formula (1) is shown by A=(12/93)&times;(Nb(%)/C(%))&times;d(&mu;m)-10&times;C*(%); wherein C*(%)=C(%)-(12/93)&times;Nb(%). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、主に自動車の車体用として好適な低温焼付硬化性および耐時効性に優れる加工用薄鋼板に関するものである。
すなわち、本発明は、曲げ加工やプレス成形加工、絞り成形加工などにおいて良好な特性を呈するだけでなく、特に低温での塗装焼付処理において高い焼付硬化性を示し、さらには耐時効性にも優れる加工用薄鋼板であり、表面処理鋼板などの用途にも有利に適合するものである。
【0002】
【従来の技術】
自動車用鋼板の中で、ドアやフェンダー等の外板部品には、板厚が比較的薄い鋼板が使用されるため、耐デント性および張り剛性が要求される。そのため、プレス成形−塗装焼付処理後に降伏強度が上昇する焼付硬化型鋼板(BH鋼板)が多用されている。
現在、塗料の焼付処理温度は、通常 170℃であるが、エネルギーコストの削減や環境保護の観点から、焼付温度の低温化が検討され始めており、低温焼付型(160 ℃程度)の塗料も開発されている。また、将来的には、さらに低温化することも予想されるため、それに対応した低温焼付硬化型鋼板の開発が必要となっている。
【0003】
低温焼付硬化性を付与するには、BH量を上昇させる、すなわちC量の増加が有効であることは既に知られているが、単にC量を増加するだけでは、耐常温時効性が劣化するため、プレス成形時にストレッチャーストレインによるシワが発生し易くなり、外観を損ねるため、外板部品としては致命的である。
【0004】
この観点から、従来より、鋼板の焼付硬化性と耐時効性を兼備させるために、各種の方法が提案されている。
例えば、特開平7−75803 号公報、特開2001−140038号公報および特開2001−200337号公報などには、調質圧延における伸び率を高めて常温時効劣化を抑制する方法が、また特開2000−336431号公報には、レーザー照射などにより鋼板表層に歪みを導入することで、常温時効の劣化を抑制する方法が提案されている。
【0005】
一方、低温焼付硬化性を向上させる技術としては、例えば特許第2560168 号公報や特開平6−73498 号公報には、鉄炭化物の析出物分布を制御する方法が、また特開平6−299289号公報には、熱延板のNbC析出を制御する方法が、さらに特許第2876966 号公報には、BとO添加量を適正化する方法がそれぞれ提案されており、いずれも優れた低温焼付硬化性を得られる旨が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記した特開平7−75803 号公報、特開2001−140038号公報、特開2001−200337号公報および特開2000−336431号公報に開示された既知技術で製造した冷延鋼板はいずれも、鋼板に歪み(可動転位)を導入することによって耐時効性の向上を図るものであるため、高BH化に従い、必要とされる歪量が大きくなる。
歪量を大きくするためには、調質圧延における伸び率を高める必要があるが、高張力鋼板では付与できる伸び率に限界があり、連続ラインでの製造は事実上困難となる。
それ故、高い焼付硬化性と優れた耐時効性とを同時に満足する鋼板は得られないという問題があった。
【0007】
一方、低温焼付硬化性に関して、特許第2560168 号公報や特開平6−73498 号公報に開示の技術は、低温での析出強化を利用して硬化する技術であり、耐デント性において必要な固溶C,Nと転位の固着により得られる降伏強度向上とは、技術内容が異なる。また、特開平6−299289号公報では、結晶粒内に固溶Cを多量に残存させることになるため、耐室温時効性の低下が懸念される。さらに、特許第2876966 号公報は、B添加により粒界に存在する固溶Cを減少させることで優れた低温焼付硬化性を得ようとするものであるが、これは結局、粒内の固溶Cを増加させることになるため、耐室温時効性を劣化させることになる。
【0008】
本発明は、上記の問題を有利に解決したもので、優れた低温焼付硬化性を有し、かつ良好な耐時効性を備え、しかも優れた加工性をも併せ持つ加工用薄鋼板を提案することを目的とする。
【0009】
【課題を解決するための手段】
さて、発明者らは、上記したような課題認識の下で、その解決に向け鋭意研究を重ねた結果、鋼の成分組成を、各成分間の相互関係も含めて適正範囲に調整すると共に、冷間圧延条件、冷延板の焼鈍条件および焼鈍後の冷却条件等の製造条件を制御することによって、上記の課題が有利に解決できることを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.0020〜0.010 %、
Si:1.0 %以下、
Mn:0.05〜0.52%、
P:0.05%以下、
S:0.02%以下、
N:0.005 %以下、
Al:15×N(%) 〜0.10%および
Nb:0.5 × (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕
を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼板の平均結晶粒径dが2〜12μm で、かつ下記(1) 式で表される低温焼付硬化指数Aが10以下であることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。

A= (12/93)×( Nb(%)/C(%) )×d(μm )−10×C* (%) --- (1)
但し、C* (%) =C(%) − (12/93)×Nb(%)
【0011】
2.質量%で、
C:0.0020〜0.010 %、
Si:1.0 %以下、
Mn:0.05〜0.52%、
P:0.05%以下、
S:0.02%以下、
N:0.005 %以下、
Al:0.01〜0.06%、
Nb:0.5 × (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕および
Ti: (48/14)×N(%) 〜 (48/12)×〔C(%) − (12/93)×Nb(%) −0.001 〕
+ (48/14)×N(%) + (48/32)×S(%)
を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼板の平均結晶粒径dが2〜12μm で、かつ下記(1) 式で表される低温焼付硬化指数Aが10以下であることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。

A= (12/93)×( Nb(%)/C(%) )×d(μm )−10×C* (%) --- (1)
但し、C* (%) =C(%) − (12/93)×Nb(%) − (12/48)×〔Ti(%) − (48/14)
×N(%) − (48/32)×S(%) 〕
【0012】
3.上記または2において、鋼板がさらに、質量%で
B:0.0030%以下
を含有する組成になることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。
【0013】
4.上記1〜3のいずれかにおいて、鋼板がさらに、質量%で
Cr:2.0 %以下、
Cu:2.0 %以下、
Ni:2.0 %以下および
Mo:1.0 %以下
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。
【0014】
以下、本発明を具体的に説明する。
まず、本発明を由来するに至った実験について説明する。
表1に示す成分組成になる5種の鋼材を、連続焼鈍ヒートパターン(焼鈍後の冷却条件)を種々に変化させて製造した板厚:0.8 mmの冷延鋼板について、低温焼付硬化指数A(後述)と 100℃, 140℃および 170℃での焼付硬化量(BH量)との関係について調査した。なお、上記の冷延鋼板は、表1に示した成分組成のシートバーを、1250℃に加熱・均熱後、Ar3変態点以上の仕上温度で熱間圧延を行い、600 ℃にて巻取り、続いて酸洗し、冷延圧下率:75〜80%の冷間圧延を行ったのち、 850℃の温度で連続焼鈍を施し、ついで冷却速度:20〜25℃/sの条件で冷却し、 480〜430 ℃の温度に 200〜250 秒保持後、10〜20℃/sの速度で冷却した後、 0.8±0.1 %の調質圧延を施して得たものである。
【0015】
上記の特性値のうち、焼付硬化量(BH量)は、JIS 5 号引張試験片を使用し、引張試験機にて 2.0%予ひずみ付加後、 100℃、 140℃、 170℃の温度でそれぞれ20分の熱処理を施した時の変形応力の上昇量を示したものである。本来は、170 ℃で20分の熱処理による応力上昇量をBH量と呼ぶが、この実験では便宜上、 100℃−BH、 140℃−BH、 170℃−BHと呼ぶことにする。より低温でのBH量が大きいほど低温焼付硬化性に優れていることを表す。また、BH量が30MPa 以上であれば良好な焼付硬化性を有しているといえる。
また、これらの特性値を求めるに際して用いた引張試験片の引張方向は、圧延方向に垂直な方向(C方向)とした。
さらに、圧延方向断面の結晶粒組織を光学顕微鏡により 400倍にて撮影し、その写真から、切断法により平均結晶粒径d(μm )を算出した。
そして、これらの値より、低温焼付硬化指数Aを次式(1) により算出した。
A= (12/93)×( Nb(%)/C(%) )×d(μm )−10×C* (%) --- (1)
但し、C* (%) =C(%) − (12/93)×Nb(%)
【0016】
図1に、得られた結果を示す。
同図から明らかなように、低温焼付硬化指数Aが低下すると共に、いずれの焼付け温度においても、BH量が増加する傾向にあることが分かる。
【0017】
さらに、同様の実験を重ねることにより、 100℃−BHで30 MPa以上を満足させるためには、低温焼付硬化指数Aを10以下とする必要があること、また鋼成分中とくにNbの含有量を 0.5× (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕の範囲に調整する必要があることが判明した。
なお、焼鈍時における最高加熱温度は 820〜Ar3変態点の温度範囲とすることが望ましいことも判明した。
【0018】
また、上記した成分の他、Tiを適正量添加した鋼板は、加工性がさらに向上すること、またBを適正量添加した鋼板は耐二次加工脆性がさらに向上すること、さらにCr, Ni, MoおよびCuのうちから選んだ1種または2種以上を適正量添加した鋼板は、加工性の劣化を抑制しつつ強度を向上させ得ることが、それぞれ見出された。
【0019】
上述したように、成分組成および再結晶焼鈍条件などを制御することにより、低温焼付硬化性が改善される理由については、次のように考えられる。
すなわち、NbをCに対して化学量論的当量程度添加した冷延鋼板を適正条件下で焼鈍することにより、熱延時にNb炭化物として析出固定されたCが、Nb炭化物の分解により固溶Cとして生成する。NbCの析出および固溶Cの存在などにより結晶粒を微細化させることで、粒界からのC拡散距離が比較的短い場合(低焼付温度)でも、粒内の転位と相互作用(硬化)が得られる、すなわち、低温焼付けにおいても所望の焼付硬化性が得られると考えられる。
なお、結晶粒の微細化手法については、上記したNbC析出物の分散以外に、変態点制御による方法なども使用可能で、特に限定されるものではない。
【0020】
また、製造過程において、高温域(約 600℃以上)ではPが結晶粒界に存在するため、通常固溶Cは結晶粒内へ存在し易くなるが、比較的少ないP添加量では結晶粒界へのP偏析が減少し、代わりにCが粒界に偏析し易い状況になると考えられる。すなわち粒界においてCとPのサイトコンペティションが起こり、粒界への分布割合が増加するのである。
それにより、良好な耐常温時効性も兼ね備えるものと推定される。
【0021】
つぎに、本発明において、鋼の成分組成を前記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.0020〜0.010 %
Cは、含有量が多くなると、加工性とくにr値および伸びの劣化を招き、その影響は 0.010%を超えると顕著になるのでCの上限は 0.010%とした。しかしながら、0.0020%未満では十分な低温焼付硬化量が得られないので、C量の下限は0.0020%とした。
【0022】
Si:1.0 %以下
Siは、鋼を強化する作用があり、所望の強度に応じて必要量添加されるが、含有量が 1.0%を超えると深絞り性および耐食性を劣化させるので、1.0 %以下で含有させるものとした。なお、好ましい添加範囲はめっき性や化成処理性を考慮すると0.50%以下である。
【0023】
Mn:0.05〜1.5 %
Mnは、Sに起因する熱間脆性の防止および鋼の強化に有効に寄与する。この熱間脆性の防止効果は0.05%以上で発現するが、1.5 %を超えて含有させると深絞り性が劣化するので、Mn量は0.05〜1.5 %の範囲に限定した。なお、めっき性の観点からは 1.0%以下とするのが好適である。また、熱間脆性の防止の観点からは Mn(%)/S(%) ≧10とするのが好ましい。
【0024】
P:0.05%以下
Pは、深絞り性をさほど劣化させずに鋼を強化する作用があり、所望の強度に応じて必要量添加される。しかしながら、含有量が0.05%を超えると耐常温時効性が劣化するだけでなく、粒界に多く偏析して脆化を引き起こすおそれがあるので、P量は0.05%以下の範囲に限定した。
【0025】
S:0.02%以下
Sは、熱間脆性の原因となる他、深絞り性にも悪影響を与えるので、少ないほど好ましい。これらの悪影響は含有量が0.02%を超えると顕著になるので、Sは0.02%以下に抑制するものとする。特に、プレス成形性の観点からは 0.005%以下とすることが好ましい。
【0026】
Al:15×N(%) 〜0.10%または0.01〜0.06%
Alは、Ti無添加鋼では脱酸および鋼中Nの析出固定のために添加される。この時、Alの添加量が15×N(%) 未満では十分な加工性が得られず、一方0.10%を超えるとやはり加工性を劣化させるばかりでなく、表面性状の劣化も招く。従って、Al量は15×N(%) 〜0.10%の範囲に限定した。好ましくはNを 0.003%以下としてAl:20×N(%) 〜0.08%の範囲である。
また、Ti添加鋼では、Ti添加により鋼中のNは析出固定されるため、Alは脱酸のためだけに必要となり、この場合にはAl量は0.01〜0.06%の範囲が好適である。
【0027】
N:0.005 %以下
Nは、深絞り性に悪影響を及ぼすだけでなく、多量のNは多量のAlを必要とし表面性状を劣化させるので、その含有量は少ないほどよい。特にN量が 0.005%を超えるとその悪影響が顕著になるので、Nは 0.005%以下、好ましくは 0.003%以下とする必要がある。
【0028】
Nb:0.5 × (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕
Nbは、焼鈍前の固溶Cを減少させることによって加工性を向上させるので、少なくとも 0.5× (93/12)×C(%) を添加する必要がある。一方、焼付硬化性を得るためには必要量の固溶Cを鋼板中に存在させなければならない。そのためには、以下の(2) 式を満たす必要があり、この式を変形するとNb量の上限は (93/12)×〔C(%) −0.001 〕となる。
* (%) =C(%) − (12/93)×Nb(%) ≧ 0.001 --- (2)
【0029】
Ti: (48/14)×N(%) 〜 (48/12)×〔C(%) − (12/93)×Nb(%) −0.001 〕+ (48/14)×N(%) + (48/32)×S(%)
Tiは、NさらにはSの析出固定のために添加するが、特にNの析出固定力がAlよりも強いために、加工性をより一層向上させる効果がある。この効果を得るためには、Tiの添加量は少なくともNの化学量論的等量程度とする必要があるので、添加する場合には (48/14)×N(%) 以上とした。一方、過剰に添加すると、Nbと同様に固溶Cの確保ができなくなる。焼付硬化性を得るためには必要量の固溶Cを鋼板中に存在させなければならず、そのためには、以下の(3) 式を満たす必要があり、この式を変形するとTi量の上限は (48/12)×〔C(%) − (12/93)×Nb(%) −0.001 〕+ (48/14)×N(%) + (48/32)×S(%) となる。
* (%) =C(%) − (12/93)×Nb(%) − (12/48)×〔Ti(%) − (48/14)×N(%)− (48/32)×S(%) 〕≧ 0.001 --- (3)
【0030】
以上、基本成分について説明したが、本発明ではその他にも、以下に述べる元素を適宜含有させることができる。
B:0.0030%以下
Bは、耐二次加工脆性をより一層改善するために添加してもよい。しかしながら、0.0030%を超えて添加すると加工性とくにr値を劣化させるので、B量の上限は0.0030%とする。なお、耐二次加工脆性改善のためには、B量は0.0002%以上とすることが好ましい。より好ましくは0.0003〜0.0020%の範囲である。
【0031】
Cr:2.0 %以下、Cu:2.0 以下%、Ni:2.0 %以下およびMo:1.0 %以下のうちから選んだ1種または2種以上
Cr,Cu,NiおよびMoはいずれも、鋼板の強化に有効であり、強度に応じて必要量を添加するが、過剰に添加すると加工性を低下させるので、それぞれ上記の範囲で含有させてもよい。強度の向上効果を得るためには、好ましくはCr:0.03〜1.0 %、Ni:0.03〜1.0 %、Mo:0.03〜0.50%、Cu:0.03〜1.0 %の範囲である。また、これらの総量は2.0 %以下、より好ましくは 1.5%以下とすることが望ましい。
【0032】
以上、本発明の好適成分組成範囲について説明したが、本発明は、成分組成を上記の範囲に限定するだけでは不十分で、結晶粒径を所定の範囲に制御することも重要である。
平均結晶粒径d:2〜12μm
平均結晶粒径は、本発明において重要な因子である。すなわち、焼付け温度の低温化によりCの拡散距離が短くなること、耐常温時効性の観点から結晶粒界にCを多く存在させること、結晶粒内の転位と固溶Cの相互作用が焼付け硬化に寄与することを考慮すると、結晶粒を微細化させることが重要である。
ここに、鋼板の平均結晶粒径dが12μm を超えると、低温での焼付硬化量が不十分となり、一方2μm 未満では、延性およびr値が低下するため、加工性が低下する。従って、鋼板の平均結晶粒径dは2〜12μm の範囲に限定した。
【0033】
また、本発明では、次式で示す低温焼付硬化指数Aを適正範囲に制御することも重要である。
低温焼付硬化指数A= (12/93)×( Nb(%)/C(%) )×d−10×C* (%) ≦10
この低温焼付硬化指数Aは、低温での焼付硬化能の指標として有効で、この指数Aが10超では、前掲図1に示したように十分満足いくほどの焼付硬化量(BH量)が得られない。
そこで、本発明では、上掲式で示される低温焼付硬化指数Aを10以下に制限したのである。
【0034】
次に、本発明の好適製造条件について、その主要要件の限定理由と共に説明する。
まず、熱間圧延については、とくに限定する必要がないが、加工性の向上を目的として以下の製造方法とすることが好ましい。
すなわち、スラブ加熱温度は1150〜1250℃の温度範囲が好ましい。熱延仕上温度は、加工性の観点からはAr3変態点直上すなわちAr3〜(Ar3+20)℃程度とするのが好ましい。また、仕上圧延直後に急冷処理を施しても構わない。さらに、コイル巻取り温度は 600℃以上が好ましい。なお、省エネルギーの観点から、連続鋳造スラブを再加熱または連続鋳造後Ar3変態点以下の温度に降温することなく、直ちにもしくは保温処理を施した後、粗圧延を行っても、何ら差し支えない。
【0035】
冷間圧延圧下率:60〜90%
冷間圧延における圧下率が、60%に満たないと十分な加工性が得らず、一方90%を超えても加工性に好ましい集合組織が十分に発達せず、加工性の劣化を招くので、圧下率は60〜90%、好ましくは75〜85%の範囲とすることが望ましい。
【0036】
焼鈍温度:最高加熱温度が 820〜Ac3変態点の温度範囲
焼鈍工程は、本発明において重要な工程であり、{111}再結晶集合組織を発達させr値を高めると共に、焼付硬化性の付与に大きな役割を果たす。すなわち、この焼鈍の最高加熱温度が 820℃未満では、熱延時に析出したNb炭化物の分解が不十分となり、十分な焼付硬化性が得られない。一方、最高加熱温度がAc3変態点を超えると、加熱時に多量のオーステナイトを形成し、冷却過程においてオーステナイトからフェライトヘの変態が生じ、再結晶集合組織がランダム化するため、低いr値しか得られない。さらに、結晶粒の粗大化により十分な低温焼付硬化性が得られない。
従って、焼鈍温度は、最高加熱温度が 820〜Ac3変態点の温度範囲とするのが有利である。
【0037】
焼鈍後の冷却:冷却速度20℃/s以上
焼鈍後の冷却工程も、本発明において重要な工程であり、上記の焼鈍により分解したNb炭化物を再析出させないためには、少なく焼鈍後の冷却速度を20℃/s以上、好ましくは30℃/s以上とすることが好ましい。なお、上記の焼鈍に用いる設備については特に定める必要がないが、生産性やコストなどの面からは連続焼鈍ラインあるいは溶融亜鉛めっきラインが望ましい。
【0038】
500 〜150 ℃の温度範囲に60〜400 s保持
この工程が、本発明で最も重要な工程である。
すなわち、上記の温度範囲に適正時間保持することによって、粒界への固溶Cの拡散を促進し、粒界Cを増加させることで、耐室温時効性を向上させるという優れた効果を得ることができる。
より好ましくは 500〜400 ℃の温度範囲で 100〜300 秒の処理である。なお、上記の保持処理において Fe3Cの析出温度域である 200〜400 ℃の範囲は極力回避することが有利である。
【0039】
調質圧延圧下率:0.3 〜1.5 %
上述した方法で製造した焼鈍−冷却後の冷延鋼板に調質圧延を行う。ここに、圧下率が 0.3%未満では降伏伸び防止効果が得られず、一方 1.5%を超えると伸びの低下など加工性の劣化を招くので、調質圧延における圧下率は 0.3〜1.5 %とするのが望ましい。好ましくは 0.6〜1.0 %の範囲である。
【0040】
かくして得られた、この冷延鋼板は、電気めっきラインに通板しても、その材料特性は変化しないので、焼鈍後に各種の電気めっさを施してもよい。さらに、化成処理性、溶接性、プレス成形性および耐食性などの改善のために、特殊な処理を施しても構わない。
【0041】
また、本発明の薄鋼板は、溶融亜鉛めっき鋼板の製造に適用しても材料特性は実質的に変化しないので、焼鈍後に溶融めっきおよび合金化溶融亜鉛めっさを施しても良い。この製造には、前述した溶融亜鉛めっきラインを利用するのが最も効率的である。さらに、この表面処理鋼板に、化成処理性、溶接性、プレス成形性および耐食性などの改善のために、特殊な処理を施しても構わない。
【0042】
【実施例】
表2に示す成分組成になる鋼スラブを、1200℃に加熱・均熱後、熱間粗圧延ついで熱間仕上圧延を行ったのち、630 ℃でコイルに巻き取った。ついで、得られた熱延板を、酸洗後、表3に示す冷延圧下率にて冷間圧延し、各板厚としたのち、同じく表3に示す条件で再結晶焼鈍を行った。その後、さらに表3に示す条件で、 400〜500 ℃の温度域での保持処理および調質圧延を施した。
かくして得られた薄鋼板の引張特性、BH量、平均結晶粒径、低温焼付硬化指数Aおよび耐時効性について調べた結果を表4に示す。
【0043】
ここに、引張特性はJIS 5 号引張試験片を使用して測定し、ランクフォード値(r値)は15%の引張予歪を与えたのち、3 点法にて測定した。r値は、L方向(圧延方向)、D方向(圧延方向に対し45°の方向)およびC方向(圧延方向に対し90°の方向)の平均値で表した。
また、 170℃−BHおよび 100℃−BH、平均結晶粒径、低温焼付硬化指数Aについては、前述した実験と同じ方法に従って測定、算出した。
さらに、耐時効性の良否の判断のため、40℃×20日間(常温6ヶ月に相当)の促進時効処理後、上述と同じ引張試験を行い、Y-Elを測定した。
【0044】
【表1】

Figure 0004176403
【0045】
【表2】
Figure 0004176403
【0046】
【表3】
Figure 0004176403
【0047】
【表4】
Figure 0004176403
【0048】
表4から明かなように、本発明に従い得られた発明例はいずれも、平均結晶粒径が5〜12μm 、低温焼付硬化指数Aが10以下で、しかも 100℃−BHで示される低温焼付硬化量が30 MPa以上でかつ常温6ヶ月相当時効後のY-Elが 0.6以下と良好であった。また、r値で代表される加工性にも優れていた。
これに対し、本発明の適正範囲を逸脱する比較例はいずれも、低温焼付硬化性が十分ではないか、耐時効性が十分ではなかった。
【0049】
【発明の効果】
かくして、本発明によれば、 100℃−BHが30 MPa以上、常温6ヶ月時効後のY-ELが 0.6%以下、r値が 1.6以上という、優れた低温焼付硬化性と耐時効性を有し、かつ良好な加工性を兼ね備える加工用薄鋼板を得ることができる。
従って、本発明によれば、自動車鋼板として、その軽量化および安全性の向上に大きく貢献する。
【図面の簡単な説明】
【図1】 低温焼付硬化指数Aと焼付硬化量(BH量)との関係を示した図である。[0001]
[Industrial application fields]
The present invention relates to a thin steel sheet for processing that is excellent in low-temperature bake hardenability and aging resistance, which is suitable mainly for automobile bodies.
That is, the present invention not only exhibits good characteristics in bending, press molding, drawing, and the like, but also exhibits high bake hardenability, particularly in low-temperature paint baking treatments, and is excellent in aging resistance. It is a thin steel sheet for processing, and is advantageously adapted to applications such as surface-treated steel sheets.
[0002]
[Prior art]
Among steel plates for automobiles, steel plates having a relatively thin plate thickness are used for outer plate parts such as doors and fenders, so that dent resistance and stiffness are required. Therefore, a bake hardened steel plate (BH steel plate) whose yield strength increases after press forming and paint baking is frequently used.
Currently, the baking temperature of paint is normally 170 ° C, but from the viewpoint of reducing energy costs and protecting the environment, lowering of baking temperature is being studied, and low-temperature baking type (about 160 ° C) paint has also been developed. Has been. In the future, it is expected that the temperature will be further lowered. Therefore, it is necessary to develop a low-temperature bake-hardening type steel sheet corresponding to that.
[0003]
In order to impart low temperature bake hardenability, it is already known that increasing the amount of BH, that is, increasing the amount of C is effective, but simply increasing the amount of C deteriorates room temperature aging resistance. For this reason, wrinkles due to stretcher strain are likely to occur during press molding, and the appearance is impaired.
[0004]
From this viewpoint, conventionally, various methods have been proposed in order to combine the bake hardenability and aging resistance of a steel sheet.
For example, JP-A-7-75803, JP-A-2001-140038, and JP-A-2001-200337 disclose a method for increasing the elongation in temper rolling to suppress normal temperature aging deterioration. Japanese Patent No. 2000-336431 proposes a method of suppressing deterioration of normal temperature aging by introducing strain into a steel sheet surface layer by laser irradiation or the like.
[0005]
On the other hand, as a technique for improving low-temperature bake hardenability, for example, in Japanese Patent No. 2560168 and Japanese Patent Laid-Open No. 6-73498, there is a method for controlling the precipitate distribution of iron carbide, and Japanese Patent Laid-Open No. 6-299289. Have proposed a method for controlling the precipitation of NbC in the hot-rolled sheet and a method for optimizing the amounts of B and O added to Japanese Patent No. 2876966, both of which have excellent low-temperature bake hardenability. It is disclosed that it is obtained.
[0006]
[Problems to be solved by the invention]
However, any of the cold-rolled steel sheets manufactured by the known techniques disclosed in the above-mentioned JP-A-7-75803, JP-A-2001-140038, JP-A-2001-33737 and JP-A-2000-336431 is used. Since the aging resistance is improved by introducing strain (movable dislocation) into the steel plate, the required amount of strain increases as the BH increases.
In order to increase the amount of strain, it is necessary to increase the elongation in temper rolling, but there is a limit to the elongation that can be imparted with a high-strength steel sheet, and production in a continuous line becomes practically difficult.
Therefore, there has been a problem that a steel sheet satisfying both high bake hardenability and excellent aging resistance cannot be obtained.
[0007]
On the other hand, with respect to low temperature bake hardenability, the techniques disclosed in Japanese Patent No. 2560168 and Japanese Patent Laid-Open No. 6-73498 are techniques that harden using precipitation strengthening at a low temperature, and are required for the solid solution required for dent resistance. The technical content is different from the improvement in yield strength obtained by fixing C, N and dislocations. In JP-A-6-299289, a large amount of solid solution C remains in the crystal grains, and there is a concern that the room temperature aging resistance is lowered. Further, Japanese Patent No. 2876966 attempts to obtain excellent low-temperature bake hardenability by reducing the solid solution C existing at the grain boundary by adding B. Since C is increased, the room temperature aging resistance is deteriorated.
[0008]
The present invention is an advantageous solution of the above problems, and proposes a thin steel sheet for processing having excellent low-temperature bake hardenability, good aging resistance, and excellent workability. With the goal.
[0009]
[Means for Solving the Problems]
Now, as a result of earnestly researching the solution under the above-mentioned problem recognition, the inventors have adjusted the component composition of steel to an appropriate range including the interrelationship between each component, The inventors have found that the above problems can be advantageously solved by controlling the cold rolling conditions, the annealing conditions of the cold-rolled sheet, and the cooling conditions after the annealing, and have completed the present invention.
[0010]
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.0020 to 0.010%,
Si: 1.0% or less,
Mn: 0.05 to 0.52 %,
P: 0.05% or less,
S: 0.02% or less,
N: 0.005% or less,
Al: 15 × N (%) to 0.10% and
Nb: 0.5 × (93/12) × C (%) to (93/12) × [C (%) − 0.001]
The balance is Fe and inevitable impurities, the steel sheet has an average grain size d of 2 to 12 μm, and a low-temperature bake hardening index A expressed by the following formula (1) is 10 or less. A thin steel sheet for processing having excellent low temperature bake hardenability and aging resistance.
A = (12/93) × (Nb (%) / C (%)) × d (μm) −10 × C * (%) --- (1)
However, C * (%) = C (%)-(12/93) x Nb (%)
[0011]
2. % By mass
C: 0.0020 to 0.010%,
Si: 1.0% or less,
Mn: 0.05 to 0.52 %,
P: 0.05% or less,
S: 0.02% or less,
N: 0.005% or less,
Al: 0.01-0.06%,
Nb: 0.5 × (93/12) × C (%) to (93/12) × [C (%) − 0.001] and
Ti: (48/14) × N (%) to (48/12) × [C (%) − (12/93) × Nb (%) −0.001]
+ (48/14) x N (%) + (48/32) x S (%)
The balance is Fe and inevitable impurities, the steel sheet has an average grain size d of 2 to 12 μm, and a low-temperature bake hardening index A expressed by the following formula (1) is 10 or less. A thin steel sheet for processing having excellent low temperature bake hardenability and aging resistance.
A = (12/93) × (Nb (%) / C (%)) × d (μm) −10 × C * (%) --- (1)
However, C * (%) = C (%)-(12/93) x Nb (%)-(12/48) x [Ti (%)-(48/14)
× N (%) − (48/32) × S (%)]
[0012]
3. A thin steel sheet for processing having excellent low-temperature bake hardenability and aging resistance, wherein the steel sheet further comprises a composition containing B: 0.0030% or less by mass%.
[0013]
4). In any one of the above 1-3, the steel sheet is further in mass%.
Cr: 2.0% or less,
Cu: 2.0% or less,
Ni: 2.0% or less and
Mo: A thin steel sheet for processing excellent in low-temperature bake hardenability and aging resistance, characterized in that the composition contains one or more selected from 1.0% or less.
[0014]
The present invention will be specifically described below.
First, the experiment that led to the present invention will be described.
Five types of steel materials having the composition shown in Table 1 were manufactured by changing the continuous annealing heat pattern (cooling conditions after annealing) in various ways. The relationship between the baking hardening amount (BH amount) at 100 ° C., 140 ° C. and 170 ° C. was investigated. The above cold-rolled steel sheet is heated and soaked at 1250 ° C after the sheet bar having the composition shown in Table 1 is hot-rolled at a finishing temperature not lower than the Ar 3 transformation point and wound at 600 ° C. , Followed by pickling, cold rolling with a cold rolling reduction: 75-80%, followed by continuous annealing at a temperature of 850 ° C, followed by cooling at a cooling rate of 20-25 ° C / s Then, after holding at a temperature of 480 to 430 ° C. for 200 to 250 seconds, cooling at a rate of 10 to 20 ° C./s, temper rolling at 0.8 ± 0.1% was performed.
[0015]
Among the above characteristic values, the bake hardening amount (BH amount) is JIS No. 5 tensile test piece, and after applying 2.0% pre-strain with a tensile tester, the temperatures are 100 ° C, 140 ° C and 170 ° C, respectively. It shows the amount of increase in deformation stress when heat treatment is performed for 20 minutes. Originally, the amount of stress increase due to heat treatment at 170 ° C. for 20 minutes is called the BH amount, but for convenience in this experiment, it will be called 100 ° C.-BH, 140 ° C.-BH, 170 ° C.-BH. The larger the amount of BH at a lower temperature, the better the low-temperature bake hardenability. Moreover, if the amount of BH is 30 MPa or more, it can be said that it has good bake hardenability.
In addition, the tensile direction of the tensile specimen used for obtaining these characteristic values was the direction perpendicular to the rolling direction (C direction).
Further, the crystal grain structure of the cross section in the rolling direction was photographed at 400 times with an optical microscope, and the average crystal grain diameter d (μm) was calculated from the photograph by a cutting method.
From these values, the low-temperature bake hardening index A was calculated by the following equation (1).
A = (12/93) × (Nb (%) / C (%)) × d (μm) −10 × C * (%) --- (1)
However, C * (%) = C (%)-(12/93) x Nb (%)
[0016]
FIG. 1 shows the obtained results.
As is clear from the figure, it can be seen that the low-temperature bake hardening index A decreases and the BH amount tends to increase at any baking temperature.
[0017]
Furthermore, by repeating the same experiment, in order to satisfy 30 MPa or more at 100 ° C.-BH, it is necessary to set the low-temperature bake hardening index A to 10 or less, and particularly the Nb content in the steel components. It was found that it was necessary to adjust to the range of 0.5 × (93/12) × C (%) to (93/12) × [C (%) − 0.001].
It has also been found that the maximum heating temperature during annealing is preferably in the temperature range of 820 to Ar 3 transformation point.
[0018]
In addition to the above components, a steel sheet added with an appropriate amount of Ti further improves workability, and a steel sheet added with an appropriate amount of B further improves secondary work brittleness resistance, and Cr, Ni, It has been found that steel sheets to which an appropriate amount of one or more selected from Mo and Cu are added can improve the strength while suppressing deterioration of workability.
[0019]
As described above, the reason why the low-temperature bake hardenability is improved by controlling the component composition, recrystallization annealing conditions, and the like is considered as follows.
That is, by annealing a cold-rolled steel sheet to which Nb is added in a stoichiometric equivalent with respect to C under appropriate conditions, C precipitated and fixed as Nb carbide during hot rolling becomes solid solution C by decomposition of Nb carbide. Generate as By refining crystal grains due to the precipitation of NbC and the presence of solid solution C, dislocation and interaction (hardening) within the grains can be achieved even when the C diffusion distance from the grain boundary is relatively short (low baking temperature). It is considered that the desired bake hardenability can be obtained even in low temperature baking.
In addition to the dispersion of the NbC precipitates described above, a method of controlling the transformation point can be used as the crystal grain refinement method, and is not particularly limited.
[0020]
In addition, in the manufacturing process, P exists at the crystal grain boundary in a high temperature range (about 600 ° C. or higher), so that normally solid solution C tends to exist in the crystal grain. It is considered that P segregation on the surface decreases, and instead C easily segregates at the grain boundaries. That is, C and P site competition occurs at the grain boundary, and the distribution ratio to the grain boundary increases.
Thereby, it is estimated that it also has favorable normal temperature aging resistance.
[0021]
Next, the reason why the component composition of steel is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.0020 to 0.010%
When the content of C increases, the workability, in particular, the r-value and the elongation deteriorate, and the effect becomes significant when the content exceeds 0.010%. Therefore, the upper limit of C is set to 0.010%. However, if it is less than 0.0020%, a sufficient low-temperature bake hardening amount cannot be obtained, so the lower limit of the C amount is set to 0.0020%.
[0022]
Si: 1.0% or less
Si has the effect of strengthening steel, and is added in the required amount depending on the desired strength. However, if the content exceeds 1.0%, the deep drawability and corrosion resistance deteriorate, so it should be contained at 1.0% or less. did. A preferable addition range is 0.50% or less in consideration of plating properties and chemical conversion treatment properties.
[0023]
Mn: 0.05-1.5%
Mn effectively contributes to prevention of hot brittleness caused by S and strengthening of steel. This hot brittleness prevention effect is manifested at 0.05% or more, but if it exceeds 1.5%, the deep drawability deteriorates, so the Mn content was limited to the range of 0.05 to 1.5%. From the viewpoint of plating properties, 1.0% or less is preferable. Further, from the viewpoint of preventing hot brittleness, it is preferable that Mn (%) / S (%) ≧ 10.
[0024]
P: 0.05% or less P has an effect of strengthening steel without significantly degrading the deep drawability, and is added in a necessary amount depending on the desired strength. However, if the content exceeds 0.05%, not only the aging resistance at normal temperature deteriorates, but also there is a risk of segregation at the grain boundaries to cause embrittlement. Therefore, the P content is limited to a range of 0.05% or less.
[0025]
S: 0.02% or less S is more preferable as it is less because it causes hot brittleness and also adversely affects deep drawability. Since these adverse effects become prominent when the content exceeds 0.02%, S is suppressed to 0.02% or less. In particular, from the viewpoint of press formability, it is preferably 0.005% or less.
[0026]
Al: 15 × N (%) -0.10% or 0.01-0.06%
Al is added for deoxidation and precipitation fixation of N in steel in Ti-free steel. At this time, if the added amount of Al is less than 15 × N (%), sufficient workability cannot be obtained. On the other hand, if it exceeds 0.10%, not only the workability is deteriorated but also the surface properties are deteriorated. Therefore, the Al content is limited to the range of 15 × N (%) to 0.10%. Preferably, N is 0.003% or less, and Al: 20 × N (%) to 0.08%.
Further, in Ti-added steel, N in the steel is precipitated and fixed by adding Ti, so Al is necessary only for deoxidation. In this case, the Al content is preferably in the range of 0.01 to 0.06%.
[0027]
N: 0.005% or less N not only adversely affects deep drawability, but a large amount of N requires a large amount of Al and deteriorates the surface properties, so the smaller the content, the better. In particular, when the amount of N exceeds 0.005%, the adverse effect becomes remarkable. Therefore, N must be 0.005% or less, preferably 0.003% or less.
[0028]
Nb: 0.5 × (93/12) × C (%) to (93/12) × [C (%) − 0.001]
Since Nb improves workability by reducing the solid solution C before annealing, it is necessary to add at least 0.5 × (93/12) × C (%). On the other hand, in order to obtain bake hardenability, a necessary amount of solid solution C must be present in the steel sheet. For that purpose, it is necessary to satisfy the following equation (2). When this equation is modified, the upper limit of the Nb amount is (93/12) × [C (%) − 0.001].
C * (%) = C (%)-(12/93) x Nb (%) ≥ 0.001 --- (2)
[0029]
Ti: (48/14) × N (%) to (48/12) × [C (%) − (12/93) × Nb (%) − 0.001] + (48/14) × N (%) + (48/32) x S (%)
Ti is added for the precipitation fixation of N and S, but since the precipitation fixation force of N is particularly stronger than that of Al, there is an effect of further improving the workability. In order to obtain this effect, the addition amount of Ti must be at least about the stoichiometric amount of N. Therefore, when it is added, it is set to (48/14) × N (%) or more. On the other hand, when added excessively, solid solution C cannot be ensured similarly to Nb. In order to obtain bake hardenability, the required amount of solute C must be present in the steel sheet. For this purpose, the following formula (3) must be satisfied. Is (48/12) x [C (%)-(12/93) x Nb (%) -0.001] + (48/14) x N (%) + (48/32) x S (%) .
C * (%) = C (%)-(12/93) x Nb (%)-(12/48) x [Ti (%)-(48/14) x N (%)-(48/32) × S (%)] ≧ 0.001 --- (3)
[0030]
The basic components have been described above. However, in the present invention, other elements described below can be appropriately contained.
B: 0.0030% or less B may be added to further improve the secondary work brittleness resistance. However, if added over 0.0030%, the workability, particularly the r value, deteriorates, so the upper limit of the B amount is set to 0.0030%. In order to improve the secondary work brittleness resistance, the B content is preferably 0.0002% or more. More preferably, it is 0.0003 to 0.0020% of range.
[0031]
One or more selected from Cr: 2.0% or less, Cu: 2.0% or less, Ni: 2.0% or less, and Mo: 1.0% or less
Cr, Cu, Ni and Mo are all effective for strengthening the steel sheet, and the necessary amount is added depending on the strength. However, if added excessively, the workability will be reduced, so each may be contained in the above range. Good. In order to obtain the effect of improving the strength, the range is preferably Cr: 0.03-1.0%, Ni: 0.03-1.0%, Mo: 0.03-0.50%, Cu: 0.03-1.0%. Also, the total amount of these is desirably 2.0% or less, more preferably 1.5% or less.
[0032]
Although the preferred component composition range of the present invention has been described above, it is not sufficient for the present invention to limit the component composition to the above range, and it is also important to control the crystal grain size within a predetermined range.
Average crystal grain size d: 2 to 12 μm
The average crystal grain size is an important factor in the present invention. That is, the diffusion distance of C is shortened by lowering the baking temperature, the presence of a large amount of C in the grain boundary from the viewpoint of normal temperature aging resistance, and the interaction between dislocations and solid solution C in the crystal grain is bake hardening. It is important to make the crystal grains finer in view of contributing to the above.
Here, if the average crystal grain size d of the steel sheet exceeds 12 μm, the bake hardening amount at a low temperature becomes insufficient. On the other hand, if it is less than 2 μm, the ductility and the r value decrease, so the workability decreases. Therefore, the average crystal grain size d of the steel sheet is limited to the range of 2 to 12 μm.
[0033]
In the present invention, it is also important to control the low-temperature bake hardening index A represented by the following formula within an appropriate range.
Low temperature bake hardening index A = (12/93) × (Nb (%) / C (%)) × d−10 × C * (%) ≦ 10
This low-temperature bake hardening index A is effective as an index of bake hardenability at low temperatures. When this index A exceeds 10, a bake hardening amount (BH amount) that is sufficiently satisfactory as shown in FIG. 1 is obtained. I can't.
Therefore, in the present invention, the low-temperature bake hardening index A shown by the above formula is limited to 10 or less.
[0034]
Next, the preferable manufacturing conditions of the present invention will be described together with the reasons for limiting the main requirements.
First, although it is not necessary to specifically limit hot rolling, it is preferable to use the following manufacturing method for the purpose of improving workability.
That is, the slab heating temperature is preferably in the temperature range of 1150 to 1250 ° C. The hot rolling finishing temperature is preferably just above the Ar 3 transformation point, that is, about Ar 3 to (Ar 3 +20) ° C. from the viewpoint of workability. Moreover, you may perform a rapid cooling process immediately after finish rolling. Furthermore, the coil winding temperature is preferably 600 ° C. or higher. From the viewpoint of energy saving, the continuous casting slab may be subjected to rough rolling immediately or after heat treatment without reheating or lowering the temperature to the Ar 3 transformation point or less after continuous casting.
[0035]
Cold rolling reduction: 60-90%
If the rolling reduction in cold rolling is less than 60%, sufficient workability will not be obtained. On the other hand, if it exceeds 90%, a favorable texture for workability will not be sufficiently developed, resulting in deterioration of workability. The rolling reduction is desirably 60 to 90%, preferably 75 to 85%.
[0036]
Annealing temperature: An annealing process in which the maximum heating temperature is 820 to Ac 3 transformation point is an important process in the present invention, and a {111} recrystallized texture is developed to increase the r value and impart bake hardenability. It plays a big role. That is, when the maximum heating temperature of this annealing is less than 820 ° C., decomposition of Nb carbide precipitated during hot rolling becomes insufficient, and sufficient bake hardenability cannot be obtained. On the other hand, when the maximum heating temperature exceeds the Ac 3 transformation point, a large amount of austenite is formed during heating, transformation from austenite to ferrite occurs in the cooling process, and the recrystallized texture is randomized, so only a low r value is obtained. I can't. Furthermore, sufficient low-temperature bake hardenability cannot be obtained due to the coarsening of crystal grains.
Therefore, it is advantageous that the annealing temperature is in the temperature range where the maximum heating temperature is 820 to Ac 3 transformation point.
[0037]
Cooling after annealing: Cooling rate of 20 ° C / s or more The cooling step after annealing is also an important step in the present invention, and in order not to reprecipitate the Nb carbide decomposed by the above annealing, the cooling rate after annealing is small. Is 20 ° C./s or higher, preferably 30 ° C./s or higher. The equipment used for the annealing is not particularly required, but a continuous annealing line or a hot dip galvanizing line is desirable in terms of productivity and cost.
[0038]
Holding for 60 to 400 s in a temperature range of 500 to 150 ° C. This step is the most important step in the present invention.
That is, by maintaining the above temperature range for an appropriate time, the diffusion of the solid solution C to the grain boundary is promoted, and by increasing the grain boundary C, an excellent effect of improving room temperature aging resistance can be obtained. Can do.
More preferably, the treatment is performed in a temperature range of 500 to 400 ° C. for 100 to 300 seconds. In the above holding treatment, it is advantageous to avoid as much as possible the range of 200 to 400 ° C., which is the precipitation temperature range of Fe 3 C.
[0039]
Temper rolling reduction ratio: 0.3-1.5%
Temper rolling is performed on the cold-rolled steel sheet after annealing and cooling produced by the method described above. Here, if the rolling reduction is less than 0.3%, the yield elongation preventing effect cannot be obtained. On the other hand, if it exceeds 1.5%, workability deterioration such as a reduction in elongation is caused, so the rolling reduction in temper rolling is 0.3 to 1.5%. Is desirable. Preferably it is 0.6 to 1.0% of range.
[0040]
Even if the cold-rolled steel sheet thus obtained is passed through an electroplating line, the material properties thereof do not change, and therefore various types of electric plating may be applied after annealing. Furthermore, special treatments may be applied to improve chemical conversion properties, weldability, press formability, corrosion resistance, and the like.
[0041]
In addition, since the material properties of the thin steel plate of the present invention do not substantially change even when applied to the manufacture of a hot dip galvanized steel plate, hot dip galvanizing and alloying hot dip galvanizing may be performed after annealing. For this production, it is most efficient to use the aforementioned hot dip galvanizing line. Furthermore, this surface-treated steel sheet may be subjected to a special treatment for improving chemical conversion properties, weldability, press formability, corrosion resistance, and the like.
[0042]
【Example】
A steel slab having the composition shown in Table 2 was heated and soaked to 1200 ° C, hot rough rolled and then hot finished rolled, and then wound on a coil at 630 ° C. Subsequently, the obtained hot-rolled sheet was pickled and then cold-rolled at the cold rolling reduction shown in Table 3 to obtain each sheet thickness, and then recrystallized and annealed under the conditions shown in Table 3. Then, the holding | maintenance process and temper rolling in the temperature range of 400-500 degreeC were performed on the conditions shown in Table 3.
Table 4 shows the results of examining the tensile properties, BH amount, average crystal grain size, low-temperature bake hardening index A, and aging resistance of the thin steel sheet thus obtained.
[0043]
Here, the tensile properties were measured using a JIS No. 5 tensile test piece, and the Rankford value (r value) was measured by a three-point method after giving a tensile pre-strain of 15%. The r value was expressed as an average value in the L direction (rolling direction), the D direction (45 ° direction with respect to the rolling direction), and the C direction (90 ° direction with respect to the rolling direction).
Moreover, about 170 degreeC-BH and 100 degreeC-BH, an average crystal grain diameter, and the low-temperature bake hardening index A, it measured and computed according to the same method as the experiment mentioned above.
Furthermore, in order to judge whether the aging resistance was good or not, after the accelerated aging treatment at 40 ° C. for 20 days (corresponding to normal temperature of 6 months), the same tensile test as described above was performed to measure Y-El.
[0044]
[Table 1]
Figure 0004176403
[0045]
[Table 2]
Figure 0004176403
[0046]
[Table 3]
Figure 0004176403
[0047]
[Table 4]
Figure 0004176403
[0048]
As is clear from Table 4, all of the inventive examples obtained according to the present invention have an average crystal grain size of 5 to 12 μm, a low-temperature bake hardening index A of 10 or less, and low-temperature bake hardening represented by 100 ° C.-BH. The amount was 30 MPa or more and the Y-El after aging corresponding to room temperature for 6 months was as good as 0.6 or less. Moreover, the processability represented by the r value was also excellent.
On the other hand, any of the comparative examples that deviate from the appropriate range of the present invention has insufficient low-temperature bake hardenability or insufficient aging resistance.
[0049]
【The invention's effect】
Thus, according to the present invention, 100 ° C.-BH is 30 MPa or more, Y-EL after aging at room temperature for 6 months is 0.6% or less, and r value is 1.6 or more. In addition, a thin steel sheet for processing having good workability can be obtained.
Therefore, according to this invention, it contributes greatly to the weight reduction and safety | security improvement as an automotive steel plate.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between a low-temperature bake hardening index A and a bake hardening amount (BH amount).

Claims (4)

質量%で、
C:0.0020〜0.010 %、
Si:1.0 %以下、
Mn:0.05〜0.52%、
P:0.05%以下、
S:0.02%以下、
N:0.005 %以下、
Al:15×N(%) 〜0.10%および
Nb:0.5 × (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕
を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼板の平均結晶粒径dが2〜12μm で、かつ下記(1) 式で表される低温焼付硬化指数Aが10以下であることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。

A= (12/93)×( Nb(%)/C(%) )×d(μm )−10×C* (%) --- (1)
但し、C* (%) =C(%) − (12/93)×Nb(%)
% By mass
C: 0.0020 to 0.010%,
Si: 1.0% or less,
Mn: 0.05 to 0.52 %,
P: 0.05% or less,
S: 0.02% or less,
N: 0.005% or less,
Al: 15 × N (%) to 0.10% and
Nb: 0.5 × (93/12) × C (%) to (93/12) × [C (%) − 0.001]
The balance is Fe and inevitable impurities, the steel sheet has an average grain size d of 2 to 12 μm, and a low-temperature bake hardening index A expressed by the following formula (1) is 10 or less. A thin steel sheet for processing having excellent low temperature bake hardenability and aging resistance.
A = (12/93) × (Nb (%) / C (%)) × d (μm) −10 × C * (%) --- (1)
However, C * (%) = C (%)-(12/93) x Nb (%)
質量%で、
C:0.0020〜0.010 %、
Si:1.0 %以下、
Mn:0.05〜0.52%、
P:0.05%以下、
S:0.02%以下、
N:0.005 %以下、
Al:0.01〜0.06%、
Nb:0.5 × (93/12)×C(%) 〜 (93/12)×〔C(%) −0.001 〕および
Ti: (48/14)×N(%) 〜 (48/12)×〔C(%) − (12/93)×Nb(%) −0.001 〕
+ (48/14)×N(%) + (48/32)×S(%)
を含有し、残部はFeおよび不可避的不純物の組成になり、さらに鋼板の平均結晶粒径dが2〜12μm で、かつ下記(1) 式で表される低温焼付硬化指数Aが10以下であることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。

A= (12/93)×( Nb(%)/C(%) )×d(μm )−10×C* (%) --- (1)
但し、C* (%) =C(%) − (12/93)×Nb(%) − (12/48)×〔Ti(%) − (48/14)
×N(%) − (48/32)×S(%) 〕
% By mass
C: 0.0020 to 0.010%,
Si: 1.0% or less,
Mn: 0.05 to 0.52 %,
P: 0.05% or less,
S: 0.02% or less,
N: 0.005% or less,
Al: 0.01-0.06%,
Nb: 0.5 × (93/12) × C (%) to (93/12) × [C (%) − 0.001] and
Ti: (48/14) × N (%) to (48/12) × [C (%) − (12/93) × Nb (%) −0.001]
+ (48/14) x N (%) + (48/32) x S (%)
The balance is Fe and inevitable impurities, the steel sheet has an average grain size d of 2 to 12 μm, and a low-temperature bake hardening index A expressed by the following formula (1) is 10 or less. A thin steel sheet for processing having excellent low temperature bake hardenability and aging resistance.
A = (12/93) × (Nb (%) / C (%)) × d (μm) −10 × C * (%) --- (1)
However, C * (%) = C (%)-(12/93) x Nb (%)-(12/48) x [Ti (%)-(48/14)
× N (%) − (48/32) × S (%)]
請求項1または2において、鋼板がさらに、質量%で
B:0.0030%以下
を含有する組成になることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。
The thin steel sheet for processing according to claim 1 or 2, wherein the steel sheet further has a composition containing B: 0.0030% or less by mass%, and having excellent low-temperature bake hardenability and aging resistance.
請求項1〜3のいずれかにおいて、鋼板がさらに、質量%で
Cr:2.0 %以下、
Cu:2.0 %以下、
Ni:2.0 %以下および
Mo:1.0 %以下
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする低温焼付硬化性および耐時効性に優れる加工用薄鋼板。
In any one of Claims 1-3, a steel plate is further in the mass%.
Cr: 2.0% or less,
Cu: 2.0% or less,
Ni: 2.0% or less and
Mo: A thin steel sheet for processing excellent in low-temperature bake hardenability and aging resistance, characterized in that the composition contains one or more selected from 1.0% or less.
JP2002202631A 2002-07-11 2002-07-11 Thin steel sheet for processing with excellent low-temperature bake hardenability and aging resistance Expired - Fee Related JP4176403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202631A JP4176403B2 (en) 2002-07-11 2002-07-11 Thin steel sheet for processing with excellent low-temperature bake hardenability and aging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202631A JP4176403B2 (en) 2002-07-11 2002-07-11 Thin steel sheet for processing with excellent low-temperature bake hardenability and aging resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006311792A Division JP4434198B2 (en) 2006-11-17 2006-11-17 Manufacturing method of thin steel sheet for processing excellent in low-temperature bake hardenability and aging resistance

Publications (2)

Publication Number Publication Date
JP2004043884A JP2004043884A (en) 2004-02-12
JP4176403B2 true JP4176403B2 (en) 2008-11-05

Family

ID=31708765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202631A Expired - Fee Related JP4176403B2 (en) 2002-07-11 2002-07-11 Thin steel sheet for processing with excellent low-temperature bake hardenability and aging resistance

Country Status (1)

Country Link
JP (1) JP4176403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140098192A (en) * 2011-12-08 2014-08-07 제이에프이 스틸 가부시키가이샤 Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685037B1 (en) * 2005-09-23 2007-02-20 주식회사 포스코 Bake-hardenable cold rolled steel sheet with superior strength and aging resistance, galvannealed steel sheet using the cold rolled steel sheet and method for manufacturing the cold rolled steel sheet
JP5031751B2 (en) * 2005-09-23 2012-09-26 ポスコ Manufacturing method of high-strength cold-rolled steel sheet, hot-dipped steel sheet and cold-rolled steel sheet with excellent bake hardenability
EP2130938B1 (en) 2007-03-27 2018-06-06 Nippon Steel & Sumitomo Metal Corporation High-strength hot rolled steel sheet being free from peeling and excellent in surface and burring properties and process for manufacturing the same
JP5310920B2 (en) * 2011-12-08 2013-10-09 Jfeスチール株式会社 High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140098192A (en) * 2011-12-08 2014-08-07 제이에프이 스틸 가부시키가이샤 Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
KR101607041B1 (en) 2011-12-08 2016-03-28 제이에프이 스틸 가부시키가이샤 Method for producing high-strength cold-rolled steel sheet having excellent anti-aging property and bake hardening property

Also Published As

Publication number Publication date
JP2004043884A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
CA2762935C (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
JP5493986B2 (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
JP5003785B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP7087078B2 (en) High-strength steel sheet with excellent collision characteristics and formability and its manufacturing method
JP2005528519A5 (en)
WO2013084478A1 (en) Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
JP3855678B2 (en) Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability
JP3569949B2 (en) Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance
JP2024500521A (en) Hot-forming steel materials, hot-forming parts, and methods of manufacturing them
JP4434198B2 (en) Manufacturing method of thin steel sheet for processing excellent in low-temperature bake hardenability and aging resistance
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP4176403B2 (en) Thin steel sheet for processing with excellent low-temperature bake hardenability and aging resistance
JP2003268491A (en) High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance
JP6843245B2 (en) High-strength galvanized steel sheet with excellent bendability and stretch flangeability and its manufacturing method
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
JP3719025B2 (en) Cold-rolled steel sheet for deep drawing with excellent fatigue resistance
JP2003268490A (en) Thin steel sheet for working excellent in bake hardenability and aging resistance and its production method
JP2023507801A (en) Cold-rolled steel sheet with excellent heat resistance and formability and its manufacturing method
JP4301013B2 (en) Cold-rolled steel sheet with excellent dent resistance
JP6658708B2 (en) Method for producing steel sheet having low yield ratio
JP4313912B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP2024522160A (en) Hot-dip galvanized steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees