JP4165013B2 - カタディオプトリックレンズ、光学ヘッド及び光記録再生装置 - Google Patents
カタディオプトリックレンズ、光学ヘッド及び光記録再生装置 Download PDFInfo
- Publication number
- JP4165013B2 JP4165013B2 JP2000564197A JP2000564197A JP4165013B2 JP 4165013 B2 JP4165013 B2 JP 4165013B2 JP 2000564197 A JP2000564197 A JP 2000564197A JP 2000564197 A JP2000564197 A JP 2000564197A JP 4165013 B2 JP4165013 B2 JP 4165013B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- optical
- curvature
- radius
- catadioptric lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 126
- 230000004075 alteration Effects 0.000 description 73
- 206010010071 Coma Diseases 0.000 description 27
- 238000000034 method Methods 0.000 description 15
- 239000011521 glass Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 10
- 208000001644 thecoma Diseases 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 8
- 239000013307 optical fiber Substances 0.000 description 7
- 210000001747 pupil Anatomy 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000012886 linear function Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 201000009310 astigmatism Diseases 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000012887 quadratic function Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000013500 data storage Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- KSNNEUZOAFRTDS-UHFFFAOYSA-N fominoben Chemical compound ClC=1C=CC=C(NC(=O)C=2C=CC=CC=2)C=1CN(C)CC(=O)N1CCOCC1 KSNNEUZOAFRTDS-UHFFFAOYSA-N 0.000 description 1
- 229960004594 fominoben Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0856—Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
- G02B17/086—Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0804—Catadioptric systems using two curved mirrors
- G02B17/0808—Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/122—Flying-type heads, e.g. analogous to Winchester type in magnetic recording
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1372—Lenses
- G11B7/1374—Objective lenses
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1387—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1392—Means for controlling the beam wavefront, e.g. for correction of aberration
- G11B7/13922—Means for controlling the beam wavefront, e.g. for correction of aberration passive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10532—Heads
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/1055—Disposition or mounting of transducers relative to record carriers
- G11B11/10552—Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base
- G11B11/10554—Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base the transducers being disposed on the same side of the carrier
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/1055—Disposition or mounting of transducers relative to record carriers
- G11B11/1058—Flying heads
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1372—Lenses
- G11B2007/13725—Catadioptric lenses, i.e. having at least one internal reflective surface
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B2220/00—Record carriers by type
- G11B2220/20—Disc-shaped record carriers
- G11B2220/25—Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
- G11B2220/2525—Magneto-optical [MO] discs
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Lenses (AREA)
- Optical Head (AREA)
Description
技 術 分 野
本発明は、エバネッセント光を利用する際に好適なカタディオプトリックレンズに関する。また、本発明は、そのようなカタディオプトリックレンズを用いた光学ヘッド及び光記録再生装置に関する。
背 景 技 術
光記録媒体の高記録密度化を達成する手法として、エバネッセント光を利用することで、回折限界以下の微小な記録ピットでの記録再生を可能とする手法が考案されている。エバネッセント光を利用して光ディスクの記録再生を行う際は、レンズに対する入射光束がレンズ端面にて結像し、その大部分が当該レンズ端面で全反射されるようにする。このとき、レンズ端面と光記録媒体との間隔を十分に狭めておけば、エバネッセント光の一部が光記録媒体と結合してレンズ外に取り出され、当該エバネッセント光を利用した記録再生が可能となる。
なお、空気中でエバネッセント光が結合可能な距離は、例えばレンズの開口数NAが1.5の場合、100nmのオーダーである。したがって、エバネッセント光を利用して光記録媒体の記録再生を行う際は、レンズ端面と光記録媒体との間隔を、100nmのオーダー以下に保つ必要がある。これは、例えば、磁気ディスクにおいて使用されているフライングヘッドの技術を用いることで実現可能である。
すなわち、例えば、磁気ディスクにおいて使用されるているフライングヘッドの技術を用いて、レンズ端面と光記録媒体との間隔を100nmのオーダー以下に保てば、エバネッセント光の一部が光記録媒体と結合することとなり、回折限界以下の微小な記録ピットでの記録再生が可能となる。
そして、このようなエバネッセント光を利用した記録再生に、カタディオプトリックレンズを用いる手法が、1998年5月、米国オプティカル・データ・ストレージ・ミーティングにて、サムソン・エレクトロニクス社のC.W.リー氏により提案されている。
ところが、C.W.リー氏が提案しているカタディオプトリックレンズのレンズデータを解析すると、コマ収差の補正が不完全であり、このカタディオプトリックレンズを使用するには、以下のような問題点があった。
エバネッセント光を利用する際は、入射光束をレンズ端面に小さいスポット径で結像させる必要がある。しかし、上記カタディオプトリックレンズではコマ収差の補正が不完全であるために、当該カタディオプトリックレンズを実装するときの取り付け角度誤差により光束の入射角が±1°を越えるような状態となると、コマ収差が顕著に発生してしまい、入射光束をレンズ端面に小さいスポット径で結像させることができなくなってしまう。
しかも、エバネッセント光を利用する近視野光学系では、遠視野光学系で小さいスポット径で結像させる場合よりも、コマ収差の影響が顕著に現れることが予想される。したがって、上記カタディオプトリックレンズを近視野光学系で用いることを考えると、当該カタディオプトリックレンズを実装するときに、その取り付け角度誤差を±1°よりも遙かに小さくしなければならないことが予想される。
このように、上記カタディオプトリックレンズでは、コマ収差の補正が不完全であるために、その実装時に非常に精度良く取り付けることが要求される。特に、近視野光学系での使用に耐え得る精度での実装を実現することは非常に難しく、たとえ実現したとしても、製造コストが大幅に上昇することは必至である。
発 明 の 開 示
本発明は、上述したような従来の実情に鑑みて提案されたものであり、エバネッセント光を利用する際に好適なカタディオプトリックレンズとして、コマ収差をほぼ完全に補正したレンズを提供することにある。また、本発明は、そのようなカタディオプトリックレンズを用いた光学ヘッド及び光記録再生装置を提供することも目的とする。
本発明に係るカタディオプトリックレンズは、第1面が凹面屈折面、第2面が平面ミラー、第3面が第1面の凹面屈折面と同軸に配置された凹面非球面ミラーからなり、平行入射光が第2面の平面ミラーに設けた開口を通して第4面の全反射平面上に結像するようになされたカタディオプトリックレンズである。
ここで、r1を第1面の曲率半径、r3を第3面の中心曲率半径、dを第1面から第3面頂点までの光学長、fa(N),fb(N)をレンズ媒質の屈折率Nの関数として表される係数として、正弦条件を満たす条件式を下記式(1)で表す。
d/ra=fa(N)r1/r3+fb(N) …(1)
そして、上記式(1)を満たすときの第1面の曲率半径r1の値をR、第1面から第3面頂点までの光学長dの値をDとする。
そして、本発明に係るカタディオプトリックレンズは、第1面の曲率半径r1が、R±1%の範囲内にあり、第1面から第3面頂点までの光学長dが、D±0.5%の範囲内にあることを特徴とする。
なお、本発明に係るカタディオプトリックレンズは、上記第1面の前段にレンズが配置されていても良い。第1面の前段にレンズを配置することで、例えば、拡散光を平行光として第1面に入射させることができる。なお、カタディオプトリックレンズの第1面の前段に配置するレンズとしては、メニスカス凸レンズが好適である。
また、本発明に係るカタディオプトリックレンズは、第1乃至第3面を構成する第1のレンズ媒質と、第4面を構成する第2のレンズ媒質とを備え、第1のレンズ媒質によって構成される第2面を含む平面に、第2のレンズ媒質が接合されて構成されていても良い。このとき、第2のレンズ媒質には、磁界発生用コイルが埋設されていても良い。
また、本発明に係るカタディオプトリックレンズにおいて、第3面は、面頂点からの深さをX、光軸からの高さをY、中心曲率半径をR、円錐係数をK、Y4項の非球面係数をA、Y6項の非球面係数をB、Y8項の非球面係数をC、Y10項の非球面係数をDとしたとき、例えば、下記式(2)で表される一般非球面とされる。
X=(Y2/R)/[1+{1−(1+K)(Y/R)2}1/2]+AY4+BY6+CY8+DY10…(2)
また、本発明に係るカタディオプトリックレンズにおいて、レンズ媒質の屈折率は、使用波長領域において1.4以上であることが好ましい。レンズ媒質として、屈折率が大きい媒質を用いることで、第4面に結像する光スポットの径を、より小さなものとすることができる。
以上のような本発明に係るカタディオプトリックレンズでは、非対称収差であるコマ収差がほぼ完全に補正され、軸外収差は対称収差である非点収差のみとなる。したがって、本発明に係るカタディオプトリックレンズでは、非点収差の影響が許容される範囲(およそ光束入射角が±3°までの範囲)において、レンズ端面に理想的なスポットを形成することができる。
なお、本発明に係る光学ヘッドは、以上のような本発明に係るカタディオプトリックレンズを対物レンズとして備えた光学ヘッドである。この光学ヘッドでは、対物レンズとして、コマ収差がほぼ完全に補正された本発明に係るカタディオプトリックレンズを用いているので、カタディオプトリックレンズの取り付け精度を従来に比べて大幅に緩和できる。
また、本発明に係る光記録再生装置は、以上のような本発明に係るカタディオプトリックレンズを対物レンズとして備えた光学ヘッドを用いて光記録媒体の記録及び/又は再生を行う。この光記録再生装置では、光学ヘッドの対物レンズとして、コマ収差がほぼ完全に補正された本発明に係るカタディオプトリックレンズを用いているので、カタディオプトリックレンズの取り付け精度を従来に比べて大幅に緩和できる。
発明を実施するための最良の形態
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
本発明を適用したカタディオプトリックレンズの一例を図1に示す。このカタディオプトリックレンズ1は、凹面屈折面からなる第1面S1と、平面ミラーからなる第2面S2と、凹面非球面ミラーからなる第3面S3と、全反射平面となる第4面S4とを有する。
このカタディオプトリックレンズ1に入射した入射光束は、先ず、凹面屈折面からなる第1面S1で拡大されて、平面ミラーからなる第2面S2に入射する。次に、第2面S2で反射され、凹面非球面ミラーからなる第3面S3に入射する。次に、第3面S3で反射され、第2面S2の中央に設けられた開口を通して第4面S4の全反射平面上に結像する。
以上のような本発明を適用したカタディオプトリックレンズ1のレンズデータを表1に示す。
上記カタディオプトリックレンズ1について、その横収差性能を図2に示す。なお、図2Aは、半画角1°の軸外での横収差を示しており、図2Bは、軸上での横収差を示している。ここで、光源波長λは650nmとしている。
図2に示すように、このカタディオプトリックレンズ1の横収差は、入射瞳を通過する全光束に亘って、フルスケールの1μmに比べてはるかに小さく、横収差の発生量は非常に小さくなっている。そして、横収差の発生量を、波面収差のRMS値(波面収差の射出瞳面上での標準偏差(Root Mean Square of Wave Front Error))で表すと、軸上では0.002λ、半画角1°の軸外では0.006λであった。更に、図示していないが、半画角3°の軸外では、波面収差のRMS値は、0.04λであった。
一般に、回折限界での収差性能を表すときには、マレシャルのクライテリオンが常用される。そして、マレシャルのクライテリオンは、波面収差のRMS値で0.07λである。これに対して、上記カタディオプトリックレンズ1では、上述したように、波面収差のRMS値が、軸上で0.002λ、半画角1°の軸外で0.006λ、半画角3°の軸外で0.04λであった。したがって、このカタディオプトリックレンズ1では、少なくとも軸上から半画角3°の軸外に至るまで、十分な回折限界性能を有しているといえる。
つぎに、上記カタディオプトリックレンズ1について、その軸外性能を図3に示す。なお、図3において、横軸は入射光の画角(半画角の値)を示しており、縦軸は波面収差のRMS値を示している。また、図3では、参考のために、上述したC.W.リー氏によって提案されたカタディオプトリックレンズ(以下、従来のカタディオプトリックレンズと称する。)の軸外性能も示しており、○で示したのが本発明を適用したカタディオプトリックレンズ1の場合、□で示したのが従来のカタディオプトリックレンズの場合である。
図3に示すように、従来のカタディオプトリックレンズでは、半画角が1°以下の領域において、波面収差のRMS値が、画角に対してほぼ直線的に増加している。波面収差のRMS値が画角に対して直線的に増加しているということは、軸外収差のうちでコマ収差が支配的であることを意味する。
一方、本発明を適用したカタディオプトリックレンズ1では、図3に示す範囲において、波面収差のRMS値が、画角に対して2次関数的に増加している波面収差のRMS値が画角に対して2次関数的に増加しているということは、軸外収差のうちで非点収差が支配的であることを意味する。
一般に、光記録媒体の記録再生に用いられる光学ヘッド用のレンズには、球面収差とコマ収差が良好に補正されていることが望まれる。そして、本発明を適用したカタディオプトリックレンズ1では、球面収差はやや多いものの極めてわずかであり、且つ、コマ収差が良好に補正されている。したがって、このカタディオプトリックレンズ1は、光学ヘッド用のレンズとして、非常に好適である。しかも、図3に示したように、本発明を適用したカタディオプトリックレンズ1では、波面収差のRMS値も、球面収差の支配する軸上付近を除いて、少なくとも半画角3°までの範囲において、従来のカタディオプトリックレンズに比べて常に小さくなっている。
なお、マレシャルのクライテリオンは、遠視野光学系で小さいスポット径で結像する際の条件であり、エバネッセント光を利用する近視野光学系では、マレシャルのクライテリオンから予想される以上にコマ収差の影響が顕著に現れることが予想される。したがって、コマ収差の発生を抑えた本発明に係るカタディオプトリックレンズ1は、エバネッセント光を利用する近視野光学系に適用する際に、特に有用であると言える。
つぎに、本発明において、どのようにコマ収差の補正を行ったかについて説明する。
コマ収差を評価するにはいくつかの方法があるが、比較的容易に実行できるのは、3次のザイデルコマ収差係数を計算する方法であり、この方法については、松井吉哉著「レンズ設計法」(共立出版、昭和45年)に記載されている。しかしながら、本発明を適用したカタディオプトリックレンズのように高開口数レンズの場合、高次のコマ収差も同時に発生するので、評価量として3次のコマ収差係数を用いる手法は必ずしも適切とはいえない。
そこで、本発明においては、正弦条件を評価してコマ収差の補正を行った。すなわち、正弦条件を用いれば高次のコマ収差をも評価できるので、ここでは、正弦条件を評価してコマ収差の補正を行う手法を採用した。なお、非球面も含むレンズ系の正弦条件の計算法は、例えば、R.キングスレイク著「レンズ・デザイン・ファンダメンタルズ」(アカデミック・プレス社、1978年)に記載されている。
図4に示すように、正弦条件を評価してコマ収差の補正を行う際は、先ず、第1面の曲率半径r1と、第1面から第3面頂点までの光学長dとを設定する。なお、このとき、開口数NAが所定の値になるように、光束径も調整しておく。そして、正弦条件を近軸光線追跡値と三角光線追跡値を用いて計算し、正弦条件を判定する。そして、正弦条件不満足量がほぼ0となるまで、適宜、第1面の曲率半径r1と、第1面から第3面頂点までの光学長dとを設定し直して、正弦条件の反復計算を行う。
上記反復計算により正弦条件不満足量がほぼ0となったら、次に、汎用レンズ設計プログラム等を使用して、残留球面収差が最小になるように、円錐係数K及び非球面係数A,B,C,Dの最適化を図る。そして、正弦条件を再計算して正弦条件判定を行い、正弦条件不満足量が大きい場合には、第1面の曲率半径r1と、第1面から第3面頂点までの光学長dとを設定し直して計算を繰り返す。
以上のような計算を行うことにより、高次のコマ収差をも含めて、コマ収差を補正することができる。
ここで、実際に以上のような計算を行ったときの計算結果の一部を表2に示す。なお、ここでは、第1面から第3面頂点までの光学長dを一定の保ちつつ、第1面の曲率半径r1を変化させながら、縦の球面収差LAと正弦条件不満足量OSCを計算した。このとき、開口数NAは、入射光束系を調整して一定値を取るようにした。また、計算に際し、入射瞳は第3面の非球面反射面においた。
表2において、r1は第1面の曲率半径、dは第1面から第3面頂点までの光学長、NAは開口数、LAは縦の球面収差、OSCは正弦条件不満足量である。また、符号の規約はキングスレイクの定義に従って、慣用とは反対符号とした。また、表2において、r1=0.70が従来のカタディオプトリックレンズの場合である。
表2に示すように、r1=0.70の従来のカタディオプトリックレンズでは、正弦条件不満足量OSCがおよそ0.0113である。コンラディによれば、望遠鏡や顕微鏡等において正弦条件不満足量OSCは、±0.0025以内であるべきとされているが、従来のカタディオプトリックレンズの正弦条件不満足量OCSは、コンラディのクライテリオンを逸脱している。一方、第1面の曲率半径r1をおよそ5%減じて、r1=0.67にすると、正弦条件不満足量がほぼ0になる。なお、このとき、球面収差の絶対値はやや増加する。
ここで、表2に示した計算結果をプロットしたグラフを図5に示す。図5において、横軸は第1面の曲率半径r1、縦軸は正弦条件不満足量OSCである。また、図5において、点線は、コンラディのタライテリオンの範囲(±0.0025)を示している。
図5に示すように、コンラディのクライテリオンを満たす第1面の曲率半径r1の範囲は、およそ0.66335から0.67591の範囲であり、0.67はほぼその中央に位置している。したがって、コンラディのクライテリオンを満たす第1面の曲率半径r1の範囲は、およそ0.67±1%である。
ところで、第1面の曲率半径r1を一定に保ちつつ、第1面から第3面頂点までの光学長dを変化させても、正弦条件不満足量OSCは変化する。そこで、第1面の曲率半径r1を一定に保ちつつ、第1面から第3面頂点までの光学長dを変化させて、正弦条件不満足量OSCを計算した。その計算結果を図5と同様にプロットしたグラフを図6に示す。図6において、横軸は第1面から第3面頂点までの光学長d、縦軸は正弦条件不満足量OSCである。また、図6において、点線は、コンラディのクライテリオンの範囲(±0.0025)を示している。
図6に示すように、コンラディのクライテリオンを満たす、第1面から第3面頂点までの光学長dの範囲は、およそ−2.7122から−2.68312の範囲であり、−2.7はほぼその中央に位置している。したがって、コンラディのクライテリオンを満たす、第1面から第3面頂点までの光学長dの範囲は、絶対値で表すとおよそ2.7±0.5%である。
図5及び図6の結果から、正弦条件不満足量=0という条件を満足する(r1,d)の集合の存在が予想されるが、事実、この条件を満たす点(r1,d)の軌跡はほぼ直線となる。ここで、直線の係数は、レンズ媒質の屈折率Nの関数となる。
したがって、正弦条件不満足量=0を満足するとき、第3面の中心曲率半径r3で規格化した第1面の曲率半径r1と、第3面の中心曲率半径r3で規格化した第1面から第3面頂点までの光学長dとの関係は、下記式(1−1)に示す一次関数式で表される。なお、下記式(1−1)において、係数fa(N),fb(N)は、レンズ媒質の屈折率Nの関数である。
d/r3=fa(N)r1/r3+fb(N) …(1−1)
具体例として、レンズ媒質の屈折率Nを1.813としたとき、正弦条件不満足量=0を満足するd/r3とr1/r3との関係を計算した結果を図7に示す。図7に示すように、レンズ媒質の屈折率Nが1.813のとき、正弦条件不満足量=0という条件を満たす点の軌跡は、ほぼ直線で表される。そして、この直線L1は下記式(1−2)に示す一次関数式で表される。
d/r3=2.3234r1/r3−1.6931 …(1−2)
すなわち、レンズ媒質の屈折率Nが1.813のときには、上記式(1−2)に示す一次関数式を満足するように、第1面の曲率半径r1と、第1面から第3面頂点までの光学長dとを設定すれば、正弦条件不満足量がほぼ0となり、高次のものも含めてコマ収差の発生が抑えられることとなる。
なお、図7では、参考として、従来のカタディオプトリックレンズがどこに位置するかもプロットしており、従来のカタディオプトリックレンズでは、上記式(1−2)に示した一次関数式から外れることが見て取れる。また、図7から、正弦条件不満足量=0という条件を満たすとき、第3面の中心曲率半径r3で規格化した第1面から第3面頂点までの光学長dは1に近い値となることが分かる。
ところで、上述したように、コンラディのクライテリオンを満たすようにするには、第1面の曲率半径r1を最適値の±1%の範囲内に抑え、第1面から第3面頂点までの光学長dを最適値の±0.5%の範囲内に抑えれば良い。そこで、本発明では、上記式(1−1)を満たすときの第1面の曲率半径r1の値をR、第1面から第3面頂点までの光学長dの値をDとしたとき、第1面の曲率半径r1をR±1%の範囲内と規定し、第1面から第3面頂点までの光学長dをD±0.5%の範囲内と規定している。
すなわち、第1面の曲率半径r1をR±1%の範囲内とし、第1面から第3面頂点までの光学長dをD±0.5%の範囲内とすることにより、高次のものも含めてコマ収差の発生を抑えて、コンラディのクライテリオンを満たすことが可能となる。
なお、本発明は、上述した例に限定されるものではない。すなわち、例えば、レンズ媒質の屈折率や、第3面の中心曲率半径等は、上述の例と異なっていても良い。これらが異なっている場合も、上述したように正弦条件を評価量としてコマ収差を補正することにより、高次のものも含めてコマ収差の発生を抑制したカタディオプトリックレンズを得ることができる。
つぎに、図1に示したようなカタディオプトリックレンズの第1面の前段に、凸レンズを配置した例を図8に示す。
図8に示した光学系は、単一モード光ファイバー等の光源から出射された拡散光を結像するための光学系であり、プリズム5と、凸レンズ6と、カタディオプトリックレンズ7とがこの順に配置されてなる。この光学系のレンズデータを表3に示す。なお、面番号は図8に示す通りである。
つぎに、この光学系の横収差性能を図9に示す。図9Aは、半画角1°の軸外での横収差を示しており、図9Bは、軸上での横収差を示している。なお、ここでは、入射瞳位置をプリズム5の前面におき、像高5μmにおいては瞳半径の15%の口径食(ヴィグネッティング)を仮定している。また、評価は、647.5nm,650nm,652.5nmの3波長において行った。
図9に示すように、この光学系における横収差は、入射瞳を通過する全光束に亘って、フルスケールの1μmに比べてはるかに小さく、横収差の発生量は非常に小さなものとなっている。
なお、この光学系では、表3に示すように、カタディオプトリックレンズ7の第1面の前段に配置するレンズ6の硝材として高分散のSF11を用い、カタディオプトリックレンズ7の硝材として低分散のSLAH53を用いている。このように、高分散の硝材からなるレンズと、低分散の硝材からなるレンズとを組み合わせることで、色収差の補正も行うことができる。
つぎに、本発明を適用した光学ヘッドの一例を図10に示す。この光学ヘッド10は、光磁気ディスク15に対して記録再生を行うための光学ヘッドであり、エバネッセント光を利用することで、回折限界以下の微小な記録ピットでの記録再生が可能となっている。
ここで、記録再生の対象となる光磁気ディスク15は、ディスク基板上に光磁気記録層が形成されてなり、当該光磁気記録層の側が光学ヘッド10に対向するようになされる。すなわち、上記光学ヘッド10は、光磁気ディスク15のディスク基板の側ではなく、光磁気記録層の側に配置される。これは、上記光学ヘッド10はエバネッセント光を利用して記録再生を行うため、光学ヘッド10と光磁気ディスク15の光磁気記録層との間隔を十分に狭める必要があるからである。
この光学ヘッド10は、ガラス基盤20と、ガラス基盤20の上に配されたスライダー25と、スライダー25を支持する弾性部材30と、レーザー光源からのレーザー光を伝搬する単一モードの光ファイバー35と、光ファイバー35から出射されたレーザ光を反射する可動ミラー40と、可動ミラー40によって反射されたレーザ光の光軸上に配された1/4波長板45と、1/4波長板45を透過してきたレーザ光の光軸上に配置されたプリズム50と、プリズム50から出射されたレーザ光を平行光とするためのコリメーターレンズ55と、コリメーターレンズ55によって平行光とされたレーザ光が入射されるカタディオプトリックレンズ60と、カタディオプトリックレンズ60の結像点の周囲に配置された磁界発生用コイル65とを備えている。
なお、この光学ヘッド10の光学系は、プリズム50で光路を折り返す形になっているが、図8に示した光学系と等価である。なお、図10中の点線は、光路を折り返さなかった場合の光学系(すなわち図8に示した光学系)を示している。
この光学ヘッド10において、カタディオプトリックレンズ60は、第1面60a,第2面60b及び第3面60cを構成する第1のレンズ媒質61と、第4面60dを構成する第2のレンズ媒質62とを備えており、第1のレンズ媒質61によって構成される第2面60dを含む平面に、第2のレンズ媒質62が接合されてなる。そして、この第2のレンズ媒質62は、ガラス基盤20の一部によって構成されている。すなわち、ガラス基盤20は、カタディオプトリックレンズ60の一部を兼ねており、カタディオプトリックレンズ60は、第1のレンズ媒質61を、ガラス基盤20に接合することにより構成されている。
そして、カタディオプトリックレンズ60の一部を兼ねているガラス基盤20には、磁界発生用コイル65が埋設されている。換言すれば、カタディオプトリックレンズ60を構成する第2のレンズ媒質62には、磁界発生用コイル65が埋設されている。この磁界発生用コイル65は、光磁気ディスク15に対する記録時に、光磁気ディスク15に対して記録磁界を印加するためのものであり、カタディオプトリックレンズ60の結像点の周囲を取り巻くように形成されている。すなわち、カタディオプトリックレンズ60に入射したレーザ光は、磁界発生用コイル65の中央において、ガラス基盤20の端面に結像する。なお、このような磁界発生用コイル65は、例えば、薄膜プロセスにより薄膜コイルパターンをガラス基盤20に埋設することにより形成する。
この光学ヘッド10を用いて光磁気ディスク15に対して記録再生を行うときは、光磁気ディスク15を回転駆動させて、当該光磁気ディスク15上において、光学ヘッド10を浮上させる。このとき、弾性部材30によって、弾性を持たせた状態でスライダー25を支持することにより、ガラス基盤20と光磁気ディスク15との間隔が、100nmのオーダー以下に保たれるようにしておく。
そして、光学ヘッド10を光磁気ディスク15上において浮上させた状態で、レーザー光源からレーザー光を出射し、当該レーザ光を光ファイバー35によって伝搬する。光ファイバー35によって伝搬され、当該光ファイバー35から出射されたレーザ光は、可動ミラー40によって反射される。
そして、可動ミラー40によって反射されたレーザ光は、1/4波長板45を介してプリズム50に入射する。ここで、1/4波長板45は、使用波長で片道90°のリターダンスを与えるという理由で、光ファイバー35で発生するリターダンスを往復で補償するために挿入している。
なお、本例では、プリズム50に反射膜がコートされていることを前提としており、1/4波長板45でリターダンスを与えるようにしている。しかし、プリズム斜面への入射角はほぼ45°であるから、プリズム50での全反射を利用してリターダンスを発生させることもできる。このリターダンスは、プリズム50の屈折率で決まり、BACD11のようなガラスを用いると、リターダンスは、全反射1回でほぼ46°となる。したがって、プリズム50で全反射を2回させると、ほぼ90°のリターダンスを与えることができ、1/4波長板45の機能をプリズム50に兼ねさせることができる。
1/4波長板45を介してプリズム50に入射したレーザ光は、プリズム50の内部で反射して折り返されて、コリメータレンズ55へ導かれる。コリメータレンズ55に入射したレーザ光は、当該コリメータレンズ55によって平行光とされた上で、カタディオプトリックレンズ60に入射する。
カタディオプトリックレンズ60に入射したレーザ光は、先ず、凹面屈折面からなる第1面60aで拡大されて、平面ミラーからなる第2面60bに入射する。次に、第2面60bで反射され、凹面非球面ミラーからなる第3面60cに入射する。次に、第3面60cで反射され、第2面60bの中央に設けられた開口を通して第4面60dの全反射平面上に結像する。
このとき、レーザ光の大部分は第4面60dにおいて全反射するが、このとき、第4面60dと光磁気ディスク15との間隔を100nmのオーダー以下に保つようにしているので、エバネッセント光の一部が光磁気ディスク15と結合してレンズ外に取り出される。そして、この光学ヘッド10では、このエバネッセント光を利用して光磁気ディスク15に対する記録再生を行う。
なお、記録時には、上述のようにエバネッセント光を光磁気ディスク15に結合させるとともに、磁界発生用コイル65に電流を流して磁界を発生させて、エバネッセント光が光磁気ディスクと結合している部分に当該磁界を印加する。これにより、光磁気ディスク15に対して光磁気記録を行う。ここで、光磁気記録の方式は、記録する情報信号に対応させて光磁気ディスク15に印加する磁界の強度を変調する磁界強度変調方式であっても、記録する情報信号に対応させて光磁気ディスク15に照射する光の強度を変調する光強度変調方式であっても良い。
ところで、この光学ヘッド10において、可動ミラー40には、図示しないアクチュエータを取り付けておき、当該アクチュエータを駆動することにより、可動ミラー40によるレーザ光の反射角を変化させることができるようにしておく。可動ミラー40によるレーザ光の反射角を変化させると、カタディオプトリックレンズ60に入射する入射光束の傾き角が変化する。その結果、カタディオプトリックレンズ60の第4面60dにおける結像点が、可動ミラー60の動作方向に移動する。
すなわち、この光学ヘッド10では、可動ミラー40によるレーザ光の反射角を変化させることで、カタディオプトリックレンズ60の第4面60dにおける結像点を、可動ミラー40の動作方向に走査することが可能となっている。これを利用することで、この光学ヘッド10では、例えば、いわゆる視野内アクセスや視野内トラッキングを行うようなことが可能となっている。
なお、従来のカタディオプトリックレンズでは、入射光束の傾き角が変化するとコマ収差が発生するので、入射光束の傾き角を変化させて用いるようなことは不可能であった。一方、上記光学ヘッド10に搭載されているカタディオプトリックレンズ60は、コマ収差の補正がほぼ完全になされている。したがって、上記光学ヘッド10では、カタディオプトリックレンズ60に入射する入射光束の傾き角を変化させて、視野内アクセスや視野内トラッキングを行うようなことが可能となっている。
なお、本発明を適用した光学ヘッド10のポイントは、カタディオプトリックレンズ60にあるので、以上の説明では、光磁気ディスク15に照射するレーザ光を集光するカタディオプトリックレンズ60を含む光学系の部分を中心に説明し、その他の光学系の詳細については説明を省略した。しかし、実際には、光学ヘッド10には、光磁気ディスク15によって反射されて戻ってきた戻り光を検出する光学系も設けられることは言うまでもない。
また、本発明は、光磁気ディスクに対して記録再生を行うための光学ヘッド以外にも適用可能であり、対象となる光記録媒体は、例えば、相変化型光ディスクや、エンボスピットによって情報信号が予め書き込まれた再生専用光ディスク等であってもよい。ただし、対象となる光記録媒体が、相変化型光ディスクや、エンボスピットによって情報信号が予め書き込まれた再生専用光ディスク等のように、記録再生に磁界を用いない記録媒体の場合には、磁界発生用コイルは不要となる。
産業上の利用可能性
本発明に係るカタディオプトリックレンズは、軸外収差のうちコマ収差がほぼ完全に補正されており、入射光束の入射角の範囲として、少なくとも±3°程度までは十分に許容可能となる。
このように、本発明に係るカタディオプトリックレンズは、コマ収差がほぼ完全に補正されており、入射光束の入射角の許容範囲を広くとれるので、レンズ取り付け精度を従来に比べて大幅に緩和できる。したがって、カタディオプトリックレンズを光学ヘッド等に実装するようなときに、組み立てプロセスが容易になり、短時間で正確な組み立てを完了することが可能となる。
更に、本発明に係るカタディオプトリックレンズでは、コマ収差がほぼ完全に補正されているので、可動ミラー等を用いて入射光束の傾き角を高速で変化させて、可動ミラーの動作方向に結像点を走査するようなことも可能となる。これを利用することで、例えば、光学ヘッドにおける、いわゆる視野内アクセスや視野内トラッキングが可能になる。
また、本発明に係る光学ヘッド及び光記録再生装置は、軸外収差のうちコマ収差がほぼ完全に補正されたカタディオプトリックレンズを用いるようにしているので、当該カタディオプトリックレンズの取り付け精度を従来に比べて大幅に緩和できる。したがって、カタディオプトリックレンズを実装するときの組み立てプロセスが容易になり、短時間で正確な組み立てを完了することが可能となる。
更に、本発明に係る光学ヘッド及び光記録再生装置では、軸外収差のうちコマ収差がほぼ完全に補正されたカタディオプトリックレンズを用いるようにしているので、カタディオプトリックレンズに入射する入射光束の傾き角を可動ミラー等を用いて高速で変化させて、可動ミラーの動作方向に結像点を走査するようなことも可能となる。これを利用することで、例えば、いわゆる視野内アクセスや視野内トラッキングを行うようなことも可能となる。
【図面の簡単な説明】
図1は、本発明を適用したカタディオプトリックレンズの一例を示す図である。
図2A及び図2Bは、図1に示したカタディオプトリックレンズの横収差図であり、図2Aは半画角1°の軸外での横収差を示す図、図2Bは軸上での横収差を示す図である。
図3は、図1に示したカタディオプトリックレンズと、従来のカタディオプトリックレンズとについて、入射光の画角と、波面収差のRMS値との関係を示す図である。
図4は、正弦条件を評価してコマ収差の補正を行い、カタディオプトリックレンズの最適化を行う際の処理の流れを示す図である。
図5は、カタディオプトリックレンズの第1面から第3面頂点までの光学長dを一定に保ったときの、第1面の曲率半径r1と、正弦条件不満足量OSCとの関係を示す図である。
図6は、カタディオプトリックレンズの第1面の曲率半径r1を一定に保ったときの、第1面から第3面頂点までの光学長dと、正弦条件不満足量OSCとの関係を示す図である。
図7は、レンズ媒質の屈折率Nが1.813のとき、正弦条件不満足量=0という条件を満たす、第3面の曲率半径で規格化された第1面の曲率半径の値r1/r3と、第3面の曲率半径で規格化された第1面から第3面頂点までの光学長の値d/r3との関係を示す図である。
図8は、本発明を適用したカタディオプトリックレンズの他の例を示す図である。
図9A及び図9Bは、図8に示した光学系の横収差図であり、図9Aは半画角1°の軸外での横収差を示す図、図9Bは軸上での横収差を示す図である。
図10は、本発明を適用した光学ヘッドの一例を示す図である。
本発明は、エバネッセント光を利用する際に好適なカタディオプトリックレンズに関する。また、本発明は、そのようなカタディオプトリックレンズを用いた光学ヘッド及び光記録再生装置に関する。
背 景 技 術
光記録媒体の高記録密度化を達成する手法として、エバネッセント光を利用することで、回折限界以下の微小な記録ピットでの記録再生を可能とする手法が考案されている。エバネッセント光を利用して光ディスクの記録再生を行う際は、レンズに対する入射光束がレンズ端面にて結像し、その大部分が当該レンズ端面で全反射されるようにする。このとき、レンズ端面と光記録媒体との間隔を十分に狭めておけば、エバネッセント光の一部が光記録媒体と結合してレンズ外に取り出され、当該エバネッセント光を利用した記録再生が可能となる。
なお、空気中でエバネッセント光が結合可能な距離は、例えばレンズの開口数NAが1.5の場合、100nmのオーダーである。したがって、エバネッセント光を利用して光記録媒体の記録再生を行う際は、レンズ端面と光記録媒体との間隔を、100nmのオーダー以下に保つ必要がある。これは、例えば、磁気ディスクにおいて使用されているフライングヘッドの技術を用いることで実現可能である。
すなわち、例えば、磁気ディスクにおいて使用されるているフライングヘッドの技術を用いて、レンズ端面と光記録媒体との間隔を100nmのオーダー以下に保てば、エバネッセント光の一部が光記録媒体と結合することとなり、回折限界以下の微小な記録ピットでの記録再生が可能となる。
そして、このようなエバネッセント光を利用した記録再生に、カタディオプトリックレンズを用いる手法が、1998年5月、米国オプティカル・データ・ストレージ・ミーティングにて、サムソン・エレクトロニクス社のC.W.リー氏により提案されている。
ところが、C.W.リー氏が提案しているカタディオプトリックレンズのレンズデータを解析すると、コマ収差の補正が不完全であり、このカタディオプトリックレンズを使用するには、以下のような問題点があった。
エバネッセント光を利用する際は、入射光束をレンズ端面に小さいスポット径で結像させる必要がある。しかし、上記カタディオプトリックレンズではコマ収差の補正が不完全であるために、当該カタディオプトリックレンズを実装するときの取り付け角度誤差により光束の入射角が±1°を越えるような状態となると、コマ収差が顕著に発生してしまい、入射光束をレンズ端面に小さいスポット径で結像させることができなくなってしまう。
しかも、エバネッセント光を利用する近視野光学系では、遠視野光学系で小さいスポット径で結像させる場合よりも、コマ収差の影響が顕著に現れることが予想される。したがって、上記カタディオプトリックレンズを近視野光学系で用いることを考えると、当該カタディオプトリックレンズを実装するときに、その取り付け角度誤差を±1°よりも遙かに小さくしなければならないことが予想される。
このように、上記カタディオプトリックレンズでは、コマ収差の補正が不完全であるために、その実装時に非常に精度良く取り付けることが要求される。特に、近視野光学系での使用に耐え得る精度での実装を実現することは非常に難しく、たとえ実現したとしても、製造コストが大幅に上昇することは必至である。
発 明 の 開 示
本発明は、上述したような従来の実情に鑑みて提案されたものであり、エバネッセント光を利用する際に好適なカタディオプトリックレンズとして、コマ収差をほぼ完全に補正したレンズを提供することにある。また、本発明は、そのようなカタディオプトリックレンズを用いた光学ヘッド及び光記録再生装置を提供することも目的とする。
本発明に係るカタディオプトリックレンズは、第1面が凹面屈折面、第2面が平面ミラー、第3面が第1面の凹面屈折面と同軸に配置された凹面非球面ミラーからなり、平行入射光が第2面の平面ミラーに設けた開口を通して第4面の全反射平面上に結像するようになされたカタディオプトリックレンズである。
ここで、r1を第1面の曲率半径、r3を第3面の中心曲率半径、dを第1面から第3面頂点までの光学長、fa(N),fb(N)をレンズ媒質の屈折率Nの関数として表される係数として、正弦条件を満たす条件式を下記式(1)で表す。
d/ra=fa(N)r1/r3+fb(N) …(1)
そして、上記式(1)を満たすときの第1面の曲率半径r1の値をR、第1面から第3面頂点までの光学長dの値をDとする。
そして、本発明に係るカタディオプトリックレンズは、第1面の曲率半径r1が、R±1%の範囲内にあり、第1面から第3面頂点までの光学長dが、D±0.5%の範囲内にあることを特徴とする。
なお、本発明に係るカタディオプトリックレンズは、上記第1面の前段にレンズが配置されていても良い。第1面の前段にレンズを配置することで、例えば、拡散光を平行光として第1面に入射させることができる。なお、カタディオプトリックレンズの第1面の前段に配置するレンズとしては、メニスカス凸レンズが好適である。
また、本発明に係るカタディオプトリックレンズは、第1乃至第3面を構成する第1のレンズ媒質と、第4面を構成する第2のレンズ媒質とを備え、第1のレンズ媒質によって構成される第2面を含む平面に、第2のレンズ媒質が接合されて構成されていても良い。このとき、第2のレンズ媒質には、磁界発生用コイルが埋設されていても良い。
また、本発明に係るカタディオプトリックレンズにおいて、第3面は、面頂点からの深さをX、光軸からの高さをY、中心曲率半径をR、円錐係数をK、Y4項の非球面係数をA、Y6項の非球面係数をB、Y8項の非球面係数をC、Y10項の非球面係数をDとしたとき、例えば、下記式(2)で表される一般非球面とされる。
X=(Y2/R)/[1+{1−(1+K)(Y/R)2}1/2]+AY4+BY6+CY8+DY10…(2)
また、本発明に係るカタディオプトリックレンズにおいて、レンズ媒質の屈折率は、使用波長領域において1.4以上であることが好ましい。レンズ媒質として、屈折率が大きい媒質を用いることで、第4面に結像する光スポットの径を、より小さなものとすることができる。
以上のような本発明に係るカタディオプトリックレンズでは、非対称収差であるコマ収差がほぼ完全に補正され、軸外収差は対称収差である非点収差のみとなる。したがって、本発明に係るカタディオプトリックレンズでは、非点収差の影響が許容される範囲(およそ光束入射角が±3°までの範囲)において、レンズ端面に理想的なスポットを形成することができる。
なお、本発明に係る光学ヘッドは、以上のような本発明に係るカタディオプトリックレンズを対物レンズとして備えた光学ヘッドである。この光学ヘッドでは、対物レンズとして、コマ収差がほぼ完全に補正された本発明に係るカタディオプトリックレンズを用いているので、カタディオプトリックレンズの取り付け精度を従来に比べて大幅に緩和できる。
また、本発明に係る光記録再生装置は、以上のような本発明に係るカタディオプトリックレンズを対物レンズとして備えた光学ヘッドを用いて光記録媒体の記録及び/又は再生を行う。この光記録再生装置では、光学ヘッドの対物レンズとして、コマ収差がほぼ完全に補正された本発明に係るカタディオプトリックレンズを用いているので、カタディオプトリックレンズの取り付け精度を従来に比べて大幅に緩和できる。
発明を実施するための最良の形態
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
本発明を適用したカタディオプトリックレンズの一例を図1に示す。このカタディオプトリックレンズ1は、凹面屈折面からなる第1面S1と、平面ミラーからなる第2面S2と、凹面非球面ミラーからなる第3面S3と、全反射平面となる第4面S4とを有する。
このカタディオプトリックレンズ1に入射した入射光束は、先ず、凹面屈折面からなる第1面S1で拡大されて、平面ミラーからなる第2面S2に入射する。次に、第2面S2で反射され、凹面非球面ミラーからなる第3面S3に入射する。次に、第3面S3で反射され、第2面S2の中央に設けられた開口を通して第4面S4の全反射平面上に結像する。
以上のような本発明を適用したカタディオプトリックレンズ1のレンズデータを表1に示す。
上記カタディオプトリックレンズ1について、その横収差性能を図2に示す。なお、図2Aは、半画角1°の軸外での横収差を示しており、図2Bは、軸上での横収差を示している。ここで、光源波長λは650nmとしている。
図2に示すように、このカタディオプトリックレンズ1の横収差は、入射瞳を通過する全光束に亘って、フルスケールの1μmに比べてはるかに小さく、横収差の発生量は非常に小さくなっている。そして、横収差の発生量を、波面収差のRMS値(波面収差の射出瞳面上での標準偏差(Root Mean Square of Wave Front Error))で表すと、軸上では0.002λ、半画角1°の軸外では0.006λであった。更に、図示していないが、半画角3°の軸外では、波面収差のRMS値は、0.04λであった。
一般に、回折限界での収差性能を表すときには、マレシャルのクライテリオンが常用される。そして、マレシャルのクライテリオンは、波面収差のRMS値で0.07λである。これに対して、上記カタディオプトリックレンズ1では、上述したように、波面収差のRMS値が、軸上で0.002λ、半画角1°の軸外で0.006λ、半画角3°の軸外で0.04λであった。したがって、このカタディオプトリックレンズ1では、少なくとも軸上から半画角3°の軸外に至るまで、十分な回折限界性能を有しているといえる。
つぎに、上記カタディオプトリックレンズ1について、その軸外性能を図3に示す。なお、図3において、横軸は入射光の画角(半画角の値)を示しており、縦軸は波面収差のRMS値を示している。また、図3では、参考のために、上述したC.W.リー氏によって提案されたカタディオプトリックレンズ(以下、従来のカタディオプトリックレンズと称する。)の軸外性能も示しており、○で示したのが本発明を適用したカタディオプトリックレンズ1の場合、□で示したのが従来のカタディオプトリックレンズの場合である。
図3に示すように、従来のカタディオプトリックレンズでは、半画角が1°以下の領域において、波面収差のRMS値が、画角に対してほぼ直線的に増加している。波面収差のRMS値が画角に対して直線的に増加しているということは、軸外収差のうちでコマ収差が支配的であることを意味する。
一方、本発明を適用したカタディオプトリックレンズ1では、図3に示す範囲において、波面収差のRMS値が、画角に対して2次関数的に増加している波面収差のRMS値が画角に対して2次関数的に増加しているということは、軸外収差のうちで非点収差が支配的であることを意味する。
一般に、光記録媒体の記録再生に用いられる光学ヘッド用のレンズには、球面収差とコマ収差が良好に補正されていることが望まれる。そして、本発明を適用したカタディオプトリックレンズ1では、球面収差はやや多いものの極めてわずかであり、且つ、コマ収差が良好に補正されている。したがって、このカタディオプトリックレンズ1は、光学ヘッド用のレンズとして、非常に好適である。しかも、図3に示したように、本発明を適用したカタディオプトリックレンズ1では、波面収差のRMS値も、球面収差の支配する軸上付近を除いて、少なくとも半画角3°までの範囲において、従来のカタディオプトリックレンズに比べて常に小さくなっている。
なお、マレシャルのクライテリオンは、遠視野光学系で小さいスポット径で結像する際の条件であり、エバネッセント光を利用する近視野光学系では、マレシャルのクライテリオンから予想される以上にコマ収差の影響が顕著に現れることが予想される。したがって、コマ収差の発生を抑えた本発明に係るカタディオプトリックレンズ1は、エバネッセント光を利用する近視野光学系に適用する際に、特に有用であると言える。
つぎに、本発明において、どのようにコマ収差の補正を行ったかについて説明する。
コマ収差を評価するにはいくつかの方法があるが、比較的容易に実行できるのは、3次のザイデルコマ収差係数を計算する方法であり、この方法については、松井吉哉著「レンズ設計法」(共立出版、昭和45年)に記載されている。しかしながら、本発明を適用したカタディオプトリックレンズのように高開口数レンズの場合、高次のコマ収差も同時に発生するので、評価量として3次のコマ収差係数を用いる手法は必ずしも適切とはいえない。
そこで、本発明においては、正弦条件を評価してコマ収差の補正を行った。すなわち、正弦条件を用いれば高次のコマ収差をも評価できるので、ここでは、正弦条件を評価してコマ収差の補正を行う手法を採用した。なお、非球面も含むレンズ系の正弦条件の計算法は、例えば、R.キングスレイク著「レンズ・デザイン・ファンダメンタルズ」(アカデミック・プレス社、1978年)に記載されている。
図4に示すように、正弦条件を評価してコマ収差の補正を行う際は、先ず、第1面の曲率半径r1と、第1面から第3面頂点までの光学長dとを設定する。なお、このとき、開口数NAが所定の値になるように、光束径も調整しておく。そして、正弦条件を近軸光線追跡値と三角光線追跡値を用いて計算し、正弦条件を判定する。そして、正弦条件不満足量がほぼ0となるまで、適宜、第1面の曲率半径r1と、第1面から第3面頂点までの光学長dとを設定し直して、正弦条件の反復計算を行う。
上記反復計算により正弦条件不満足量がほぼ0となったら、次に、汎用レンズ設計プログラム等を使用して、残留球面収差が最小になるように、円錐係数K及び非球面係数A,B,C,Dの最適化を図る。そして、正弦条件を再計算して正弦条件判定を行い、正弦条件不満足量が大きい場合には、第1面の曲率半径r1と、第1面から第3面頂点までの光学長dとを設定し直して計算を繰り返す。
以上のような計算を行うことにより、高次のコマ収差をも含めて、コマ収差を補正することができる。
ここで、実際に以上のような計算を行ったときの計算結果の一部を表2に示す。なお、ここでは、第1面から第3面頂点までの光学長dを一定の保ちつつ、第1面の曲率半径r1を変化させながら、縦の球面収差LAと正弦条件不満足量OSCを計算した。このとき、開口数NAは、入射光束系を調整して一定値を取るようにした。また、計算に際し、入射瞳は第3面の非球面反射面においた。
表2において、r1は第1面の曲率半径、dは第1面から第3面頂点までの光学長、NAは開口数、LAは縦の球面収差、OSCは正弦条件不満足量である。また、符号の規約はキングスレイクの定義に従って、慣用とは反対符号とした。また、表2において、r1=0.70が従来のカタディオプトリックレンズの場合である。
表2に示すように、r1=0.70の従来のカタディオプトリックレンズでは、正弦条件不満足量OSCがおよそ0.0113である。コンラディによれば、望遠鏡や顕微鏡等において正弦条件不満足量OSCは、±0.0025以内であるべきとされているが、従来のカタディオプトリックレンズの正弦条件不満足量OCSは、コンラディのクライテリオンを逸脱している。一方、第1面の曲率半径r1をおよそ5%減じて、r1=0.67にすると、正弦条件不満足量がほぼ0になる。なお、このとき、球面収差の絶対値はやや増加する。
ここで、表2に示した計算結果をプロットしたグラフを図5に示す。図5において、横軸は第1面の曲率半径r1、縦軸は正弦条件不満足量OSCである。また、図5において、点線は、コンラディのタライテリオンの範囲(±0.0025)を示している。
図5に示すように、コンラディのクライテリオンを満たす第1面の曲率半径r1の範囲は、およそ0.66335から0.67591の範囲であり、0.67はほぼその中央に位置している。したがって、コンラディのクライテリオンを満たす第1面の曲率半径r1の範囲は、およそ0.67±1%である。
ところで、第1面の曲率半径r1を一定に保ちつつ、第1面から第3面頂点までの光学長dを変化させても、正弦条件不満足量OSCは変化する。そこで、第1面の曲率半径r1を一定に保ちつつ、第1面から第3面頂点までの光学長dを変化させて、正弦条件不満足量OSCを計算した。その計算結果を図5と同様にプロットしたグラフを図6に示す。図6において、横軸は第1面から第3面頂点までの光学長d、縦軸は正弦条件不満足量OSCである。また、図6において、点線は、コンラディのクライテリオンの範囲(±0.0025)を示している。
図6に示すように、コンラディのクライテリオンを満たす、第1面から第3面頂点までの光学長dの範囲は、およそ−2.7122から−2.68312の範囲であり、−2.7はほぼその中央に位置している。したがって、コンラディのクライテリオンを満たす、第1面から第3面頂点までの光学長dの範囲は、絶対値で表すとおよそ2.7±0.5%である。
図5及び図6の結果から、正弦条件不満足量=0という条件を満足する(r1,d)の集合の存在が予想されるが、事実、この条件を満たす点(r1,d)の軌跡はほぼ直線となる。ここで、直線の係数は、レンズ媒質の屈折率Nの関数となる。
したがって、正弦条件不満足量=0を満足するとき、第3面の中心曲率半径r3で規格化した第1面の曲率半径r1と、第3面の中心曲率半径r3で規格化した第1面から第3面頂点までの光学長dとの関係は、下記式(1−1)に示す一次関数式で表される。なお、下記式(1−1)において、係数fa(N),fb(N)は、レンズ媒質の屈折率Nの関数である。
d/r3=fa(N)r1/r3+fb(N) …(1−1)
具体例として、レンズ媒質の屈折率Nを1.813としたとき、正弦条件不満足量=0を満足するd/r3とr1/r3との関係を計算した結果を図7に示す。図7に示すように、レンズ媒質の屈折率Nが1.813のとき、正弦条件不満足量=0という条件を満たす点の軌跡は、ほぼ直線で表される。そして、この直線L1は下記式(1−2)に示す一次関数式で表される。
d/r3=2.3234r1/r3−1.6931 …(1−2)
すなわち、レンズ媒質の屈折率Nが1.813のときには、上記式(1−2)に示す一次関数式を満足するように、第1面の曲率半径r1と、第1面から第3面頂点までの光学長dとを設定すれば、正弦条件不満足量がほぼ0となり、高次のものも含めてコマ収差の発生が抑えられることとなる。
なお、図7では、参考として、従来のカタディオプトリックレンズがどこに位置するかもプロットしており、従来のカタディオプトリックレンズでは、上記式(1−2)に示した一次関数式から外れることが見て取れる。また、図7から、正弦条件不満足量=0という条件を満たすとき、第3面の中心曲率半径r3で規格化した第1面から第3面頂点までの光学長dは1に近い値となることが分かる。
ところで、上述したように、コンラディのクライテリオンを満たすようにするには、第1面の曲率半径r1を最適値の±1%の範囲内に抑え、第1面から第3面頂点までの光学長dを最適値の±0.5%の範囲内に抑えれば良い。そこで、本発明では、上記式(1−1)を満たすときの第1面の曲率半径r1の値をR、第1面から第3面頂点までの光学長dの値をDとしたとき、第1面の曲率半径r1をR±1%の範囲内と規定し、第1面から第3面頂点までの光学長dをD±0.5%の範囲内と規定している。
すなわち、第1面の曲率半径r1をR±1%の範囲内とし、第1面から第3面頂点までの光学長dをD±0.5%の範囲内とすることにより、高次のものも含めてコマ収差の発生を抑えて、コンラディのクライテリオンを満たすことが可能となる。
なお、本発明は、上述した例に限定されるものではない。すなわち、例えば、レンズ媒質の屈折率や、第3面の中心曲率半径等は、上述の例と異なっていても良い。これらが異なっている場合も、上述したように正弦条件を評価量としてコマ収差を補正することにより、高次のものも含めてコマ収差の発生を抑制したカタディオプトリックレンズを得ることができる。
つぎに、図1に示したようなカタディオプトリックレンズの第1面の前段に、凸レンズを配置した例を図8に示す。
図8に示した光学系は、単一モード光ファイバー等の光源から出射された拡散光を結像するための光学系であり、プリズム5と、凸レンズ6と、カタディオプトリックレンズ7とがこの順に配置されてなる。この光学系のレンズデータを表3に示す。なお、面番号は図8に示す通りである。
つぎに、この光学系の横収差性能を図9に示す。図9Aは、半画角1°の軸外での横収差を示しており、図9Bは、軸上での横収差を示している。なお、ここでは、入射瞳位置をプリズム5の前面におき、像高5μmにおいては瞳半径の15%の口径食(ヴィグネッティング)を仮定している。また、評価は、647.5nm,650nm,652.5nmの3波長において行った。
図9に示すように、この光学系における横収差は、入射瞳を通過する全光束に亘って、フルスケールの1μmに比べてはるかに小さく、横収差の発生量は非常に小さなものとなっている。
なお、この光学系では、表3に示すように、カタディオプトリックレンズ7の第1面の前段に配置するレンズ6の硝材として高分散のSF11を用い、カタディオプトリックレンズ7の硝材として低分散のSLAH53を用いている。このように、高分散の硝材からなるレンズと、低分散の硝材からなるレンズとを組み合わせることで、色収差の補正も行うことができる。
つぎに、本発明を適用した光学ヘッドの一例を図10に示す。この光学ヘッド10は、光磁気ディスク15に対して記録再生を行うための光学ヘッドであり、エバネッセント光を利用することで、回折限界以下の微小な記録ピットでの記録再生が可能となっている。
ここで、記録再生の対象となる光磁気ディスク15は、ディスク基板上に光磁気記録層が形成されてなり、当該光磁気記録層の側が光学ヘッド10に対向するようになされる。すなわち、上記光学ヘッド10は、光磁気ディスク15のディスク基板の側ではなく、光磁気記録層の側に配置される。これは、上記光学ヘッド10はエバネッセント光を利用して記録再生を行うため、光学ヘッド10と光磁気ディスク15の光磁気記録層との間隔を十分に狭める必要があるからである。
この光学ヘッド10は、ガラス基盤20と、ガラス基盤20の上に配されたスライダー25と、スライダー25を支持する弾性部材30と、レーザー光源からのレーザー光を伝搬する単一モードの光ファイバー35と、光ファイバー35から出射されたレーザ光を反射する可動ミラー40と、可動ミラー40によって反射されたレーザ光の光軸上に配された1/4波長板45と、1/4波長板45を透過してきたレーザ光の光軸上に配置されたプリズム50と、プリズム50から出射されたレーザ光を平行光とするためのコリメーターレンズ55と、コリメーターレンズ55によって平行光とされたレーザ光が入射されるカタディオプトリックレンズ60と、カタディオプトリックレンズ60の結像点の周囲に配置された磁界発生用コイル65とを備えている。
なお、この光学ヘッド10の光学系は、プリズム50で光路を折り返す形になっているが、図8に示した光学系と等価である。なお、図10中の点線は、光路を折り返さなかった場合の光学系(すなわち図8に示した光学系)を示している。
この光学ヘッド10において、カタディオプトリックレンズ60は、第1面60a,第2面60b及び第3面60cを構成する第1のレンズ媒質61と、第4面60dを構成する第2のレンズ媒質62とを備えており、第1のレンズ媒質61によって構成される第2面60dを含む平面に、第2のレンズ媒質62が接合されてなる。そして、この第2のレンズ媒質62は、ガラス基盤20の一部によって構成されている。すなわち、ガラス基盤20は、カタディオプトリックレンズ60の一部を兼ねており、カタディオプトリックレンズ60は、第1のレンズ媒質61を、ガラス基盤20に接合することにより構成されている。
そして、カタディオプトリックレンズ60の一部を兼ねているガラス基盤20には、磁界発生用コイル65が埋設されている。換言すれば、カタディオプトリックレンズ60を構成する第2のレンズ媒質62には、磁界発生用コイル65が埋設されている。この磁界発生用コイル65は、光磁気ディスク15に対する記録時に、光磁気ディスク15に対して記録磁界を印加するためのものであり、カタディオプトリックレンズ60の結像点の周囲を取り巻くように形成されている。すなわち、カタディオプトリックレンズ60に入射したレーザ光は、磁界発生用コイル65の中央において、ガラス基盤20の端面に結像する。なお、このような磁界発生用コイル65は、例えば、薄膜プロセスにより薄膜コイルパターンをガラス基盤20に埋設することにより形成する。
この光学ヘッド10を用いて光磁気ディスク15に対して記録再生を行うときは、光磁気ディスク15を回転駆動させて、当該光磁気ディスク15上において、光学ヘッド10を浮上させる。このとき、弾性部材30によって、弾性を持たせた状態でスライダー25を支持することにより、ガラス基盤20と光磁気ディスク15との間隔が、100nmのオーダー以下に保たれるようにしておく。
そして、光学ヘッド10を光磁気ディスク15上において浮上させた状態で、レーザー光源からレーザー光を出射し、当該レーザ光を光ファイバー35によって伝搬する。光ファイバー35によって伝搬され、当該光ファイバー35から出射されたレーザ光は、可動ミラー40によって反射される。
そして、可動ミラー40によって反射されたレーザ光は、1/4波長板45を介してプリズム50に入射する。ここで、1/4波長板45は、使用波長で片道90°のリターダンスを与えるという理由で、光ファイバー35で発生するリターダンスを往復で補償するために挿入している。
なお、本例では、プリズム50に反射膜がコートされていることを前提としており、1/4波長板45でリターダンスを与えるようにしている。しかし、プリズム斜面への入射角はほぼ45°であるから、プリズム50での全反射を利用してリターダンスを発生させることもできる。このリターダンスは、プリズム50の屈折率で決まり、BACD11のようなガラスを用いると、リターダンスは、全反射1回でほぼ46°となる。したがって、プリズム50で全反射を2回させると、ほぼ90°のリターダンスを与えることができ、1/4波長板45の機能をプリズム50に兼ねさせることができる。
1/4波長板45を介してプリズム50に入射したレーザ光は、プリズム50の内部で反射して折り返されて、コリメータレンズ55へ導かれる。コリメータレンズ55に入射したレーザ光は、当該コリメータレンズ55によって平行光とされた上で、カタディオプトリックレンズ60に入射する。
カタディオプトリックレンズ60に入射したレーザ光は、先ず、凹面屈折面からなる第1面60aで拡大されて、平面ミラーからなる第2面60bに入射する。次に、第2面60bで反射され、凹面非球面ミラーからなる第3面60cに入射する。次に、第3面60cで反射され、第2面60bの中央に設けられた開口を通して第4面60dの全反射平面上に結像する。
このとき、レーザ光の大部分は第4面60dにおいて全反射するが、このとき、第4面60dと光磁気ディスク15との間隔を100nmのオーダー以下に保つようにしているので、エバネッセント光の一部が光磁気ディスク15と結合してレンズ外に取り出される。そして、この光学ヘッド10では、このエバネッセント光を利用して光磁気ディスク15に対する記録再生を行う。
なお、記録時には、上述のようにエバネッセント光を光磁気ディスク15に結合させるとともに、磁界発生用コイル65に電流を流して磁界を発生させて、エバネッセント光が光磁気ディスクと結合している部分に当該磁界を印加する。これにより、光磁気ディスク15に対して光磁気記録を行う。ここで、光磁気記録の方式は、記録する情報信号に対応させて光磁気ディスク15に印加する磁界の強度を変調する磁界強度変調方式であっても、記録する情報信号に対応させて光磁気ディスク15に照射する光の強度を変調する光強度変調方式であっても良い。
ところで、この光学ヘッド10において、可動ミラー40には、図示しないアクチュエータを取り付けておき、当該アクチュエータを駆動することにより、可動ミラー40によるレーザ光の反射角を変化させることができるようにしておく。可動ミラー40によるレーザ光の反射角を変化させると、カタディオプトリックレンズ60に入射する入射光束の傾き角が変化する。その結果、カタディオプトリックレンズ60の第4面60dにおける結像点が、可動ミラー60の動作方向に移動する。
すなわち、この光学ヘッド10では、可動ミラー40によるレーザ光の反射角を変化させることで、カタディオプトリックレンズ60の第4面60dにおける結像点を、可動ミラー40の動作方向に走査することが可能となっている。これを利用することで、この光学ヘッド10では、例えば、いわゆる視野内アクセスや視野内トラッキングを行うようなことが可能となっている。
なお、従来のカタディオプトリックレンズでは、入射光束の傾き角が変化するとコマ収差が発生するので、入射光束の傾き角を変化させて用いるようなことは不可能であった。一方、上記光学ヘッド10に搭載されているカタディオプトリックレンズ60は、コマ収差の補正がほぼ完全になされている。したがって、上記光学ヘッド10では、カタディオプトリックレンズ60に入射する入射光束の傾き角を変化させて、視野内アクセスや視野内トラッキングを行うようなことが可能となっている。
なお、本発明を適用した光学ヘッド10のポイントは、カタディオプトリックレンズ60にあるので、以上の説明では、光磁気ディスク15に照射するレーザ光を集光するカタディオプトリックレンズ60を含む光学系の部分を中心に説明し、その他の光学系の詳細については説明を省略した。しかし、実際には、光学ヘッド10には、光磁気ディスク15によって反射されて戻ってきた戻り光を検出する光学系も設けられることは言うまでもない。
また、本発明は、光磁気ディスクに対して記録再生を行うための光学ヘッド以外にも適用可能であり、対象となる光記録媒体は、例えば、相変化型光ディスクや、エンボスピットによって情報信号が予め書き込まれた再生専用光ディスク等であってもよい。ただし、対象となる光記録媒体が、相変化型光ディスクや、エンボスピットによって情報信号が予め書き込まれた再生専用光ディスク等のように、記録再生に磁界を用いない記録媒体の場合には、磁界発生用コイルは不要となる。
産業上の利用可能性
本発明に係るカタディオプトリックレンズは、軸外収差のうちコマ収差がほぼ完全に補正されており、入射光束の入射角の範囲として、少なくとも±3°程度までは十分に許容可能となる。
このように、本発明に係るカタディオプトリックレンズは、コマ収差がほぼ完全に補正されており、入射光束の入射角の許容範囲を広くとれるので、レンズ取り付け精度を従来に比べて大幅に緩和できる。したがって、カタディオプトリックレンズを光学ヘッド等に実装するようなときに、組み立てプロセスが容易になり、短時間で正確な組み立てを完了することが可能となる。
更に、本発明に係るカタディオプトリックレンズでは、コマ収差がほぼ完全に補正されているので、可動ミラー等を用いて入射光束の傾き角を高速で変化させて、可動ミラーの動作方向に結像点を走査するようなことも可能となる。これを利用することで、例えば、光学ヘッドにおける、いわゆる視野内アクセスや視野内トラッキングが可能になる。
また、本発明に係る光学ヘッド及び光記録再生装置は、軸外収差のうちコマ収差がほぼ完全に補正されたカタディオプトリックレンズを用いるようにしているので、当該カタディオプトリックレンズの取り付け精度を従来に比べて大幅に緩和できる。したがって、カタディオプトリックレンズを実装するときの組み立てプロセスが容易になり、短時間で正確な組み立てを完了することが可能となる。
更に、本発明に係る光学ヘッド及び光記録再生装置では、軸外収差のうちコマ収差がほぼ完全に補正されたカタディオプトリックレンズを用いるようにしているので、カタディオプトリックレンズに入射する入射光束の傾き角を可動ミラー等を用いて高速で変化させて、可動ミラーの動作方向に結像点を走査するようなことも可能となる。これを利用することで、例えば、いわゆる視野内アクセスや視野内トラッキングを行うようなことも可能となる。
【図面の簡単な説明】
図1は、本発明を適用したカタディオプトリックレンズの一例を示す図である。
図2A及び図2Bは、図1に示したカタディオプトリックレンズの横収差図であり、図2Aは半画角1°の軸外での横収差を示す図、図2Bは軸上での横収差を示す図である。
図3は、図1に示したカタディオプトリックレンズと、従来のカタディオプトリックレンズとについて、入射光の画角と、波面収差のRMS値との関係を示す図である。
図4は、正弦条件を評価してコマ収差の補正を行い、カタディオプトリックレンズの最適化を行う際の処理の流れを示す図である。
図5は、カタディオプトリックレンズの第1面から第3面頂点までの光学長dを一定に保ったときの、第1面の曲率半径r1と、正弦条件不満足量OSCとの関係を示す図である。
図6は、カタディオプトリックレンズの第1面の曲率半径r1を一定に保ったときの、第1面から第3面頂点までの光学長dと、正弦条件不満足量OSCとの関係を示す図である。
図7は、レンズ媒質の屈折率Nが1.813のとき、正弦条件不満足量=0という条件を満たす、第3面の曲率半径で規格化された第1面の曲率半径の値r1/r3と、第3面の曲率半径で規格化された第1面から第3面頂点までの光学長の値d/r3との関係を示す図である。
図8は、本発明を適用したカタディオプトリックレンズの他の例を示す図である。
図9A及び図9Bは、図8に示した光学系の横収差図であり、図9Aは半画角1°の軸外での横収差を示す図、図9Bは軸上での横収差を示す図である。
図10は、本発明を適用した光学ヘッドの一例を示す図である。
Claims (8)
- 第1面が凹面屈折面、第2面が平面ミラー、第3面が第1面の凹面屈折面と同軸に配置された凹面非球面ミラーからなり、平行入射光が第2面の平面ミラーに設けた開口を通して第4面の全反射平面上に結像するようになされたカタディオプトリックレンズにおいて、
r1を第1面の曲率半径、r3を第3面の中心曲率半径、dを第1面から第3面頂点までの光学長、fa(N),fb(N)をレンズ媒質の屈折率Nの関数として表される係数とし、正弦条件を満たす条件式を下記式(1)で表し、
d/r3=fa(N)r1/r3+fb(N) …(1)
上記式(1)を満たすときの第1面の曲率半径r1の値をR、第1面から第3面頂点までの光学長dの値をDとしたとき、
第1面の曲率半径r1は、R±1%の範囲内にあり、
第1面から第3面頂点までの光学長dは、D±0.5%の範囲内にあること
を特徴とするカタディオプトリックレンズ。 - 上記第1面の前段にレンズが配置されていること
を特徴とする請求の範囲第1項記載のカタディオプトリックレンズ。 - 第1乃至第3面を構成する第1のレンズ媒質と、第4面を構成する第2のレンズ媒質とを備え、
上記第1のレンズ媒質によって構成される第2面を含む平面に、上記第2のレンズ媒質が接合されてなること
を特徴とする請求の範囲第1項記載のカタディオプトリックレンズ。 - 上記第2のレンズ媒質には、磁界発生用コイルが埋設されていること
を特徴とする請求の範囲第3項記載のカタディオプトリックレンズ。 - 上記第3面は、面頂点からの深さをX、光軸からの高さをY、中心曲率半径をR、円錐係数をK、Y4項の非球面係数をA、Y6項の非球面係数をB、Y8項の非球面係数をC、Y10項の非球面係数をDとしたとき、下記式(2)で表される一般非球面であること
X=(Y2/R)/[1+{1−(1+K)(Y/R)2}1/2]+AY4+BY6+CY8+DY10…(2)
を特徴とする請求の範囲第1項記載のカタディオプトリックレンズ。 - レンズ媒質の屈折率が、使用波長領域において1.4以上であること
を特徴とする請求の範囲第1項記載のカタディオプトリックレンズ。 - 第1面が凹面屈折面、第2面が平面ミラー、第3面が第1面の凹面屈折面と同軸に配置された凹面非球面ミラーからなり、平行入射光が第2面の平面ミラーに設けた開口を通して第4面の全反射平面上に結像するようになされたカタディオプトリックレンズを対物レンズとして備え、
上記カタディオプトリックレンズは、
r1を第1面の曲率半径、r3を第3面の中心曲率半径、dを第1面から第3面頂点までの光学長、fa(N),fb(N)をレンズ媒質の屈折率Nの関数として表される係数とし、正弦条件を満たす条件式を下記式(3)で表し、
d/r3=fa(N)r1/r3+fb(N) …(3)
上記式(3)を満たすときの第1面の曲率半径r1の値をR、第1面から第3面頂点までの光学長dの値をDとしたとき、
第1面の曲率半径r1が、R±1%の範囲内にあり、
第1面から第3面頂点までの光学長dが、D±0.5%の範囲内にあること
を特徴とする光学ヘッド。 - 光学ヘッドを用いて光記録媒体の記録及び/又は再生を行う光記録再生装置であって、
上記光学ヘッドは、
第1面が凹面屈折面、第2面が平面ミラー、第3面が第1面の凹面屈折面と同軸に配置された凹面非球面ミラーからなり、平行入射光が第2面の平面ミラーに設けた開口を通して第4面の全反射平面上に結像するようになされたカタディオプトリックレンズを対物レンズとして備え、
上記カタディオプトリックレンズは、
r1を第1面の曲率半径、r3を第3面の中心曲率半径、dを第1面から第3面頂点までの光学長、fa(N),fb(N)をレンズ媒質の屈折率Nの関数として表される係数とし、正弦条件を満たす条件式を下記式(4)で表し、
d/r3=fa(N)r1/r3+fb(N) …(4)
上記式(4)を満たすときの第1面の曲率半径r1の値をR、第1面から第3面頂点までの光学長dの値をDとしたとき、
第1面の曲率半径r1が、R±1%の範囲内にあり、
第1面から第3面頂点までの光学長dが、D±0.5%の範囲内にあること
を特徴とする光記録再生装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22488798 | 1998-08-07 | ||
PCT/JP1999/004089 WO2000008642A1 (en) | 1998-08-07 | 1999-07-29 | Catadioptric lens, optical head, and optical recording/reproducing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP4165013B2 true JP4165013B2 (ja) | 2008-10-15 |
Family
ID=16820729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000564197A Expired - Fee Related JP4165013B2 (ja) | 1998-08-07 | 1999-07-29 | カタディオプトリックレンズ、光学ヘッド及び光記録再生装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US6256154B1 (ja) |
EP (1) | EP1020853A4 (ja) |
JP (1) | JP4165013B2 (ja) |
KR (1) | KR100560573B1 (ja) |
CN (1) | CN1189877C (ja) |
WO (1) | WO2000008642A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013538375A (ja) * | 2010-09-20 | 2013-10-10 | ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー | 屈折表面部と反射表面部とを備えた透明なモノリシック構造体を有する光学プローブ |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100657247B1 (ko) * | 1999-11-30 | 2006-12-19 | 삼성전자주식회사 | 고밀도 광집속을 위한 대물렌즈 및 이를 채용한광픽업장치 |
JP2001176118A (ja) * | 1999-12-15 | 2001-06-29 | Minolta Co Ltd | 光ヘッド、記録再生装置、および固浸レンズ |
JP2002131632A (ja) * | 2000-10-19 | 2002-05-09 | Konica Corp | 光学部品及びその製造方法 |
JP2003006954A (ja) * | 2001-06-20 | 2003-01-10 | Sony Corp | 光磁気ヘッド及び光磁気記録再生装置 |
KR100438571B1 (ko) * | 2001-08-28 | 2004-07-02 | 엘지전자 주식회사 | 광 기록 및 재생 시스템용 광학렌즈 |
KR100439373B1 (ko) * | 2001-09-13 | 2004-07-09 | 엘지전자 주식회사 | 이종 기록매체 호환 광픽업 장치 |
US7342869B2 (en) * | 2002-07-08 | 2008-03-11 | Sony Corporation | Optical-recording medium playback apparatus and optical-recording medium, including flying optical head features |
DE10239956B4 (de) * | 2002-08-26 | 2006-01-19 | Carl Zeiss Smt Ag | Katadioptrisches Mikroskopobjektiv |
JP2005144561A (ja) * | 2003-11-11 | 2005-06-09 | Seiko Epson Corp | 近接場光プローブ、近接場光の取出し方法並びに近接場光を用いた加工方法 |
US9018561B2 (en) * | 2007-05-23 | 2015-04-28 | Cymer, Llc | High power seed/amplifier laser system with beam shaping intermediate the seed and amplifier |
US7633689B2 (en) * | 2007-07-18 | 2009-12-15 | Asml Holding N.V. | Catadioptric optical system for scatterometry |
CN102621666B (zh) * | 2011-12-27 | 2014-05-14 | 苏州大学 | 一种望远物镜光学系统 |
CN203273698U (zh) * | 2013-04-16 | 2013-11-06 | 王海军 | 二次内反射式透镜及采用该透镜的led灯具 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2177812B (en) * | 1985-07-13 | 1988-09-21 | Pilkington Perkin Elmer Ltd | A catadioptric lens |
DE3583039D1 (de) * | 1985-12-17 | 1991-07-04 | Ibm Deutschland | Schreib/lesekopf fuer optische platten. |
JPS6425113A (en) | 1987-07-21 | 1989-01-27 | Mark Kk | Finite system large aperture single lens |
US5031976A (en) * | 1990-09-24 | 1991-07-16 | Kla Instruments, Corporation | Catadioptric imaging system |
JPH08201698A (ja) | 1995-01-31 | 1996-08-09 | Asahi Optical Co Ltd | 光偏向素子および光情報記録/再生装置 |
CA2177424C (en) | 1995-06-06 | 2001-02-13 | Bruce A. Cameron | Solid catadioptric lens |
RU2091835C1 (ru) * | 1996-01-23 | 1997-09-27 | Открытое акционерное общество "Красногорский завод им.С.А.Зверева" | Зеркально-линзовый объектив для ближней ик - области спектра излучения |
US5717518A (en) | 1996-07-22 | 1998-02-10 | Kla Instruments Corporation | Broad spectrum ultraviolet catadioptric imaging system |
WO1999027532A1 (en) | 1997-11-22 | 1999-06-03 | Samsung Electronics Co., Ltd. | Catadioptric optical system, optical pickup and optical disk drive employing the same, and optical disk |
KR100294237B1 (ko) | 1998-04-14 | 2001-09-17 | 윤종용 | 카타디옵트릭 대물렌즈를 구비한 광픽업 |
US5986995A (en) * | 1998-07-06 | 1999-11-16 | Read-Rite Corporation | High NA catadioptric focusing device having flat diffractive surfaces |
-
1999
- 1999-07-29 EP EP99933169A patent/EP1020853A4/en not_active Withdrawn
- 1999-07-29 CN CNB998013153A patent/CN1189877C/zh not_active Expired - Fee Related
- 1999-07-29 JP JP2000564197A patent/JP4165013B2/ja not_active Expired - Fee Related
- 1999-07-29 WO PCT/JP1999/004089 patent/WO2000008642A1/ja not_active Application Discontinuation
- 1999-07-29 US US09/509,417 patent/US6256154B1/en not_active Expired - Fee Related
- 1999-07-29 KR KR1020007003674A patent/KR100560573B1/ko not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013538375A (ja) * | 2010-09-20 | 2013-10-10 | ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー | 屈折表面部と反射表面部とを備えた透明なモノリシック構造体を有する光学プローブ |
Also Published As
Publication number | Publication date |
---|---|
CN1189877C (zh) | 2005-02-16 |
KR100560573B1 (ko) | 2006-03-14 |
EP1020853A4 (en) | 2001-02-21 |
KR20010024425A (ko) | 2001-03-26 |
CN1275231A (zh) | 2000-11-29 |
EP1020853A1 (en) | 2000-07-19 |
US6256154B1 (en) | 2001-07-03 |
WO2000008642A1 (en) | 2000-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4165013B2 (ja) | カタディオプトリックレンズ、光学ヘッド及び光記録再生装置 | |
US6807019B2 (en) | Objective lens having diffractive structure for optical pick-up | |
JP4060007B2 (ja) | 光ディスク装置の光学系 | |
JPWO2002027715A1 (ja) | 光ディスク用光学系、光ディスク用光ヘッド装置、及び光ドライブ装置 | |
JP3608333B2 (ja) | 光学ピックアップ及び光学ピックアップ用対物レンズの組み立て方法 | |
US6829105B2 (en) | Objective optical system for optical pick-up | |
KR100468168B1 (ko) | 광학정보기록매체를기록및/또는재생하기위한광학시스템 | |
JP3191200B2 (ja) | 光情報記録媒体の記録再生装置 | |
US6859334B1 (en) | Reflecting microoptical system | |
JP2002522809A (ja) | 光学走査装置および、そのような装置を装備した情報面における情報の読み取りおよび/または書き込みを行うための光学機器 | |
KR20040090443A (ko) | 광픽업 장치, 광정보 기록 재생 장치 및 대물 렌즈 | |
US20010015939A1 (en) | Objective lens for optical pick-up | |
JPH09185836A (ja) | 光情報記録媒体の記録再生用光学系 | |
US7023765B2 (en) | Optical element, optical pick-up device and manufacturing method of the optical element | |
JP4789169B2 (ja) | 色収差補正用光学素子、光学系、光ピックアップ装置及び記録・再生装置 | |
JP2001155369A (ja) | 光情報記録再生装置の光学系 | |
US20040105376A1 (en) | Objective lens for optical recording/reproducing device | |
KR100535341B1 (ko) | 광픽업 장치 | |
US7512056B2 (en) | Objective lens for optical pick-up devices, optical pick-up devices, and optical information recording and/or reproducing apparatus | |
EP1511024A2 (en) | Spherical aberration correction plate | |
JPH09219034A (ja) | 光ディスク装置およびそれに用いる光ヘッド | |
EP1376186B1 (en) | Objective lens for optical pickup apparatus and recording/reproducing apparatus | |
JPH05241095A (ja) | 光ディスクの球面収差の補正方法とそれを用いた光ヘッド | |
JP4240769B2 (ja) | 光ピックアップレンズ | |
JP4903300B2 (ja) | 光学装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080708 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080721 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |