JP4165859B2 - Strontium titanate fine powder, method for producing the same, and toner for electrostatic recording using the same as an external additive - Google Patents
Strontium titanate fine powder, method for producing the same, and toner for electrostatic recording using the same as an external additive Download PDFInfo
- Publication number
- JP4165859B2 JP4165859B2 JP2002076051A JP2002076051A JP4165859B2 JP 4165859 B2 JP4165859 B2 JP 4165859B2 JP 2002076051 A JP2002076051 A JP 2002076051A JP 2002076051 A JP2002076051 A JP 2002076051A JP 4165859 B2 JP4165859 B2 JP 4165859B2
- Authority
- JP
- Japan
- Prior art keywords
- strontium titanate
- particle size
- toner
- same
- strontium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Developing Agents For Electrophotography (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電子写真方式を利用した複写機およびプリンタ等の複写画像を形成するための静電潜像現像用トナーの外添剤等に有用なチタン酸ストロンチウム微細粉末に関する。
【0002】
【従来の技術】
近年、電子写真方式を利用した複写機及びプリンタにより得られる静電画像の高精細、高画質化の要求に伴い、粒子径が小さくかつ高流動性のトナーを現像剤として用いて高画質化を達成しようとする試みが行われている。しかし、トナーの粒子径を小さくすると重量あたりの表面積が増大して摩擦帯電量が増加しトナー同士の付着力が強くなり、流動性が低下するという問題が起こる。
【0003】
これらの問題に対し、チタン酸ストロンチウム粉末は帯電がほぼ中性であり、また高誘電率を有するものであることから帯電レベルが変化しないという特徴を有しており、従来からトナーの外添剤として多量に使用されている。
【0004】
例えば、特公平3−10312号公報には、比表面積が1.0〜6.0m2/gで、焼結法により生成されたチタン酸ストロンチウムに代表されるチタン酸塩が、特開2000−206730号公報には個数平均粒子径80〜800nmの疎水性チタン酸ストロンチウムが、そして、特開平8−227171号公報には粒子径が10〜90nmのチタン酸ストロンチウムをトナーの外添剤として使用できることが記載されている。
【0005】
【発明が解決しようとする課題】
しかしながら、特公平3−10312号公報及び特開2000−206730号公報に記載のチタン酸ストロンチウムは酸化チタンあるいはメタチタン酸と炭酸ストロンチウムを混合し、焼成して製造したものであるので、粒子径が大きいか或いは粒子径が大きなものを含むものであったため、微粒子化されたトナーにおける外添剤としては満足できるものではなかった。また、特開平8−227171号公報においては、粒子径が10〜90nmのチタン酸ストロンチウムを流動化剤として使用できることを示唆しているが、実際には、分散の良好なトナー用として最適なチタン酸ストロンチウムは未だ製造されていない。
【0006】
このように、チタン酸ストロンチウムはトナー用外添剤としては非常に有用なものであり、微粒子で粒度分布が良く、かつ結晶性が高く分散性が優れているチタン酸ストロンチウムの出現が待望されている。
【0007】
従来より、微粒子チタン酸ストロンチウム等のペロブスカイト型微粒子粉末を安価に得る方法として種々の常圧加熱反応法が提案されている。例えば、特開昭59−45928号公報にはチタン化合物の加水分解物とストロンチウム化合物とを強アルカリ水溶液中で反応させて超微粒子のチタン酸ストロンチウムを生成させる方法が開示されているが、粒子径は100〜200Åであり微粒子化されたトナーにおける外添剤としても粒子径が小さすぎ、また粒子径をコントロールする方法が記載されていない。
【0008】
特開平5−58633号公報にはチタン化合物の加水分解物とストロンチウム化合物とを、過酸化水素の存在下で湿式反応させ反応条件の変更でチタン酸ストロンチウムの粒子径をコントロールする方法が開示されているが、過酸化水素の使用量がH2O2/TiO2モル比で0.1〜10と多く必要であり不経済である。
【0009】
また、特開平6−48734号公報には溶液状態のストロンチウム化合物と、溶液状態またはスラリー状態のチタン化合物とを、反応が開始する温度以上で混合することにより、平均粒子径50nm以下で粒度分布が狭い結晶性チタン酸ストロンチウム微粒子が得られることが開示されている。しかしながら、この方法では、チタン化合物及び水酸化ストロンチウムを別々のタンクで反応温度以上に加温し、さらには両者を瞬間的かつ均一に混合するためにインラインミキサーが必要となり、工程が複雑なものとなって工業的に好ましいとは言えない。
【0010】
【課題を解決するための手段】
本発明者等は、このような観点から、トナーに高流動性を付与し、かつ、耐湿性に優れたトナーの外添剤として最適なチタン酸ストロンチウム微細粒子を簡便に、かつ、粒度分布が良好で所望の粒子径にコントロールできる方法を開発すべく鋭意検討を行い、本発明を完成させた。
【0011】
すなわち、本発明は平均一次粒子径が0.02〜0.3μmであり、一次粒子径の四分偏差を該平均一次粒子径で割った値が0.20以下であり、かつそのような粒子として直方体状粒子を含むことを特徴とするチタン酸ストロンチウム微細粉末に関する。また、本発明のチタン酸ストロンチウム微細粉末は、そのような粒子として好ましくは立方体状粒子を含む。平均一次粒子径が前記の範囲を外れたり、範囲内にあっても四分偏差を平均一次粒子径で割った値が0.20を超えると、トナーの諸特性に悪影響を与えるため好ましくない。
【0012】
本発明のチタン酸ストロンチウム微細粉末は、尖ったエッジを持つ直方体状粒子を含有しているため、トナーの外添剤として使用した場合に、上記の効果に加え優れた研磨効果を有する。
【0013】
また、前記チタン酸ストロンチウム微細粉末は、平均二次粒子径が0.05〜0.5μmであり、かつ二次粒子径の四分偏差を該平均二次粒子径で割った値が0.25以下であることがトナーの帯電安定性や流動性の付与等に極めて有効となって好ましい。
【0014】
本発明のチタン酸ストロンチウム微細粉末の粒子径及び粒度分布は、種々の方法で測定できるが、本発明においては以下の方法で平均粒子径及び粒度分布を測定した。
【0015】
まず、平均一次粒子径は、透過型電子顕微鏡写真から等価円直径により測定される重量基準の50%粒子径であり、四分偏差は透過型電子顕微鏡写真から等価円直径により測定される重量基準の75%粒子径と25%粒子径の差の1/2で表される。
【0016】
また、平均二次粒子径は、Honeywell製Microtrac HRA9320−X100型を用いて測定した体積分布から求めた重量基準の50%粒子径であり、四分偏差は体積分布から求めた重量基準の75%粒子径と25%粒子径の差の1/2で表される。測定方法は、前記装置に体積分布を出力するインターフェースとパーソナルコンピュータを接続し、0.2%ヘキサメタリン酸ナトリウム水溶液50〜100mL中に測定試料を10〜30mg加え、超音波分散器で1〜3分の分散処理を行い、前記Microtrac HRAにより試料の体積分布を求める。
【0017】
本発明のチタン酸ストロンチウム微細粉末は代表的には、常圧加熱反応法により、ペロブスカイト型チタン酸化合物を製造する方法において、酸化チタン源としてチタン化合物の加水分解物の鉱酸解膠品を用い、またストロンチウム源として水溶性酸性化合物を用い、その混合液に50℃以上でアルカリ水溶液を添加しながら反応させる方法で製造される。
【0018】
前記酸化チタン源としてはチタン化合物の加水分解物の鉱酸解膠品を用いる。具体的には硫酸法で得られた、SO3含有量が1.0wt%以下、好ましくは0.5wt%以下のメタチタン酸を塩酸でpHを0.8〜1.5に調整して解膠したものを用いることで、分布良好なチタン酸ストロンチウム微細粉末が得られるので好ましい。
【0019】
前記ストロンチウム源としては、硝酸ストロンチウム、塩化ストロンチウム等を使用することができる。
【0020】
アルカリ水溶液としては、苛性アルカリが使用できるが水酸化ナトリウム水溶液が好ましい。
【0021】
前記製造方法において、得られるチタン酸ストロンチウム微細粉末の粒子径に影響を及ぼす因子としては、反応時における酸化チタン源とストロンチウム源の混合割合、反応初期の酸化チタン源濃度、アルカリ水溶液を添加するときの温度、添加速度などが挙げられ、目的の粒子径及び粒度分布のものを得るため適宜調整すればよい。
【0022】
なお、反応過程に於ける炭酸ストロンチウムの生成を防ぐために窒素ガス雰囲気下で反応する等炭酸ガスの混入を防ぐことが好ましい。
【0023】
反応時における酸化チタン源とストロンチウム源の混合割合は、SrO/TiO2のモル比で、0.9〜1.4、好ましくは0.95〜1.15がよい。
【0024】
反応初期の酸化チタン源の濃度としては、TiO2として0.05〜1.0モル/L、好ましくは0.1〜0.8モル/Lがよい。
【0025】
アルカリ水溶液を添加するときの温度は、高いほど結晶性の良好なものが得られるが、実用的には50℃〜101℃の範囲が適切である。
【0026】
アルカリ水溶液の添加速度は得られる粉末の粒子径に最も影響し、添加速度が遅いほど大きな粒子径のチタン酸ストロンチウム粉末が得られ、添加速度が速いほど小さな粒子径のチタン酸ストロンチウム粉末が得られる。アルカリ水溶液の添加速度は、仕込原料に対し0.001〜1.0当量/h、好ましくは0.005〜0.5当量/hであり、得ようとする粒子径に応じて適宜調整する。アルカリ水溶液の添加速度は目的に応じて途中で変更することもできる。
【0027】
本発明のチタン酸ストロンチウム微細粉末においては、従来より外添剤として使用されているシリカや酸化チタンと同じように、帯電調整や環境安定性の改良のため、SiO2、Al2O3等の無機酸化物やチタンカップリング剤、シランカップリング剤、シリコンオイル等の疎水化剤を処理することができ、0.02〜0.3μmの一次粒子径を持つチタン酸ストロンチウム微細粉末をトナーの外添剤として使用する場合には水系中で疎水化剤を処理したものが一段と分散性が良好であるので好ましい。また本発明のチタン酸ストロンチウム微細粉末においては、結晶性の向上のため、300〜1000℃の温度で焼成すれば、結晶性が更に向上し、環境安定性がより改良される。
【0028】
本発明のチタン酸ストロンチウム微細粉末は磁性一成分トナー、二成分トナー及び非磁性一成分トナーのあらゆる静電記録方式で使用される。また粉砕法あるいは重合法で製造したトナーの外添剤としても使用できる。トナー用のバインダー樹脂としては、公知の合成樹脂及び天然樹脂であれば如何なるものでも使用できる。具体的には、例えば、スチレン系樹脂、アクリル系樹脂、オレフィン系樹脂、ジエン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、エポキシ系樹脂、シリコーン系樹脂、フェノール系樹脂、石油樹脂及びウレタン系樹脂等が挙げられる。また、目的に応じて帯電調整剤や離型剤等の添加剤をバインダー中に添加したトナーでもかまわない。
【0029】
本発明のチタン酸ストロンチウム微細粉末はトナーに0.3〜5.0wt%外添して、使用され、必要に応じ電子写真の分野で使用されている公知の流動化剤、例えば、シリカ、酸化チタン、酸化アルミ等の1種又は2種以上と併用してもかまわない。
【0030】
また、粒子径の異なる2種以上の本発明のチタン酸ストロンチウム微細粉末を同時に使用してもかまわない。
【0031】
本発明のチタン酸ストロンチウム微細粉末は、トナーの外添剤において優れた研磨効果を有するものであるが、通常の研磨材としても有用である。
【0032】
研磨材に要求される特性は、硬度の大きいことと粒子が針状や板状のない整った形状を有し、表面が平滑でなく切削刃を持っていることがあげられる。チタン酸ストロンチウムは、モース硬度が5〜6であり、それほど高いものではないが、古くからガラス研磨に使用されてきたフリントのモース硬度は6〜6.5であるため、硬度のレベルは問題ない。また、本発明のチタン酸ストロンチウム微細粉末は、前述のように尖ったエッジを持つ立方体状粒子を含有している。したがって、本発明のチタン酸ストロンチウム微細粉末は、モース硬度が5前後のもの、例えばガラス(硬度5〜5.5)等に対しては十分に使用できるものである。
【0033】
【実施例】
以下に実施例を挙げて本発明を更に詳細に説明する。以下に挙げる例は単に例示のために記すものであり、本発明の範囲がこれによって制限されるものではない。
【0034】
【実施例1】
硫酸法で得られたメタチタン酸を脱鉄漂白処理した後、4N水酸化ナトリウム水溶液を加えpH9.0とし、脱硫処理を行い、その後、6N塩酸によりpH5.5まで中和し濾過水洗を行った。洗浄済みケーキに水を加えTiO2として1.25モル/Lのスラリーとした後、6N塩酸を加えpH1.2とし解膠処理を行った。この解膠含水酸化チタンをTiO2として0.156モルを採取し、3Lの反応容器に投入し、該解膠含水酸化チタンスラリーにSrO/TiO2モル比で1.15の塩化ストロンチウム水溶液を添加した後、TiO2濃度0.156モル/Lに調整し、窒素ガスを吹き込み20分間放置し反応容器内を窒素ガス置換した。次に、この反応容器に窒素を流しながら、さらに撹拌混合しつつメタチタン酸と塩化ストロンチウムの混合溶液を90℃に加温した後、2.5N水酸化ナトリウム水溶液143mLを24時間かけて添加し、その後、90℃で1時間撹拌を続け反応を終了した。反応後40℃まで冷却し、窒素雰囲気下において上澄み液を除去し、2.5Lの純水を加えてデカンテーションを行うという操作を2回繰り返して洗浄を行った後、ヌッチェで濾過を行い、得られたケーキを110℃の大気中で8時間乾燥した。最終合成物を電子顕微鏡で観察すると、立方体状粒子を含む0.16〜0.20μmの粒子であり、X線回折ではチタン酸ストロンチウム単一相であった。電子顕微鏡写真を用いて重量基準で算出した平均一次粒子径は0.17μm、四分偏差を平均一次粒子径で割った値は0.13であった。また、Microtrac HRAにより求めた平均二次粒子径は0.28μm、四分偏差を平均二次粒子径で割った値は0.23であった。
【0035】
【実施例2】
脱硫・解膠を行った含水酸化チタンをTiO2として0.626モルを採取し、3Lの反応容器に投入し、該解膠含水酸化チタンスラリーにSrO/TiO2モル比で1.15の塩化ストロンチウム水溶液を添加した後、TiO2濃度0.626モル/Lに調整し、窒素ガスを吹き込み20分間放置し反応容器内を窒素ガス置換した。次に、この反応容器に窒素を流しながら、さらに撹拌混合しつつメタチタン酸と塩化ストロンチウムの混合溶液を90℃に加温した後、10N水酸化ナトリウム水溶液143mLを2時間かけて添加し、その後、90℃で1時間撹拌を続け反応を終了した。反応後40℃まで冷却し、窒素雰囲気下において上澄み液を除去し、2.5Lの純水を加えてデカンテーションを行うという操作を2回繰り返して洗浄を行った後、ヌッチェで濾過を行い、得られたケーキを110℃の大気中で8時間乾燥した。最終合成物を電子顕微鏡で観察したところ立方体状粒子を含む0.03〜0.05μmの粒子であり、X線回折ではチタン酸ストロンチウム単一相であった。電子顕微鏡写真を用いて重量基準で算出した平均一次粒子径は0.042μm、四分偏差を平均一次粒子径で割った値は0.14であった。また、Microtrac HRAにより求めた平均二次粒子径は0.13μm、四分偏差を平均二次粒子径で割った値は0.22であった。
【0036】
【実施例3】
脱硫・解膠を行った含水酸化チタンをTiO2として0.626モルを採取し、3Lの反応容器に投入し、該解膠含水酸化チタンスラリーにSrO/TiO2モル比で1.15の塩化ストロンチウム水溶液を添加した後、TiO2濃度0.626モル/Lに調整し、窒素ガスを吹き込み20分間放置し反応容器内を窒素ガス置換した。次に、この反応容器に窒素を流しながら、さらに撹拌混合しつつメタチタン酸と塩化ストロンチウムの混合溶液を90℃に加温した後、10N水酸化ナトリウム水溶液143mLの水酸化ナトリウム水溶液を12時間かけて添加し、その後、90℃で1時間撹拌を続け反応を終了した。反応後40℃まで冷却し、窒素雰囲気下において上澄み液を除去し、2.5Lの純水を加えてデカンテーションを行うという操作を2回繰り返して洗浄を行った後、ヌッチェで濾過を行い、得られたケーキを110℃の大気中で8時間乾燥した。最終合成物を電子顕微鏡で観察したところ立方体状粒子を含む0.08〜0.1μmの粒子であり、X線回折ではチタン酸ストロンチウム単一相であった。電子顕微鏡写真を用いて重量基準で算出した平均一次粒子径は0.091μm、四分偏差を平均一次粒子径で割った値は0.13であった。また、Microtrac HRAにより求めた平均二次粒子径は0.24μm、四分偏差を平均二次粒子径で割った値は0.18であった。
【0037】
【発明の効果】
本発明のチタン酸ストロンチウム微細粉末は、目的に応じて平均一次粒子径等の粒度分布をコントロールすることができ、かつ結晶性が高く分散性が優れているという特徴がある。したがって、本発明のチタン酸ストロンチウム微細粉末はトナー用外添剤として適しており、高流動性と環境安定性に優れたトナーに使用できる。
【0038】
【図面の簡単な説明】
【図1】実施例1により製造されたチタン酸ストロンチウム微細粉末の倍率3万倍の電子顕微鏡写真である。
【図2】実施例1により製造されたチタン酸ストロンチウム微細粉末の電子顕微鏡写真から求めた一次粒子径の粒度分布図である。
【図3】実施例1により製造されたチタン酸ストロンチウム微細粉末のMicrotrac HRAにより求めた二次粒子径の粒度分布図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fine powder of strontium titanate useful as an external additive for toner for developing an electrostatic latent image for forming a copy image such as a copying machine and a printer using an electrophotographic system.
[0002]
[Prior art]
In recent years, with the demand for high-definition and high-quality electrostatic images obtained by electrophotographic copying machines and printers, high-quality toners with small particle size and high fluidity are used as a developer. Attempts are being made to achieve. However, if the particle diameter of the toner is reduced, the surface area per weight increases, the triboelectric charge increases, the adhesion between the toners increases, and the fluidity decreases.
[0003]
To solve these problems, strontium titanate powder has a characteristic that the charge level is not changed because it is almost neutral and has a high dielectric constant. Is used in large quantities.
[0004]
For example, Japanese Patent Publication No. 3-10312 discloses a titanate represented by strontium titanate having a specific surface area of 1.0 to 6.0 m 2 / g and produced by a sintering method. No. 206730 can use hydrophobic strontium titanate with a number average particle size of 80 to 800 nm, and Japanese Patent Application Laid-Open No. 8-227171 can use strontium titanate with a particle size of 10 to 90 nm as an external additive for toner. Is described.
[0005]
[Problems to be solved by the invention]
However, since strontium titanate described in JP-B-3-10312 and JP-A-2000-206730 is produced by mixing titanium oxide or metatitanic acid and strontium carbonate and firing, the particle size is large. In addition, since it includes those having a large particle size, it was not satisfactory as an external additive in finely divided toner. JP-A-8-227171 suggests that strontium titanate having a particle size of 10 to 90 nm can be used as a fluidizing agent. Strontium acid has not yet been produced.
[0006]
Thus, strontium titanate is very useful as an external additive for toner, and the appearance of strontium titanate with fine particles, good particle size distribution, high crystallinity and excellent dispersibility is expected. Yes.
[0007]
Conventionally, various atmospheric pressure heating reaction methods have been proposed as methods for obtaining a perovskite type fine particle powder such as fine particle strontium titanate at a low cost. For example, Japanese Patent Application Laid-Open No. S59-5928 discloses a method in which a hydrolyzate of a titanium compound and a strontium compound are reacted in a strong alkaline aqueous solution to produce ultrafine strontium titanate. Is 100 to 200 mm, and the particle size is too small as an external additive in finely divided toner, and a method for controlling the particle size is not described.
[0008]
Japanese Patent Laid-Open No. 5-58633 discloses a method of controlling the particle size of strontium titanate by changing the reaction conditions by wet reaction of a hydrolyzate of a titanium compound and a strontium compound in the presence of hydrogen peroxide. However, it is uneconomical because the amount of hydrogen peroxide used is as large as 0.1 to 10 in terms of the H 2 O 2 / TiO 2 molar ratio.
[0009]
Japanese Patent Application Laid-Open No. 6-48734 discloses that a strontium compound in a solution state and a titanium compound in a solution state or a slurry state are mixed at a temperature higher than the temperature at which the reaction starts, so that the particle size distribution is 50 nm or less. It is disclosed that narrow crystalline strontium titanate microparticles can be obtained. However, this method requires an in-line mixer to heat the titanium compound and strontium hydroxide to a temperature higher than the reaction temperature in separate tanks, and to mix them both instantaneously and uniformly. It is not industrially preferable.
[0010]
[Means for Solving the Problems]
From such a point of view, the present inventors have provided strontium titanate fine particles, which are suitable as an external additive for a toner that imparts high fluidity to the toner and is excellent in moisture resistance, with a simple particle size distribution. The present invention was completed by intensive studies to develop a method that can be controlled to a desired particle size.
[0011]
That is, the present invention has an average primary particle diameter of 0.02 to 0.3 μm, a value obtained by dividing the quadrature deviation of the primary particle diameter by the average primary particle diameter is 0.20 or less, and such particles The present invention relates to a fine strontium titanate powder characterized by containing rectangular parallelepiped particles. Moreover, the strontium titanate fine powder of the present invention preferably contains cubic particles as such particles. If the average primary particle size is out of the above range, or the value obtained by dividing the quadrature deviation by the average primary particle size exceeds 0.20 even if the average primary particle size is within the range, it is not preferable because it adversely affects various characteristics of the toner.
[0012]
Since the strontium titanate fine powder of the present invention contains rectangular parallelepiped particles having sharp edges, when used as an external additive for toner, it has an excellent polishing effect in addition to the above effects.
[0013]
The strontium titanate fine powder has an average secondary particle diameter of 0.05 to 0.5 μm, and a value obtained by dividing the quadratic deviation of the secondary particle diameter by the average secondary particle diameter is 0.25. The following is preferable because it is extremely effective for charging stability and fluidity of the toner.
[0014]
The particle size and particle size distribution of the strontium titanate fine powder of the present invention can be measured by various methods. In the present invention, the average particle size and particle size distribution were measured by the following methods.
[0015]
First, the average primary particle size is a 50% particle size based on the weight measured by an equivalent circle diameter from a transmission electron micrograph, and the quadrant is a weight basis measured by an equivalent circle diameter from the transmission electron micrograph. Of the difference between the 75% particle size and the 25% particle size.
[0016]
Moreover, an average secondary particle diameter is a 50% particle diameter of the weight reference | standard calculated | required from the volume distribution measured using Microtrac HRA9320-X100 type made from Honeywell, and a quadratic deviation is 75% of the weight reference | standard calculated | required from the volume distribution. It is represented by 1/2 of the difference between the particle size and the 25% particle size. In the measurement method, an interface for outputting a volume distribution is connected to the apparatus and a personal computer, 10 to 30 mg of a measurement sample is added to 50 to 100 mL of a 0.2% sodium hexametaphosphate aqueous solution, and the ultrasonic dispersion device is used for 1 to 3 minutes. The volume distribution of the sample is obtained by the Microtrac HRA.
[0017]
The strontium titanate fine powder of the present invention typically uses a mineral acid peptized product of a hydrolyzate of a titanium compound as a titanium oxide source in a method for producing a perovskite type titanate compound by a normal pressure heating reaction method. In addition, a water-soluble acidic compound is used as a strontium source, and the mixture is reacted by adding an aqueous alkali solution at 50 ° C. or higher.
[0018]
As the titanium oxide source, a mineral acid peptized product of a hydrolyzate of a titanium compound is used. Specifically obtained by sulfuric acid method, SO 3 content of less 1.0 wt%, preferably a 0.5 wt% or less of the metatitanic acid to adjust the pH with hydrochloric acid to 0.8-1.5 peptization It is preferable to use a strontium titanate fine powder having a good distribution.
[0019]
As the strontium source, strontium nitrate, strontium chloride or the like can be used.
[0020]
As the alkaline aqueous solution, a caustic alkali can be used, but an aqueous sodium hydroxide solution is preferred.
[0021]
In the above production method, factors affecting the particle size of the resulting strontium titanate fine powder include the mixing ratio of the titanium oxide source and the strontium source during the reaction, the concentration of the titanium oxide source at the initial stage of the reaction, and the addition of the aqueous alkali solution. The temperature, the addition rate, and the like can be mentioned, and may be adjusted as appropriate in order to obtain a target particle size and particle size distribution.
[0022]
In order to prevent the formation of strontium carbonate in the reaction process, it is preferable to prevent mixing of carbon dioxide gas such as reaction in a nitrogen gas atmosphere.
[0023]
The mixing ratio of the titanium oxide source and strontium source in the reaction is the molar ratio of SrO / TiO 2, 0.9 to 1.4, preferably from 0.95 to 1.15.
[0024]
The concentration of the titanium oxide source at the initial stage of the reaction is 0.05 to 1.0 mol / L, preferably 0.1 to 0.8 mol / L as TiO 2 .
[0025]
The higher the temperature at which the aqueous alkali solution is added, the better the crystallinity can be obtained, but a practical range of 50 ° C. to 101 ° C. is appropriate.
[0026]
The addition rate of the alkaline aqueous solution has the most influence on the particle size of the resulting powder. The slower the addition rate, the larger the particle size strontium titanate powder, the faster the addition rate, the smaller the particle size strontium titanate powder. . The addition rate of the alkaline aqueous solution is 0.001 to 1.0 equivalent / h, preferably 0.005 to 0.5 equivalent / h, with respect to the charged raw material, and is appropriately adjusted according to the particle diameter to be obtained. The addition rate of the aqueous alkaline solution can be changed in the middle depending on the purpose.
[0027]
In the strontium titanate fine powder of the present invention, as in the case of silica and titanium oxide, which have been conventionally used as external additives, for adjusting the charge and improving environmental stability, SiO 2 , Al 2 O 3, etc. Hydrophobizing agents such as inorganic oxides, titanium coupling agents, silane coupling agents, and silicone oil can be treated, and fine powder of strontium titanate with a primary particle size of 0.02 to 0.3 μm When used as an additive, a hydrophobizing agent treated in an aqueous system is preferable because the dispersibility is even better. Moreover, in the fine powder of strontium titanate of the present invention, if it is fired at a temperature of 300 to 1000 ° C. for improving the crystallinity, the crystallinity is further improved and the environmental stability is further improved.
[0028]
The fine strontium titanate powder of the present invention is used in all electrostatic recording methods of magnetic one-component toner, two-component toner and non-magnetic one-component toner. It can also be used as an external additive for toners produced by pulverization or polymerization. As the binder resin for the toner, any known synthetic resin and natural resin can be used. Specifically, for example, styrene resin, acrylic resin, olefin resin, diene resin, polyester resin, polyamide resin, epoxy resin, silicone resin, phenol resin, petroleum resin, urethane resin, etc. Is mentioned. Further, a toner in which an additive such as a charge adjusting agent or a release agent is added to the binder according to the purpose may be used.
[0029]
The strontium titanate fine powder of the present invention is used by adding 0.3 to 5.0 wt% externally to the toner, and if necessary, known fluidizing agents used in the field of electrophotography, such as silica, oxidation You may use together with 1 type, or 2 or more types, such as titanium and aluminum oxide.
[0030]
Also, two or more strontium titanate fine powders of the present invention having different particle diameters may be used simultaneously.
[0031]
The fine strontium titanate powder of the present invention has an excellent polishing effect in toner external additives, but is also useful as a normal abrasive.
[0032]
The characteristics required for the abrasive include high hardness, particles having a regular shape that is neither needle-shaped nor plate-shaped, and a surface that is not smooth and has a cutting blade. Strontium titanate has a Mohs hardness of 5 to 6 and is not so high. However, since Mohs hardness of flint that has been used for glass polishing for a long time is 6 to 6.5, the level of hardness is not a problem. . The fine strontium titanate powder of the present invention contains cubic particles having sharp edges as described above. Therefore, the strontium titanate fine powder of the present invention can be sufficiently used for Mohs hardness of around 5, such as glass (
[0033]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The following examples are given for illustration only and are not intended to limit the scope of the invention.
[0034]
[Example 1]
The metatitanic acid obtained by the sulfuric acid method was subjected to deiron bleaching treatment, 4N aqueous sodium hydroxide solution was added to adjust pH to 9.0, desulfurization treatment was performed, and then neutralized to pH 5.5 with 6N hydrochloric acid, followed by washing with filtered water. . Water was added to the washed cake to make a slurry of 1.25 mol / L as TiO 2 , and 6N hydrochloric acid was added to adjust the pH to 1.2, followed by peptization. 0.156 mol of this peptized hydrous titanium oxide was collected as TiO 2 and charged into a 3 L reaction vessel, and an aqueous strontium chloride solution having a SrO / TiO 2 molar ratio of 1.15 was added to the peptized hydrous titanium oxide slurry. After that, the TiO 2 concentration was adjusted to 0.156 mol / L, and nitrogen gas was blown in and left for 20 minutes to replace the inside of the reaction vessel with nitrogen gas. Next, while flowing nitrogen into the reaction vessel and further stirring and mixing, the mixed solution of metatitanic acid and strontium chloride was heated to 90 ° C., and then 143 mL of a 2.5N aqueous sodium hydroxide solution was added over 24 hours. Thereafter, stirring was continued at 90 ° C. for 1 hour to complete the reaction. After the reaction, it was cooled to 40 ° C., the supernatant was removed under a nitrogen atmosphere, and the operation of adding 2.5 L of pure water and decanting was repeated twice, followed by washing with Nutsche. The obtained cake was dried in the atmosphere of 110 ° C. for 8 hours. When the final composite was observed with an electron microscope, it was 0.16-0.20 μm particles including cubic particles, and was a single phase of strontium titanate by X-ray diffraction. The average primary particle diameter calculated on the basis of weight using an electron micrograph was 0.17 μm, and the value obtained by dividing the quarter deviation by the average primary particle diameter was 0.13. Moreover, the average secondary particle diameter calculated | required by Microtrac HRA was 0.28 micrometer, and the value which divided the quarter deviation by the average secondary particle diameter was 0.23.
[0035]
[Example 2]
0.626 mol of hydrated titanium oxide that has been desulfurized and peptized as TiO 2 is sampled and charged into a 3 L reaction vessel, and the chlorinated titanium oxide slurry is chlorinated at a SrO / TiO 2 molar ratio of 1.15. After the addition of the strontium aqueous solution, the TiO 2 concentration was adjusted to 0.626 mol / L, nitrogen gas was blown in, and left for 20 minutes to replace the inside of the reaction vessel with nitrogen gas. Next, while flowing nitrogen into the reaction vessel and further stirring and mixing, the mixed solution of metatitanic acid and strontium chloride was heated to 90 ° C., and then 143 mL of a 10N aqueous sodium hydroxide solution was added over 2 hours. Stirring was continued at 90 ° C. for 1 hour to complete the reaction. After the reaction, it was cooled to 40 ° C., the supernatant was removed under a nitrogen atmosphere, and the operation of adding 2.5 L of pure water and decanting was repeated twice, followed by washing with Nutsche. The obtained cake was dried in the atmosphere of 110 ° C. for 8 hours. When the final composite was observed with an electron microscope, it was 0.03-0.05 μm particles including cubic particles, and was a single phase of strontium titanate by X-ray diffraction. The average primary particle size calculated on the basis of weight using an electron micrograph was 0.042 μm, and the value obtained by dividing the quarter deviation by the average primary particle size was 0.14. Moreover, the average secondary particle diameter calculated | required by Microtrac HRA was 0.13 micrometer, and the value which divided the quarter deviation by the average secondary particle diameter was 0.22.
[0036]
[Example 3]
0.626 mol of hydrated titanium oxide that has been desulfurized and peptized as TiO 2 is sampled and charged into a 3 L reaction vessel, and the chlorinated titanium oxide slurry is chlorinated at a SrO / TiO 2 molar ratio of 1.15. After the addition of the strontium aqueous solution, the TiO 2 concentration was adjusted to 0.626 mol / L, nitrogen gas was blown in, and left for 20 minutes to replace the inside of the reaction vessel with nitrogen gas. Next, while flowing nitrogen into the reaction vessel and further stirring and mixing, the mixed solution of metatitanic acid and strontium chloride was heated to 90 ° C. Then, 143 mL of 10N sodium hydroxide aqueous solution was added over 12 hours. Thereafter, stirring was continued at 90 ° C. for 1 hour to complete the reaction. After the reaction, it was cooled to 40 ° C., the supernatant was removed under a nitrogen atmosphere, and the operation of adding 2.5 L of pure water and decanting was repeated twice, followed by washing with Nutsche. The obtained cake was dried in the atmosphere of 110 ° C. for 8 hours. When the final composite was observed with an electron microscope, it was 0.08 to 0.1 μm particles including cubic particles, and was a single phase of strontium titanate by X-ray diffraction. The average primary particle diameter calculated on the basis of weight using an electron micrograph was 0.091 μm, and the value obtained by dividing the quarter deviation by the average primary particle diameter was 0.13. Moreover, the average secondary particle diameter calculated | required by Microtrac HRA was 0.24 micrometer, and the value which divided the quarter deviation by the average secondary particle diameter was 0.18.
[0037]
【The invention's effect】
The fine strontium titanate powder of the present invention is characterized in that it can control the particle size distribution such as the average primary particle size according to the purpose, and has high crystallinity and excellent dispersibility. Therefore, the fine strontium titanate powder of the present invention is suitable as an external additive for toner, and can be used for a toner excellent in high fluidity and environmental stability.
[0038]
[Brief description of the drawings]
1 is an electron micrograph of strontium titanate fine powder produced according to Example 1 at a magnification of 30,000. FIG.
2 is a particle size distribution diagram of primary particle diameters obtained from an electron micrograph of fine strontium titanate powder produced in Example 1. FIG.
3 is a particle size distribution diagram of secondary particle diameters obtained by Microtrac HRA of strontium titanate fine powder produced in Example 1. FIG.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002076051A JP4165859B2 (en) | 2002-03-19 | 2002-03-19 | Strontium titanate fine powder, method for producing the same, and toner for electrostatic recording using the same as an external additive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002076051A JP4165859B2 (en) | 2002-03-19 | 2002-03-19 | Strontium titanate fine powder, method for producing the same, and toner for electrostatic recording using the same as an external additive |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003277054A JP2003277054A (en) | 2003-10-02 |
JP4165859B2 true JP4165859B2 (en) | 2008-10-15 |
Family
ID=29227750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002076051A Expired - Lifetime JP4165859B2 (en) | 2002-03-19 | 2002-03-19 | Strontium titanate fine powder, method for producing the same, and toner for electrostatic recording using the same as an external additive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4165859B2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7135263B2 (en) * | 2003-09-12 | 2006-11-14 | Canon Kabushiki Kaisha | Toner |
KR100667779B1 (en) | 2004-11-22 | 2007-01-12 | 삼성전자주식회사 | Electrophotographic developing agent |
JP2006195155A (en) * | 2005-01-13 | 2006-07-27 | Canon Inc | Image forming method |
JP4875850B2 (en) * | 2005-03-03 | 2012-02-15 | キヤノン株式会社 | Image forming method |
JP4702950B2 (en) | 2005-03-28 | 2011-06-15 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and method for manufacturing electrophotographic photosensitive member |
JP4498200B2 (en) * | 2005-04-18 | 2010-07-07 | キヤノン株式会社 | Image forming apparatus |
JP2007033485A (en) * | 2005-07-22 | 2007-02-08 | Canon Inc | Image forming method and image forming apparatus |
JP4875352B2 (en) * | 2005-11-28 | 2012-02-15 | キヤノン株式会社 | Image forming method |
JP4799567B2 (en) * | 2006-01-06 | 2011-10-26 | キヤノン株式会社 | Developer and image forming method |
JP4624311B2 (en) * | 2006-06-26 | 2011-02-02 | 花王株式会社 | Toner for electrophotography |
JP5122183B2 (en) * | 2007-05-30 | 2013-01-16 | チタン工業株式会社 | Calcium titanate fine particles and electrostatic recording toner |
JP5248511B2 (en) | 2007-09-06 | 2013-07-31 | 株式会社巴川製紙所 | Toner for electrophotography and method for producing the same |
JP5088252B2 (en) * | 2008-07-08 | 2012-12-05 | コニカミノルタビジネステクノロジーズ株式会社 | Two-component development method |
JP5875275B2 (en) * | 2011-07-25 | 2016-03-02 | キヤノン株式会社 | toner |
JP6151651B2 (en) * | 2014-01-23 | 2017-06-21 | チタン工業株式会社 | Strontium titanate fine particles for toner and method for producing the same |
JP6533995B2 (en) * | 2015-07-03 | 2019-06-26 | 堺化学工業株式会社 | Method of manufacturing composite metal oxide polishing material and composite metal oxide polishing material |
US10295920B2 (en) * | 2017-02-28 | 2019-05-21 | Canon Kabushiki Kaisha | Toner |
JP7013262B2 (en) * | 2017-02-28 | 2022-02-15 | キヤノン株式会社 | toner |
JP2018155912A (en) | 2017-03-17 | 2018-10-04 | コニカミノルタ株式会社 | Toner for electrostatic charge image development |
JP6988236B2 (en) * | 2017-07-28 | 2022-01-05 | 富士フイルムビジネスイノベーション株式会社 | Toner for static charge image development, static charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method. |
JP7069992B2 (en) * | 2018-04-09 | 2022-05-18 | コニカミノルタ株式会社 | Toner for static charge image development |
EP4378894A1 (en) | 2021-07-30 | 2024-06-05 | Toda Kogyo Corp. | Strontium titanate fine-particle powder and method for producing same, dispersion, and resin composition |
WO2023063281A1 (en) | 2021-10-15 | 2023-04-20 | 戸田工業株式会社 | Powder and dispersion of fine strontium titanate particles, and resin composition |
-
2002
- 2002-03-19 JP JP2002076051A patent/JP4165859B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003277054A (en) | 2003-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4165859B2 (en) | Strontium titanate fine powder, method for producing the same, and toner for electrostatic recording using the same as an external additive | |
JP6151651B2 (en) | Strontium titanate fine particles for toner and method for producing the same | |
JP6577427B2 (en) | Strontium titanate fine particles for toner and method for producing the same | |
KR100407243B1 (en) | Magnetic Toner for Magnetic Toner and Manufacturing Method Thereof | |
JP7131926B2 (en) | Strontium titanate powder, method for producing the same, and external additive for electrophotographic toner | |
JP4220020B2 (en) | Ultrafine titanium oxide, its production method and its application | |
US4975214A (en) | Magnetic iron oxide containing silicon element and process for producing same | |
CN112512975B (en) | Calcium titanate powder, method for producing same, and toner external additive for electrophotography | |
JP2008282002A (en) | Hydrophobic magnetic iron oxide particulate powder for magnetic toner and method for manufacturing the same | |
JP5122183B2 (en) | Calcium titanate fine particles and electrostatic recording toner | |
US6953504B2 (en) | Black pigment powder having a low value of magnetization, process for producing the same, and applications thereof | |
JP4026982B2 (en) | Magnetite particles and method for producing the same | |
JP4938168B2 (en) | Low magnetic black pigment powder, method for producing the same, and use thereof | |
JPH05213620A (en) | Magnetite particles and its production | |
JP7030546B2 (en) | External additive particles for electrophotographic toner and their manufacturing method | |
PL187698B1 (en) | Magnmetic irod oxide, method of obtaining same and method of manufacturing toners, printing machine inks, and inks, and inks for jet-type printers | |
KR100788147B1 (en) | Toner Containing Magnetite Particles | |
JP7336010B2 (en) | Method for producing strontium titanate | |
JP4632184B2 (en) | Magnetite particles and method for producing the same | |
JP2000351630A (en) | Production of magnetite | |
JPH10279313A (en) | Magnetite particle and its production | |
JP2005126324A (en) | Magnetite particle powder and its manufacturing method | |
JP2010275163A (en) | Zirconium titanate and external additive for toner | |
JP2013189374A (en) | Method for producing zirconium titanate particle, zirconium titanate, and external additive for toner | |
JP2008096758A (en) | Iron-based black particle powder for toner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080630 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080728 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4165859 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |