JP4152281B2 - Heat treatment method for bearing parts - Google Patents
Heat treatment method for bearing parts Download PDFInfo
- Publication number
- JP4152281B2 JP4152281B2 JP2003307171A JP2003307171A JP4152281B2 JP 4152281 B2 JP4152281 B2 JP 4152281B2 JP 2003307171 A JP2003307171 A JP 2003307171A JP 2003307171 A JP2003307171 A JP 2003307171A JP 4152281 B2 JP4152281 B2 JP 4152281B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- quenching
- heat treatment
- austenite
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 title claims description 52
- 238000000034 method Methods 0.000 title claims description 33
- 238000010791 quenching Methods 0.000 claims description 55
- 230000000171 quenching effect Effects 0.000 claims description 55
- 239000000463 material Substances 0.000 claims description 42
- 238000005256 carbonitriding Methods 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 19
- 230000009466 transformation Effects 0.000 claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 12
- 239000002826 coolant Substances 0.000 claims description 12
- 239000010959 steel Substances 0.000 claims description 12
- 238000003303 reheating Methods 0.000 claims description 10
- 230000000630 rising effect Effects 0.000 claims description 6
- 238000011282 treatment Methods 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 2
- 229910001566 austenite Inorganic materials 0.000 description 51
- 238000012360 testing method Methods 0.000 description 28
- 238000005096 rolling process Methods 0.000 description 19
- 230000008859 change Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 230000003068 static effect Effects 0.000 description 9
- 150000004767 nitrides Chemical class 0.000 description 6
- 230000000717 retained effect Effects 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007656 fracture toughness test Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Images
Landscapes
- Rolling Contact Bearings (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、転動疲労に対し長寿命で、かつ高い耐割れ強度や耐経年寸法変化が必要とされる部位に用いられる軸受部品、その熱処理方法、熱処理装置および転がり軸受に関し、より具体的には、減速機、ドライブピニオンやトランスミッション用軸受に用いられる軸受部品、その熱処理方法、熱処理装置および転がり軸受に関するものである。 More specifically, the present invention relates to a bearing component, a heat treatment method, a heat treatment apparatus, and a rolling bearing that are used in a part that requires a long life against rolling fatigue and requires high cracking resistance and aging change. Relates to a bearing component used in a reduction gear, a drive pinion and a transmission bearing, a heat treatment method thereof, a heat treatment apparatus, and a rolling bearing.
軸受部品の転動疲労に対して長寿命を与える熱処理方法として、焼入れ加熱時の雰囲気RXガス中にアンモニアガスを添加するなどして、その軸受部品の表層部に浸炭窒化処理を施す方法がある(たとえば特開平8−4774号公報、特開平11−101247号公報)。この浸炭窒化処理を用いることにより、ミクロ組織中に残留オーステナイトを生成させ、転動疲労寿命を向上させることができる。
しかしながら、上記の浸炭窒化処理方法は拡散処理のため、長時間高温に保持する必要があるので、割れ強度の向上を図ることは困難である。また、残留オーステナイトの増加による経年寸法変化率の増大も問題となる。 However, since the carbonitriding method described above is a diffusion treatment and needs to be kept at a high temperature for a long time, it is difficult to improve the cracking strength. In addition, an increase in the dimensional change rate due to increase in retained austenite is also a problem.
一方、転動疲労に対して長寿命を確保し、割れ強度を向上させ、経年寸法変化率の増大を防ぐには、鋼の合金設計によって行なうことが可能である。しかし合金設計によると、原材料コストが高くなるなどの問題点が発生する。 On the other hand, in order to secure a long life against rolling fatigue, improve the cracking strength, and prevent an increase in the rate of dimensional change over time, it is possible to carry out it by steel alloy design. However, the alloy design causes problems such as an increase in raw material costs.
今後の軸受部品には、使用環境の高荷重化、高温化に伴い、従来よりも、大きな荷重条件でかつより高温で使用できる特性を備えることが要求される。このため、転動疲労に長寿命で、高強度、かつ高い寸法安定性を有する軸受部品が必要になる。 Future bearing parts are required to have characteristics that can be used under larger load conditions and at higher temperatures than in the past as the usage environment increases in load and temperature. Therefore, a bearing component having a long life against rolling fatigue, high strength, and high dimensional stability is required.
本発明は、転動疲労に対して長寿命であり、かつ高い割れ強度を有し、かつ経年寸法変化率の増大が抑制された軸受部品、その熱処理方法、熱処理装置および転がり軸受を提供することを目的とする。 The present invention provides a bearing component, a heat treatment method, a heat treatment apparatus, and a rolling bearing that have a long life against rolling fatigue, have high cracking strength, and suppress an increase in the rate of dimensional change over time. With the goal.
本発明の軸受部品の熱処理方法は、JIS規格SUJ2材からなる軸受部品の熱処理方法であって、軸受部品の鋼のA1変態点を超える温度で熱処理した後、A1変態点未満の温度に冷却し、その後、A1変態点以上で上記熱処理の温度未満の焼入れ温度域に含まれる再加熱温度に、軸受部品の表面から深さ2mmの位置での昇温速度が3℃/分以上となるように再加熱し、焼入れを行い、かつその焼入れは焼入れ強烈度0.1cm−1以上の冷却媒体を用いて行ない、かつ上記焼入れは軸受部品の表面から2mmの位置で、上記再加熱温度から400℃下がるまでの平均冷却速度が20℃/秒以上となる条件で行なわれる。そして、上記A1変態点を超える温度での熱処理が浸炭窒化処理であって、上記焼入れ温度域が790℃〜830℃の温度域である(請求項1)。 The heat treatment method for bearing parts of the present invention is a heat treatment method for bearing parts made of JIS standard SUJ2 material, heat treated at a temperature exceeding the A1 transformation point of the steel of the bearing component, and then cooled to a temperature below the A1 transformation point. Thereafter, the reheating temperature within the quenching temperature range above the A1 transformation point and below the heat treatment temperature is set to 3 ° C./min or more at a position 2 mm deep from the surface of the bearing part. Reheating, quenching is performed, and the quenching is performed using a cooling medium having a quenching intensity of 0.1 cm-1 or more, and the quenching is performed at a position 2 mm from the surface of the bearing component, and from the reheating temperature to 400 ° C. the average cooling rate of decrease is performed under conditions such that a 20 ° C. / sec or more. The heat treatment at a temperature exceeding the A1 transformation point is carbonitriding, and the quenching temperature range is a temperature range of 790 ° C. to 830 ° C. (Claim 1).
この構成により、上記の熱処理の温度に加熱した後、A1変態点未満の温度に冷却した後に上記熱処理の温度よりも低い温度に加熱して最終的な焼入れを行うので、オーステナイト粒径を細かくすることができる。とくに注意すべきことは、上記の方法によれば軸受部品の内部も表層部と同じ程度に微細化できることである。ここで、オーステナイト粒とは、焼入れ前のオーステナイト粒の粒界が焼入れ後もその跡が残っており、この焼入れ後に残っている跡から得られるオーステナイト粒をさす。 With this configuration, after heating to the temperature of the heat treatment, cooling to a temperature lower than the A1 transformation point, and then heating to a temperature lower than the temperature of the heat treatment for final quenching, the austenite grain size is made fine. be able to. It should be particularly noted that the interior of the bearing component can be made as fine as the surface layer by the above method. Here, the austenite grains refer to austenite grains obtained from the traces of the grain boundaries of the austenite grains before quenching, which remain after quenching.
また2回目の低温焼入れに焼入れ強烈度0.1cm-1以上の冷却媒体を用いることにより、耐久性等を確保するのに十分な硬度を得ることができる。 Further, by using a cooling medium having a quenching intensity of 0.1 cm −1 or more for the second low-temperature quenching, a hardness sufficient to ensure durability and the like can be obtained.
十分な硬度を得るためには上記の焼入れ冷却媒体を用いることがとくに重要であり、上記の冷却媒体の焼入れ強烈度が0.1cm-1未満の場合、軸受部品の表面から2mmの位置で、加熱温度から400℃下がるまでの平均冷却速度を20℃/秒以上とすることが困難となり十分な硬度が得られない。このため、上記冷却媒体の焼入れ強烈度を0.1cm-1以上とする。より好ましくは0.13cm-1以上とする。 In order to obtain a sufficient hardness, it is particularly important to use the quenching cooling medium described above. When the quenching intensity of the cooling medium is less than 0.1 cm −1 , at a position of 2 mm from the surface of the bearing component, It becomes difficult to make the average cooling rate from the heating temperature to 400 ° C lower than 20 ° C / second, and sufficient hardness cannot be obtained. For this reason, the quenching intensity of the cooling medium is set to 0.1 cm −1 or more. More preferably at 0.13 cm -1 or more.
通常、非常に微細なオーステナイト粒を得ようとすると、微細な粒と粗大な粒とが混在した混粒となりやすい。微細なオーステナイト粒を得ようとするとき混粒になりやすい現象は、オーステナイト粒界の界面エネルギーが増大することから熱力学的に説明される。オーステナイト粒が混粒になると、その機械的性質は粗大な粒によって決まってしまい、折角、大部分の領域で微細粒を得ても機械的性質の向上はそれほど期待できない。 Usually, when trying to obtain very fine austenite grains, a mixture of fine grains and coarse grains tends to be formed. The phenomenon that tends to be mixed when trying to obtain fine austenite grains is explained thermodynamically because the interfacial energy at the austenite grain boundaries increases. When austenite grains are mixed, the mechanical properties are determined by coarse grains, and even if fine grains are obtained in the most corners, improvement in mechanical properties cannot be expected so much.
上記の製造方法を用い、混粒を避け微細なオーステナイト粒を得ることにより、シャルピー衝撃値、破壊靭性値、割れ強度、転動疲労寿命などを向上させることができる。なお、混粒ではなくほぼ揃った粒からなる組織を整粒、または整粒組織という。整粒と混粒との区別はあとで説明する。 By using the above production method and avoiding mixed grains to obtain fine austenite grains, the Charpy impact value, fracture toughness value, crack strength, rolling fatigue life, and the like can be improved. In addition, the structure | tissue which consists of a substantially uniform grain instead of a mixed grain is called a sized structure or a sized structure. The distinction between sized and mixed particles will be explained later.
この方法によれば、整粒の微細オーステナイト粒を得ることのほかにさらに、たとえばオーステナイトが変態する温度にまで冷却することにより、浸炭窒化処理の際のオーステナイト粒界と最終焼入れの際のオーステナイト粒界とを無関係にすることができる。浸炭窒化処理の際のオーステナイト粒界には、その粒界に沿って炭化物や窒化物が析出している領域がある。このため、そのまま焼入れの際のオーステナイト粒界に引き継がれると、その領域では、炭化物や窒化物は、オーステナイト粒界に沿ったまま残存する。このようなオーステナイト粒界に沿う炭化物や窒化物は、縁の部分が刃状になる傾向があり、応力集中度を増大させ、転動疲労における割れ起点になりやすいと考えられる。本発明の熱処理方法によれば、浸炭窒化処理の際にその時点のオーステナイト粒界に炭化物や窒化物が析出する。しかし、オーステナイトが変態した後、再加熱してオーステナイト化した時点にできるオーステナイト粒界は浸炭窒化処理時のオーステナイト粒界とは、通常、無関係である。このため、浸炭窒化処理時に生成した炭化物や窒化物は、縁の部分が、(炭化物/マトリックス)界面を減らすために厚く丸みを帯びる傾向がある。この結果、炭化物や窒化物は、耐摩耗性や高温での変形抵抗向上などに寄与しながら、割れ起点として作用しにくくなる。 According to this method, in addition to obtaining fine grained austenite grains, the austenite grain boundaries in the carbonitriding process and the austenite grains in the final quenching are further cooled by cooling to a temperature at which the austenite transforms, for example. You can make the world unrelated. In the austenite grain boundary in the carbonitriding process, there is a region where carbides and nitrides are precipitated along the grain boundary. For this reason, when it is handed over to the austenite grain boundary at the time of quenching, carbide and nitride remain along the austenite grain boundary in that region. Such carbides and nitrides along the austenite grain boundaries tend to be edged at the edges, increasing the stress concentration and tending to become crack initiation points in rolling fatigue. According to the heat treatment method of the present invention, during the carbonitriding process, carbides and nitrides are precipitated at the austenite grain boundaries at that time. However, the austenite grain boundary formed at the time of austenite transformation after austenite transformation is usually irrelevant to the austenite grain boundary during carbonitriding. For this reason, the carbides and nitrides generated during the carbonitriding process tend to be rounded at the edges to reduce the (carbide / matrix) interface. As a result, carbides and nitrides are less likely to act as crack starting points while contributing to wear resistance and improved deformation resistance at high temperatures.
なお、軸受部品用の鋼とは、軸受部品に通常用いられる鋼であって、普通焼入れなどの熱処理が適用されて用いられる鋼である。 In addition, the steel for bearing parts is steel normally used for bearing parts, Comprising: It is steel used by applying heat processing, such as normal hardening.
さらに、オーステナイト結晶粒の成長が生じにくい温度に再加熱して焼入れするので、オーステナイト粒径を細かくすることができる。 Further , since the austenite crystal grains are reheated and quenched to a temperature at which growth of the austenite crystal grains is difficult to occur, the austenite grain size can be reduced.
次に図面を用いて本発明の実施の形態について説明する。図1および図2に、本発明の実施の形態における熱処理方法を示す。図1は1次焼入れおよび2次焼入れを行なう方法を示す熱処理パターンであり、図2は焼入れ途中で材料をA1変態点温度未満に冷却し、その後、再加熱して最終的に焼入れる方法を示す熱処理パターンである。これらの図において、処理T1では鋼の素地に炭素や窒素を拡散させまた炭素の溶け込みを十分に行なった後、A1変態点未満に冷却する。次に、図中の処理T2において、処理T1よりも低温に再加熱し、そこから油焼入れを施す。 Next, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a heat treatment method according to an embodiment of the present invention. FIG. 1 is a heat treatment pattern showing a method of performing primary quenching and secondary quenching, and FIG. 2 shows a method of cooling the material to below the A1 transformation point temperature during quenching, and then reheating and finally quenching. It is the heat processing pattern shown. In these drawings, in the treatment T1, carbon and nitrogen are diffused in the steel base and the carbon is sufficiently dissolved, and then cooled to less than the A1 transformation point. Next, in process T2 in the figure, reheating is performed at a lower temperature than process T1, and oil quenching is performed therefrom.
図1および図2において注意すべき点は、(1)温度T2からの焼入れにおける冷却媒体の焼入強烈度(冷却能:JIS規格)を0.1cm-1以上とすること、または温度T2から焼き入れる際に、軸受部品の表面から2mmの位置で加熱温度から400℃下がるまでの平均冷却速度を20℃/秒以上とすることの2点、および(2)温度T2に加熱する際の昇温速度を、軸受部品の表面から2mmの位置で3℃/分以上にすることである。(1)により、耐久性等を確保するのに十分な硬度を得ることができ、また(2)により混粒のない微細オーステナイト粒を得ることができる。また、適切な量の残留オーステナイトを得るためにも重要である。 The points to be noted in FIGS. 1 and 2 are that (1) the quenching intensity (cooling ability: JIS standard) of the cooling medium in quenching from the temperature T2 is 0.1 cm −1 or more, or from the temperature T2. When quenching, two points of an average cooling rate of 20 ° C./second or more at a position 2 mm from the surface of the bearing part until the temperature drops from the heating temperature to 400 ° C., and (2) temperature rise at the time of heating to T2 The temperature speed is set to 3 ° C./min or more at a position 2 mm from the surface of the bearing part. (1) makes it possible to obtain sufficient hardness to ensure durability and the like, and (2) makes it possible to obtain fine austenite grains free of mixed grains. It is also important to obtain an appropriate amount of retained austenite.
図3は、上記の平均冷却速度を説明する図である。図3は加熱温度T2が800℃の場合を示す。昇温速度は、A1点からT2までの平均昇温速度とする。また、加熱温度T2から400℃低い温度までの平均冷却速度が20℃/秒以上ということは、図3に示すA点が横軸20秒以下であればよい。 FIG. 3 is a diagram for explaining the average cooling rate. FIG. 3 shows a case where the heating temperature T2 is 800 ° C. The temperature increase rate is an average temperature increase rate from A1 point to T2. Further, the average cooling rate from the heating temperature T2 to the temperature lower by 400 ° C. is 20 ° C./second or more as long as the point A shown in FIG. 3 is 20 seconds or less on the horizontal axis.
上記の熱処理によれば、浸炭窒化処理の後冷却し、その後低温に再加熱して焼き入れることに起因して組織が微細化されるため、表層部分を浸炭窒化した上で、割れ強度を向上させ、経年寸法変化率を減少することができる。上記本発明の熱処理方法によれば、オーステナイト結晶粒の粒径を従来の2分の1以下となるミクロ組織を得ることができる。上記の熱処理を受けた軸受部品は、転動疲労に対して長寿命であり、割れ強度を向上させ、経年寸法変化率も減少させることができる。 According to the above heat treatment, the structure is refined due to cooling after carbonitriding and then reheating to low temperature and quenching. Therefore, carbonitriding the surface layer and improving crack strength And the aged dimensional change rate can be reduced. According to the heat treatment method of the present invention, it is possible to obtain a microstructure in which the grain size of austenite crystal grains is ½ or less of the conventional one. The bearing component subjected to the above heat treatment has a long life against rolling fatigue, can improve the cracking strength, and can also reduce the rate of dimensional change over time.
図4は、浸炭窒化処理が終了した軸受部品を温度T2に加熱する連続式の熱処理装置(連続炉)30を示す図である。この熱処理装置30は、後方側に油焼入れのための油33を貯留した油槽31を配置され、その油槽31に軸受部品21を浸漬するための焼入れ用ガイド27を備えている。軸受部品21は、無限軌道状に連続して回動する搬送部材25の上に、前方側から載置され、予熱部28などを経て本体部26へと搬送される。本体部26ではラジアントチューブ23などの加熱手段が配置され、軸受部品21を加熱する。加熱手段は、ヒータやガスバーナであってもよい。炉内雰囲気は、無酸化雰囲気であることが望ましいが、無酸化雰囲気でなくてもよい。
FIG. 4 is a view showing a continuous heat treatment apparatus (continuous furnace) 30 that heats the bearing parts after the carbonitriding process to a temperature T2. The
炉本体部26の容量などは、上記の昇温速度を確保するように設定する。軸受部品21が均質に加熱されるときに、軸受部品21は炉本体部26の後側に到達しているようにする。T2に均質加熱された軸受部品21は、焼入れ用ガイド27を通って油槽31に個々に連続的に落とされる。軸受部品21は、油槽31に配置された籠35に収容され、まとめて取り出される。焼入れは油を用いる必要はなく、各種の冷却媒体を用いることができる。焼入れ強烈度0.1cm-1以上を満たすことができれば、溶融塩、表面活性剤を含んだ水、単なる水など、どのような冷却媒体でもよい。
The capacity | capacitance of the furnace main-
バッチ式でも、上記の昇温速度を確保することはできるが、無数の軸受部品の熱処理をバケットに収容してまとめて行なうと、製品位置によっては十分な冷却速度を得ることができない場合がある。上記の連続式の熱処理装置は、大量の製品を同一の同じ品質に揃えることができる。上記の油槽または冷却媒体貯留槽は、連続的に個別に軸受部品が浸漬され焼き入れる状況に合わせて、冷却媒体の温度が所定の上限を超えないように、冷却媒体の温度を所定範囲内にするように冷却装置などを備えておくことが望ましい。また、冷却装置を備えない場合は、対象とする軸受部品が連続式の上記再加熱と焼入れとを終了する間に、上記冷却媒体が所定の上限温度を超えないように、所定の容量を有することが望ましい。 Even with a batch system, the above temperature increase rate can be secured, but if the heat treatment of countless bearing parts is accommodated in a bucket and performed together, a sufficient cooling rate may not be obtained depending on the product position. . The continuous heat treatment apparatus described above can arrange a large number of products with the same quality. In the oil tank or the cooling medium storage tank, the temperature of the cooling medium is kept within a predetermined range so that the temperature of the cooling medium does not exceed a predetermined upper limit according to the situation where the bearing parts are continuously immersed and quenched. It is desirable to provide a cooling device or the like. Further, when the cooling device is not provided, the target bearing component has a predetermined capacity so that the cooling medium does not exceed a predetermined upper limit temperature while the continuous reheating and quenching are completed. It is desirable.
上記図1に示す熱処理パターンを適用した軸受鋼のオーステナイト結晶粒度を図5(a)に示す。また、比較のため、従来の熱処理方法による軸受鋼のオーステナイト結晶粒度を図5(b)に示す。用いた鋼材は、いずれもJIS規格SUJ2材(1.0重量%C-0.25重量%Si-0.4重量%Mn-1.5重量%Cr)である。また、図6(a)および図6(b)に、上記図5(a)および図5(b)を図解したオーステナイト結晶粒度を示す。これらオーステナイト結晶粒度を示す組織より、従来のオーステナイト粒径はJIS規格の粒度番号で10番であり、また本発明による熱処理方法によれば12番の細粒を得ることができる。また、図5(a)の平均粒径は、切片法で測定した結果、5.6μmであった。 FIG. 5A shows the austenite grain size of the bearing steel to which the heat treatment pattern shown in FIG. 1 is applied. For comparison, FIG. 5B shows the austenite grain size of the bearing steel obtained by the conventional heat treatment method. The steel materials used are all JIS standard SUJ2 materials (1.0 wt% C-0.25 wt% Si-0.4 wt% Mn-1.5 wt% Cr). FIGS. 6A and 6B show the austenite grain sizes illustrated in FIGS. 5A and 5B. From the structure showing the austenite crystal grain size, the conventional austenite grain size is No. 10 in the JIS standard grain size number, and according to the heat treatment method of the present invention, No. 12 fine grains can be obtained. Moreover, the average particle diameter of Fig.5 (a) was 5.6 micrometers as a result of measuring by the intercept method.
次に、オーステナイト結晶粒の混粒生成に及ぼす加熱温度T2への昇温速度の影響について説明する。JIS規格SUJ2材を試験体として用い、図1に示すヒートパターンにしたがい、温度T2への昇温速度を変化させて、800℃にまで加熱した。そのあと、油焼入れを行ない、オーステナイト粒を調査した。結果を図7(a)〜(d)に示す。また、図8(a)〜(d)は、図7(a)〜(d)を図式化した図である。 Next, the influence of the heating rate on the heating temperature T2 on the mixed grain formation of austenite crystal grains will be described. JIS standard SUJ2 material was used as a test body, and the temperature was increased to 800 ° C. while changing the temperature rising rate to temperature T2 in accordance with the heat pattern shown in FIG. After that, oil quenching was performed and austenite grains were investigated. The results are shown in FIGS. FIGS. 8A to 8D are diagrams schematically showing FIGS. 7A to 7D.
図8(a)および(b)は、それぞれ昇温速度1℃/分および2.5℃/分で昇温したものであるが、微細オーステナイト粒の中に粗大なオーステナイト粒が生成している。粗大オーステナイト粒は微細なオーステナイト粒を併合しながら成長し、粗大であるにもかかわらず、その粒界は微細オーステナイトの粒界がそのまま残ったように小さい曲率でうねった部分が連続している。 FIGS. 8 (a) and (b) are the ones heated at a heating rate of 1 ° C./min and 2.5 ° C./min, respectively, but coarse austenite grains are generated in the fine austenite grains. . Coarse austenite grains grow while merging fine austenite grains. Despite being coarse, the grain boundary has a continuous portion with a small curvature such that the grain boundary of fine austenite remains as it is.
図8(c)および(d)では、混粒における大きい部類の粒径と、小さい部類の粒径との差の程度が小さくなり、整粒といっていい組織になる。混粒組織は、JISG0551の定義にしたがう。上述のように、非常に微細なオーステナイト粒が得られるのは、上記昇温速度が3℃/分以上であり、上記昇温速度などが3℃/分未満の場合、非常に大きな粗大粒が成長する。この結果、耐久性などの機械的性質が劣化する。このような混粒組織を避ける上で、上記の昇温速度の限定は非常に有効である。 8 (c) and 8 (d), the degree of difference between the particle size of the large category and the particle size of the small category in the mixed grains is reduced, resulting in a structure that can be said to be sized. The mixed grain structure follows the definition of JISG0551. As described above, very fine austenite grains are obtained when the heating rate is 3 ° C./min or more, and when the heating rate is less than 3 ° C./min, very large coarse grains are obtained. grow up. As a result, mechanical properties such as durability deteriorate. In order to avoid such a mixed grain structure, the above-mentioned limitation of the temperature rising rate is very effective.
次に、同じ鋼材を用いて、油の焼入強烈度(冷却能)と、焼入れ硬度との関係を調査した。試験体の鋼材はJIS規格SUJ2材であり、試験体の形状はリング状とし、外径60mm、長さ10mmであり、内径、したがって肉厚を変化させた。肉厚は2mm〜8mmの範囲に変化させた。熱処理パターンは図1にパターンを採用し、温度T2からの焼入れにおける冷却油を変えることによって、焼入強烈度を変化させた。焼入強烈度の低い油としてはホット油、高い油としてコールド油を用い、これら中間の油としてセミホット油を用いた。焼入強烈度は0.1〜0.14cm-1の範囲に変化させた。焼入れ後、180℃で焼戻したのち、硬さを測定した。硬さは、各リング試験体の外周長さ中央部の表面から0.2mm深さ位置での平均ビッカース硬さ(HV)である。N数は3とした。結果を表1に示す。 Next, using the same steel material, the relationship between oil quenching intensity (cooling ability) and quenching hardness was investigated. The steel material of the test body was a JIS standard SUJ2 material, the shape of the test body was a ring shape, the outer diameter was 60 mm, the length was 10 mm, and the inner diameter, and hence the wall thickness, was changed. The wall thickness was changed in the range of 2 mm to 8 mm. As the heat treatment pattern, the pattern shown in FIG. 1 was adopted, and the quenching intensity was changed by changing the cooling oil in quenching from the temperature T2. Hot oil was used as the oil with low quenching intensity, cold oil was used as the high oil, and semi-hot oil was used as the intermediate oil. The quenching intensity was changed in the range of 0.1 to 0.14 cm −1 . After quenching, after tempering at 180 ° C., the hardness was measured. The hardness is an average Vickers hardness (HV) at a depth position of 0.2 mm from the surface of the center portion of the outer peripheral length of each ring specimen. The N number was 3. The results are shown in Table 1.
表1によれば、強烈度が0.1cm-1以上あれば、肉厚4mmでHV750を得ることができ、肉厚8mmでもHV600を得ることができる。したがって、強烈度としては、0.1cm-1以上を保っておけば、機械的性質を確保するのに十分な焼入れを行なうことができる。 According to Table 1, if the intensity is 0.1 cm −1 or more, HV750 can be obtained with a thickness of 4 mm, and HV600 can be obtained with a thickness of 8 mm. Therefore, if the intensity is maintained at 0.1 cm −1 or more, quenching sufficient to ensure mechanical properties can be performed.
次に、下記のA材、B材およびC材について、一連の試験を行った。熱処理用素材には、JIS規格SUJ2材(1.0重量%C-0.25重量%Si-0.4重量%Mn-1.5重量%Cr)を用い、A材〜C材に共通とした。
(A材:比較例):普通焼入れのみ(浸炭窒化処理せず)。
(B材:比較例):浸炭窒化処理後にそのまま焼き入れる(従来の浸炭窒化焼入れ)。
(C材:本発明例):図1の熱処理パターンを施した軸受鋼。
Next, a series of tests were performed on the following A material, B material, and C material. JIS standard SUJ2 material (1.0% by weight C-0.25% by weight Si-0.4% by weight Mn-1.5% by weight Cr) is used as the material for heat treatment. did.
(A material: comparative example): Only normal quenching (without carbonitriding).
(B material: comparative example): quenching as it is after carbonitriding (conventional carbonitriding quenching).
(C material: Example of the present invention): Bearing steel subjected to the heat treatment pattern of FIG.
(1) 転動疲労寿命
転動疲労寿命試験の試験条件および試験装置の略図を、表2および図9に示す。つまり、φ12×L22の円筒形状の試験片1を、案内輪12に接する剛球13と駆動輪11との間で支持した状態で駆動輪11を回転駆動させ、そのときの寿命(L10寿命)を測定することにより行なった。またこの転動疲労寿命試験結果を表3に示す。
(1) Rolling fatigue life Table 2 and FIG. 9 show the test conditions of the rolling fatigue life test and a schematic diagram of the test apparatus. That is, the
表3によれば、比較例のB材は、同じく比較例で普通焼入れのみを施したA材のL10寿命(試験片10個中1個が破損する寿命)の1.6倍を示し、浸炭窒化処理による長寿命化の効果が認められる。これに対して、本発明例のC材は、B材の2.7倍、またA材の5.0倍の長寿命を示している。この改良の主因はミクロ組織の微細化によるものと考えられる。 According to Table 3, the B material of the comparative example shows 1.6 times the L10 life of the A material that was subjected only to normal quenching in the comparative example (the life that one of the 10 test pieces breaks), and carburized. The effect of extending the life by nitriding is recognized. On the other hand, the C material of the present invention example has a long life of 2.7 times that of the B material and 5.0 times that of the A material. The main reason for this improvement is thought to be the refinement of the microstructure.
(2) シャルピー衝撃試験
シャルピー衝撃試験は、Uノッチ試験片を用いて、JISZ2242に準じた方法により行なった。試験結果を表4に示す。
(2) Charpy impact test The Charpy impact test was performed by the method according to JISZ2242 using the U notch test piece. The test results are shown in Table 4.
浸炭窒化処理を行なったB材(比較例)のシャルピー衝撃値は、普通焼入れのA材(比較例)より高くないが、C材はA材の約1.5倍の高い値が得られた。 The Charpy impact value of the B material (comparative example) subjected to carbonitriding was not higher than that of the normally quenched A material (comparative example), but the C material was about 1.5 times as high as the A material. .
(3) 静的破壊靭性値の試験
静的破壊靭性試験の試験片には、図10に示す試験体を用い、予き裂を約1mm導入した後に、3点曲げによる静的荷重を加え、破壊荷重Pを求めた。破壊靭性値(KIc値)の算出には次に示す(I)式を用いた。ただし、(I)式におけるBは試験片の厚みである。また、試験結果を表5に示す。
KIc=(PL√a/BW2){5.8-9.2(a/W)+43.6(a/W)2-75.3(a/W)3+77.5(a/W)4}…(I)
(3) Test of static fracture toughness value The test piece shown in FIG. 10 was used as a test piece for static fracture toughness test, and after introducing a precrack about 1 mm, a static load by three-point bending was applied, The breaking load P was determined. The following formula (I) was used to calculate the fracture toughness value (K I c value). However, B in the formula (I) is the thickness of the test piece. The test results are shown in Table 5.
K I c = (PL√a / BW 2) {5.8-9.2 (a / W) +43.6 (a / W) 2 -75.3 (a / W) 3 +77.5 (a / W) 4} ... (I)
予き亀裂深さが浸炭窒化層深さよりも大きくなったため、比較例のA材とB材とには違いはない。しかし、本発明例のC材は比較例に対して約1.2倍の値を得ることができた。 Since the pre-crack depth is larger than the carbonitrided layer depth, there is no difference between the A material and B material of the comparative example. However, the C material of the present invention example was able to obtain a value about 1.2 times that of the comparative example.
(4) 静圧壊強度試験
静圧壊強度試験片は図11に示す形状のものを用いた。図中、P方向に荷重を付加して、静圧壊強度試験を行なった。試験結果を表6に示す。
(4) Static Crush Strength Test A static crush strength test piece having the shape shown in FIG. 11 was used. In the figure, a static crushing strength test was performed by applying a load in the P direction. The test results are shown in Table 6.
浸炭窒化処理を行なっているB材は普通焼入れのA材よりもやや低い値である。しかしながら、本発明のC材は、B材よりも静圧壊強度が向上し、A材と遜色ないレベルが得られている。 The B material subjected to the carbonitriding process has a slightly lower value than the A material subjected to normal quenching. However, the C material of the present invention has higher static crushing strength than the B material, and a level comparable to that of the A material is obtained.
(5) 経年寸法変化率
保持温度130℃、保持時間500時間における経年寸法変化率の測定結果を、表面硬度、残留オーステナイト量(0.1mm深さ)と併せて表7に示す。
(5) Aged dimensional change rate The measurement results of the aged dimensional change rate at a holding temperature of 130 ° C. and a holding time of 500 hours are shown in Table 7 together with the surface hardness and the retained austenite amount (0.1 mm depth).
残留オーステナイト量の多いB材の寸法変化率に比べて、本発明例のC材は2分の1以下に抑制されていることがわかる。 It can be seen that the C material of the example of the present invention is suppressed to half or less compared to the dimensional change rate of the B material having a large amount of retained austenite.
(6) 異物混入潤滑下における寿命試験
玉軸受6206を用い、標準異物を所定量混入させた異物混入潤滑下での転動疲労寿命を評価した。試験条件を表8に、また試験結果を表9に示す。
(6) Life test under foreign matter lubrication Using a ball bearing 6206, the rolling fatigue life under foreign matter lubrication in which a predetermined amount of standard foreign matter was mixed was evaluated. The test conditions are shown in Table 8, and the test results are shown in Table 9.
A材に比べ、従来の浸炭窒化処理を施したB材は約2.5倍になり、また、本発明例のC材は約2.3倍の長寿命が得られた。本発明例のC材は、比較例のB材に比べて残留オーステナイトが少ないものの、窒素の侵入と微細化されたミクロ組織の影響でほぼ同等の長寿命が得られている。 Compared to the A material, the B material subjected to the conventional carbonitriding treatment was about 2.5 times longer, and the C material of the example of the present invention had a long life of about 2.3 times. Although the C material of the present invention has less retained austenite than the B material of the comparative example, it has a substantially equivalent long life due to the intrusion of nitrogen and the influence of the refined microstructure.
上記の結果より、本発明例のC材、すなわち本発明の熱処理方法によって製造された軸受部品は、従来の浸炭窒化処理では困難であった転動疲労寿命の長寿命化、割れ強度の向上、経年寸法変化率の低減の3項目を同時に満足することができることがわかった。 From the above results, the material C of the example of the present invention, that is, the bearing part produced by the heat treatment method of the present invention, has a long rolling fatigue life, which is difficult with the conventional carbonitriding process, and an improved crack strength. It was found that the three items of reduction of the aging dimensional change rate can be satisfied simultaneously.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 転動疲労寿命試験片、11 駆動輪、12 案内輪、13 剛球、T1 浸炭窒化処理温度、T2 焼入れ加熱温度、21 軸受部品、23 ラジアントチューブ、25 搬送部材、26 本体部、27 焼入れ用ガイド、28 予熱部、30 熱処理装置、31 油槽、33 焼入油、35 バケット。
DESCRIPTION OF
Claims (1)
前記A1変態点を超える温度での熱処理が浸炭窒化処理であって、前記焼入れ温度域が790℃〜830℃の温度域である、軸受部品の熱処理方法。 A heat treatment method for a bearing component made of JIS standard SUJ2 material, after heat treatment at a temperature exceeding the A1 transformation point of the steel of the bearing component, cooling to a temperature below the A1 transformation point, and thereafter at a temperature equal to or higher than the A1 transformation point Reheating is performed at a reheating temperature included in a quenching temperature range lower than the temperature of the heat treatment so that a temperature rising rate at a depth of 2 mm from the surface of the bearing part is 3 ° C./min or more, and quenching is performed. The quenching is performed using a cooling medium having a quenching intensity of 0.1 cm -1 or more, and the quenching is performed at a position 2 mm from the surface of the bearing component, and an average cooling rate until the temperature decreases to 400 ° C. from the reheating temperature. Is performed under the condition of 20 ° C./second or more ,
A heat treatment carbonitriding treatment at a temperature exceeding the transformation point A1, the quenching temperature range is a temperature range of 790 ℃ ~830 ℃, the heat treatment method of the bearing components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003307171A JP4152281B2 (en) | 2003-08-29 | 2003-08-29 | Heat treatment method for bearing parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003307171A JP4152281B2 (en) | 2003-08-29 | 2003-08-29 | Heat treatment method for bearing parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005076077A JP2005076077A (en) | 2005-03-24 |
JP4152281B2 true JP4152281B2 (en) | 2008-09-17 |
Family
ID=34410042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003307171A Expired - Lifetime JP4152281B2 (en) | 2003-08-29 | 2003-08-29 | Heat treatment method for bearing parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4152281B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100425736C (en) * | 2005-11-30 | 2008-10-15 | 重庆长江轴承股份有限公司 | High carbon chromium bearing parts surface chemical heat-treatment process |
JP2007177288A (en) * | 2005-12-28 | 2007-07-12 | Nsk Ltd | Rolling supporting device, and its rolling member manufacturing method |
JP2011208745A (en) * | 2010-03-30 | 2011-10-20 | Ntn Corp | Rolling bearing |
CN103540726B (en) * | 2013-09-25 | 2015-08-05 | 西安交通大学 | A kind of Super High Carbon profile shaft holds Heat Treatment Of Steel method |
JP2017141479A (en) * | 2016-02-08 | 2017-08-17 | 日新製鋼株式会社 | Method of manufacturing hardened medium carbon steel component |
-
2003
- 2003-08-29 JP JP2003307171A patent/JP4152281B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005076077A (en) | 2005-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4152283B2 (en) | Heat treatment method for bearing parts | |
KR101129370B1 (en) | Carbonitrided induction-hardened steel part with excellent rolling contact fatigue strength at high temperature and process for producing the same | |
US6569267B1 (en) | High bearing pressure-resistant member | |
JP4390526B2 (en) | Rolling member and manufacturing method thereof | |
JP4540351B2 (en) | Steel heat treatment method and bearing part manufacturing method | |
JP3905429B2 (en) | Heat treatment method for bearing parts and bearing parts | |
JPH0426752A (en) | Rolling bearing | |
JP5477111B2 (en) | Nitriding induction hardening steel and nitriding induction hardening parts | |
CN103237913B (en) | Rolling bearing and method for producing same | |
US20170335440A1 (en) | Fatigue-resistant bearing steel | |
US20210032737A1 (en) | Machine component | |
JP3787663B2 (en) | Heat treatment method for rolling bearings | |
JP4152281B2 (en) | Heat treatment method for bearing parts | |
JP4102866B2 (en) | Gear manufacturing method | |
JP4152282B2 (en) | Heat treatment method for bearing parts | |
AU2019287841B2 (en) | Method for producing machine components | |
JP3987023B2 (en) | Steel heat treatment method and steel | |
CN107653420A (en) | Vacuum carburization steel and its manufacture method | |
JP5305778B2 (en) | Manufacturing method of seamless steel pipe for high strength carburized parts | |
JP4757831B2 (en) | Induction hardening part and manufacturing method thereof | |
JP4821582B2 (en) | Steel for vacuum carburized gear | |
JP6881496B2 (en) | Parts and their manufacturing methods | |
JP6881498B2 (en) | Parts and their manufacturing methods | |
JP6881497B2 (en) | Parts and their manufacturing methods | |
JP2008088482A (en) | Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071001 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071009 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080610 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080701 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4152281 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |