JP4168077B2 - Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion - Google Patents
Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion Download PDFInfo
- Publication number
- JP4168077B2 JP4168077B2 JP2007129468A JP2007129468A JP4168077B2 JP 4168077 B2 JP4168077 B2 JP 4168077B2 JP 2007129468 A JP2007129468 A JP 2007129468A JP 2007129468 A JP2007129468 A JP 2007129468A JP 4168077 B2 JP4168077 B2 JP 4168077B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- alloy plate
- orientation
- electrical
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 103
- 239000013078 crystal Substances 0.000 claims description 53
- 238000009826 distribution Methods 0.000 claims description 33
- 239000004065 semiconductor Substances 0.000 claims description 27
- 229910001369 Brass Inorganic materials 0.000 claims description 23
- 239000010951 brass Substances 0.000 claims description 23
- 238000004458 analytical method Methods 0.000 claims description 21
- 238000005259 measurement Methods 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 12
- 229910052791 calcium Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910001122 Mischmetal Inorganic materials 0.000 claims description 4
- 229910052776 Thorium Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 238000002003 electron diffraction Methods 0.000 claims description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 claims description 2
- 239000010408 film Substances 0.000 description 47
- 238000000137 annealing Methods 0.000 description 31
- 229910017824 Cu—Fe—P Inorganic materials 0.000 description 22
- 238000005097 cold rolling Methods 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 238000005096 rolling process Methods 0.000 description 18
- 239000000203 mixture Substances 0.000 description 16
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 230000000694 effects Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052790 beryllium Inorganic materials 0.000 description 4
- 229910052793 cadmium Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000001739 density measurement Methods 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Conductive Materials (AREA)
- Lead Frames For Integrated Circuits (AREA)
Description
本発明は、高強度で、かつ、パッケージクラックや剥離の問題に対処するために酸化膜密着性を向上させたCu−Fe−P系の銅合金板に関する。本発明の銅合金板は、半導体装置用リードフレームの素材として好適で、半導体装置用リードフレーム以外にも、その他の半導体部品、プリント配線板等の電気・電子部品材料、開閉器部品、ブスバー、端子・コネクタ等の機構部品など様々な電気電子部品用として好適に使用される。ただ、以下の説明では、代表的な用途例として、半導体部品であるリードフレームに使用する場合を中心に説明を進める。 The present invention relates to a Cu—Fe—P-based copper alloy plate having high strength and improved oxide film adhesion in order to cope with problems of package cracking and peeling. The copper alloy plate of the present invention is suitable as a material for a lead frame for a semiconductor device. In addition to the lead frame for a semiconductor device, other semiconductor components, electrical / electronic component materials such as a printed wiring board, switch parts, bus bars, It is suitably used for various electrical and electronic parts such as mechanical parts such as terminals and connectors. However, in the following description, as a typical application example, the description will be focused on the case where it is used for a lead frame which is a semiconductor component.
半導体リードフレーム用銅合金としては、従来よりFeとPとを含有する、Cu−Fe−P系の銅合金が一般に用いられている。これらCu−Fe−P系の銅合金としては、例えば、Fe:0.05〜0.15%、P:0.025〜0.040%を含有する銅合金(C19210合金)や、Fe:2.1〜2.6%、P:0.015〜0.15%、Zn:0.05〜0.20%を含有する銅合金(CDA194合金)が例示される。これらのCu−Fe−P系の銅合金は、銅母相中にFe又はFe−P等の金属間化合物を析出させると、銅合金の中でも、強度、導電性および熱伝導性に優れていることから、国際標準合金として汎用されている。 As a copper alloy for a semiconductor lead frame, a Cu—Fe—P based copper alloy containing Fe and P has been generally used. Examples of these Cu-Fe-P-based copper alloys include, for example, a copper alloy containing Fe: 0.05 to 0.15% and P: 0.025 to 0.040% (C19210 alloy), Fe: 2 An example is a copper alloy (CDA194 alloy) containing 0.1 to 2.6%, P: 0.015 to 0.15%, and Zn: 0.05 to 0.20%. These Cu-Fe-P-based copper alloys are excellent in strength, conductivity and thermal conductivity among copper alloys when an intermetallic compound such as Fe or Fe-P is precipitated in the copper matrix. Therefore, it is widely used as an international standard alloy.
近年、電子機器に用いられる半導体装置の大容量化、小型化、高機能化に伴い、半導体装置に使用されるリードフレームの小断面積化が進み、より一層の強度、導電性、熱伝導性が要求されている。これに伴い、これら半導体装置に使用されるリードフレームに用いられる銅合金板にも、より一層の高強度化、熱伝導性が求められている。 In recent years, along with the increase in capacity, size, and functionality of semiconductor devices used in electronic devices, lead frames used in semiconductor devices have become smaller in cross-sectional area, resulting in greater strength, conductivity, and thermal conductivity. Is required. Accordingly, copper alloy plates used for lead frames used in these semiconductor devices are required to have higher strength and thermal conductivity.
一方、半導体デバイスのプラスチックパッケージは、熱硬化性樹脂によって半導体チップを封止するパッケージが、経済性と量産性に優れることから、主流となっている。これらパッケージは、最近の電子部品の小型化の要求に伴って、益々薄肉化されている。 On the other hand, plastic packages for semiconductor devices have become mainstream because packages in which a semiconductor chip is sealed with a thermosetting resin are excellent in economy and mass productivity. These packages are becoming thinner with the recent demand for miniaturization of electronic components.
これらのパッケージの組み立てにおいて、リードフレームに半導体チップをAgペーストなどを用いて加熱接着するか、あるいはAu,Agなどのめっき層を介してはんだ付けもしくはAgろう付けする。そして、その後樹脂封止を行い、樹脂封止を行ったあとに、アウターリードに電気めっきによる外装を行うのが一般的である。 In assembling these packages, the semiconductor chip is heat bonded to the lead frame using an Ag paste or the like, or soldered or brazed via a plated layer of Au, Ag, or the like. Then, after resin sealing is performed and the resin sealing is performed, an outer lead is generally subjected to exterior plating by electroplating.
これらのパッケージの信頼性に関する最大の課題は、表面実装時に発生するパッケージ・クラックや剥離の問題である。パッケージの剥離は、半導体パッケージを組み立てた後、樹脂とダイパッド(リードフレームの半導体チップを載せる部分)との密着性が低い場合、後の熱処理時の熱応力によって生じる。 The biggest problem related to the reliability of these packages is the problem of package cracks and peeling that occur during surface mounting. When the semiconductor package is assembled and the adhesion between the resin and the die pad (portion where the semiconductor chip of the lead frame is placed) is low, the package is peeled off due to thermal stress during the subsequent heat treatment.
これに対して、パッケージクラックは、半導体パッケージを組み立てた後、モールド樹脂が大気より吸湿するため、後の表面実装での加熱において水分が気化し、パッケージ内部にクラックがあると、剥離面に水蒸気が印加されて内圧として作用する。この内圧によりパッケージに膨れを生じたり、樹脂が内圧に耐えられずクラックを生じたりする。表面実装後のパッケージにクラックが発生すると水分や不純物が侵入しチップを腐食させるため、半導体としての機能を害する。また、パッケージが膨れることで外観不良となり商品価値が失われる。このようなパッケージクラックや剥離の問題は、近年、上記パッケージの薄型の進展に伴って顕著となっている。 On the other hand, since the mold resin absorbs moisture from the atmosphere after the semiconductor package is assembled, moisture is vaporized in the subsequent heating in surface mounting. Is applied and acts as an internal pressure. This internal pressure causes the package to swell, or the resin cannot withstand the internal pressure and causes cracks. When cracks occur in a package after surface mounting, moisture and impurities enter and corrode the chip, which impairs the function as a semiconductor. In addition, the appearance of the package swells and the product value is lost. Such a problem of package cracking and peeling has become remarkable in recent years with the progress of thinning of the package.
ここで、パッケージクラックや剥離の問題は、樹脂とダイパットとの密着性不良に起因するが、樹脂とダイパットとの密着性に最も大きな影響を及ぼしているのが、リードフレーム母材の酸化膜である。リードフレーム母材は、板の製造やリードフレーム製作のために、種々の加熱工程を経ている。このため、Agなどのめっき前に、母材の表面には、数十〜数百nmの厚さの酸化膜が形成されている。ダイパット表面では、この酸化膜を介して銅合金と樹脂とが接しているため、この酸化膜のリードフレーム母材との剥離は、もろに樹脂とダイパットとの剥離へとつながり、リードフレーム母材への樹脂の密着性を著しく低下させる。 Here, the problem of package cracks and peeling is caused by poor adhesion between the resin and the die pad, but the oxide film of the lead frame base material has the greatest influence on the adhesion between the resin and the die pad. is there. The lead frame base material is subjected to various heating processes in order to manufacture plates and lead frames. For this reason, an oxide film having a thickness of several tens to several hundreds nm is formed on the surface of the base material before plating with Ag or the like. Since the copper alloy and the resin are in contact with each other through the oxide film on the surface of the die pad, the separation of the oxide film from the lead frame base material leads to the separation of the resin and the die pad, and the lead frame base material. The adhesion of the resin to the resin is significantly reduced.
したがって、パッケージクラックや剥離の問題は、この酸化膜のリードフレーム母材との密着性にかかっている。このため、リードフレーム母材としての、前記高強度化したCu−Fe−P系の銅合金板には、種々の加熱工程を経て表面に形成された酸化膜の密着性が高いことが要求される。 Therefore, the problem of package cracking and peeling depends on the adhesion of the oxide film to the lead frame base material. For this reason, the strengthened Cu-Fe-P copper alloy plate as a lead frame base material is required to have high adhesion of an oxide film formed on the surface through various heating processes. The
こうした課題に対し、これまで、あまり対策は提案されていないが、特許文献1では、銅合金極表層の結晶配向を制御することで、酸化膜密着性を向上させることが提案されている。即ち、特許文献1では、リードフレーム母材銅合金のXRDの薄膜法にて評価される極表面の結晶配向において、{111}ピーク強度に対する{100}ピーク強度比を0.04以下として、酸化膜密着性を向上させることが提案されている。なお、この特許文献1では、あらゆるリードフレーム母材銅合金を含むが、実質的に例示しているCu−Fe−P系銅合金は、Feの含有量が2.4%以上と多いCu−Fe−P系銅合金のみである。
しかし、この特許文献1の技術では、本発明で意図する高レベルの酸化膜密着性を保障するまでには至らない。 However, the technique of Patent Document 1 does not reach a high level of oxide film adhesion intended in the present invention.
即ち、先ず、特許文献1におけるCu−Fe−P系銅合金の実質的なFeの含有量は、前記した通り、最低でも2.4質量%を超えて多い。この点で、特許文献1の技術は、確かにFeの含有量が多いCu−Fe−P系銅合金の酸化膜密着性向上には有効かもしれない。実際に、特許文献1ではFeの含有量が2.41%である実施例1のCu−Fe−P系銅合金の酸化膜密着性は、酸化膜の剥離限界温度で633K(360℃)まで向上している。 That is, first, as described above, the substantial Fe content of the Cu—Fe—P-based copper alloy in Patent Document 1 is more than 2.4 mass% at least. In this regard, the technique of Patent Document 1 may be effective for improving the oxide film adhesion of a Cu—Fe—P copper alloy having a large Fe content. In fact, in Patent Document 1, the adhesion of the oxide film of the Cu—Fe—P-based copper alloy of Example 1 in which the Fe content is 2.41% is up to 633 K (360 ° C.) at the separation limit temperature of the oxide film. It has improved.
しかし、Feの含有量が2.4質量%を超えて多くなると、導電率などの材料特性だけでなく、鋳造性などの生産性が著しく低下するという、別の問題が生じる。実際に、特許文献1では、上記実施例1のCu−Fe−P系銅合金の引張強度は530MPaと比較的高いが、導電率は63%IACSと低い。 However, when the Fe content exceeds 2.4% by mass, another problem arises in that not only material properties such as conductivity but also productivity such as castability is significantly reduced. Actually, in Patent Document 1, the tensile strength of the Cu—Fe—P copper alloy of Example 1 is relatively high at 530 MPa, but the conductivity is as low as 63% IACS.
これに対して導電率を無理に増加させるために、例えば、上記析出粒子の析出量を増やそうとすると、逆に、析出粒子の成長・粗大化を招き、強度や耐熱性が低下する問題がある。言い換えると、特許文献1の技術では、Cu−Fe−P系銅合金に要求される高強度化と酸化膜密着性とを兼備させることができない。 On the other hand, in order to forcibly increase the electrical conductivity, for example, if the amount of precipitation of the above-mentioned precipitated particles is increased, there is a problem that, on the contrary, growth and coarsening of the precipitated particles are caused and strength and heat resistance are lowered. . In other words, the technique of Patent Document 1 cannot combine the high strength required for the Cu—Fe—P-based copper alloy and the oxide film adhesion.
したがって、この特許文献1の技術を、Feの含有量を実質的に0.5%以下と低減した組成によって、高強度化したCu−Fe−P系銅合金にそのまま適用しても、前記したリードフレーム等に要求される酸化膜密着性を得ることはできない Therefore, even if the technique of Patent Document 1 is applied as it is to a Cu-Fe-P-based copper alloy whose strength has been increased by a composition in which the Fe content is substantially reduced to 0.5% or less, it has been described above. The oxide film adhesion required for lead frames cannot be obtained.
本発明はこのような課題を解決するためになされたものであって、その目的は、Feの含有量を実質的に0.5%以下と低減した組成によっても、高強度化と優れた酸化膜密着性とを両立させたCu−Fe−P系銅合金板を提供することである。 The present invention has been made to solve such problems, and its purpose is to achieve high strength and excellent oxidation even with a composition in which the Fe content is substantially reduced to 0.5% or less. The object is to provide a Cu-Fe-P-based copper alloy plate that achieves both film adhesion.
この目的を達成するための本発明電気電子部品用銅合金板の要旨は、質量%で、Fe:0.01〜0.50%、P:0.01〜0.15%を各々含有し、残部Cuおよび不可避的不純物からなる銅合金板であって、互いに隣接する結晶の方位差が±15°以内のものは同一の結晶面に属するものと見なした場合に、電界放射型走査電子顕微鏡FE−SEMによる後方散乱電子回折像EBSPを用いた結晶方位解析方法により測定した、Brass方位の方位分布密度が37%以上である集合組織を有するとともに、平均結晶粒径を6.0μm以下とする。 The gist of the copper alloy plate for electrical and electronic parts of the present invention for achieving this object is, in mass%, Fe: 0.01 to 0.50%, P: 0.01 to 0.15%, respectively. A field-emission scanning electron microscope in which the copper alloy plate made of the remaining Cu and unavoidable impurities and having an orientation difference between adjacent crystals within ± 15 ° is considered to belong to the same crystal plane. It has a texture in which the orientation distribution density of the Brass orientation measured by a crystal orientation analysis method using a backscattered electron diffraction image EBSP by FE-SEM is 37% or more, and the average crystal grain size is 6.0 μm or less. .
本発明銅合金板は、高強度を達成するために、更に、質量%で0.005〜5.0%のSnを、あるいは、はんだ及びSnめっきの耐熱剥離性改善のために、更に、質量%で0.005〜3.0%のZnを、各々含有しても良い。 In order to achieve high strength, the copper alloy plate of the present invention further contains 0.005 to 5.0% Sn by mass, or further improves the heat-resistant peelability of solder and Sn plating. % 0.005 to 3.0% Zn may be contained.
本発明銅合金板は、高強度化の目安として、引張強度が500MPa以上、硬さが150Hv以上であることが好ましい。なお、導電率は板の強度に相関するものであり、本発明でいう高導電率とは、高強度な割りには導電率が比較的高いという意味である。 The copper alloy sheet of the present invention preferably has a tensile strength of 500 MPa or more and a hardness of 150 Hv or more as a measure for increasing the strength. The electrical conductivity correlates with the strength of the plate, and the high electrical conductivity referred to in the present invention means that the electrical conductivity is relatively high for high strength.
本発明銅合金板は、更に、質量%で、Mn、Mg、Caのうち1種又は2種以上を合計で0.0001〜1.0%含有しても良い。 The copper alloy sheet of the present invention may further contain 0.0001 to 1.0% of one or more of Mn, Mg, and Ca in total by mass%.
本発明銅合金板は、更に、質量%で、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を合計で0.001〜1.0%含有しても良い。 The copper alloy sheet of the present invention is further in mass%, and one or more of Zr, Ag, Cr, Cd, Be, Ti, Co, Ni, Au, and Pt are added in a total amount of 0.001 to 1.0. % May be contained.
本発明銅合金板は、更に、質量%で、Mn、Mg、Caのうち1種又は2種以上を合計で0.0001〜1.0%と、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を合計で0.001〜1.0%とを各々含有するとともに、これら含有する元素の合計含有量を1.0%以下として、含有しても良い。 The copper alloy sheet of the present invention is further in mass%, and 0.001 to 1.0% in total of one or more of Mn, Mg, and Ca, Zr, Ag, Cr, Cd, Be, Ti In addition, 0.001 to 1.0% in total of one or more of Co, Ni, Au, and Pt, respectively, and the total content of these elements as 1.0% or less, It may be contained.
本発明銅合金板は、更に、Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量を、これらの元素全体の合計で0.1質量%以下とすることが好ましい。 The copper alloy plate of the present invention further includes Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As. , Sb, Bi, Te, B, misch metal content is preferably 0.1% by mass or less in total of these elements.
本発明の銅合金板は、様々な電気電子部品用に適用可能であるが、特に、半導体部品である半導体リードフレーム用途に使用されることが好ましい。 The copper alloy plate of the present invention can be applied to various electric and electronic parts, but is particularly preferably used for a semiconductor lead frame which is a semiconductor part.
通常の銅合金板の場合、主に、以下に示す如きCube方位、Goss方位、Brass 方位(以下、B方位ともいう)、Copper方位(以下、Cu方位ともいう)、S方位等と呼ばれる集合組織を形成し、それらに応じた結晶面が存在する。 In the case of a normal copper alloy sheet, the texture called Cube orientation, Goss orientation, Brass orientation (hereinafter also referred to as B orientation), Copper orientation (hereinafter also referred to as Cu orientation), S orientation, etc. as shown below. And there are crystal planes corresponding to them.
これらの集合組織の形成は同じ結晶系の場合でも加工、熱処理方法によって異なる。圧延による板材の集合組織の場合は、圧延面と圧延方向で表されており、圧延面は{ABC}で表現され、圧延方向は<DEF>で表現される。かかる表現に基づき、各方位は下記の如く表現される。 The formation of these textures differs depending on the processing and heat treatment methods even in the case of the same crystal system. In the case of the texture of the plate material by rolling, the rolling surface and the rolling direction are represented, the rolling surface is represented by {ABC}, and the rolling direction is represented by <DEF>. Based on this expression, each direction is expressed as follows.
Cube方位 {001}<100>
Goss方位 {011}<100>
Rotated-Goss方位 {011}<011>
Brass 方位(B方位) {011}<211>
Copper方位(Cu方位) {112}<111>
(若しくはD方位{4 4 11}<11 11 8 >)
S方位 {123}<634>
B/G方位 {011}<511>
B/S方位 {168}<211>
P方位 {011}<111>
Cube orientation {001} <100>
Goss direction {011} <100>
Rotated-Goss orientation {011} <011>
Brass direction (B direction) {011} <211>
Copper orientation (Cu orientation) {112} <111>
(Or D direction {4 4 11} <11 11 8>)
S orientation {123} <634>
B / G direction {011} <511>
B / S orientation {168} <211>
P direction {011} <111>
ここで、B方位〜Cu方位〜S方位は各方位間で連続的に変化するファイバー集合組織(β−fiber)で存在している。 Here, the B orientation, the Cu orientation, and the S orientation exist in a fiber texture (β-fiber) that continuously changes between the orientations.
通常の銅合金板の集合組織は、上述のように、かなり多くの方位因子からなるが、これらの構成比率が変化すると、板材の塑性異方性が変化し、加工性や成形性などの特性が変化する。 As described above, the texture of a normal copper alloy sheet is composed of a large number of orientation factors. However, when these constituent ratios change, the plastic anisotropy of the sheet changes, and properties such as workability and formability change. Changes.
前記した特許文献1は、この集合組織の中で、特に、{111}ピーク強度に対する{100}ピーク強度比を0.04以下として、酸化膜密着性を向上させている。しかし、このように、Copper方位(Cu方位)に対して、Cube方位やGoss方位の方位分布密度を増しても、特に、本発明が対象とするFeの含有量を0.5%以下に少なくしたCu−Fe−P系組成を有する銅合金板では、高強度化できず、酸化膜の密着性も向上できない。このため、このFeの含有量が少ないCu−Fe−P系組成を有する銅合金板では、高強度化と優れた耐熱性とを両立させることができない。 Patent Document 1 described above improves the oxide film adhesion particularly by setting the {100} peak intensity ratio to the {111} peak intensity to 0.04 or less in this texture. However, even if the orientation distribution density of the Cube orientation and Goss orientation is increased with respect to the Copper orientation (Cu orientation), the Fe content targeted by the present invention is reduced to 0.5% or less. In the copper alloy plate having the Cu—Fe—P based composition, the strength cannot be increased and the adhesion of the oxide film cannot be improved. For this reason, in the copper alloy plate which has this Cu-Fe-P type | system | group composition with little content of Fe, it is impossible to make high strength and the outstanding heat resistance compatible.
これに対して、本発明では、Brass方位(110面)の方位分布密度を増して(高くして)、できるだけ同一方位の集合組織とすることによって、このFeの含有量が少ないCu−Fe−P系組成を有する銅合金板において、高強度化と優れた耐熱性とを両立させる。 In contrast, in the present invention, the orientation distribution density of the Brass azimuth (110 plane) is increased (increased) to form a texture having the same azimuth as much as possible, so that Cu-Fe- having a low Fe content is obtained. A copper alloy sheet having a P-based composition achieves both high strength and excellent heat resistance.
即ち、このFeの含有量が少ないCu−Fe−P系組成を有する銅合金板では、上記集合組織の中では、特に、Brass方位(B方位)の方位分布密度が酸化膜の密着性に大きく影響する。このB方位の方位分布密度が大きいほど、圧延集合組織が発達しており、強度が高くなるとともに、酸化膜の密着性が向上する。 That is, in the copper alloy sheet having a Cu-Fe-P composition with a low Fe content, the orientation distribution density of the Brass orientation (B orientation) is particularly large in the adhesion of the oxide film in the texture. Affect. As the orientation distribution density in the B direction is larger, the rolling texture is developed, the strength is increased, and the adhesion of the oxide film is improved.
以下に、半導体リードフレーム用などとして、必要な特性を満たすための、本発明Cu−Fe−P系銅合金板における各要件の意義や実施態様を具体的に説明する。 In the following, the significance and embodiments of each requirement in the Cu—Fe—P based copper alloy sheet of the present invention for satisfying the required characteristics, such as for semiconductor lead frames, will be specifically described.
(B方位の方位分布密度の測定)
本発明におけるCu−Fe−P系銅合金板のBrass方位(B方位)の方位分布密度の測定は、電界放射型走査電子顕微鏡FESEM(Field Emission Scanning Electron Microscope )による、後方散乱電子回折像EBSP(electronBackscatter Diffraction Pattern)を用いた結晶方位解析方法により測定する。
(Measurement of orientation distribution density in B direction)
The measurement of the orientation distribution density of the Brass orientation (B orientation) of the Cu—Fe—P-based copper alloy plate in the present invention is performed using a field emission scanning electron microscope FESEM (Field Emission Scanning Electron Microscope). Measured by crystal orientation analysis method using electronBackscatter Diffraction Pattern.
本発明で板のBrass方位の集合組織を規定するに際して、上記EBSPを用いた結晶方位解析方法による測定にて規定しているのは、酸化膜の密着性向上のためには、板(板表面)のよりミクロな領域の組織(集合組織)が影響しているためである。上記EBSPを用いた結晶方位解析方法では、このミクロな領域の集合組織を定量化することができる。 In defining the texture of the Brass orientation of the plate in the present invention, the measurement by the crystal orientation analysis method using the above EBSP is specified in order to improve the adhesion of the oxide film. This is because the structure (texture structure) in a more microscopic area is affected. In the crystal orientation analysis method using EBSP, the texture of this micro region can be quantified.
これに対して、集合組織規定乃至測定のために汎用されるX線回折(X線回折強度など)では、上記EBSPを用いた結晶方位解析方法に比して、比較的マクロな領域の組織(集合組織)を測定していることとなる。このため、酸化膜の密着性向上のための、板の上記よりミクロな領域の組織(集合組織)を正確に測定することができない。 On the other hand, in the X-ray diffraction (X-ray diffraction intensity, etc.) generally used for texture definition or measurement, the structure in a relatively macro area (compared to the crystal orientation analysis method using the EBSP) ( Texture). For this reason, it is not possible to accurately measure the microstructure (texture structure) of the above-mentioned micro area of the plate for improving the adhesion of the oxide film.
実際に、本発明者らが測定し、比較したところによれば、上記EBSPを用いた結晶方位解析方法により測定したB方位の方位分布密度値と、X線回折により測定したB方位の方位分布密度値とは、同じ板であっても互いに大きく異なる。このため、B方位の方位分布密度が異なる複数の板同士での比較において、B方位の方位分布密度が極端に大きい、あるいは極端に小さいという群全体の傾向(大まかな傾向)では、これら両測定方法は一致するものの、測定した各板のB方位の方位分布密度値の順位は、両測定方法では大きく異なる。したがって、結果として、互いの測定方法には互換性(相関性)は無い。 Actually, the present inventors measured and compared them. According to the results of comparison, the orientation distribution density value of the B orientation measured by the crystal orientation analysis method using EBSP and the orientation distribution of the B orientation measured by X-ray diffraction. The density value is greatly different from each other even on the same plate. For this reason, in a comparison between a plurality of plates having different orientation distribution densities in the B orientation, the overall group tendency (rough tendency) in which the orientation distribution density in the B orientation is extremely large or extremely small is measured. Although the methods are the same, the order of the orientation distribution density values of the measured B orientations of the respective plates is greatly different between the two measurement methods. Therefore, as a result, there is no compatibility (correlation) between the measurement methods.
言い換えると、この事実からも、酸化膜の密着性に板のよりミクロな領域の集合組織が影響していること、そして、このミクロな領域のBrass方位集合組織を上記EBSPを用いた結晶方位解析方法による測定にて規定している、本発明の意義が分かる。 In other words, this fact also indicates that the texture of the microscopic region of the plate has an influence on the adhesion of the oxide film, and the crystal orientation analysis using the above EBSP for the brass orientational texture of this microscopic region. The significance of the present invention defined by the measurement by the method can be understood.
(B方位の方位分布密度測定方法)
この結晶方位解析方法は、試料表面に斜めに電子線を当てたときに生じる後方散乱電子回折パターン(菊地パターン)に基づき、結晶方位を解析する。そして、この方法は、高分解能結晶方位解析法(FESEM/EBSP法)として、ダイヤモンド薄膜や銅合金などの結晶方位解析でも公知である。本発明と同じく銅合金の結晶方位解析をこの方法で行なっている例は、特開2005−29857号公報、特開2005−139501号公報などにも開示されている。
(Directional distribution density measurement method of B direction)
This crystal orientation analysis method analyzes the crystal orientation based on a backscattered electron diffraction pattern (Kikuchi pattern) generated when an electron beam is obliquely applied to the sample surface. This method is also known as a high resolution crystal orientation analysis method (FESEM / EBSP method) for crystal orientation analysis of diamond thin films, copper alloys, and the like. Examples in which the crystal orientation analysis of a copper alloy is performed by this method as in the present invention are also disclosed in JP-A-2005-29857, JP-A-2005-139501, and the like.
この結晶方位解析方法による解析手順は、まず、測定される材料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から、菊地パターン(B方位マッピング)を得る。この際、電子線を試料表面に2次元で走査させ、所定ピッチ毎に結晶方位を測定すれば、試料表面の方位分布を測定できる。 Analysis procedure by this crystal orientation analysis method, first, the measurement region of the material to be measured is usually divided into hexagonal regions, etc., and for each divided region, from the reflected electrons of the electron beam incident on the sample surface, A Kikuchi pattern (B orientation mapping) is obtained. At this time, if the electron beam is scanned two-dimensionally on the sample surface and the crystal orientation is measured at every predetermined pitch, the orientation distribution on the sample surface can be measured.
次に、得られた上記菊池パターンを解析して、電子線入射位置の結晶方位を知る。即ち、得られた菊地パターンを既知の結晶構造のデータと比較し、その測定点での結晶方位を求める。同様にして、その測定点に隣接する測定点の結晶方位を求め、これら互いに隣接する結晶の方位差が±15°以内(結晶面から±15°以内のずれ)のものは同一の結晶面に属するものとする(見なす)。また、両方の結晶の方位差が±15°を超える場合には、その間(両方の六角形が接している辺など)を粒界とする。このようにして、試料表面の結晶粒界の分布を求める。 Next, the obtained Kikuchi pattern is analyzed to know the crystal orientation at the electron beam incident position. That is, the obtained Kikuchi pattern is compared with data of a known crystal structure, and the crystal orientation at the measurement point is obtained. Similarly, the crystal orientation of the measurement point adjacent to the measurement point is obtained, and those whose crystal orientation difference is within ± 15 ° (deviation within ± 15 ° from the crystal plane) are located on the same crystal plane. Shall belong. Further, when the orientation difference between both crystals exceeds ± 15 °, the interval (such as the side where both hexagons are in contact) is defined as the grain boundary. In this way, the distribution of grain boundaries on the sample surface is obtained.
より具体的には、製造した銅合金板から組織観察用の試験片を採取し、機械研磨およびバフ研磨を行った後、電解研磨して表面を調整する。このように得られた試験片について、例えば日本電子社製のFESEMと、TSL社製のEBSP測定・解析システムOIM(Orientation Imaging Macrograph)を用い、同システムの解析ソフトと(ソフト名「OIM Analysis」)を用いて、各結晶粒が、対象とするBrass方位の方位密度(理想方位から15°以内)か否かを判定し、測定視野におけるBrass方位密度を求める。 More specifically, a specimen for observing the structure is collected from the manufactured copper alloy plate, subjected to mechanical polishing and buffing, and then subjected to electrolytic polishing to adjust the surface. For the specimen obtained in this way, for example, using FESEM manufactured by JEOL Ltd. and EBSP measurement / analysis system OIM (Orientation Imaging Macrograph) manufactured by TSL, analysis software of the system (software name “OIM Analysis”) ) Is used to determine whether each crystal grain has an orientation density of the target Brass orientation (within 15 ° from the ideal orientation), and the Brass orientation density in the measurement visual field is obtained.
この測定視野範囲は、500μm×500μm程度の微小(ミクロな)領域であり、X線回折の測定範囲に比較しても、著しく微小な領域である。したがって、酸化膜の密着性に影響する、板のよりミクロな領域の組織における方位密度測定を、X線回折による方位密度測定に比して、前記した通り、より詳細且つ高精度に行なうことができる。 This measurement visual field range is a minute (micro) region of about 500 μm × 500 μm, and is a very minute region even compared to the measurement range of X-ray diffraction. Therefore, as described above, the azimuth density measurement in the structure of the microscopic region of the plate that affects the adhesion of the oxide film can be performed in more detail and with higher accuracy than the azimuth density measurement by X-ray diffraction. it can.
なお、これらの方位分布は板厚方向に変化しているため、板厚方向に何点か任意にとって平均をとることによって求める方が好ましい。但し、リードフレーム等の半導体用材料に用いられる銅合金板の場合、板厚が0.1 〜0.4mm 程度の薄板であるため、そのままの板厚で測定した値でも評価できる。 Since these orientation distributions change in the plate thickness direction, it is preferable to obtain them by taking an average for some points in the plate thickness direction. However, a copper alloy plate used for a semiconductor material such as a lead frame is a thin plate having a thickness of about 0.1 to 0.4 mm. Therefore, even a value measured with the plate thickness can be evaluated.
(方位分布密度の意義)
本発明では、前記した通り、Fe含有量が少ないCu−Fe−P系銅合金板の高強度化と優れた酸化膜の密着性とを両立させるために、その圧延集合組織の発達を、特定方位について調整する。
(Significance of orientation distribution density)
In the present invention, as described above, the development of the rolling texture is specified in order to achieve both high strength of the Cu-Fe-P-based copper alloy sheet with low Fe content and excellent adhesion of the oxide film. Adjust the direction.
このために、本発明では、Brass方位(B方位)の方位分布密度を増して(高くして)、上記したFESEM/EBSPを用いた結晶方位解析方法による測定で37%以上とした集合組織とする。但し、前提として、本発明においては、これらの互いに隣接する結晶の方位差が±15°以内(結晶面から±15°以内のずれ)のものは同一の結晶面に属するものと見なす。 For this purpose, in the present invention, the orientation distribution density of the Brass azimuth (B azimuth) is increased (increased), and the texture is 37% or more as measured by the crystal orientation analysis method using FESEM / EBSP described above. To do. However, as a premise, in the present invention, those whose orientation differences between adjacent crystals are within ± 15 ° (deviation within ± 15 ° from the crystal plane) are regarded as belonging to the same crystal plane.
Fe含有量が少ない(0.5%以下の)Cu−Fe−P系組成を有する銅合金板では、B方位の方位分布密度が酸化膜の密着性に大きく影響する。B方位の方位分布密度が大きいほど、圧延集合組織が発達しており、強度が高くなるとともに、酸化膜の密着性が向上する。 In a copper alloy plate having a Cu-Fe-P composition with a low Fe content (0.5% or less), the orientation distribution density of the B orientation greatly affects the adhesion of the oxide film. As the orientation distribution density in the B direction is larger, the rolling texture is developed, the strength is increased, and the adhesion of the oxide film is improved.
これに対して、Brass方位(B方位)の上記方位分布密度が37%未満では、Fe含有量が少ないCu−Fe−P系銅合金板の圧延集合組織が発達せず、強度が低くなるとともに、酸化膜の密着性が向上しない。 On the other hand, when the orientation distribution density of the Brass orientation (B orientation) is less than 37% , the rolling texture of the Cu—Fe—P based copper alloy sheet having a low Fe content does not develop, and the strength decreases. The adhesion of the oxide film is not improved.
(平均結晶粒径)
本発明では、上記集合組織への制御や、上記集合組織自体の効果を発揮させるための前提的な条件として、銅合金板組織における平均結晶粒径を、上記したFESEM/EBSPを用いた結晶方位解析方法による測定値で6.0μm以下とする。この平均結晶粒径を6.0μm以下に微細化させることによって、酸化膜の密着性も向上し、また、上記集合組織への制御や、上記集合組織自体の酸化膜の密着性向上効果発揮が容易となる。一方、この平均結晶粒径が6.0μmを超えて粗大化した場合、上記集合組織への制御や、上記集合組織自体の効果の発揮が難しくなる。
(Average crystal grain size)
In the present invention, as a precondition for controlling the texture and exerting the effect of the texture itself, the average crystal grain size in the copper alloy sheet structure is the crystal orientation using the above-mentioned FESEM / EBSP. The measured value by the analysis method is 6.0 μm or less. By reducing the average crystal grain size to 6.0 μm or less, the adhesion of the oxide film is improved, and the control to the texture and the effect of improving the adhesion of the texture of the texture itself are exhibited. It becomes easy. On the other hand, when the average crystal grain size is larger than 6.0 μm, it becomes difficult to control the texture and to exert the effect of the texture itself.
この平均結晶粒径は、上記した通り、FESEM/EBSPを用いた結晶方位解析方法によるB方位の方位分布密度測定の中で測定できる。 This average crystal grain size can be measured in the orientation distribution density measurement of the B orientation by the crystal orientation analysis method using FESEM / EBSP as described above.
(銅合金板の成分組成)
本発明では、半導体リードフレーム用などとして、引張強度が500MPa以上、硬さが150Hv以上、導電率が50%IACS以上である高強度化と優れた酸化膜密着性とを併せて達成する。このために、Cu−Fe−P系銅合金板として、質量%で、Feの含有量が0.01〜0.50%の範囲、前記Pの含有量が0.01〜0.15%の範囲とした、残部Cuおよび不可避的不純物からなる基本組成とする。
(Component composition of copper alloy sheet)
In the present invention, for semiconductor lead frames and the like, a high strength with a tensile strength of 500 MPa or more, a hardness of 150 Hv or more, and an electrical conductivity of 50% IACS or more and excellent oxide film adhesion are achieved. For this reason, as a Cu-Fe-P-based copper alloy plate, in mass%, the Fe content is in the range of 0.01 to 0.50%, and the P content is 0.01 to 0.15%. It is set as the basic composition which consists of remainder Cu and an inevitable impurity made into the range.
この基本組成に対し、Zn、Snの一種または二種を、更に下記範囲で含有する態様でも良い。また、その他の選択的添加元素および不純物元素も、これら特性を阻害しない範囲での含有を許容する。なお、合金元素や不純物元素の含有量の表示%は全て質量%の意味である。 With respect to this basic composition, one or two of Zn and Sn may be further contained within the following range. Further, other selectively added elements and impurity elements are allowed to be contained within a range that does not impair these characteristics. In addition, the display% of content of an alloy element and an impurity element all means the mass%.
(Fe)
Feは、Fe又はFe基金属間化合物として析出し、銅合金の強度や耐熱性を向上させる主要元素である。Feの含有量が0.01%未満では、製造条件によっては、上記析出粒子の生成量が少なく、導電率の向上は満たされるものの、強度向上への寄与が不足し、強度や耐熱性が不足する。一方、Feの含有量が0.50%を超えると、前記した従来技術のように、導電率やAgメッキ性が低下する。そこで、導電率を無理に増加させるために、上記析出粒子の析出量を増やそうとすると、逆に、析出粒子の成長・粗大化を招く。このため、強度や耐熱性が低下する。したがって、Feの含有量は0.01〜0.50%の比較的低めの範囲とする。
(Fe)
Fe is a main element that precipitates as Fe or an Fe-based intermetallic compound and improves the strength and heat resistance of the copper alloy. When the Fe content is less than 0.01%, depending on the production conditions, the amount of the precipitated particles generated is small and the improvement in conductivity is satisfied, but the contribution to the improvement in strength is insufficient, and the strength and heat resistance are insufficient. To do. On the other hand, if the Fe content exceeds 0.50%, the electrical conductivity and Ag plating properties are lowered as in the conventional technique described above. Therefore, if the amount of precipitation of the precipitated particles is increased in order to forcibly increase the conductivity, conversely, growth and coarsening of the precipitated particles are caused. For this reason, strength and heat resistance are reduced. Therefore, the Fe content is set to a relatively low range of 0.01 to 0.50%.
(P)
Pは、脱酸作用がある他、Feと化合物を形成して、銅合金の強度や耐熱性を向上させる主要元素である。P含有量が0.01%未満では、製造条件によっては、化合物の析出が不十分であるため、所望の強度や耐熱性が得られない。一方、P含有量が0.15%を超えると、導電性が低下するだけでなく、却って耐熱性や、熱間加工性、プレス打ち抜き性が低下する。したがって、Pの含有量は0.01〜0.15%の範囲とする。
(P)
P is a main element that has a deoxidizing action and forms a compound with Fe to improve the strength and heat resistance of the copper alloy. When the P content is less than 0.01%, depending on the production conditions, precipitation of the compound is insufficient, so that desired strength and heat resistance cannot be obtained. On the other hand, when the P content exceeds 0.15%, not only the conductivity is lowered, but also the heat resistance, hot workability, and press punching properties are lowered. Therefore, the P content is in the range of 0.01 to 0.15%.
(Zn)
Znは、リードフレームなどに必要な、銅合金のはんだ及びSnめっきの耐熱剥離性を改善する。Znの含有量が0.005%未満の場合は所望の効果が得られない。一方、3.0%を超えるとはんだ濡れ性が低下するだけでなく、却って耐熱性や導電率の低下も大きくなる。したがって、選択的に含有させる場合のZnの含有量は、用途に要求される導電率とはんだ及びSnめっきの耐熱剥離性とのバランスに応じて(バランスを考慮して)、0.005〜3.0%の範囲から選択する。
(Zn)
Zn improves the heat-resistant peelability of copper alloy solder and Sn plating required for lead frames and the like. If the Zn content is less than 0.005%, the desired effect cannot be obtained. On the other hand, if it exceeds 3.0%, not only the solder wettability is lowered, but also the heat resistance and the conductivity are greatly lowered. Therefore, the Zn content in the case of selective inclusion is 0.005 to 3 depending on the balance between the electrical conductivity required for the application and the heat resistance peelability of the solder and Sn plating (in consideration of the balance). Select from a range of 0%.
(Sn)
Snは、銅合金の強度向上に寄与する。Snの含有量が0.001%未満の場合は高強度化に寄与しない。一方、Snの含有量が多くなると、その効果が飽和し、逆に、導電率の低下を招く。したがって、選択的に含有させる場合のSn含有量は、用途に要求される強度(硬さ)と導電率のバランスに応じて(バランスを考慮して)、0.001〜5.0%の範囲から選択して含有させることとする。
(Sn)
Sn contributes to improving the strength of the copper alloy. When the Sn content is less than 0.001%, it does not contribute to high strength. On the other hand, when the Sn content is increased, the effect is saturated, and conversely, the conductivity is lowered. Accordingly, the Sn content in the case of selective inclusion is in the range of 0.001 to 5.0% depending on the balance between strength (hardness) and conductivity required for the application (in consideration of the balance). It is supposed to be selected and contained.
(Mn、Mg、Ca量)
Mn、Mg、Caは、銅合金の熱間加工性の向上に寄与するので、これらの効果が必要な場合に選択的に含有される。Mn、Mg、Caの1種又は2種以上の含有量が合計で0.0001%未満の場合、所望の効果が得られない。一方、その含有量が合計で1.0%を越えると、粗大な晶出物や酸化物が生成して、強度や耐熱性を低下させるだけでなく、導電率の低下も激しくなる。したがって、これらの元素の含有量は総量で0.0001〜1.0%の範囲で選択的に含有させる。
(Mn, Mg, Ca content)
Since Mn, Mg and Ca contribute to the improvement of hot workability of the copper alloy, they are selectively contained when these effects are required. When the content of one or more of Mn, Mg, and Ca is less than 0.0001% in total, a desired effect cannot be obtained. On the other hand, if the total content exceeds 1.0%, coarse crystallized substances and oxides are generated, and not only the strength and heat resistance are lowered, but also the conductivity is severely lowered. Therefore, the content of these elements is selectively contained in the range of 0.0001 to 1.0% in total.
(Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Pt量)
これらの成分は銅合金の強度を向上させる効果があるので、これらの効果が必要な場合に選択的に含有される。これらの成分の1種又は2種以上の含有量が合計で0.001%未満の場合、所望の効果か得られない。一方、その含有量が合計で1.0%を越えると、粗大な晶出物や酸化物が生成して、強度や耐熱性を低下させるだけでなく、導電率の低下も激しく、好ましくない。従って、これらの元素の含有量は合計で0.001〜1.0%の範囲で選択的に含有させる。なお、これらの成分を、上記Mn、Mg、Caと共に含有する場合、これら含有する元素の合計含有量は1.0%以下とする。
(Zr, Ag, Cr, Cd, Be, Ti, Co, Ni, Au, Pt amount)
Since these components have an effect of improving the strength of the copper alloy, they are selectively contained when these effects are required. When the content of one or more of these components is less than 0.001% in total, the desired effect cannot be obtained. On the other hand, if the total content exceeds 1.0%, coarse crystallized substances and oxides are generated, which not only lowers the strength and heat resistance, but also causes a significant decrease in conductivity, which is not preferable. Therefore, the content of these elements is selectively contained in the range of 0.001 to 1.0% in total. In addition, when these components are contained with the said Mn, Mg, and Ca, the total content of these contained elements shall be 1.0% or less.
(Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタル量)
これらの成分は不純物元素であり、これらの元素の含有量の合計が0.1%を越えた場合、粗大な晶出物や酸化物が生成して、強度や耐熱性を低下させる。従って、これらの元素の含有量は合計で0.1%以下とすることが好ましい。
(Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B , Misch metal amount)
These components are impurity elements, and when the total content of these elements exceeds 0.1%, coarse crystallized products and oxides are formed, and the strength and heat resistance are lowered. Therefore, the total content of these elements is preferably 0.1% or less.
(製造条件)
次に、銅合金板組織を上記本発明規定の組織とするための、好ましい製造条件について以下に説明する。本発明銅合金板は、上記集合組織を制御した本発明規定の組織とするための、最終低温焼鈍条件などの好ましい条件を除き、通常の製造工程自体を大きく変えることは不要で、常法と同じ工程で製造できる。
(Production conditions)
Next, preferable manufacturing conditions for making the copper alloy sheet structure the structure defined in the present invention will be described below. The copper alloy sheet of the present invention is not required to greatly change the normal manufacturing process itself, except for preferable conditions such as final low temperature annealing conditions, in order to make the texture defined in the present invention controlled by the above texture. Can be manufactured in the same process.
即ち、先ず、上記好ましい成分組成に調整した銅合金溶湯を鋳造する。そして、鋳塊を面削後、加熱または均質化熱処理した後に熱間圧延し、熱延後の板を水冷する。この熱間圧延は通常の条件で良い。 That is, first, a molten copper alloy adjusted to the preferred component composition is cast. Then, after chamfering the ingot, it is heated or homogenized and then hot-rolled, and the hot-rolled plate is water-cooled. This hot rolling may be performed under normal conditions.
その後、中延べと言われる一次冷間圧延して、焼鈍、洗浄後、更に仕上げ(最終)冷間圧延、低温焼鈍(最終焼鈍、仕上げ焼鈍)して、製品板厚の銅合金板などとする。これら焼鈍と冷間圧延を繰返し行ってもよい。例えば、リードフレーム等の半導体用材料に用いられる銅合金板の場合は、製品板厚が0.1〜0.4mm程度である。 After that, the first cold rolling, which is said to be intermediate, is annealed, washed, and then finished (final) cold rolled and low-temperature annealed (final annealing, final annealing) to obtain a copper alloy sheet having a product thickness. . These annealing and cold rolling may be repeated. For example, in the case of a copper alloy plate used for a semiconductor material such as a lead frame, the product plate thickness is about 0.1 to 0.4 mm.
なお、一次冷間圧延の前に銅合金板の溶体化処理および水冷による焼き入れ処理を行なっても良い。この際、溶体化処理温度は、例えば750 〜1000℃の範囲から選択される。 In addition, you may perform the solution treatment of a copper alloy plate, and the quenching process by water cooling before primary cold rolling. At this time, the solution treatment temperature is selected from a range of 750 to 1000 ° C., for example.
(最終冷間圧延)
最終冷間圧延も常法による。ただ、リードフレームにスタンピング加工後の熱処理(歪取り焼鈍)などでの強度低下が少ない耐熱性を向上させるためには、最終冷間圧延での圧延速度を大きくするか、最終冷間圧延におけるロールの硬さ(シェア硬さ)を高くすることが好ましい。即ち、最終冷間圧延での圧延速度を200m/min以上に大きくするか、最終冷間圧延におけるロールの硬さ(シェア硬さ)を60Hs以上に高くする、などの手段を選択して使用するか、組み合わせて使用することが好ましい。
(Final cold rolling)
Final cold rolling is also according to conventional methods. However, in order to improve heat resistance with little reduction in strength during heat treatment (strain relief annealing) after stamping on the lead frame, increase the rolling speed in the final cold rolling or roll in the final cold rolling. It is preferable to increase the hardness (shear hardness). That is, a means such as increasing the rolling speed in the final cold rolling to 200 m / min or higher, or increasing the roll hardness (shear hardness) in the final cold rolling to 60 Hs or higher is selected and used. Or they are preferably used in combination.
また、上記スタンピング加工におけるプレス打ち抜き性を向上させるためには、最終冷間圧延での導入歪み量を大きくする。即ち、最終冷間圧延における、ロール径を80mmφ未満の小径ロールとするか、1パス当たりの最小圧下率(冷延率、加工率)を20%以上とするか、ロール長さ(ロール幅)を500mm以上とする、などの手段を選択して使用するか、組み合わせて使用することが好ましい。 Further, in order to improve the press punchability in the stamping process, the amount of strain introduced in the final cold rolling is increased. That is, in the final cold rolling, the roll diameter is a small diameter roll of less than 80 mmφ, the minimum reduction rate (cold rolling ratio, processing rate) per pass is 20% or more, or roll length (roll width) It is preferable to select and use a means such as setting the thickness to 500 mm or more, or use in combination.
最終冷間圧延のパス数は、過少や過多のパス数を避けて、通常の3〜4回のパス数で行なうことが好ましい。また、1パス当たりの圧下率は50%を超える必要は無く、1パス当たりの各圧下率は、元の板厚、冷延後の最終板厚、パス数、この最大圧下率を考慮して決定される。 The number of final cold rolling passes is preferably 3 to 4 times as usual, avoiding too few or too many passes. Also, the rolling reduction per pass need not exceed 50%, and each rolling reduction per pass takes into account the original plate thickness, the final plate thickness after cold rolling, the number of passes, and this maximum rolling reduction. It is determined.
(最終焼鈍)
本発明では、最終冷間圧延後に、低温での最終焼鈍を連続的な熱処理炉にて行なうことが好ましい。この連続的な熱処理炉での最終焼鈍条件は、100〜400℃で0.2分以上300分以下の低温条件とすることが好ましい。通常のリードフレームに用いられる銅合金板の製造方法では、強度が低下するため、歪み取りのための焼鈍(350℃×20秒程度)を除き、最終冷間圧延後に最終焼鈍はしない。しかし、本発明では、前記冷間圧延条件によって、また、最終焼鈍の低温化によって、この強度低下が抑制される。そして、最終焼鈍を低温で行なうことにより、プレス打ち抜き性が向上する。
(Final annealing)
In the present invention, it is preferable that the final annealing at a low temperature is performed in a continuous heat treatment furnace after the final cold rolling. The final annealing condition in this continuous heat treatment furnace is preferably a low temperature condition of 0.2 to 300 minutes at 100 to 400 ° C. In the manufacturing method of the copper alloy plate used for a normal lead frame, since the strength is lowered, the final annealing is not performed after the final cold rolling except for annealing for removing strain (about 350 ° C. × 20 seconds). However, in the present invention, this strength reduction is suppressed by the cold rolling conditions and by lowering the final annealing. And press punching property improves by performing final annealing at low temperature.
焼鈍温度が100℃よりも低い温度や、焼鈍時間が0.2分未満の時間条件、あるいは、この低温焼鈍をしない条件では、銅合金板の組織・特性は、最終冷延後の状態からほとんど変化しない可能性が高い。逆に、焼鈍温度が400℃を超える温度や、焼鈍時間が300分を超える時間で焼鈍を行うと、再結晶が生じ、転位の再配列や回復現象が過度に生じ、析出物も粗大化するため、プレス打ち抜き性や強度が低下する可能性が高い。 Under conditions where the annealing temperature is lower than 100 ° C, the annealing time is less than 0.2 minutes, or the conditions where this annealing is not performed, the structure and properties of the copper alloy sheet are almost the same as those after the final cold rolling. It is likely that it will not change. Conversely, if annealing is performed at a temperature exceeding 400 ° C. or annealing time exceeding 300 minutes, recrystallization occurs, rearrangement of dislocations and recovery phenomenon occur excessively, and precipitates also become coarse. For this reason, there is a high possibility that the press punchability and the strength are lowered.
(最終焼鈍での集合組織、平均結晶粒径制御)
その上で、この最終焼鈍を連続的な熱処理炉にて行なうことで、上記本発明で規定する集合組織、平均結晶粒径とでき、強度を高く、酸化膜の密着性を向上させることができる。即ち、連続的な熱処理炉では、通板の際の板に負荷する張力と通板速度とを制御でき、これによって、Brass方位(B方位)の方位分布密度を37%以上とした圧延集合組織を発達させることができる。また、平均結晶粒径を6.0μm以下に微細化できる。連続的な熱処理炉における、通板の際の板に負荷する張力と通板速度とは、Brass方位(B方位)の方位分布密度や平均結晶粒径に大きく影響する。
(Texture in final annealing, control of average grain size)
In addition, by performing this final annealing in a continuous heat treatment furnace, the texture and average crystal grain size specified in the present invention can be obtained, the strength can be increased, and the adhesion of the oxide film can be improved. . That is, in a continuous heat treatment furnace, it is possible to control the tension applied to the plate at the time of threading and the threading speed, and thereby the rolling texture in which the orientation distribution density of the Brass orientation (B orientation) is 37% or more. Can be developed. Moreover, the average crystal grain size can be refined to 6.0 μm or less. In a continuous heat treatment furnace, the tension applied to the plate and the plate passing speed during plate passing greatly affect the orientation distribution density and average crystal grain size of the Brass orientation (B direction).
この本発明で規定する集合組織と平均結晶粒径にするためには、連続的な熱処理炉による最終焼鈍における通板の際に、0.1〜8kgf/mm2 の範囲で張力を加え、かつ通板速度を10〜100m/minの範囲に制御する。通板の際の張力と通板速度とのいずれか、あるいは両方がこの範囲を外れた場合には、本発明で規定する集合組織や平均結晶粒径とできない可能性が高い。 In order to obtain a texture and an average crystal grain size specified in the present invention, a tension is applied in the range of 0.1 to 8 kgf / mm 2 during the passing through in the final annealing by a continuous heat treatment furnace, and The sheet passing speed is controlled in the range of 10 to 100 m / min. When either or both of the tension and the plate speed at the time of passing are out of this range, there is a high possibility that the texture and the average crystal grain size specified in the present invention cannot be obtained.
以下に本発明の実施例を説明する。連続的な熱処理炉による最終焼鈍における通板の際の張力と通板速度とを変えて、種々のBrass方位の方位分布密度、平均結晶粒径を有する銅合金薄板を製造した。そして、これら各銅合金薄板の引張強さ、硬さ、導電率などの特性や、酸化皮膜の密着性(酸化皮膜の剥離温度)を評価した。これらの結果を表1に示す。 Examples of the present invention will be described below. Copper alloy thin plates having various Brass orientation orientation distribution densities and average crystal grain diameters were produced by changing the tension and the plate-passing speed in the final annealing in a continuous heat treatment furnace. And the characteristics, such as tensile strength of each of these copper alloy thin plates, hardness, and electrical conductivity, and the adhesiveness (peeling temperature of an oxide film) of an oxide film were evaluated. These results are shown in Table 1.
具体的には、表1に示す各化学成分組成の銅合金をそれぞれコアレス炉にて溶製した後、半連続鋳造法で造塊して、厚さ70mm×幅200mm×長さ500mmの鋳塊を得た。各鋳塊を表面を面削して加熱後、950℃の温度で熱間圧延を行って厚さ16mmの板とし、750℃以上の温度から水中に急冷した。次に、酸化スケールを除去した後、一次冷間圧延(中延べ)を行った。この板を面削後、中間焼鈍を入れながら冷間圧延を4パス行なう最終冷間圧延を行い、次いで炉の雰囲気温度450℃で最終焼鈍を行って、リードフレームの薄板化に対応した厚さ0.15mmの銅合金板を得た。 Specifically, after each copper alloy having the chemical composition shown in Table 1 was melted in a coreless furnace, it was ingoted by a semi-continuous casting method, and the ingot was 70 mm thick × 200 mm wide × 500 mm long. Got. Each ingot was chamfered on the surface and heated, and then hot rolled at a temperature of 950 ° C. to form a plate having a thickness of 16 mm, and rapidly cooled into water from a temperature of 750 ° C. or higher. Next, after removing the oxide scale, primary cold rolling (intermediate rolling) was performed. After the face is cut, final cold rolling is performed in which four passes of cold rolling are performed while intermediate annealing is performed, and then final annealing is performed at a furnace atmosphere temperature of 450 ° C. to obtain a thickness corresponding to the thinning of the lead frame. A 0.15 mm copper alloy plate was obtained.
最終冷間圧延の圧延速度は300m/min、ロールの硬さ(シェア硬さ)は90Hs、使用ロール径は60mmφ、1パス当たりの最小圧下率は10%とした。 The rolling speed of the final cold rolling was 300 m / min, the roll hardness (shear hardness) was 90 Hs, the roll diameter used was 60 mmφ, and the minimum rolling reduction per pass was 10%.
連続的な熱処理炉による最終焼鈍における、通板の際の各張力(kgf/mm2 )と各通板速度(m/min)とは表1に示す。 Table 1 shows the respective tensions (kgf / mm 2 ) and the passing speeds (m / min) at the time of threading in the final annealing in the continuous heat treatment furnace.
なお、表1に示す各銅合金とも、記載元素量を除いた残部組成はCuであり、その他の不純物元素として、Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量は、表1に記載の元素を含めて、これらの元素全体の合計で0.1質量%以下であった。 In each of the copper alloys shown in Table 1, the remaining composition excluding the described element amount is Cu, and other impurity elements are Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, The contents of C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B, and misch metal are those elements including those shown in Table 1. The total amount was 0.1% by mass or less.
また、Mn、Mg、Caのうち1種又は2種以上を含む場合は、合計量を0.0001〜1.0質量%の範囲とし、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を場合は、合計量を0.001〜1.0質量%の範囲とし、更に、これらの元素全体の合計量も1.0質量%以下とした。 Further, when one or more of Mn, Mg, and Ca are included, the total amount is in the range of 0.0001 to 1.0 mass%, and Zr, Ag, Cr, Cd, Be, Ti, Co, In the case of one or more of Ni, Au, and Pt, the total amount is in the range of 0.001 to 1.0% by mass, and the total amount of these elements is also 1.0% by mass or less. did.
上記のようにして得られた銅合金板に対して、各例とも、銅合金板から試料を切り出し、各試料の集合組織、引張強さ、硬さ、導電率、酸化皮膜の密着性などの特性を評価した。これらの結果を表1に各々示す。 With respect to the copper alloy plate obtained as described above, in each example, a sample was cut out from the copper alloy plate, and the texture, tensile strength, hardness, electrical conductivity, adhesion of the oxide film, etc. of each sample The characteristics were evaluated. These results are shown in Table 1, respectively.
(集合組織の測定)
上記得られた銅合金板から組織観察用の試験片を採取し、機械研磨およびバフ研磨を行った後、電解研磨して表面を調整した。得られた各試験片について、前記した方法での測定を、500μm×500μmの領域を、1μmの間隔で、Brass方位(B方位)の方位分布密度を測定した。
(Measurement of texture)
A specimen for observing the structure was collected from the obtained copper alloy plate, subjected to mechanical polishing and buffing, and then subjected to electrolytic polishing to adjust the surface. About each obtained test piece, the measurement by the above-mentioned method measured the orientation distribution density of the Brass azimuth | direction (B azimuth | direction) in the 500 micrometer x 500 micrometer area | region at the space | interval of 1 micrometer.
測定および解析は、前記した通り、日本電子株式会社製のFESEMとTSL社製のEBSP測定・解析システムと同システムの解析ソフトとを用いて行なった。 As described above, measurement and analysis were performed using FESEM manufactured by JEOL Ltd., EBSP measurement / analysis system manufactured by TSL, and analysis software of the same system.
(硬さ測定)
上記のようにして得られた銅合金板から10×10mmの試験片を切出し、松沢精機社製のマイクロビッカース硬度計(商品名「微小硬度計」)を用いて0.5kgの荷重を加えて4箇所硬さ測定を行い、硬さはそれらの平均値とした。
(Hardness measurement)
A 10 × 10 mm test piece was cut out from the copper alloy plate obtained as described above, and a load of 0.5 kg was applied using a micro Vickers hardness meter (trade name “micro hardness meter”) manufactured by Matsuzawa Seiki Co., Ltd. The hardness was measured at four points, and the hardness was an average value thereof.
(導電率測定)
銅合金板試料の導電率は、ミーリングにより、幅10mm×長さ300mm の短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により算出した。
(Conductivity measurement)
The electrical conductivity of the copper alloy sheet sample was calculated by an average cross-sectional area method by processing a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling, measuring the electric resistance with a double bridge type resistance measuring device.
(酸化膜密着性)
また各供試材の酸化膜密着性は、テープピーリング試験により、酸化膜が剥離する限界温度で評価した。テープピーリング試験は、上記のようにして得られた銅合金板から10×30mmの試験片を切出し、大気中所定温度で5分間加熱した後、酸化膜の生成した試験片表面に、市販のテープ(商品名:住友スリーエム製メンディングテープ)を張り付け、引き剥がした。この時、加熱温度を1 0℃刻みで上昇変化させた時に、酸化膜の剥離の生じる最も低い温度を求め、これを酸化膜剥離温度とした。
(Oxide film adhesion)
The oxide film adhesion of each test material was evaluated by a tape peeling test at the limit temperature at which the oxide film peels off. In the tape peeling test, a 10 × 30 mm test piece is cut out from the copper alloy plate obtained as described above, heated at a predetermined temperature in the atmosphere for 5 minutes, and then a commercially available tape is formed on the surface of the test piece on which the oxide film is formed. (Product name: Sumitomo 3M Mending Tape) was applied and peeled off. At this time, when the heating temperature was changed in increments of 10 ° C., the lowest temperature at which the oxide film was peeled was obtained, and this was defined as the oxide film peeling temperature.
表1から明らかな通り、本発明組成内の銅合金である発明例は、連続的な熱処理炉による最終焼鈍における通板の際の張力と通板速度とが好ましい条件内で製造されている。このため、発明例は、前記測定法による、Brass方位の方位分布密度を37%以上とした集合組織を有し、平均結晶粒径を6.0μm以下に微細化できている。 As is apparent from Table 1, the inventive example , which is a copper alloy within the composition of the present invention, is manufactured under conditions in which the tension and the plate speed in the final plate annealing in the continuous annealing furnace are favorable. For this reason, the invention example has a texture in which the orientation distribution density of the Brass orientation is 37% or more according to the measurement method, and the average crystal grain size can be refined to 6.0 μm or less.
この結果、発明例は、引張強さが500MPa以上、硬さが150Hv以上の高強度であって、酸化膜剥離温度が370℃以上である優れた酸化膜密着性を有する。したがって、発明例は、半導体母材として、半導体パッケージの組み立てに際しての樹脂とダイパッドとの密着性が高く、パッケージの信頼性が高い。但し、本発明範囲から外れる参考例6〜8の酸化膜剥離温度は350〜360℃である。 As a result, the inventive examples have excellent oxide film adhesion with a high strength such as a tensile strength of 500 MPa or more and a hardness of 150 Hv or more, and an oxide film peeling temperature of 370 ° C. or more. Therefore, the invention example has high adhesiveness between the resin and the die pad when assembling the semiconductor package as a semiconductor base material, and the reliability of the package is high. However, the oxide film peeling temperatures of Reference Examples 6 to 8 that are outside the scope of the present invention are 350 to 360 ° C.
これに対して、比較例15〜17は、本発明組成内の銅合金であるものの、連続的な熱処理炉による最終焼鈍における通板の際の張力と通板速度の、いずれか、または両方が、好ましい条件から外れている。このため、比較例15〜17は、前記測定法による、Brass方位の方位分布密度が37%未満であるとともに、平均結晶粒径も6.0μmを超えて粗大化している。この結果、強度レベルが低く、酸化膜剥離温度が330℃以下であり、酸化膜密着性が著しく劣る。 On the other hand, Comparative Examples 15 to 17 are copper alloys within the composition of the present invention, but either or both of the tension and the feeding speed at the time of threading in the final annealing by the continuous heat treatment furnace. , Deviating from the preferred conditions. For this reason, in Comparative Examples 15 to 17, the orientation distribution density of the Brass orientation by the measurement method is less than 37% , and the average crystal grain size is also coarsened exceeding 6.0 μm. As a result, the strength level is low, the oxide film peeling temperature is 330 ° C. or lower, and the oxide film adhesion is extremely inferior.
比較例18の銅合金はFeの含有量が0.007%と、下限0.01%を低めに外れている。一方、連続的な熱処理炉による最終焼鈍における通板の際の張力と通板速度は好ましい条件内で製造されている。このため、Brass方位の方位分布密度を39%とした集合組織を有し、平均結晶粒径を6.0μm以下に微細化できているものの、強度レベルが低い。 The copper alloy of Comparative Example 18 has an Fe content of 0.007%, which is lower than the lower limit of 0.01%. On the other hand, the tension at the time of threading and the threading speed in final annealing by a continuous heat treatment furnace are manufactured within preferable conditions. Therefore, having a texture that is 39% of the orientation distribution density of Brass orientation, although able to refine the average grain size below 6.0 .mu.m, a low intensity level.
比較例19の銅合金は、Feの含有量が0.58%と、上限0.50%を高めに外れている。一方、連続的な熱処理炉による最終焼鈍における通板の際の張力と通板速度は好ましい条件内で製造されている。このため、Brass方位の方位分布密度を40%とした集合組織を有し、平均結晶粒径を6.0μm以下に微細化できているものの、導電率が著しく低い。 In the copper alloy of Comparative Example 19, the Fe content is 0.58%, which is out of the upper limit of 0.50 %. On the other hand, the tension at the time of threading and the threading speed in final annealing by a continuous heat treatment furnace are manufactured within preferable conditions. Therefore, having a texture that is 40% of the orientation distribution density of Brass orientation, although able to refine the average grain size below 6.0 .mu.m, the conductivity is significantly low.
比較例20の銅合金は、Pの含有量が0.008%と、下限0.01%を低めに外れている。一方、連続的な熱処理炉による最終焼鈍における通板の際の張力と通板速度は好ましい条件内で製造されている。このため、Brass方位の方位分布密度を40%とした集合組織を有し、平均結晶粒径を6.0μm以下に微細化できているものの、強度レベルが低い。 The copper alloy of Comparative Example 20 has a P content of 0.008%, which is slightly lower than the lower limit of 0.01%. On the other hand, the tension at the time of threading and the threading speed in final annealing by a continuous heat treatment furnace are manufactured within preferable conditions. Therefore, having a texture that is 40% of the orientation distribution density of Brass orientation, although able to refine the average grain size below 6.0 .mu.m, a low intensity level.
比較例21の銅合金は、Pの含有量が0.16%と、上限0.15%を高めに外れているため、熱延中に板端部に割れが生じた。一方、連続的な熱処理炉による最終焼鈍における通板の際の張力と通板速度は好ましい条件内で製造されている。このため、Brass方位の方位分布密度を40%とした集合組織を有し、平均結晶粒径を6.0μm以下に微細化できているものの、導電率が著しく低い。 In the copper alloy of Comparative Example 21, since the P content was 0.16%, which was higher than the upper limit of 0.15%, cracks occurred at the end of the plate during hot rolling. On the other hand, the tension at the time of threading and the threading speed in final annealing by a continuous heat treatment furnace are manufactured within preferable conditions. Therefore, having a texture that is 40% of the orientation distribution density of Brass orientation, although able to refine the average grain size below 6.0 .mu.m, the conductivity is significantly low.
以上の結果から、高強度化させた上で、耐熱性にも優れさせるための、本発明銅合金板の成分組成、集合組織規定の臨界的な意義および、このような組織を得るための好ましい製造条件の意義が裏付けられる。 From the above results, the component composition of the copper alloy sheet of the present invention, the critical significance of the texture definition, and the preferred structure for obtaining such a structure, in order to improve the heat resistance after increasing the strength. The significance of manufacturing conditions is supported.
以上説明したように、本発明によれば、高強度化させた上で、酸化膜密着性にも優れ、これら特性を両立(兼備)させたCu−Fe−P系銅合金板を提供することができる。この結果、半導体パッケージの組み立てに際しての樹脂とダイパッドとの密着性が高く、パッケージの信頼性が高い半導体母材を提供できる。したがって、小型化及び軽量化した電気電子部品用として、半導体装置用リードフレーム以外にも、リードフレーム、コネクタ、端子、スイッチ、リレーなどの、高強度化と、酸化膜密着性=パッケージの信頼性が要求される用途に適用することができる。 As described above, according to the present invention, it is possible to provide a Cu—Fe—P-based copper alloy plate that is excellent in oxide film adhesion and has both of these characteristics (combined) while having high strength. Can do. As a result, it is possible to provide a semiconductor base material having high adhesion between the resin and the die pad during assembly of the semiconductor package and high package reliability. Therefore, for electrical and electronic parts that are reduced in size and weight, in addition to lead frames for semiconductor devices, lead frames, connectors, terminals, switches, relays, etc. have increased strength and oxide film adhesion = package reliability. Can be applied to applications that require.
Claims (9)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007129468A JP4168077B2 (en) | 2006-07-21 | 2007-05-15 | Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion |
EP11000124.5A EP2339038B8 (en) | 2006-07-21 | 2007-06-20 | Copper alloy sheet for electric and electronic part |
US12/374,154 US9631260B2 (en) | 2006-07-21 | 2007-06-20 | Copper alloy sheets for electrical/electronic part |
CN2010102638841A CN101899587B (en) | 2006-07-21 | 2007-06-20 | Copper alloy sheets for electrical/electronic part |
KR1020087031900A KR101136265B1 (en) | 2006-07-21 | 2007-06-20 | Copper alloy sheets for electrical/electronic part |
CN200780021714.9A CN101466856B (en) | 2006-07-21 | 2007-06-20 | Copper alloy sheets for electrical/electronic part |
EP07767234A EP2045344B1 (en) | 2006-07-21 | 2007-06-20 | Process for producing copper alloy sheets for electrical/electronic part |
EP11000125.2A EP2339039B8 (en) | 2006-07-21 | 2007-06-20 | Copper alloy sheet for electric and electronic part |
PCT/JP2007/062395 WO2008010378A1 (en) | 2006-07-21 | 2007-06-20 | Copper alloy sheets for electrical/electronic part |
US13/585,076 US9644250B2 (en) | 2006-07-21 | 2012-08-14 | Copper alloy sheet for electric and electronic part |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006199779 | 2006-07-21 | ||
JP2007129468A JP4168077B2 (en) | 2006-07-21 | 2007-05-15 | Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008045204A JP2008045204A (en) | 2008-02-28 |
JP4168077B2 true JP4168077B2 (en) | 2008-10-22 |
Family
ID=39179224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007129468A Expired - Fee Related JP4168077B2 (en) | 2006-07-21 | 2007-05-15 | Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4168077B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5123720B2 (en) * | 2008-04-22 | 2013-01-23 | 株式会社神戸製鋼所 | Copper alloy sheet for electrical and electronic parts with excellent heat resistance |
JP5320642B2 (en) * | 2009-04-17 | 2013-10-23 | 株式会社Shカッパープロダクツ | Copper alloy manufacturing method and copper alloy |
EP2610358A4 (en) * | 2010-08-27 | 2017-05-03 | Furukawa Electric Co., Ltd. | Copper alloy sheet and manufacturing method for same |
JP5827090B2 (en) * | 2011-09-29 | 2015-12-02 | 三菱伸銅株式会社 | Cu-Fe-P based copper alloy plate excellent in conductivity, heat resistance and bending workability, and method for producing the same |
JP5700834B2 (en) | 2011-12-09 | 2015-04-15 | 株式会社神戸製鋼所 | High strength copper alloy sheet with excellent oxide film adhesion |
JP2014074223A (en) * | 2012-09-12 | 2014-04-24 | Jx Nippon Mining & Metals Corp | Copper alloy sheet excellent in conductivity and stress relaxation property |
JP2015079841A (en) * | 2013-10-16 | 2015-04-23 | 古河電気工業株式会社 | Lead frame base for optical semiconductor devices, lead frame for optical semiconductor devices and method for manufacturing lead frame for optical semiconductor devices |
JP6210910B2 (en) * | 2014-03-18 | 2017-10-11 | 株式会社神戸製鋼所 | Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability |
JP6283046B2 (en) * | 2016-03-17 | 2018-02-21 | 株式会社神戸製鋼所 | Copper alloy plate for heat dissipation parts |
CN109937479B (en) * | 2016-12-27 | 2023-01-13 | 古河电气工业株式会社 | Lead frame material, method for manufacturing the same, and semiconductor package |
-
2007
- 2007-05-15 JP JP2007129468A patent/JP4168077B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008045204A (en) | 2008-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101136265B1 (en) | Copper alloy sheets for electrical/electronic part | |
JP4168077B2 (en) | Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion | |
US8715431B2 (en) | Copper alloy plate for electric and electronic parts having bending workability | |
KR101158113B1 (en) | Copper alloy plate for electrical and electronic components | |
KR101211984B1 (en) | Cu-ni-si-based alloy for electronic material | |
JP4117327B2 (en) | Copper alloy sheet for electrical and electronic parts with excellent press punchability | |
TWI382097B (en) | Cu-Ni-Si-Co-Cr alloy for electronic materials | |
JP4197718B2 (en) | High strength copper alloy sheet with excellent oxide film adhesion | |
TWI628407B (en) | Copper alloy plate and coil for heat dissipation parts | |
JP3962751B2 (en) | Copper alloy sheet for electric and electronic parts with bending workability | |
TWI537401B (en) | Strength and heat resistance and flexographic workability of the Fe-P copper alloy plate | |
JP5291494B2 (en) | High strength high heat resistance copper alloy sheet | |
TWI527914B (en) | Strength, heat resistance and bending workability of the Fe-P copper alloy plate | |
JP2008024995A (en) | Copper alloy plate for electrical/electronic component having excellent heat resistance | |
KR101807969B1 (en) | Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT | |
JPH11264038A (en) | Copper alloy foil | |
JPH08288450A (en) | Sheet metal for high heat dissipation cu-fe alloy ic lead frame and its manufacture | |
JPH07258776A (en) | High strength and high electrical conductivity copper alloy for electronic appliance | |
JPH0681058A (en) | Metallic foil for tab tape having high young's modulus and high yield strength and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080729 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080804 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4168077 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |