JP4167317B2 - Method for producing metal / ceramic composite material for casting - Google Patents
Method for producing metal / ceramic composite material for casting Download PDFInfo
- Publication number
- JP4167317B2 JP4167317B2 JP08244698A JP8244698A JP4167317B2 JP 4167317 B2 JP4167317 B2 JP 4167317B2 JP 08244698 A JP08244698 A JP 08244698A JP 8244698 A JP8244698 A JP 8244698A JP 4167317 B2 JP4167317 B2 JP 4167317B2
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- powder
- casting
- metal
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、金属に強化材を複合させる金属−セラミックス複合材料の製造方法に関し、特に鋳造用の金属−セラミックス複合材料の製造方法に関する。
【0002】
【従来の技術】
セラミックス繊維または粒子で強化されたセラミックスと金属の複合材料は、セラミックスと金属の両方の特性を兼ね備えており、例えばこの複合材料は、高剛性、低熱膨張性、耐摩耗性等のセラミックスの優れた特性と、延性、高靱性、高熱伝導性等の金属の優れた特性を備えている。このように、従来から難しいとされていたセラミックスと金属の両方の特性を備えているため、機械装置メーカ等の業界から次世代の材料として注目されている。
【0003】
この複合材料、特に金属としてアルミニウムをマトリックスとする複合材料の製造方法は、粉末冶金法、高圧鋳造法、真空鋳造法等の方法が従来から知られている。しかし、これらの方法は、強化材であるセラミックスの含有量を多くできない、あるいは大型の加圧装置が必要である、もしくはニアネット成形が困難である、コストが極めて高いなどの理由により、いずれも満足できるものではなかった。
【0004】
そこで最近では、上記問題を解決する製造方法として、米国ランクサイド社が開発した非加圧金属浸透法が特に注目されている。この方法は、SiCやAl2O3などのセラミックス粉末で形成されたプリフォームに、Mgを含むアルミニウムインゴットを接触させ、これをN2雰囲気中で700〜900℃に加熱して溶融したアルミニウム合金をプリフォームに含浸させる方法である。これは、MgとN2との化学反応を利用してセラミックス粉末への溶融金属の濡れ性を改善することにより、加圧しなくても金属をプリフォームに含浸できるようにした優れた方法である。
【0005】
そして、この製造方法で作製した複合材料をさらに溶融し、それを融解アルミニウム合金で鋳造可能なまで希釈する鋳造用の金属−セラミックス複合材料の製造方法も提案されている。この方法で作製された鋳造用の複合材料は、それを再溶融し、鋳型に鋳込むことでさらなる大型品やより複雑な形状品の複合材料を作製することができる。その鋳造には、砂型/金型を用いた重力鋳造、ロストワックスに代表される精密鋳造、ダイキャストなど、一般にアルミニウム鋳造に使われる鋳造方法であれば、ほとんど可能である。
【0006】
【発明が解決しようとする課題】
しかしながら、この鋳造用の金属−セラミックス複合材料の製造では、金属の浸透を促進するため浸透促進材が使われていて、その浸透促進材には250μm以下のMg粉末が使われているが、そのMg粉末は国内では入手が極めて困難という問題があった。それは、250μm以下の微細なMg粉末は、爆発し易いため、ほとんど市販されていないためである。これを入手し易いように粗いものにすると、複合材料にメタルスポットと呼ばれる金属状の斑点が生じ、不良となってしまう。
【0007】
本発明は、上述した鋳造用金属−セラミックス複合材料の製造方法が有する課題に鑑みなされたものであって、その目的は、Mg粉末を用いなくてもそれと同等の効果を有する浸透促進材を用いることのできる鋳造用金属−セラミックス複合材料の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、上記目的を達成するため鋭意研究した結果、Mg粉末の替わりにAl−Mg合金粉末を用いれば、Mg粉末と同等の促進効果があるとの知見を得て本発明を完成するに至った。
【0009】
即ち本発明は、(1)強化材であるSiC、Al 2 O 3 、AlNのセラミックス粉末にAl−Mg合金粉末をMg換算で0.5〜6.0重量%加えて混合し、その混合粉末にアルミニウム合金を窒素雰囲気中で700〜1000℃の温度で非加圧にて浸透させることで複合材料を作成した後、所定量の該複合材料と所定量のアルミニウム合金を溶融して攪拌することを特徴とする金属−セラミックス複合材料の製造方法(請求項1)とし、また、(2)Al−Mg合金粉末の細かさが、平均粒径で5〜250μmであることを特徴とする請求項1記載の鋳造用金属−セラミックス複合材料の製造方法(請求項2)とすることを要旨とする。以下さらに詳細に説明する。
【0010】
上記製造方法としては、用いるセラミックス粉末を、Al2O3、SiC、AlNなどのセラミックス粉末に、Al−Mg合金粉末をMg換算で0.5〜6.0重量%加えた粉末とする製造方法とした(請求項1)。Mg粉末に替えてAl−Mg粉末としたのは、この合金粉末が爆発の危険性がなく入手し易く、しかもMg粉末と同等の効果が得られ、さらにはアルミニウムマトリックス中に溶け込み問題ないことなどによる。
【0011】
その合金粉末の細かさとしては、平均粒径で5〜250μmとした(請求項2)。合金粉末の細かさは、粗くてもMg粉末のようなメタルスポットの発生は認められないので、複合材料を作製する上で合金粉末の細かさによる問題が生じなければ特に限定するものではないが、セラミックス粉末への均一な分散性を考えると5〜250μmが好ましい。
【0012】
その加える量としては、Mg換算で0.5〜6.0重量%が好ましく、0.5重量%より少ないと、金属の浸透速度が遅くなり、逆に6.0重量%より多いと、浸透速度が早すぎるためか、浸透速度にムラが生じて浸透しなかった部分が発生し、複合材料の内部に未浸透部分が生じる。
【0013】
浸透させるアルミニウム合金としては、希釈するアルミニウム合金と必ずしも同じ組成を有する合金である必要はない。但し、セラミックス粉末がSiCの場合には、合金中にSi成分が必ず含まれていなければならない。その理由は、浸透時に溶融アルミニウムとSiCとが反応して炭化アルミニウム(Al4C3)が生成し、その炭化アルミニウムが空気中の水分と反応して容易に水酸化アルミニウムに変わり、欠陥となるので、Siを含ませることにより、その生成を防止するためである。その量としては、複合材料中のSiの含有量が合金に対し8重量%以上となるよう合金中のSi量を調整することが望ましい。
【0014】
一方の希釈用のアルミニウム合金としてもSiが含まれている方が望ましい。それは、溶湯の流動性がよいこと、鋳造し易く、かつ鋳造割れ等の不良が発生し難いことなどによる。その希釈する量としては、望みの粉末充填率になるよう適宜の量とすればよい。希釈時の攪拌方法/条件は、極めて重要な因子となる。すなわち、セラミックス粒子の分離を防ぎ、十分な分散を維持できるほどの攪拌速度が必要であるが、それによって溶湯中に気泡を巻き込んではならない。実験を十分行って攪拌条件を慎重に決めることが必要である。希釈された溶湯物はそのまま鋳造し、目的の複合材料を作製してもよいし、一旦インゴット形状に形成し、それを再度溶融して目的の複合材料を作製してもよい。
【0015】
【発明の実施の形態】
本発明の製造方法をさらに詳しく述べると、先ず強化材としてSiC、Al2O3、AlNなどのセラミックス粉末を用意する。これに5〜250μmの平均粒径を有するAl−Mg合金粉末をMg換算で0.5〜6.0重量%加え、混合する。得られた混合粉末を容器内に充填し、その上にアルミニウム合金のインゴットを載せ、窒素雰囲気中で非加圧で700〜1000℃の温度でアルミニウム合金を浸透させ、冷却して複合材料を作製する。
【0016】
得られた複合材料を坩堝内で所定温度で再溶融し、それに別に融解したアルミニウム合金を所定量加え、攪拌機で十分攪拌して希釈する。所定量の複合材料と先のアルミニウム合金のインゴットを坩堝内に入れ、これらを所定温度で溶融した後、攪拌機で攪拌しても問題ない。これを冷却して鋳造用の金属−セラミックス複合材料を作製し、これをさらに再溶融して鋳造すれば、複雑形状品などの所望の複合材料が得られる。もしくは冷却しないでそのまま鋳造しても所望の複合材料が得られる。
【0017】
以上の方法で鋳造用の金属−セラミックス複合材料を作製すれば、Mg粉末を用いて作製したのと同等の鋳造用の金属−セラミックス複合材料が得られる。
【0018】
【実施例】
以下、本発明の実施例を比較例と共に具体的に挙げ、本発明をより詳細に説明する。
【0019】
(実施例1〜4)
(1)複合材料の作製
強化材として平均粒径が15μmの市販SiC粉末に、平均粒径が150μmのAl−Mg(Al:Mg=4:6)をMg換算で実施例の順序に従ってそれぞれ0.5、1.0、2.0、3.0重量%添加し、V型混合機で15分混合した。得られた混合粉末をそれぞれ200×200×深さ200mmのグラフォイル製の容器に充填した後、その上に混合粉末の1.2倍量のアルミニウム合金(Al−10Si)のインゴットを置き、電気炉にセットした。これをN2気流中で790℃の温度で12時間保持し、アルミニウム合金を非加圧浸透させた後、冷却して複合材料を作製した。
【0020】
(2)鋳造用複合材料の作製
得られた複合材料と先のアルミニウム合金のインゴットとを鋳造用複合材料中のSiC粉末の充填率が30vol%となるよう所定量坩堝内に入れ、それを610℃の温度で溶融し、2時間攪拌して鋳造用複合材料の溶湯を作製した。その溶湯物を冷却せずに720℃に上げてさらに攪拌し、それを砂型に鋳造してその鋳造物を評価に供した。
【0021】
(3)評価
得られた鋳造物の嵩密度をアルキメデス法で測定し、粉末充填率を求めた。その結果、粉末充填率は、30vol%で目標通り希釈されていた。また、鋳造物を切断し、その切断面を目視で観察してSiC粉末の分散状況を調べた。その結果、SiC粉末が問題なく分散されていて、ポアや未浸透部、あるいはメタルスポットなどの欠陥もなかった。このことは、Al−Mg合金粉末がMg粉末と同等の働きをなし、SiC粉末への濡れ性を良好にしていることを示している。
【0022】
(比較例1、2)
比較のために、比較例1では、Al−Mg合金粉末を添加しなかった他は、比較例2では、Al−Mg合金粉末を本発明の範囲外の6.5重量%添加した他は実施例1と同様に鋳造物を作製し、評価した。その結果、比較例1では、SiC粉末への濡れ性が良くなかったためか、希釈中にSiC粉末が溶湯上部に浮いてきて鋳造に適した溶湯物が得られなかった。また、比較例2では、Al−Mg合金が多すぎたため、浸透速度ムラが生じて浸透しなかった部分が発生し、希釈中に微量のSiC粉末が溶湯上部に浮き、鋳造物にも未含浸部分が認められた。
【0022】
【発明の効果】
以上の通り、本発明の鋳造用金属−セラミックス複合材料の製造方法であれば、Mg粉末を用いなくてもAl−Mg合金粉末を用いることにより、それと同等の鋳造用金属−セラミックス複合材料を得ることのできる製造方法を提供できるようになった。このことにより、鋳造用の複合材料の製造が従来より格段に容易となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a metal-ceramic composite material in which a reinforcing material is combined with a metal, and more particularly to a method for producing a metal-ceramic composite material for casting.
[0002]
[Prior art]
Ceramics and metal composites reinforced with ceramic fibers or particles combine the properties of both ceramics and metals. For example, this composite material has excellent ceramic properties such as high rigidity, low thermal expansion, and wear resistance. It has excellent properties and characteristics of metals such as ductility, high toughness, and high thermal conductivity. Thus, since it has the characteristics of both ceramics and metal, which have been considered difficult, it has been attracting attention as a next-generation material from industries such as machine equipment manufacturers.
[0003]
As a method for producing this composite material, particularly a composite material using aluminum as a matrix as a metal, methods such as a powder metallurgy method, a high-pressure casting method, and a vacuum casting method have been conventionally known. However, these methods are not possible due to the reason that the content of ceramics as a reinforcing material cannot be increased, a large pressure device is necessary, or near-net molding is difficult, and the cost is extremely high. It was not satisfactory.
[0004]
Thus, recently, a non-pressurized metal infiltration method developed by Rankside, Inc. of the United States has attracted particular attention as a manufacturing method for solving the above problems. In this method, an aluminum ingot containing Mg is brought into contact with a preform formed of a ceramic powder such as SiC or Al 2 O 3 , and this is heated to 700 to 900 ° C. in an N 2 atmosphere to melt the aluminum alloy. Is a method in which a preform is impregnated. This is an excellent method in which the metal can be impregnated into the preform without applying pressure by improving the wettability of the molten metal to the ceramic powder by utilizing a chemical reaction between Mg and N 2. .
[0005]
There has also been proposed a method for producing a metal / ceramic composite material for casting, in which the composite material produced by this production method is further melted and diluted to the extent that it can be cast with a molten aluminum alloy. The composite material for casting produced by this method can be remelted and cast into a mold to produce a composite material having a larger size or a more complicated shape. For casting, almost any casting method generally used for aluminum casting, such as gravity casting using a sand mold / mold, precision casting represented by lost wax, die casting, etc., is possible.
[0006]
[Problems to be solved by the invention]
However, in the production of this metal-ceramic composite material for casting, a penetration enhancer is used to promote metal penetration, and the penetration enhancer uses Mg powder of 250 μm or less. There is a problem that Mg powder is extremely difficult to obtain in Japan. This is because fine Mg powder of 250 μm or less is hardly commercially available because it explodes easily. If this is made rough so as to be easily obtained, metallic spots called metal spots are generated in the composite material, resulting in failure.
[0007]
The present invention has been made in view of the problems of the above-described method for producing a metal / ceramic composite material for casting, and the object thereof is to use a penetration enhancer having the same effect without using Mg powder. An object of the present invention is to provide a method for producing a casting metal-ceramic composite material.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have obtained the knowledge that if Al—Mg alloy powder is used instead of Mg powder, the present invention is completed with the knowledge that it has the same acceleration effect as Mg powder. It came to do.
[0009]
That is, the present invention includes (1) Al—Mg alloy powder added to 0.5 to 6.0% by weight in terms of Mg and mixed with SiC, Al 2 O 3 , and AlN ceramic powder as reinforcing materials, and the mixed powder A composite material is prepared by impregnating aluminum alloy in a nitrogen atmosphere at a temperature of 700 to 1000 ° C. with no pressure, and then a predetermined amount of the composite material and a predetermined amount of aluminum alloy are melted and stirred. metal and wherein the - claims a method of producing a ceramic composite material (claim 1), and (2) fineness of the Al-Mg alloy powder, characterized in that it is a 5~250μm an average particle size The gist of the present invention is the method for producing a casting metal-ceramic composite material according to claim 1. This will be described in more detail below.
[0010]
As the manufacturing method, a manufacturing method of a powder of a ceramic powder, Al 2 O 3, SiC, a ceramic powder such as AlN, was added 0.5 to 6.0 wt% of Al-Mg alloy powder Mg terms used (Claim 1). The reason why Al-Mg powder was used instead of Mg powder is that this alloy powder is easy to obtain without risk of explosion, and the same effect as Mg powder is obtained, and further, there is no problem of melting into the aluminum matrix. by.
[0011]
The fineness of the alloy powder was 5 to 250 μm in average particle size (Claim 2). Even though the fineness of the alloy powder is coarse, no metal spots such as Mg powder are observed, so there is no particular limitation as long as there is no problem due to the fineness of the alloy powder in producing a composite material. Considering the uniform dispersibility in the ceramic powder, 5 to 250 μm is preferable.
[0012]
The amount to be added is preferably 0.5 to 6.0% by weight in terms of Mg. If the amount is less than 0.5% by weight, the metal permeation rate becomes slow. This is because the speed is too fast, or unevenness in the permeation speed occurs and a portion that does not permeate is generated, and an unpermeated portion is generated inside the composite material.
[0013]
The aluminum alloy to be permeated is not necessarily an alloy having the same composition as the aluminum alloy to be diluted. However, when the ceramic powder is SiC, an Si component must be included in the alloy. The reason for this is that molten aluminum reacts with SiC during penetration to produce aluminum carbide (Al 4 C 3 ), which reacts with moisture in the air and easily turns into aluminum hydroxide, resulting in defects. Therefore, it is for preventing the production | generation by including Si. As for the amount thereof, it is desirable to adjust the Si amount in the alloy so that the Si content in the composite material is 8% by weight or more based on the alloy.
[0014]
It is desirable that one of the aluminum alloys for dilution contains Si. This is because the molten metal has good fluidity, is easy to cast, and hardly causes defects such as casting cracks. The amount to be diluted may be an appropriate amount so as to obtain a desired powder filling rate. The agitation method / condition during dilution is a very important factor. That is, a stirring speed that prevents separation of ceramic particles and maintains sufficient dispersion is required, but bubbles should not be involved in the molten metal. It is necessary to conduct experiments thoroughly and carefully determine the stirring conditions. The diluted molten metal may be cast as it is to produce the target composite material, or may be once formed into an ingot shape and then melted again to produce the target composite material.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The production method of the present invention will be described in more detail. First, ceramic powder such as SiC, Al 2 O 3 , and AlN is prepared as a reinforcing material. Al-Mg alloy powder having an average particle diameter of 5 to 250 μm is added thereto and mixed in an amount of 0.5 to 6.0% by weight in terms of Mg. The obtained mixed powder is filled in a container, and an aluminum alloy ingot is placed on the container. The aluminum alloy is infiltrated at a temperature of 700 to 1000 ° C. in a non-pressurized atmosphere in a nitrogen atmosphere, and cooled to produce a composite material. To do.
[0016]
The obtained composite material is remelted in a crucible at a predetermined temperature, and a predetermined amount of a molten aluminum alloy is added thereto, and the mixture is sufficiently stirred and diluted with a stirrer. There is no problem even if a predetermined amount of the composite material and the ingot of the aluminum alloy are put in a crucible and melted at a predetermined temperature and then stirred with a stirrer. If this is cooled and a metal-ceramic composite material for casting is produced, and this is further remelted and cast, a desired composite material such as a complex shape product can be obtained. Alternatively, a desired composite material can be obtained by casting as it is without cooling.
[0017]
When a metal-ceramic composite material for casting is produced by the above method, a metal-ceramic composite material for casting equivalent to that produced using Mg powder can be obtained.
[0018]
【Example】
Examples of the present invention will be specifically described below together with comparative examples to describe the present invention in more detail.
[0019]
(Examples 1-4)
(1) Production of composite material As commercially available SiC powder having an average particle diameter of 15 μm as a reinforcing material, Al—Mg (Al: Mg = 4: 6) having an average particle diameter of 150 μm is converted into 0 according to the order of the examples. 0.5, 1.0, 2.0, and 3.0% by weight were added and mixed for 15 minutes with a V-type mixer. Each of the obtained mixed powders was filled in a 200 x 200 x 200 mm depth container made of a graphoil, and then an ingot of an aluminum alloy (Al-10Si) 1.2 times as much as the mixed powder was placed on the container. Set. This was held at 790 ° C. for 12 hours in a N 2 air stream, allowed to infiltrate the aluminum alloy under no pressure, and then cooled to produce a composite material.
[0020]
(2) Production of casting composite material A predetermined amount of the obtained composite material and the ingot of the above aluminum alloy were placed in a crucible so that the filling rate of SiC powder in the casting composite material would be 30 vol%, and then 610 It was melted at a temperature of 0 ° C. and stirred for 2 hours to prepare a molten composite material for casting. The molten metal was raised to 720 ° C. without cooling and further stirred, cast into a sand mold, and the cast was used for evaluation.
[0021]
(3) Evaluation The bulk density of the obtained casting was measured by the Archimedes method to determine the powder filling rate. As a result, the powder filling rate was 30 vol% and was diluted as intended. Moreover, the casting was cut | disconnected and the cut surface was observed visually and the dispersion | distribution condition of SiC powder was investigated. As a result, the SiC powder was dispersed without any problems, and there were no defects such as pores, non-penetrating portions, or metal spots. This indicates that the Al—Mg alloy powder has the same function as the Mg powder and has good wettability to the SiC powder.
[0022]
(Comparative Examples 1 and 2)
For comparison, in Comparative Example 1, except that the Al—Mg alloy powder was not added, in Comparative Example 2, the Al—Mg alloy powder was added except 6.5% by weight outside the scope of the present invention. A casting was prepared and evaluated in the same manner as in Example 1. As a result, in Comparative Example 1, because the wettability to the SiC powder was not good, the SiC powder floated on the upper part of the molten metal during dilution, and a molten material suitable for casting could not be obtained. Further, in Comparative Example 2, since there was too much Al—Mg alloy, a portion that did not penetrate due to uneven permeation rate occurred, and a small amount of SiC powder floated on top of the molten metal during dilution, and the casting was not impregnated. Part was recognized.
[0022]
【The invention's effect】
As described above, according to the method for producing a casting metal-ceramic composite material of the present invention, an equivalent casting metal-ceramic composite material can be obtained by using Al-Mg alloy powder without using Mg powder. It has become possible to provide a manufacturing method that can As a result, the production of composite materials for casting has become much easier than before.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08244698A JP4167317B2 (en) | 1998-03-16 | 1998-03-16 | Method for producing metal / ceramic composite material for casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08244698A JP4167317B2 (en) | 1998-03-16 | 1998-03-16 | Method for producing metal / ceramic composite material for casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11264032A JPH11264032A (en) | 1999-09-28 |
JP4167317B2 true JP4167317B2 (en) | 2008-10-15 |
Family
ID=13774761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08244698A Expired - Fee Related JP4167317B2 (en) | 1998-03-16 | 1998-03-16 | Method for producing metal / ceramic composite material for casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4167317B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4585379B2 (en) * | 2005-06-02 | 2010-11-24 | 太平洋セメント株式会社 | Method for producing metal-ceramic composite material |
JP5481725B2 (en) * | 2010-04-26 | 2014-04-23 | Dowaメタルテック株式会社 | Manufacturing method of ceramic-insulated substrate integrated metal-ceramic composite heat sink |
JP6984926B1 (en) * | 2021-04-19 | 2021-12-22 | アドバンスコンポジット株式会社 | Method for manufacturing metal-based composite material and method for manufacturing preform |
CN115369276B (en) * | 2022-08-15 | 2023-06-06 | 哈尔滨工业大学(威海) | SiC and TiB 2 Double-phase reinforced aluminum-based composite material and preparation method thereof |
-
1998
- 1998-03-16 JP JP08244698A patent/JP4167317B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11264032A (en) | 1999-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4713111A (en) | Production of aluminum-SiC composite using sodium tetrasborate as an addition agent | |
US20130189151A1 (en) | Particulate aluminium matrix nano-composites and a process for producing the same | |
JPH01234536A (en) | Production of aluminum/magnesium alloy containing refractory particles | |
Gui M.-C. et al. | Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process | |
JP4167317B2 (en) | Method for producing metal / ceramic composite material for casting | |
JPH02182844A (en) | Preparation of composite material | |
JP4220598B2 (en) | Method for producing metal / ceramic composite material for casting | |
JP4720981B2 (en) | Magnesium matrix composite | |
JPH11170027A (en) | Ingot for metal-ceramic composite and production thereof | |
JP2007204808A (en) | Method for forming metal matrix composite | |
JP2000087156A (en) | Metal-ceramic composite material for casting and its manufacture | |
EP0539417B1 (en) | Cast composite materials | |
JP7382105B1 (en) | High-strength metal matrix composite and method for producing high-strength metal matrix composite | |
JPH11264035A (en) | Production of metal-ceramics composite material for casting | |
JP5152682B2 (en) | Method for producing magnesium-based composite material | |
JPH11157965A (en) | Metal-ceramic composite material and its production | |
JPH01268830A (en) | Manufacture of sic dispersion cast composite material | |
CN109136606A (en) | A kind of enhanced self-lubricating Cu-base composites and its preparation method and application | |
JP4167318B2 (en) | Method for producing metal-ceramic composite material | |
JPH10219369A (en) | Composite material of ceramics and metal, and its production | |
JP4381330B2 (en) | Method for producing metal matrix composite for casting | |
JPH1171620A (en) | Production of metal-ceramics composite material | |
JP2002146451A (en) | Metal-ceramics composite material for casting, and method for producing the same | |
JP4053110B2 (en) | Metal-ceramic composite material | |
JP2000119767A (en) | Metal-ceramic composite material for casting, and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060501 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080715 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080801 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |