[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4174753B2 - Dialysis system - Google Patents

Dialysis system Download PDF

Info

Publication number
JP4174753B2
JP4174753B2 JP2002064874A JP2002064874A JP4174753B2 JP 4174753 B2 JP4174753 B2 JP 4174753B2 JP 2002064874 A JP2002064874 A JP 2002064874A JP 2002064874 A JP2002064874 A JP 2002064874A JP 4174753 B2 JP4174753 B2 JP 4174753B2
Authority
JP
Japan
Prior art keywords
purified water
dialysis
dialysate
purified
water production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002064874A
Other languages
Japanese (ja)
Other versions
JP2003260131A (en
Inventor
章彦 杉本
征裕 栗林
光好 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Medical Co Ltd
Original Assignee
Toray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Medical Co Ltd filed Critical Toray Medical Co Ltd
Priority to JP2002064874A priority Critical patent/JP4174753B2/en
Publication of JP2003260131A publication Critical patent/JP2003260131A/en
Application granted granted Critical
Publication of JP4174753B2 publication Critical patent/JP4174753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透析治療に用いる透析システムに関し、特に装置間の配管系統内の細菌やエンドトキシン汚染を低減し、クリーンな精製水および透析液の供給を可能にした透析システムと、透析システムの清浄度維持方法に関するものである。
【0002】
【従来の技術】
図8は一般的な透析システムを示すフロー図である。原水A(一般には水道水)は精製水製造装置B(一般には、逆浸透法による精製水製造装置)において、原水A中の不純物・異物は除去され、精製水Cを得る。この精製水Cの大半は透析液供給装置Dに送液されるが、一部はA粉末溶解装置EあるいはB粉末溶解装置Fへも供給される。
【0003】
製造された透析液Gは透析液用監視装置Hを経て、ダイアライザーI内で透析膜(図示せず)を介して患者からの血液Jと接触して、血液を浄化するものである。
【0004】
ここで、ダイアライザーI内で血液から移行した老廃物を含んだ廃透析液は再び透析用監視装置Hを経て排出される。透析用監視装置Hでは、ダイアライザーIで血液側から除去される水分量や血液の圧力等を監視している。また、精製水Cは個人用透析装置Kにも送液されることがあるが、個人用透析装置Kは透析液供給装置Dと透析用監視装置の機能を合わせ持ったものであるが、患者個人個人に対応した透析を実現するものであって、透析システム
【0005】
図9は精製水製造装置Aの一例を示すフロー図である。基本的な動作を説明すると、原水Aは軟水器1で硬度成分をイオン交換された後、活性炭濾過器2で残留塩素を除去され、ROポンプ3により所定の圧力に昇圧されて、ROモジュール4に供給される。ROモジュール4は逆浸透(RO)膜からなるエレメント部と、これを収納するケーシングから構成される。逆浸透膜を透過して、各種イオン、微粒子、細菌やエンドトキシンを除去され清浄化された精製水は、精製水タンク5に貯蔵される。一方、塩分等の不純物が濃縮された濃縮水は、一部は排水されるが、大半はROモジュール4内の液流速を維持するため、再びROポンプ3に還流される。精製水槽5に貯蔵された精製水は供給ポンプ6を経て、精製水Cとして下流の装置へ供給される。その途中の供給ポンプ出にエンドトキシン除去フィルター7が設置されることもある。一方、万一、ROポンプ3等に異常を生じても透析治療が継続できるように、活性炭濾過器2の出側からROモジュール4をバイパスする軟水ライン8が設けられており、軟水バルブ9を開ければ、除菌フィルター10を経て精製水ラインに無菌の軟水を供給することができるように構成されている。
【0006】
近年、透析治療技術法の進展・発展に伴い、透析液の一層高いレベルの清浄度が要求されるようになった。
【0007】
すなわち、従来の透析療法が取除いていた尿毒素成分よりも更に分子量の大きい取除くべき成分が見出され、よりサイズの大きい物質を血液中から除去する必要が生じ、例えばHPM(ハイパフォーマンスメンブレン)という透析膜の孔径(ポアサイズ)の大きなダイアライザーが使用され始めた。
【0008】
しかし、このことは、従来は透析膜で阻止されていた透析液中の不純物が血液側に混入する危険性が高くなることを意味する。さらにはオンラインHDFという、血液中の血漿成分を積極的に取り出し、それとほぼ当量の補液を血液に還流させる際に、透析液をクリーンに浄化することにより、患者の傍で補液を製造する療法も普及し始めている。
【0009】
そのため、透析液が従来以上に高清浄度であることが要求されるが、透析液中の細菌のみならず、細菌の一種であるグラム陰性菌から派生するエンドトキシンも問題となってきた。エンドトキシンは、症状的には発熱を引き起こす毒素成分の総称であるパイロジェンの一種である。グラム陰性菌自体は、特別危険な細菌でなくとも、それが代謝あるいは死滅した際に、細胞壁から剥離して生成されるエンドトキシンは、非常に取扱いの難しい物質である。多量のエンドトキシンが体内に混入した場合には、患者に血圧低下や発熱をもたらし、さらに重篤な場合は患者を危険な状態に陥れることもあり得るものである。さらに、このエンドトキシンが細かく分裂した破片(フラグメント)による慢性的な障害が指摘されている。毎週10〜15時間の透析治療を生存期間中受けなければならない透析患者にとっては、何十年にもわたる長期の治療で慢性的な疾患を考慮すると大きな問題である。
【0010】
このフラグメントの最小分子量は5,000ダルトンとされており、患者から除去すべき尿毒素成分のサイズ(分子量)に相当するものであり、これは優に透析膜を透過する(例えば、50,000ダルトンの物質を透過させる透析膜も利用されている)。従ってこのような高性能な透析治療を安全に実施するには、透析液中のエンドトキシン数を極小化しなけらばならない。
【0011】
そのため、透析液ラインでエンドトキシンが生成しないように種々の検討がなされてきた。しかし、透析中には豊富な栄養源を含むため細菌は繁殖し、その結果エンドトキシンが生成し易い。従って、従来は「エンドトキシンは透析液ラインで発生する」というごく常識的な概念に基づいて、透析液ラインの滅菌法が研究されてきた。現在、一般的に透析治療後には、300〜1,500ppmという高濃度の塩素での滅菌が行われている。しかし、それでもエンドトキシンの発生が抑えられないため、一部で過酢酸等の薬剤が使用されているが非常に高価な薬剤であるに加えて、それだけでは依然エンドトキシンの低減に限界があるとの示唆もある。
【0012】
一方、透析液ラインの管理が十分であっても、エンドトキシンの9割以上がRO精製水に由来するとの報告もある。最大の要因として、ROモジュールの物理的・経時的な疲労によって生じたミクロなリークにより、多量のエンドトキシンを含有する原水から混入するエンドトキシンがあることが指摘されている。これに対し、特開平11−104639号公報によりROモジュールの物理的な疲労を大幅に低減する技術、また従来から行われてきたRO膜リークのチェックや、精製水製造装置内での精製水の常時循環により装置内の停滞水の発生防止などの清浄化技術が開発され、さらに特開2001−353214号公報の滅菌技術により良好な透析液を得られるようになったが、さらに高度な透析液を得るには課題があった。
【0013】
前記のとおり各装置内の清浄化は種々の試みがなされ装置単体としては、透析液清浄化は実現されつつある。
【0014】
しかしながら、本発明者らは精製水製造装置からは清浄な精製水を供給できているのに対し、場合によって末端の個人用透析装置で高いエンドトキシン値を検出することがあることを確認した。研究を進めた結果、RO精製水集中送液ラインから各個人用透析装置にRO精製水を分送する分送ラインに細菌とエンドトキシン汚染があることを突き止めた。
【0015】
つまり、個人用透析装置は通常透析施設内に数台から数十台設置され、精製水製造装置からRO精製水集中送液ラインにより各個人用透析装置まで精製水が供給されるが、未使用の個人用透析装置があれば精製水集中送液ラインから個人用透析装置に精製水を分送する分送ライン内は精製水が停滞したままの状態にある。特に、緊急透析室や入院透析装置室に設置される透析装置は使用頻度が少なく、長期間にわたり精製水がライン内に封入されたままになることもある。通常、透析液ラインは富栄養環境下であり細菌が容易に増殖するため透析終了後に滅菌が行われるが、貧栄養環境下である精製水ラインは滅菌しないのが通常である。エンドトキシンを産出するグラム陰性菌は貧栄養性菌であり、増殖速度は遅いもののこの貧栄養環境である精製水ラインに増殖し、高いエンドトキシン値を検出したのである。
【0016】
また、本発明者らこれまで研究を進めた結果、精製水ライン内の流れが停滞する部位や比較的流速が遅い部位にグラム陰性菌が増殖しやすく、結果として高エンドトキシン値を示すことを究明し、精製水の滞留こそ細菌の増殖を引き起こす一要因であるという知見を得た。
【0017】
一方、透析システムの滅菌・消毒手段は、製造元の異なる装置の組み合わせで透析システムを構成することが多く、各装置間は電気信号の受発信のやりとりが困難で装置毎に消毒手段を準備する必要があり、システム全体の消毒手法としては無駄が多いばかりではなく、透析システムの消毒を実施する人の労力もかかるといった問題がある。
【0018】
【発明が解決しようとする課題】
本発明の目的は、装置間を連結する配管まで含めた透析システム全体の消毒を、各装置間を電気的に接続し、各装置間で信号の受発信ができるようにすることで、消毒液導入箇所が一カ所ですみ、システム全体をコンパクトなものにすることができ、かつ各装置間で信号の受発信が可能なので消毒作業の自動化が図れ、透析システム全体の消毒を簡便に実施できる透析システムを提供せんとするものである。
【0019】
また、比較的消毒頻度の少ない精製水ラインにはエンドトキシンを生成するグラム陰性菌が繁殖しうる可能性が十分にあり、精製水ラインの最上流部であるROモジュール直後から最下流部である個人用透析装置、透析液供給装置、透析原液製造装置にかけての精製水ライン全体にわたり非消毒部位がなく、透析システム全体を効果的に消毒できる透析システムを提供せんとするものである。
【0020】
また、グラム陰性菌の繁殖する一要因として、透析システム内の精製水の停滞が指摘されており、実際の透析治療において未使用の装置があれば精製水集中供給ラインから未使用装置までの分岐配管内は停滞の状態にあり、透析治療中において未使用装置があっても精製水ライン全体にわたり停滞部がなく、透析治療中にコンパクトな透析システムで精製水ライン全体の循環状態を維持することができ、細菌やエンドトキシン汚染が極めて少ない透析システムを提供せんとするものである。
【0021】
さらには、透析システム未実施時に精製水が停滞するすべての配管内を消毒液で置換封入することにより、透析システム未実施時の配管内の細菌やエンドトキシン汚染が極めて少ない透析システムの清浄度維持方法を提供せんとするものである。
【0022】
上記の目的を達成するため、本発明は以下(1)〜()の構成を採用する。すなわち、
(1)逆浸透膜により原水を精製して精製水を得る精製水製造装置と、該精製水製造装置で精製された精製水に透析原剤を添加して所定の透析液を製造する透析液供給装置と、該透析液供給装置で調合された透析液により血液透析を実施する透析用監視装置からなる透析システムにおいて、
前記精製水製造装置で精製された精製水を前記透析液供給装置に供給する精製水供給ラインと、該透析液供給装置から精製水を回収する精製水回収ラインとを設け、該透析液供給装置に供給した精製水を前記精製水製造装置内に設けられている逆浸透膜加圧用ポンプの一次側に回収するように構成するとともに、
前記精製水製造装置からの消毒液送液信号により、該精製水製造装置から消毒液を送液するようになし、該精製水製造装置から送液された消毒液を前記透析液供給装置が導入する所定の動作を行なうようにし、かつ該透析液供給装置は導入した消毒液を前記透析用監視装置に送液し、該透析液監視装置は送液された消毒液を導入する所定の動作を行なうように構成したことを特徴とする透析システム。
(2)逆浸透膜により原水を精製して精製水を得る精製水製造装置と、該精製水製造装置で精製された精製水に透析原剤を添加して所定の透析液を製造する透析液供給装置と、該透析液供給装置で調合された透析液により血液透析を実施する透析用監視装置からなる透析システムにおいて、
前記精製水製造装置で精製された精製水を前記透析液供給装置に供給する精製水供給ラインと、該透析液供給装置から精製水を回収する精製水回収ラインとを設け、該透析液供給装置に供給した精製水を前記精製水製造装置内に設けられている逆浸透膜加圧用ポンプの一次側に回収するように構成するとともに
該精製水製造装置内に設けられた逆浸透膜モジュールと該透析液供給装置との間に消毒液注入手段を設けたことを特徴とする透析システム。
(3)逆浸透膜により原水を精製して精製水を得る精製水製造装置と、該精製水製造装置で精製された精製水に透析原剤を添加して所定の透析液を製造する透析液供給装置と、該透析液供給装置で調合された透析液により血液透析を実施する透析用監視装置と、該精製水製造装置で精製された精製水が供給され患者個人に対応した透析を実現する個人用透析装置からなる透析システムにおいて、
前記精製水製造装置で精製された精製水を前記透析液供給装置および前記個人用透析装置に供給する精製水供給ラインと、該透析液供給装置および該個人用透析装置から精製水を回収する精製水回収ラインとを設け、該透析液供給装置および該個人用透析装置に供給した精製水を前記精製水製造装置内に設けられている逆浸透膜加圧用ポンプの一次側に回収するように構成するとともに、
前記精製水製造装置からの消毒液送液信号により、該精製水製造装置から消毒液を送液するようになし、該精製水製造装置から送液された消毒液を前記透析液供給装置および前記個人用透析装置が導入する所定の動作を行なうようにし、かつ該透析液供給装置は導入した消毒液を前記透析用監視装置に送液し、該透析液監視装置は送液された消毒液を導入する所定の動作を行なうように構成したことを特徴とする透析システム。
(4)逆浸透膜により原水を精製して精製水を得る精製水製造装置と、該精製水製造装置で精製された精製水に透析原剤を添加して所定の透析液を製造する透析液供給装置と、該透析液供給装置で調合された透析液により血液透析を実施する透析用監視装置と、該精製水製造装置で精製された精製水が供給され患者個人に対応した透析を実現する個人用透析装置からなる透析システムにおいて、
前記精製水製造装置で精製された精製水を前記透析液供給装置および前記個人用透析装置に供給する精製水供給ラインと、該透析液供給装置および該個人用透析装置から精製水を回収する精製水回収ラインとを設け、該透析液供給装置および該個人用透析装置に供給した精製水を前記精製水製造装置内に設けられている逆浸透膜加圧用ポンプの一次側に回 収するように構成するとともに、
前記精製水供給ラインの最上流部に消毒液注入手段を設けたことを特徴とする透析システム。
【0023】
【発明の実施の形態】
本発明者らは鋭意検討した結果、下記の配管系統まで含めた透析システム全体の細菌対策としての消毒方法とRO精製水ラインに棲息する細菌の特性について注目して検討した結果、下記(1)〜(4)の知見を得て、さらに本発明に至ったものである。
(1)通常の透析システムは、製造元が異なる装置の組み合わせから構成されるため、装置間の電気信号の受発信のやりとりが困難で、装置毎に消毒手段を設置する必要があり透析システム全体の消毒手段として見た場合、無駄が多いばかりでなく、消毒作業者の労力がかかる。
(2)エンドトキシンを産生する貧栄養性菌であるグラム陰性菌は、貧栄養環境であるRO精製水ラインに増殖し、RO精製水ラインの最上流部である逆浸透膜直後に消毒液導入部位を設置することで、RO精製水ライン全体を効果的に消毒できる。
(3)エンドトキシンを産出するグラム陰性菌は、RO精製水ラインの滞留部や流れの遅い部位に増殖しやすく、RO精製水ライン全体にわたり精製水の停滞が無いように循環させることでグラム陰性菌の増殖を抑えることができる。
(4)透析治療未実施時に、RO精製水ライン全体と透析液ライン内全体を消毒液にて封入保管することで、透析システムが停機している間もRO精製水ラインと透析液ライン内の細菌増殖を抑えることができる。
【0024】
さらに、本発明にかかる透析システムについて、その実施の形態を図によって示し詳細に説明する。
【0025】
図1は、請求項1に記載の本発明の透析システム全体の消毒方法の実施の形態の一例を示すフロー図である。
【0026】
精製水製造装置Bと、透析液供給装置Dおよび透析用監視装置Hは電気信号101、102により、電気的に接続されており各装置間で信号の受発信ができる。精製水製造装置Bは、透析用監視装置Hおよび透析液供給装置Dからの電気信号により、たとえば装置の停止信号を消毒液送液コントロール装置12で受信し、消毒液送液コントロール装置12の制御信号により、消毒液貯槽11に貯留されている消毒液Lを消毒液注入手段17によりRO精製水ライン内に消毒液Lを導入する。消毒液注入手段17は、定量ポンプ等が考えられるが、特にこれらに限定されるものではない。
【0027】
透析液供給装置Dは、消毒液送液コントロール装置12からの消毒液送液の電気信号により、送液される消毒液Lの装置内への導入動作を開始し、装置内に消毒液Lを導入する。
【0028】
また、透析用監視装置Hは、消毒液送液コントロール装置12からの消毒液送液の電気信号により、透析液供給装置Dを経由し送液される消毒液Lの導入動作を開始する。この一連の操作で、精製水製造装置B内、透析液供給装置D内、透析用監視装置H内と、それぞれの装置を連結する配管内すべてのRO精製水ラインおよび透析液ラインの自動消毒を実施することができる。
【0029】
図2は、請求項1に記載の本発明の透析システム全体の消毒方法の実施の形態の別の一例を示すフロー図である。
【0030】
図2において、精製水製造装置Bと、透析液供給装置Dおよび透析液原液を調合するA粉末溶解装置EおよびB粉末溶解装置Fと個人用透析装置Kとからシステムは構成されており、、電気信号101、103〜105により電気的に接続されており、各装置間で信号の受発信ができる。さらに、前記のとおり透析液供給装置Dと透析用監視装置Hは、電気信号102により電気的に接続されており各装置間で信号の受発信ができる。精製水製造装置Bは、各装置からの電気信号、たとえば各装置の停止信号を消毒液送液コントロール装置12で受信し、消毒液送液コントロール装置12の制御信号により、消毒液貯槽11に貯留されている消毒液Lを消毒液注入手段17によりRO精製水ライン内に消毒液Lを導入する。
【0031】
透析液供給装置DおよびA粉末溶解装置EおよびB粉末溶解装置Fと個人用透析装置Kは、消毒液送液コントロール装置12からの消毒液送液の電気信号により、送液される消毒液Lの導入動作を開始し、装置内に消毒液Lを導入するものである。
【0032】
また、前記のとおり透析用監視装置Hは、消毒液送液コントロール装置12からの消毒液送液の電気信号により、透析液供給装置Dを経由し送液される消毒液Lの導入動作を開始する。この一連の操作で、精製水製造装置B内、透析液供給装置D内、A粉末溶解装置E内およびB粉末溶解装置F内、個人用透析装置K内と透析用監視装置H内と、それぞれの装置を連結する配管内すべてのRO精製水ラインおよび透析液ラインの自動消毒を実施することができる。
【0033】
また、前記透析システム全体の自動消毒後には精製水製造装置Bから、透析液供給装置D、A粉末溶解装置E、B粉末溶解装置F、個人用透析装置K内に、また透析用監視装置Hには透析液供給装置D経由で精製水を供給し、精製水にて各装置内および配管内を消毒液の残留がないように水洗し、次の透析治療に供する一連の動作を自動的に実施することも可能である。図2に示した透析システムにおいて、個人用透析装置Kは、前述もしたように必ずしもなくても良く、その場合でも本発明の透析システムを構成することができる。
【0034】
また、図3は、請求項2記載の本発明のシステムにおける消毒液注入手段の実施の形態の一例を示すフロー図である。RO精製水ライン内への消毒液の注入方法は、消毒液貯槽11と消毒液注入手段17で構成することが考えられるが、特にこれらに限定されるものではない。消毒液注入手段17によるRO精製水ライン内への消毒液の注入位置は、精製水製造措置Bと透析液供給装置Dの間、好ましくはRO精製水ラインの最上流部であるRO(逆浸透)モジュール直後に設定することで、RO精製水ライン最上流部から末端に至る装置、配管を含めた全RO精製水ラインを非消毒部位がなく効果的に消毒することができる。
【0035】
また、消毒液注入位置をROモジュール直後に設けることで、ROモジュールの物理的、経時的劣化によるROモジュール二次側への細菌やエンドトキシンのリークが起きた際も、ROモジュール二次側の精製水ライン内の細菌・エンドトキシン汚染を極めて極小にすることができる。
【0036】
図4は、請求項3記載の精製水回収ラインを設けた実施態様の一例を示すフロー図である。通常、透析液供給装置D内の透析液貯留タンク内には液面検出手段を設け、タンク内の透析液の残量を監視しているが、液面が低い場合、つまりタンク内の貯留透析液が少ないときに、透析液供給装置Dは精製水製造装置BからRO精製水を導入し、透析原剤と調合し透析液を作製する。この透析液の作製時は、精製水製造装置Bから透析液供給装置Dにかけての精製水供給ライン13内は、ある流速をもったRO精製水Cが常時流れている状態である。しかしながら、透析液供給装置D内の透析液貯留タンク内の液面が高い場合、つまりタンク内の貯留透析液が多いときには、透析液供給装置Dは透析液の作製を停止しているので、精製水製造装置Bから透析液供給装置Dにかけての精製水供給ライン13内は、精製水Cが常時停滞している状態にある。一方、請求項3記載の精製水回収ライン15を精製水供給ライン13とは別に設けることで、透析液供給装置Dは透析液の作製を停止している際も、精製水製造装置B内の精製水送液ポンプの送液圧の作用により、RO精製水Cを精製水製造装置Bにリターンさせることができ、この間は精製水製造装置B内と精製水供給ライン13内および精製水回収ライン15内は、精製水Cが常時循環可能な状態であり、貧栄養環境下でかつ精製水の流れの停滞部位に増殖しやすいエンドトキシンを産出するグラム陰性菌の増殖を抑えることができるのである。
【0037】
図5は、請求項3記載の精製水回収ラインを設けた実施態様の別の一例を示すフロー図である。透析液原液を調合するA粉末溶解装置EとB粉末溶解装置Fと透析液供給装置D、および個人用透析装置群(K1〜K3)には、精製水製造装置BからRO精製水が供給される。前記透析液供給装置Dの停止工程と同様、それぞれの装置が停止している状態では、精製水集中供給ライン13から各装置に精製水Cを分送する分送ライン(14a〜14f)内は、精製水Cが停滞している状態にある。そこで、前記の透析液供給装置Dに設けた精製水回収ラインと同様に、各装置毎に個別の精製水回収ライン(16a〜16f)を設け、かつ精製水集中回収ライン15を設けることで、精製水製造装置B内の精製水送液ポンプの送液圧の作用により、精製水Cを精製水製造装置Bにリターンさせることができ、この間は精製水製造装置B内と精製水集中供給ライン13内と精製水集中回収ライン15内、および各装置毎に設けた個別の精製水分送ライン(14a〜14f)内と回収ライン(16a〜16f)内の精製水を常時循環している状態にあり、貧栄養環境下でかつ精製水の流れの停滞部位に増殖しやすいエンドトキシンを産出するグラム陰性菌の増殖を抑えることができ、透析システムの全精製水ラインの清浄化が図ることができるのである。
【0038】
図6は、請求項4記載の本発明の各装置への精製水の送液と回収の切替え手段の一例を示すフロー図である(ここでは、透析液供給装置Dを例にとって記述するが、他の精製水を供給する周辺装置についても同様である)。
【0039】
すなわち、精製水製造装置Bで精製された精製水Cは、精製水集中供給ライン13により送液され、透析液供給装置Dへ精製水Cを分送する分送ライン14cによって、透析液供給装置Dに精製水Cが供給される。
【0040】
各装置への精製水Cの送液と回収の流路切替手段は、二方弁や三方弁などを利用することが考えられるが、特に限定されるものではない。図6において、上方に図示したのが二方弁18a、18bを用いた場合、下方に図示したのが三方弁18cを用いた場合のフロー図である。
【0041】
まず、流路切替手段に二方弁18a、18bを用いた場合について説明すると、透析液供給装置Dが精製水Cを使用しているときは、二方弁18aは開状態にあり、他方の二方弁18bは閉状態にあり、精製水Cは精製水回収ライン16cには流れずに、精製水分送ライン14cから透析液供給装置Dに供給される。一方、透析液供給装置Dが精製水Cを使用していないときは、二方弁18aは閉状態にあり、他方の二方弁18bは開状態にあり、精製水Cは透析液供給装置Dには流れずに精製水回収ライン16cに流れ、精製水集中回収ライン15によって精製水製造装置Bに回収される。
【0042】
次に、流路切替手段に三方弁18cを用いた場合について説明すると、上述の二方弁と同様の動作で、透析液供給装置Dが精製水Cを使用しているときは、精製水分送ライン14cから透析液供給装置Dへの流路は開状態で、精製水分送ライン14cから精製水回収ライン16cへの流路は閉状態にあり、精製水Cは精製水回収ライン16cには流れずに、精製水分送ライン14cから透析液供給装置Dに供給される。一方、透析液供給装置Dが精製水Cを使用していないときは、精製水分送ライン14cから透析液供給装置Dへの流路は閉状態で、精製水分送ライン14cから精製水回収ライン16cへの流路は開状態にあり、精製水Cは透析液供給装置Dへは流れずに精製水回収ライン16cに流れ、精製水集中回収ライン15によって精製水製造装置Bに回収される。これにより、透析システムの中で精製水Cを使用する各装置のいずれかが停止状態にあっても、全精製水ラインにわたり停滞部がなく細菌やエンドトキシン汚染を極めて極小にすることができる。
【0043】
なお、流路切替手段は精製水Cを供給する各装置の内部に設置しようが、装置外の配管に設置しようが、いずれでもよく特に限定されるものではない。
【0044】
図7は、請求項5記載の本発明の透析システムにおける精製水の集中回収手段の一例を示すフロー図である。
【0045】
すなわち、原水Aは、精製水製造装置B内に導入され、該精製水製造装置B内の軟水器1で硬度成分をイオン交換された後、活性炭濾過器2で残留塩素を除去し、ROポンプ3により所定の圧力に昇圧されて、ROモジュール4に供給される。ROモジュール4を透過して、各種イオン、微粒子、細菌、エンドトキシンなどが除去され清浄化された精製水は、精製水タンク5に一旦貯蔵され供給ポンプ6の作用で、精製水Cとして下流の装置へ供給される(ここでは、透析液供給装置Dについて記述するが、他の精製水を供給する周辺装置についても同様である)。透析液供給装置Dが透析液の作製を停止したときは、精製水製造装置B内の供給ポンプ6の作用により、精製水の個別回収ライン16cと集中回収ライン15を経由し、RO精製水Cを精製水製造装置Bに回収する。この精製水集中回収ライン15を、精製水製造装置B内のROポンプ3の一次側に連結することで、ROモジュール内および全精製水ライン内において、精製水の液流速を確保し停滞部位がなく細菌やエンドトキシン汚染を極めて極小にすることができるのである。
【0046】
なお、従来から知られている精製水を、精製水製造装置内の精製水タンクに戻す循環システムでは、精製水ライン内で細菌やエンドトキシン汚染があった場合に、細菌、エンドトキシンに汚染された精製水を精製水タンク内に導入してしまうことになり、精製水製造装置内を細菌やエンドトキシン汚染に曝すことになる。そのため、精製水タンク直前の精製水の回収ライン内にエンドトキシン除去フィルターを設置するなどの清浄化対策が必要となるので望ましくはない。
【0047】
一方、本発明の透析システムのように、精製水の集中回収ラインを精製水製造装置内のROポンプの一次側に連結しROポンプ一次側に精製水を回収するように構成すれば、いずれかの精製水ライン内で細菌やエンドトキシン汚染があった場合でも、再度各種イオン、微粒子、細菌、やエンドトキシンの除去能力が高いROモジュールを透過させるので、精製水製造装置内を細菌やエンドトキシン汚染から回避することができるのである。さらに、精製水回収ライン内にエンドトキシン除去フィルターを設置するなどの清浄化対策は必要なく、透析システム全体として非常にコンパクトなシステムで細菌やエンドトキシン汚染が極めて少ない透析システムを実現することができるのである。
【0048】
最後に、本発明の請求項6記載の透析治療未実施時に精製水ライン内、あるいはおよび透析液ライン内を消毒液にて封入保管する透析システムの清浄度維持方法について、図8により以下に詳細を説明する。
【0049】
通常、透析液供給装置Dと透析用監視装置Hおよびそれぞれを連結する配管部材からなる透析液ラインは、透析治療終了後には消毒液にて消毒された後、各装置内および配管内を精製水による水洗を実施し透析システムは停止される。
【0050】
一方、精製水製造装置Bと、透析液供給装置DとA粉末溶解装置Eと個人用透析装置Kのそれぞれを連結する配管部材からなる精製水ラインは、装置単独では消毒されるものの、配管内は通常消毒されないままの状態であることがある。透析システム未使用時は、この透析液ラインと精製水ライン内は貧栄養環境であるRO精製水が封入されたままの状態で、土曜日・日曜日などの休日や場合によっては更に長期間にわたり、貧栄養性菌であるエンドトキシンを産生するグラム陰性菌が増殖しやすい環境下に曝していることになる。
【0051】
そこで、精製水ラインについては透析治療終了後に各装置を含む全精製水ライン内を消毒液にて置換封入する。また、通常、透析液ラインについては透析液に添加されているブドウ糖等の有機物やダイアライザーIの後では患者から輩出された老廃蛋白質などの除去のため高濃度の塩素滅菌がなされるため、その後に各装置を含む全透析液ライン内を消毒液にて置換封入することで、透析治療未実施時における各装置内および配管ライン内での細菌やエンドトキシン汚染が極めて少ない透析システムの清浄度維持が可能となる。消毒液にて置換封入するラインは、全精製水ライン内または透析液ライン、あるいは該両ライン双方とすることで上記の効果をえることができる。
【0052】
なお、使用する消毒液については滅菌性や材料劣化が少ないもの、あるいは環境への負荷が少ないものを、取り扱いが容易なもの等を考慮し、種々の消毒剤あるいは処方濃度が考えられるが、特に限定されるものではない。
【0053】
【発明の効果】
コンパクトなシステムで透析システム全体の自動消毒を簡単に行うことができ、かつ透析治療実施時、未実施時にかかわらず比較的消毒頻度の少ない配管まで含む精製水ライン全体にわたり、精製水を循環させることが可能で停滞部を極力少なくすることができ、細菌やエンドトキシン汚染が極めて少ない透析システムを提供することができる。
【0054】
また、透析治療未実施時に精製水が停滞する精製水ラインまたは/および透析液ラインの配管内を消毒液で置換封入することにより、透析治療未実施時の配管内の細菌やエンドトキシン汚染が極めて少ない透析システムの清浄度維持方法を提供することができる。
【図面の簡単な説明】
【図1】図1は、本発明の透析システム全体の消毒方法の実施態様の一例を示すフロー図である。
【図2】図2は、本発明の透析システム全体の消毒方法の実施態様の他の一例を示すフロー図である。
【図3】図3は、本発明の消毒液の注入手段の実施態様の一例を示すフロー図である。
【図4】図4は、本発明の透析システムに精製水回収ラインを設けた実施態様の一例を示すフロー図である。
【図5】図5は、本発明の透析システムに精製水回収ラインを設けた実施態様の別の一例を示すフロー図である。
【図6】図6は、本発明の各装置への精製水の送液と回収の切替え手段の実施態様の一例を示すフロー図である。
【図7】図7は、本発明の精製水の回収手段の実施態様の一例を示すフロー図である。
【図8】図8は、一般的な透析システムを示すフロー図である。
【図9】図9は、精製水製造装置Aの一例を示すフロー図である。
【符号の説明】
A:原水
B:精製水製造装置
C:精製水
D:透析液供給装置
E:透析原液製造装置(A粉末溶解装置)
F:透析原液製造装置(B粉末溶解装置)
G:透析液
H:透析用監視装置
I:ダイアライザー
J:患者からの血液
K(K1〜K3):個人用透析装置
L:消毒液
1:軟水器
2:活性炭濾過器
3:ROポンプ
4:ROモジュール
5:精製水タンク
6:精製水送液ポンプ
7:エンドトキシン除去フィルター
8:軟水ライン
9:軟水ラインバルブ
10:除菌フィルター
11:消毒液貯槽
12:消毒液送液コントロール装置
13:精製水集中供給ライン
14a〜14f:精製水分送ライン
15:精製水集中回収ライン
16a〜16f:精製水個別回収ライン
17:消毒液注入手段
18a〜c:流路切替手段
101〜105:電気信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dialysis system used for dialysis treatment, and in particular, a dialysis system that reduces contamination of bacteria and endotoxin in a piping system between devices and enables supply of clean purified water and dialysate, and cleanliness of the dialysis system. It is about the maintenance method.
[0002]
[Prior art]
FIG. 8 is a flowchart showing a general dialysis system. The raw water A (generally tap water) is purified water production apparatus B (generally a purified water production apparatus using a reverse osmosis method) to remove impurities and foreign matters in the raw water A to obtain purified water C. Most of the purified water C is sent to the dialysate supply device D, but a part is also supplied to the A powder dissolving device E or the B powder dissolving device F.
[0003]
The produced dialysate G passes through the dialysate monitoring device H and contacts the blood J from the patient through a dialyzer membrane (not shown) in the dialyzer I to purify the blood.
[0004]
  Here, the waste dialysate containing the waste transferred from the blood in the dialyzer I is discharged again through the monitoring device H for dialysis. In the dialysis monitoring device H, the amount of water removed from the blood side by the dialyzer I, blood pressure, and the like are monitored. Purified water C is for personal use.DialysisAlthough the liquid may also be sent to the apparatus K, the personal dialysis apparatus K has the functions of the dialysate supply apparatus D and the monitoring apparatus for dialysis, but realizes dialysis corresponding to individual patients. Dialysis system
[0005]
FIG. 9 is a flowchart showing an example of the purified water production apparatus A. Explaining the basic operation, the raw water A is subjected to ion exchange of hardness components in the water softener 1, then residual chlorine is removed by the activated carbon filter 2, and the pressure is increased to a predetermined pressure by the RO pump 3. To be supplied. The RO module 4 includes an element portion made of a reverse osmosis (RO) membrane and a casing for housing the element portion. Purified water that has passed through the reverse osmosis membrane to remove various ions, fine particles, bacteria, and endotoxin and has been purified is stored in the purified water tank 5. On the other hand, the concentrated water enriched with impurities such as salinity is partly drained, but most is recirculated to the RO pump 3 in order to maintain the liquid flow rate in the RO module 4. The purified water stored in the purified water tank 5 is supplied to a downstream apparatus as purified water C through a supply pump 6. An endotoxin removal filter 7 may be installed at the middle of the supply pump. On the other hand, a soft water line 8 that bypasses the RO module 4 from the outlet side of the activated carbon filter 2 is provided so that the dialysis treatment can be continued even if an abnormality occurs in the RO pump 3 or the like. If opened, sterile soft water can be supplied to the purified water line through the sterilization filter 10.
[0006]
In recent years, with the progress and development of the dialysis treatment technology method, a higher level of cleanliness of dialysate has been required.
[0007]
That is, a component to be removed having a molecular weight higher than that of the uremic toxin component that has been removed by conventional dialysis therapy is found, and a substance having a larger size needs to be removed from the blood. For example, HPM (High Performance Membrane) Dialyzers with large dialysis membrane pore size (pore size) began to be used.
[0008]
However, this means that there is a high risk that impurities in the dialysate that have been conventionally blocked by the dialysis membrane are mixed into the blood side. Furthermore, there is also a therapy called online HDF that actively removes plasma components in the blood and circulates a fluid equivalent to that to the blood, purifying the dialysate cleanly, and producing the fluid near the patient. It has begun to spread.
[0009]
For this reason, the dialysate is required to have higher cleanliness than before, but not only bacteria in the dialysate but also endotoxins derived from gram-negative bacteria, which are a kind of bacteria, have become a problem. Endotoxin is a type of pyrogen that is a generic term for toxic components that cause fever in terms of symptoms. Although gram-negative bacteria themselves are not particularly dangerous bacteria, endotoxins that are produced by peeling off from the cell wall when they are metabolized or killed are very difficult to handle. If a large amount of endotoxin is mixed in the body, it may cause a decrease in blood pressure and fever in the patient, and in a severe case, the patient may be in a dangerous state. Furthermore, chronic damage has been pointed out due to fragments (fragments) of this endotoxin. For dialysis patients who have to receive 10-15 hours of dialysis treatment every week for their lifetime, it is a major problem when considering chronic illnesses with decades of long-term treatment.
[0010]
This fragment has a minimum molecular weight of 5,000 daltons, which corresponds to the size (molecular weight) of the uremic toxin component to be removed from the patient, which can easily penetrate the dialysis membrane (eg, 50,000). Dialysis membranes that are permeable to Dalton substances are also used). Therefore, in order to safely perform such high-performance dialysis treatment, the number of endotoxins in the dialysate must be minimized.
[0011]
Therefore, various studies have been made so that endotoxin is not generated in the dialysate line. However, because dialysis contains abundant nutrients, bacteria can propagate and endotoxins are easily produced as a result. Therefore, conventionally, sterilization methods for dialysate lines have been studied based on the very common concept that “endotoxin is generated in dialysate lines”. At present, sterilization with chlorine at a high concentration of 300 to 1,500 ppm is generally performed after dialysis treatment. However, even though endotoxin generation cannot be suppressed, some drugs such as peracetic acid are used, but in addition to being a very expensive drug, it suggests that there is still a limit to reducing endotoxin. There is also.
[0012]
On the other hand, there is a report that 90% or more of endotoxin is derived from RO purified water even if the dialysate line is sufficiently managed. It has been pointed out that the largest factor is endotoxin contaminated from raw water containing a large amount of endotoxin due to micro-leakage caused by physical and temporal fatigue of the RO module. On the other hand, Japanese Patent Application Laid-Open No. 11-104639 discloses a technique for greatly reducing the physical fatigue of the RO module, the conventional RO membrane leak check, and the purified water in the purified water production apparatus. A cleaning technique such as prevention of stagnant water in the apparatus has been developed by continuous circulation, and a good dialysate can be obtained by the sterilization technique disclosed in JP-A-2001-353214. There was a problem to get.
[0013]
As described above, various attempts have been made to clean the inside of each device, and as a device itself, dialysis fluid cleaning is being realized.
[0014]
However, the present inventors have confirmed that although purified purified water can be supplied from the purified water production apparatus, a high endotoxin value may be detected by a terminal personal dialysis apparatus in some cases. As a result of research, we have found that there are bacteria and endotoxin contamination in the distribution line for distributing RO purified water from the concentrated RO purified water line to each personal dialysis machine.
[0015]
In other words, several to tens of personal dialysis machines are usually installed in the dialysis facility, and purified water is supplied from the purified water production equipment to each personal dialysis machine through the RO purified water concentration line. If there is a personal dialysis machine, the purified water remains stagnant in the delivery line for delivering purified water from the concentrated purified water feeding line to the personal dialysis machine. In particular, dialysis machines installed in emergency dialysis rooms and hospitalized dialysis machine rooms are less frequently used, and purified water may remain sealed in the line for a long period of time. Usually, the dialysate line is under eutrophic environment and bacteria grow easily, so that sterilization is performed after the end of dialysis, but the purified water line under oligotrophic environment is usually not sterilized. Gram-negative bacteria that produce endotoxin are oligotrophic bacteria that grew at a slow growth rate, but grew in the purified water line, which is an oligotrophic environment, and detected high endotoxin levels.
[0016]
In addition, as a result of the present inventors' previous research, it has been found that Gram-negative bacteria are likely to grow in areas where the flow in the purified water line is stagnant or where the flow rate is relatively slow, resulting in high endotoxin levels. In addition, we have found that retention of purified water is one factor that causes bacterial growth.
[0017]
On the other hand, dialysis system sterilization / disinfection means are often composed of a combination of devices from different manufacturers, and it is difficult to exchange electrical signals between each device, so it is necessary to prepare disinfection means for each device. However, there is a problem that not only is there a lot of waste as a method for disinfecting the entire system, but also the labor of a person who performs disinfection of the dialysis system is required.
[0018]
[Problems to be solved by the invention]
The object of the present invention is to disinfect the entire dialysis system including the pipes connecting the apparatuses, by electrically connecting the apparatuses and allowing signals to be transmitted and received between the apparatuses. Dialysis that requires only one introduction point, can make the entire system compact, and can send and receive signals between each device, automate disinfection work, and can easily disinfect the entire dialysis system It is intended to provide a system.
[0019]
In addition, there is a sufficient possibility that gram-negative bacteria that produce endotoxin can propagate in the purified water line with relatively low disinfection frequency. Individuals in the most downstream part immediately after the RO module that is the most upstream part of the purified water line The present invention aims to provide a dialysis system that can effectively disinfect the entire dialysis system without any non-disinfecting sites in the entire purified water line from the dialysis apparatus for dialysis, the dialysis fluid supply apparatus, and the dialysis stock solution production apparatus.
[0020]
In addition, stagnation of purified water in the dialysis system has been pointed out as one factor for the growth of gram-negative bacteria. If there are unused devices in actual dialysis treatment, branching from the concentrated purified water supply line to unused devices The piping is stagnant, and even if there are unused devices during dialysis treatment, there is no stagnation throughout the purified water line, and the circulatory state of the entire purified water line is maintained with a compact dialysis system during dialysis treatment. Therefore, it is intended to provide a dialysis system that is extremely low in bacterial and endotoxin contamination.
[0021]
Furthermore, by replacing and filling all pipes where purified water is stagnant with a disinfectant when the dialysis system is not running, a method for maintaining the cleanliness of the dialysis system with very little bacteria and endotoxin contamination in the pipe when the dialysis system is not running Is intended to provide.
[0022]
  In order to achieve the above object, the present invention provides the following (1) to (4) Is adopted. That is,
(1) A purified water production apparatus that obtains purified water by purifying raw water using a reverse osmosis membrane, and a dialysate that produces a predetermined dialysate by adding a dialysis base agent to purified water purified by the purified water production apparatus In a dialysis system comprising a supply device and a dialysis monitoring device that performs hemodialysis with the dialysate prepared by the dialysate supply device,
  A purified water supply line for supplying purified water purified by the purified water production apparatus to the dialysate supply apparatus, and a purified water recovery line for recovering purified water from the dialysate supply apparatus, and the dialysate supply apparatus And so that the purified water supplied to the primary side of the reverse osmosis membrane pressurization pump provided in the purified water production apparatus is collected,
  The sterilization liquid supply signal from the purified water production apparatus is configured to send the disinfectant liquid from the purified water production apparatus, and the dialysis liquid supply apparatus introduces the disinfectant liquid sent from the purified water production apparatus. The dialysate supply device sends the introduced disinfectant solution to the dialysis monitoring device, and the dialysate monitor device performs the prescribed operation of introducing the sent disinfectant solution. A dialysis system characterized by being configured to perform.
(2) A purified water production apparatus that purifies raw water by a reverse osmosis membrane to obtain purified water, and a dialysate that produces a predetermined dialysate by adding a dialysis agent to purified water purified by the purified water production apparatus In a dialysis system comprising a supply device and a dialysis monitoring device that performs hemodialysis with the dialysate prepared by the dialysate supply device,
  A purified water supply line for supplying purified water purified by the purified water production apparatus to the dialysate supply apparatus, and a purified water recovery line for recovering purified water from the dialysate supply apparatus, and the dialysate supply apparatus And is configured to collect the purified water supplied to the primary side of the reverse osmosis membrane pressurization pump provided in the purified water production apparatus
  A dialysis system characterized in that disinfectant injection means is provided between a reverse osmosis membrane module provided in the purified water production apparatus and the dialysate supply apparatus.
(3) A purified water production apparatus for purifying raw water by a reverse osmosis membrane to obtain purified water, and a dialysis liquid for producing a predetermined dialysate by adding a dialysis agent to purified water purified by the purified water production apparatus A supply device, and a dialysis monitoring device for performing hemodialysis with the dialysate prepared by the dialysate supply device;A personal dialysis apparatus that is supplied with purified water purified by the purified water production apparatus and realizes dialysis corresponding to individual patients.In a dialysis system consisting of
  Purified water purified by the purified water production device is supplied to the dialysate supply device.And the personal dialysis machinePurified water supply line to be supplied to the dialysis solution and the dialysate supply deviceAnd the personal dialysis machineAnd a purified water recovery line to recover purified water fromThe purified water supplied to the dialysate supply device and the personal dialyzer is configured to be collected on the primary side of a reverse osmosis membrane pressurization pump provided in the purified water production device,
  According to the disinfectant solution feed signal from the purified water production device, the disinfectant solution is sent from the purified water production device, and the disinfectant solution sent from the purified water production device is used as the dialysate supply device and the The dialysis fluid supply device sends the introduced sterilizing solution to the dialysis monitoring device, and the dialysis fluid monitoring device supplies the sterilized solution that has been fed. Configured to perform a predetermined operation to be introducedA dialysis system characterized by that.
(4) A purified water production apparatus that obtains purified water by purifying raw water using a reverse osmosis membrane, and a dialysate that produces a predetermined dialysate by adding a dialysis raw material to purified water purified by the purified water production apparatus A dialysis monitor that performs hemodialysis with a dialysis solution prepared by the dialysis fluid supply device and a dialysis fluid prepared by the dialysis fluid supply device, and purified water purified by the purified water production device is supplied to realize dialysis corresponding to an individual patient. In dialysis systems consisting of personal dialysis machines,
  A purified water supply line for supplying purified water purified by the purified water production apparatus to the dialysate supply apparatus and the personal dialyzer, and purification for recovering purified water from the dialysate supply apparatus and the personal dialyzer And a purified water supplied to the dialysate supply device and the personal dialyzer is routed to the primary side of a reverse osmosis membrane pressurization pump provided in the purified water production device. Configured to fit,
  A dialysis system characterized in that disinfectant injection means is provided at the most upstream part of the purified water supply line.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies, the present inventors have focused on the disinfection method as a bacterial countermeasure for the entire dialysis system including the following piping system and the characteristics of the bacteria living in the RO purified water line. As a result, the following (1) The knowledge of (4) was obtained and the present invention was further achieved.
(1) Since a normal dialysis system is composed of a combination of devices from different manufacturers, it is difficult to exchange electrical signals between devices, and it is necessary to install disinfection means for each device. When viewed as a disinfection means, not only is there a lot of waste, but it also takes the effort of a disinfection operator.
(2) Gram-negative bacteria, which are oligotrophic bacteria that produce endotoxin, grow on the RO purified water line, which is an oligotrophic environment, and the disinfectant introduction site immediately after the reverse osmosis membrane, which is the most upstream part of the RO purified water line By installing, the entire RO purified water line can be effectively disinfected.
(3) Gram-negative bacteria that produce endotoxin are easy to grow in the stagnant part of the RO purified water line or the slow-flowing part, and circulate so that there is no stagnation of purified water throughout the RO purified water line. Can be prevented from growing.
(4) When the dialysis treatment is not performed, the entire RO purified water line and the entire dialysate line are sealed and stored in a disinfectant solution, so that the RO purified water line and dialysate line can be stored while the dialysis system is stopped. Bacterial growth can be suppressed.
[0024]
Furthermore, about the dialysis system concerning this invention, the embodiment is shown in figure and demonstrated in detail.
[0025]
FIG. 1 is a flow diagram showing an example of an embodiment of a method for disinfecting an entire dialysis system according to the present invention.
[0026]
The purified water production apparatus B, the dialysate supply apparatus D, and the dialysis monitoring apparatus H are electrically connected by electrical signals 101 and 102, and signals can be transmitted and received between the apparatuses. The purified water production apparatus B receives, for example, a stop signal of the apparatus at the disinfecting liquid supply control apparatus 12 by the electrical signals from the dialysis monitoring apparatus H and the dialysate supply apparatus D, and controls the disinfecting liquid supply control apparatus 12. In response to the signal, the disinfecting liquid L stored in the disinfecting liquid storage tank 11 is introduced into the RO purified water line by the disinfecting liquid injection means 17. The disinfecting liquid injection means 17 may be a metering pump or the like, but is not particularly limited thereto.
[0027]
The dialysate supply device D starts the operation of introducing the disinfecting liquid L to be fed into the apparatus in response to the electric signal of the disinfecting liquid sending from the disinfecting liquid sending control device 12, and the disinfecting liquid L is put into the apparatus. Introduce.
[0028]
Further, the monitoring device H for dialysis starts the introduction operation of the disinfecting liquid L to be sent via the dialysate supplying apparatus D by the electric signal of the disinfecting liquid sending from the disinfecting liquid sending control device 12. Through this series of operations, automatic disinfection of the purified water production apparatus B, the dialysate supply apparatus D, the dialysis monitoring apparatus H, and all RO purified water lines and dialysate lines in the pipes connecting the respective apparatuses is performed. Can be implemented.
[0029]
FIG. 2 is a flowchart showing another example of the embodiment of the method for disinfecting the entire dialysis system according to the first aspect of the present invention.
[0030]
In FIG. 2, the system is composed of purified water production apparatus B, dialysate supply apparatus D, A powder dissolving apparatus E and B powder dissolving apparatus F for preparing dialysate stock solution, and personal dialyzing apparatus K, They are electrically connected by electrical signals 101 and 103 to 105, and signals can be transmitted and received between the devices. Further, as described above, the dialysate supply device D and the dialysis monitoring device H are electrically connected by the electric signal 102 and can transmit and receive signals between the devices. The purified water production apparatus B receives an electrical signal from each apparatus, for example, a stop signal of each apparatus by the disinfecting liquid supply control apparatus 12 and stores it in the disinfecting liquid storage tank 11 by a control signal of the disinfecting liquid supply control apparatus 12. The disinfecting liquid L is introduced into the RO purified water line by the disinfecting liquid injection means 17.
[0031]
The dialysis fluid supply device D, the A powder dissolution device E, the B powder dissolution device F, and the personal dialysis device K are supplied with the disinfecting liquid L in response to the electrical signal of the disinfecting liquid supply from the disinfecting liquid supply control device 12. Is started, and the disinfectant L is introduced into the apparatus.
[0032]
In addition, as described above, the monitoring device H for dialysis starts the introduction operation of the disinfecting liquid L that is sent via the dialysate supplying device D in response to the electric signal of the disinfecting liquid sending liquid from the disinfecting liquid sending control device 12. To do. In this series of operations, the purified water production apparatus B, the dialysate supply apparatus D, the A powder dissolution apparatus E, the B powder dissolution apparatus F, the personal dialysis apparatus K, and the dialysis monitoring apparatus H, respectively It is possible to carry out automatic disinfection of all RO purified water lines and dialysate lines in the pipes connecting these devices.
[0033]
After the automatic sterilization of the entire dialysis system, the purified water production apparatus B, the dialysate supply apparatus D, the A powder dissolution apparatus E, the B powder dissolution apparatus F, the personal dialysis apparatus K, and the dialysis monitoring apparatus H Supplies purified water via the dialysate supply device D, and rinses each device and pipe with purified water so that no disinfectant remains, and automatically performs a series of operations for the next dialysis treatment. It is also possible to implement. In the dialysis system shown in FIG. 2, the personal dialysis apparatus K is not necessarily required as described above, and even in that case, the dialysis system of the present invention can be configured.
[0034]
FIG. 3 is a flow chart showing an example of an embodiment of the disinfecting liquid injection means in the system of the present invention. The method for injecting the disinfectant into the RO purified water line may be constituted by the disinfectant storage tank 11 and the disinfectant injection unit 17, but is not particularly limited thereto. The position where the disinfectant solution is injected into the RO purified water line by the disinfectant solution injection means 17 is between the purified water production measure B and the dialysate supply device D, preferably RO (reverse osmosis) which is the most upstream part of the RO purified water line. ) By setting immediately after the module, it is possible to effectively disinfect the entire RO purified water line including the apparatus and piping from the most upstream part of the RO purified water line to the end without any non-disinfecting sites.
[0035]
In addition, by providing a disinfectant injection position immediately after the RO module, purification of the secondary side of the RO module can be performed even when leakage of bacteria or endotoxin to the secondary side of the RO module due to physical or temporal deterioration of the RO module occurs. Bacteria and endotoxin contamination in the water line can be minimized.
[0036]
FIG. 4 is a flowchart showing an example of an embodiment in which the purified water recovery line according to claim 3 is provided. Usually, the liquid level detection means is provided in the dialysate storage tank in the dialysate supply device D, and the remaining amount of dialysate in the tank is monitored, but when the liquid level is low, that is, the storage dialysis in the tank When the amount of liquid is small, the dialysate supply apparatus D introduces RO purified water from the purified water production apparatus B and prepares a dialysate by blending with the dialyzing agent. At the time of preparation of this dialysate, the RO purified water C having a certain flow rate is always flowing in the purified water supply line 13 from the purified water production apparatus B to the dialysate supply apparatus D. However, when the liquid level in the dialysate storage tank in the dialysate supply apparatus D is high, that is, when there is a large amount of stored dialysate in the tank, the dialysate supply apparatus D stops producing the dialysate, In the purified water supply line 13 from the water production apparatus B to the dialysate supply apparatus D, the purified water C is always stagnant. On the other hand, by providing the purified water recovery line 15 according to claim 3 separately from the purified water supply line 13, the dialysate supply device D can be installed in the purified water production device B even when production of the dialysate is stopped. RO purified water C can be returned to the purified water production apparatus B by the action of the delivery pressure of the purified water delivery pump. During this period, the purified water production apparatus B, the purified water supply line 13 and the purified water recovery line can be returned. 15 is a state in which the purified water C can be circulated at all times, and it is possible to suppress the growth of Gram-negative bacteria that produce endotoxin that is prone to grow in the stagnation site of the purified water in an oligotrophic environment.
[0037]
FIG. 5 is a flowchart showing another example of the embodiment provided with the purified water recovery line according to claim 3. RO purified water is supplied from the purified water production apparatus B to the A powder dissolution apparatus E, B powder dissolution apparatus F, dialysate supply apparatus D, and personal dialysis apparatus group (K1 to K3) for preparing the dialysate stock solution. The Similarly to the stop process of the dialysate supply device D, when the respective devices are stopped, the inside of the distribution lines (14a to 14f) for distributing the purified water C from the purified water concentration supply line 13 to each device is as follows. The purified water C is in a stagnant state. Therefore, similarly to the purified water recovery line provided in the dialysate supply device D, by providing individual purified water recovery lines (16a to 16f) for each device and providing the purified water concentration recovery line 15, Purified water C can be returned to the purified water production apparatus B by the action of the feed pressure of the purified water feed pump in the purified water production apparatus B. During this period, the purified water production apparatus B and the purified water concentration supply line are returned. 13 and the purified water concentration recovery line 15 and the purified water in the individual purified moisture feed lines (14a to 14f) and the recovery lines (16a to 16f) provided for each device are constantly circulated. Yes, it is possible to suppress the growth of gram-negative bacteria that produce endotoxins that are prone to growth in stagnant areas of the purified water flow in an oligotrophic environment, and to purify the entire purified water line of the dialysis system It is.
[0038]
FIG. 6 is a flowchart showing an example of a switching means for sending and recovering purified water to each apparatus of the present invention described in claim 4 (here, dialysate supply apparatus D is described as an example, The same applies to peripheral devices that supply other purified water).
[0039]
That is, the purified water C purified by the purified water production apparatus B is sent by the concentrated purified water supply line 13 and is supplied to the dialysate supply apparatus D by the delivery line 14c that delivers the purified water C to the dialysate supply apparatus D. Purified water C is supplied to D.
[0040]
It is conceivable to use a two-way valve, a three-way valve, or the like as the flow path switching means for sending and collecting the purified water C to each apparatus, but it is not particularly limited. In FIG. 6, when the two-way valves 18a and 18b are used, the upper part is a flowchart when the three-way valve 18c is used.
[0041]
First, the case where the two-way valves 18a and 18b are used as the flow path switching means will be described. When the dialysate supply device D uses the purified water C, the two-way valve 18a is in the open state, and the other The two-way valve 18b is in a closed state, and the purified water C is supplied to the dialysate supply device D from the purified water feed line 14c without flowing into the purified water recovery line 16c. On the other hand, when the dialysate supply device D is not using purified water C, the two-way valve 18a is in a closed state, the other two-way valve 18b is in an open state, and the purified water C is supplied from the dialysate supply device D. However, the water flows to the purified water recovery line 16 c and is recovered by the purified water concentration recovery line 15 to the purified water production apparatus B.
[0042]
Next, the case where the three-way valve 18c is used as the flow path switching means will be described. When the dialysate supply device D uses the purified water C in the same operation as the above-described two-way valve, the purified water feed is performed. The flow path from the line 14c to the dialysate supply device D is open, the flow path from the purified water feed line 14c to the purified water recovery line 16c is closed, and purified water C flows to the purified water recovery line 16c. Without being supplied to the dialysate supply device D from the purified water feed line 14c. On the other hand, when the dialysate supply device D does not use the purified water C, the flow path from the purified water feed line 14c to the dialysate feed device D is closed, and the purified water feed line 14c to the purified water recovery line 16c. The purified water C does not flow to the dialysate supply device D but flows to the purified water recovery line 16c and is recovered by the purified water concentration recovery line 15 to the purified water production device B. As a result, even if any of the devices that use purified water C in the dialysis system is in a stopped state, there is no stagnation over the entire purified water line, and bacteria and endotoxin contamination can be minimized.
[0043]
It should be noted that the flow path switching means is not particularly limited, and it may be installed inside each apparatus for supplying purified water C or installed in piping outside the apparatus.
[0044]
FIG. 7 is a flowchart showing an example of a concentrated recovery means for purified water in the dialysis system of the present invention according to claim 5.
[0045]
That is, the raw water A is introduced into the purified water production apparatus B, and after the hardness components are ion-exchanged by the water softener 1 in the purified water production apparatus B, residual chlorine is removed by the activated carbon filter 2, and the RO pump The pressure is increased to a predetermined pressure by 3 and supplied to the RO module 4. Purified water that has passed through the RO module 4 and has been cleaned by removing various ions, fine particles, bacteria, endotoxin, and the like is temporarily stored in the purified water tank 5 and is supplied downstream as purified water C by the action of the supply pump 6. (Here, the dialysate supply device D is described, but the same applies to other peripheral devices for supplying purified water). When the dialysate supply device D stops producing the dialysate, the RO purified water C passes through the individual recovery line 16c of the purified water and the concentrated recovery line 15 by the action of the supply pump 6 in the purified water production apparatus B. Is recovered in the purified water production apparatus B. By connecting the purified water concentration recovery line 15 to the primary side of the RO pump 3 in the purified water production apparatus B, the flow rate of purified water is ensured in the RO module and the entire purified water line, and the stagnation site is In addition, bacterial and endotoxin contamination can be minimized.
[0046]
In addition, in the circulation system that returns the purified water that has been known in the past to the purified water tank in the purified water production equipment, if there is bacteria or endotoxin contamination in the purified water line, the purification is contaminated with bacteria and endotoxin. Water will be introduced into the purified water tank, and the purified water production apparatus will be exposed to bacterial and endotoxin contamination. Therefore, it is not desirable because it requires a cleaning measure such as installing an endotoxin removal filter in the purified water recovery line immediately before the purified water tank.
[0047]
On the other hand, as in the dialysis system of the present invention, if the concentrated water recovery line is connected to the primary side of the RO pump in the purified water production apparatus and the purified water is recovered to the primary side of the RO pump, either Even if there is bacteria or endotoxin contamination in the purified water line, the RO module, which has a high ability to remove various ions, microparticles, bacteria, and endotoxin, is permeated again, thereby avoiding the inside of the purified water production equipment from bacteria and endotoxin contamination. It can be done. Furthermore, there is no need for cleanup measures such as installing an endotoxin removal filter in the purified water recovery line, and it is possible to realize a dialysis system with extremely little bacteria and endotoxin contamination as a whole dialysis system. .
[0048]
Finally, a method for maintaining the cleanliness of a dialysis system in which the inside of the purified water line or the inside of the dialysate line is sealed with a disinfectant when the dialysis treatment according to claim 6 of the present invention is not performed will be described in detail with reference to FIG. Will be explained.
[0049]
Usually, the dialysate line composed of the dialysate supply device D and the monitoring device H for dialysis and the piping members connecting the dialysis fluid is sterilized with the disinfectant after completion of the dialysis treatment, and then purified water is passed through each device and the piping. The dialysis system is stopped after washing with water.
[0050]
On the other hand, the purified water line consisting of piping members connecting the purified water production apparatus B, the dialysate supply apparatus D, the A powder dissolving apparatus E, and the personal dialysis apparatus K is disinfected by the apparatus alone. May normally remain undisinfected. When the dialysis system is not in use, the dialysate line and the purified water line remain sealed with RO-purified water, which is an undernourished environment. This means that Gram-negative bacteria that produce endotoxin, which is a vegetative bacterium, are exposed to an environment in which they can easily grow.
[0051]
Therefore, with respect to the purified water line, after the dialysis treatment, the entire purified water line including each device is replaced with a disinfectant solution. In addition, normally, the dialysate line is sterilized at a high concentration to remove organic substances such as glucose added to the dialysate and waste protein produced by the patient after dialyzer I. By replacing the entire dialysate line including each device with a disinfectant solution, it is possible to maintain the cleanliness of the dialysis system with extremely little bacterial and endotoxin contamination in each device and piping line when dialysis treatment is not performed. It becomes. The above-mentioned effect can be obtained by using a line for replacement sealing with a disinfectant solution within the entire purified water line, the dialysate line, or both of these lines.
[0052]
As for the disinfectant used, various disinfectants or prescription concentrations can be considered in consideration of those that are easy to handle, such as those that have low sterilization and material degradation, or those that have a low environmental impact. It is not limited.
[0053]
【The invention's effect】
The compact system can easily sterilize the entire dialysis system and circulate the purified water throughout the purified water line including pipes with relatively low sterilization frequency regardless of whether or not dialysis treatment is performed. Therefore, the stagnation part can be reduced as much as possible, and a dialysis system with extremely few bacteria and endotoxin contamination can be provided.
[0054]
In addition, there is very little contamination of bacteria and endotoxin in the piping when the dialysis treatment is not performed by replacing the purified water line and / or the dialysate line piping with a disinfectant solution when the dialysis treatment is not performed. A method for maintaining the cleanliness of a dialysis system can be provided.
[Brief description of the drawings]
FIG. 1 is a flow diagram showing an example of an embodiment of a method for disinfecting an entire dialysis system of the present invention.
FIG. 2 is a flowchart showing another example of the embodiment of the method for disinfecting the entire dialysis system of the present invention.
FIG. 3 is a flowchart showing an example of an embodiment of the disinfecting liquid injection means of the present invention.
FIG. 4 is a flowchart showing an example of an embodiment in which a purified water recovery line is provided in the dialysis system of the present invention.
FIG. 5 is a flowchart showing another example of an embodiment in which a purified water recovery line is provided in the dialysis system of the present invention.
FIG. 6 is a flowchart showing an example of an embodiment of a switching means for feeding and collecting purified water to each apparatus of the present invention.
FIG. 7 is a flowchart showing an example of an embodiment of the purified water recovery means of the present invention.
FIG. 8 is a flow diagram showing a typical dialysis system.
FIG. 9 is a flowchart showing an example of a purified water production apparatus A.
[Explanation of symbols]
A: Raw water
B: Purified water production equipment
C: Purified water
D: Dialysate supply device
E: Dialysis stock solution production equipment (A powder dissolution equipment)
F: Dialysis stock solution production equipment (B powder dissolution equipment)
G: Dialysate
H: Monitoring device for dialysis
I: Dialyzer
J: Blood from the patient
K (K1-K3): Personal dialysis machine
L: Disinfectant
1: Water softener
2: Activated carbon filter
3: RO pump
4: RO module
5: Purified water tank
6: Purified water feed pump
7: Endotoxin removal filter
8: Soft water line
9: Soft water line valve
10: Sanitization filter
11: Disinfectant storage tank
12: Disinfectant liquid feeding control device
13: Purified water central supply line
14a-14f: Purified moisture feed line
15: Purified water concentration recovery line
16a-16f: Purified water individual recovery line
17: Disinfectant injection means
18a-c: Channel switching means
101-105: Electric signal

Claims (4)

逆浸透膜により原水を精製して精製水を得る精製水製造装置と、該精製水製造装置で精製された精製水に透析原剤を添加して所定の透析液を製造する透析液供給装置と、該透析液供給装置で調合された透析液により血液透析を実施する透析用監視装置からなる透析システムにおいて、
前記精製水製造装置で精製された精製水を前記透析液供給装置に供給する精製水供給ラインと、該透析液供給装置から精製水を回収する精製水回収ラインとを設け、該透析液供給装置に供給した精製水を前記精製水製造装置内に設けられている逆浸透膜加圧用ポンプの一次側に回収するように構成するとともに、
前記精製水製造装置からの消毒液送液信号により、該精製水製造装置から消毒液を送液するようになし、該精製水製造装置から送液された消毒液を前記透析液供給装置が導入する所定の動作を行なうようにし、かつ該透析液供給装置は導入した消毒液を前記透析用監視装置に送液し、該透析液監視装置は送液された消毒液を導入する所定の動作を行なうように構成したことを特徴とする透析システム。
A purified water production apparatus that purifies raw water by a reverse osmosis membrane to obtain purified water, and a dialysate supply apparatus that produces a predetermined dialysate by adding a dialysis raw material to purified water purified by the purified water production apparatus; In a dialysis system comprising a dialysis monitoring device that performs hemodialysis with the dialysate prepared by the dialysate supply device,
A purified water supply line for supplying purified water purified by the purified water production apparatus to the dialysate supply apparatus, and a purified water recovery line for recovering purified water from the dialysate supply apparatus, and the dialysate supply apparatus And so that the purified water supplied to the primary side of the reverse osmosis membrane pressurization pump provided in the purified water production apparatus is collected,
According to the disinfectant solution feed signal from the purified water production device, the disinfectant solution is sent from the purified water production device, and the dialysate supply device introduces the disinfectant solution sent from the purified water production device. The dialysate supply device sends the introduced disinfectant solution to the dialysis monitoring device, and the dialysate monitor device performs the prescribed operation of introducing the sent disinfectant solution. A dialysis system characterized by being configured to perform.
逆浸透膜により原水を精製して精製水を得る精製水製造装置と、該精製水製造装置で精製された精製水に透析原剤を添加して所定の透析液を製造する透析液供給装置と、該透析液供給装置で調合された透析液により血液透析を実施する透析用監視装置からなる透析システムにおいて、
前記精製水製造装置で精製された精製水を前記透析液供給装置に供給する精製水供給ラインと、該透析液供給装置から精製水を回収する精製水回収ラインとを設け、該透析液供給装置に供給した精製水を前記精製水製造装置内に設けられている逆浸透膜加圧用ポンプの一次側に回収するように構成するとともに
該精製水製造装置内に設けられた逆浸透膜モジュールと該透析液供給装置との間に消毒液注入手段を設けたことを特徴とする透析システム。
A purified water production apparatus that purifies raw water by a reverse osmosis membrane to obtain purified water, and a dialysate supply apparatus that produces a predetermined dialysate by adding a dialysis raw material to purified water purified by the purified water production apparatus; In a dialysis system comprising a dialysis monitoring device that performs hemodialysis with the dialysate prepared by the dialysate supply device,
A purified water supply line for supplying purified water purified by the purified water production apparatus to the dialysate supply apparatus, and a purified water recovery line for recovering purified water from the dialysate supply apparatus, and the dialysate supply apparatus And the reverse osmosis membrane module provided in the purified water production device and the reverse osmosis membrane module provided in the purified water production device and the reverse osmosis membrane pressurization pump provided in the purified water production device A dialysis system characterized in that disinfectant injection means is provided between the dialysis solution supply apparatus.
逆浸透膜により原水を精製して精製水を得る精製水製造装置と、該精製水製造装置で精製された精製水に透析原剤を添加して所定の透析液を製造する透析液供給装置と、該透析液供給装置で調合された透析液により血液透析を実施する透析用監視装置と、該精製水製造装置で精製された精製水が供給され患者個人に対応した透析を実現する個人用透析装置からなる透析システムにおいて、
前記精製水製造装置で精製された精製水を前記透析液供給装置および前記個人用透析装置に供給する精製水供給ラインと、該透析液供給装置および該個人用透析装置から精製水を回収する精製水回収ラインとを設け、該透析液供給装置および該個人用透析装置に供給した精製水を前記精製水製造装置内に設けられている逆浸透膜加圧用ポンプの一次側に回収するように構成するとともに、
前記精製水製造装置からの消毒液送液信号により、該精製水製造装置から消毒液を送液するようになし、該精製水製造装置から送液された消毒液を前記透析液供給装置および前記個人用透析装置が導入する所定の動作を行なうようにし、かつ該透析液供給装置は導入した消毒液を前記透析用監視装置に送液し、該透析液監視装置は送液された消毒液を導入する所定の動作を行なうように構成したことを特徴とする透析システム。
A purified water production apparatus that purifies raw water by a reverse osmosis membrane to obtain purified water, and a dialysate supply apparatus that produces a predetermined dialysate by adding a dialysis raw material to purified water purified by the purified water production apparatus; A dialysis monitoring device that performs hemodialysis with the dialysate prepared by the dialysate supply device, and a personal dialysis that is supplied with purified water purified by the purified water production device and realizes dialysis corresponding to individual patients In a dialysis system consisting of devices ,
A purified water supply line for supplying purified water purified by the purified water production apparatus to the dialysate supply apparatus and the personal dialyzer , and purification for recovering purified water from the dialysate supply apparatus and the personal dialyzer A water recovery line is provided , and the purified water supplied to the dialysate supply device and the personal dialyzer is recovered to the primary side of a reverse osmosis membrane pressurization pump provided in the purified water production device. And
According to the disinfectant solution feed signal from the purified water production device, the disinfectant solution is sent from the purified water production device, and the disinfectant solution sent from the purified water production device is used as the dialysate supply device and the The dialysis fluid supply device sends the introduced sterilization solution to the dialysis monitoring device, and the dialysis fluid monitoring device supplies the sterilization solution thus fed. A dialysis system configured to perform a predetermined operation to be introduced .
逆浸透膜により原水を精製して精製水を得る精製水製造装置と、該精製水製造装置で精製された精製水に透析原剤を添加して所定の透析液を製造する透析液供給装置と、該透析液供給装置で調合された透析液により血液透析を実施する透析用監視装置と、該精製水製造装置で精製された精製水が供給され患者個人に対応した透析を実現する個人用透析装置からなる透析システムにおいて、A purified water production apparatus that purifies raw water by a reverse osmosis membrane to obtain purified water, and a dialysate supply apparatus that produces a predetermined dialysate by adding a dialysis raw material to purified water purified by the purified water production apparatus; A dialysis monitoring device that performs hemodialysis with the dialysate prepared by the dialysate supply device, and a personal dialysis that is supplied with purified water purified by the purified water production device to achieve dialysis corresponding to the individual patient In a dialysis system consisting of devices,
前記精製水製造装置で精製された精製水を前記透析液供給装置および前記個人用透析装置に供給する精製水供給ラインと、該透析液供給装置および該個人用透析装置から精製水を回収する精製水回収ラインとを設け、該透析液供給装置および該個人用透析装置に供給した精製水を前記精製水製造装置内に設けられている逆浸透膜加圧用ポンプの一次側に回収するように構成するとともに、A purified water supply line for supplying purified water purified by the purified water production apparatus to the dialysate supply apparatus and the personal dialysis apparatus, and purification for recovering purified water from the dialysate supply apparatus and the personal dialysis apparatus A water recovery line is provided, and the purified water supplied to the dialysate supply device and the personal dialyzer is recovered to the primary side of a reverse osmosis membrane pressurization pump provided in the purified water production device. And
前記精製水供給ラインの最上流部に消毒液注入手段を設けたことを特徴とする透析シスA dialysis system characterized in that disinfectant injection means is provided at the most upstream part of the purified water supply line. テム。System.
JP2002064874A 2002-03-11 2002-03-11 Dialysis system Expired - Fee Related JP4174753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002064874A JP4174753B2 (en) 2002-03-11 2002-03-11 Dialysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002064874A JP4174753B2 (en) 2002-03-11 2002-03-11 Dialysis system

Publications (2)

Publication Number Publication Date
JP2003260131A JP2003260131A (en) 2003-09-16
JP4174753B2 true JP4174753B2 (en) 2008-11-05

Family

ID=28671126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002064874A Expired - Fee Related JP4174753B2 (en) 2002-03-11 2002-03-11 Dialysis system

Country Status (1)

Country Link
JP (1) JP4174753B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104717989A (en) * 2012-08-13 2015-06-17 索林集团德国有限责任公司 Method for controlling a disinfection status of a temperature control device and temperature control device for human body temperature control during extracorporeal circulation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204996B2 (en) * 2006-06-22 2013-06-05 日機装株式会社 Dialysis treatment system and its disinfection method
JP5204995B2 (en) * 2006-06-22 2013-06-05 日機装株式会社 Central system for dialysis treatment and its disinfection method
JP5354319B2 (en) * 2007-06-20 2013-11-27 ニプロ株式会社 Dialysis system
JP2010187721A (en) * 2009-02-16 2010-09-02 Daicen Membrane Systems Ltd Apparatus for feeding artificial dialytic water
JP5320107B2 (en) * 2009-02-25 2013-10-23 東レ・メディカル株式会社 Apparatus and method for producing dilution water for dialysate preparation
JP5425527B2 (en) * 2009-06-02 2014-02-26 三菱レイヨン・クリンスイ株式会社 Dialysis system
JP5736661B2 (en) * 2010-04-09 2015-06-17 ニプロ株式会社 Contamination prevention method in dialysis piping
DE102011016508A1 (en) 2011-04-08 2012-10-11 Sorin Group Deutschland Gmbh Temperature control device for use in fluid-based hyper / hypothermia systems
JP5369140B2 (en) * 2011-06-08 2013-12-18 日機装株式会社 Mixing equipment
EP2698176B1 (en) * 2012-08-13 2017-03-15 Sorin Group Deutschland GmbH Method and apparatus for disinfection of a temperature control device for human body temperature control during extracorporeal circulation
CN111960505A (en) * 2020-09-04 2020-11-20 开能康德威健康科技(北京)有限责任公司 Water treatment equipment and hemodialysis system
JP7022247B1 (en) 2021-02-01 2022-02-17 岩井ファルマテック株式会社 Purified water supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104717989A (en) * 2012-08-13 2015-06-17 索林集团德国有限责任公司 Method for controlling a disinfection status of a temperature control device and temperature control device for human body temperature control during extracorporeal circulation

Also Published As

Publication number Publication date
JP2003260131A (en) 2003-09-16

Similar Documents

Publication Publication Date Title
US5032265A (en) Method and system for producing sterile aqueous solutions
EP0152051B1 (en) Process and system for producing sterile water and sterile aqueous solutions
US11718546B2 (en) System and a method for producing microbiologically controlled fluid
JP4174753B2 (en) Dialysis system
US9145318B2 (en) Systems and methods for removing hydrogen peroxide from water purification systems
JP5204995B2 (en) Central system for dialysis treatment and its disinfection method
JP7094504B2 (en) Systems and methods for producing bacteriologically controlled fluids
EP2569028B1 (en) System for producing ultra-pure water in dialysis
WO2007148443A1 (en) System for dialysis treatment and disinfection method thereof
US6022512A (en) Method of cleaning and disinfecting hemodialysis equipment, cleaning disinfectant, and cleaning and disinfecting apparatus
JP3378057B2 (en) Sterilization cleaning device for dialysate flow path of artificial dialyzer
JP2005034433A (en) Dialysis system and method of cleaning the same
JP4332829B2 (en) Dialysis system
JP4188276B2 (en) Cleaning and sterilizing method for hemodialysis system and cleaning and sterilizing apparatus for the system
Martin et al. Design and technical adjustment of a water treatment system: 15 years of experience
US20230331613A1 (en) System and method for producing microbiologically controlled fluid
JP4296534B2 (en) Method and apparatus for producing purified water by reverse osmosis membrane module
Arduino CDC investigations of noninfectious outbreaks of adverse events in hemodialysis facilities, 1979–1999
JP2997099B2 (en) System for producing sterile aqueous solution
JP3128642B2 (en) Purification method for water production equipment for dialysis
Kawasaki et al. Guidance of technical management of dialysis water and dialysis fluid for the Japan Association for Clinical Engineering Technologists
JP6987861B2 (en) Cleaning methods for dialysis machines and dialysis machines
Aoike Characteristics of central dialysis fluid delivery system and single patient dialysis machine for HDF
Han et al. Current status of central concentrate delivery system for hemodialysis in Korea
HOPKINS Technical Aspects of Dialysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees