JP4150801B2 - Processing method and apparatus for detoxifying and recycling incineration ash - Google Patents
Processing method and apparatus for detoxifying and recycling incineration ash Download PDFInfo
- Publication number
- JP4150801B2 JP4150801B2 JP11749799A JP11749799A JP4150801B2 JP 4150801 B2 JP4150801 B2 JP 4150801B2 JP 11749799 A JP11749799 A JP 11749799A JP 11749799 A JP11749799 A JP 11749799A JP 4150801 B2 JP4150801 B2 JP 4150801B2
- Authority
- JP
- Japan
- Prior art keywords
- ash
- reaction
- incinerated ash
- treatment
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004064 recycling Methods 0.000 title claims description 12
- 238000003672 processing method Methods 0.000 title description 3
- 239000003054 catalyst Substances 0.000 claims description 60
- 238000006243 chemical reaction Methods 0.000 claims description 60
- 150000002013 dioxins Chemical class 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 46
- 239000007789 gas Substances 0.000 claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 238000002485 combustion reaction Methods 0.000 claims description 32
- 229910052760 oxygen Inorganic materials 0.000 claims description 31
- 239000001301 oxygen Substances 0.000 claims description 30
- 238000006722 reduction reaction Methods 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 24
- 238000001035 drying Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 19
- 230000006641 stabilisation Effects 0.000 claims description 18
- 238000011105 stabilization Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 11
- 239000000446 fuel Substances 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 7
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 7
- 239000003546 flue gas Substances 0.000 claims description 7
- 238000010298 pulverizing process Methods 0.000 claims description 7
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- 239000000839 emulsion Substances 0.000 claims description 5
- 238000001784 detoxification Methods 0.000 claims description 4
- 239000000779 smoke Substances 0.000 claims description 4
- 239000010419 fine particle Substances 0.000 claims description 3
- 238000011946 reduction process Methods 0.000 claims 2
- 239000002075 main ingredient Substances 0.000 claims 1
- 239000002956 ash Substances 0.000 description 108
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 46
- 229910052751 metal Inorganic materials 0.000 description 39
- 239000002184 metal Substances 0.000 description 36
- 150000001875 compounds Chemical class 0.000 description 35
- 239000000126 substance Substances 0.000 description 35
- 229910001385 heavy metal Inorganic materials 0.000 description 31
- 239000012298 atmosphere Substances 0.000 description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 24
- 229910052742 iron Inorganic materials 0.000 description 24
- 230000002829 reductive effect Effects 0.000 description 18
- 239000004568 cement Substances 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000010881 fly ash Substances 0.000 description 15
- 239000010813 municipal solid waste Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- -1 oxides Chemical class 0.000 description 14
- 239000011651 chromium Substances 0.000 description 13
- 229910052799 carbon Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 238000000354 decomposition reaction Methods 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 11
- 239000011575 calcium Substances 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 11
- 238000006703 hydration reaction Methods 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 239000002699 waste material Substances 0.000 description 10
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 9
- 229910052681 coesite Inorganic materials 0.000 description 9
- 229910052906 cristobalite Inorganic materials 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 229910044991 metal oxide Inorganic materials 0.000 description 9
- 150000004706 metal oxides Chemical class 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 229910052682 stishovite Inorganic materials 0.000 description 9
- 229910052905 tridymite Inorganic materials 0.000 description 9
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 239000000460 chlorine Substances 0.000 description 8
- 229910052801 chlorine Inorganic materials 0.000 description 8
- 238000010828 elution Methods 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 150000004045 organic chlorine compounds Chemical class 0.000 description 8
- 229910052763 palladium Inorganic materials 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 7
- 230000036571 hydration Effects 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 150000002736 metal compounds Chemical class 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 238000005338 heat storage Methods 0.000 description 6
- 239000011133 lead Substances 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 239000011398 Portland cement Substances 0.000 description 5
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 5
- 229910001361 White metal Inorganic materials 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000000292 calcium oxide Substances 0.000 description 5
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 5
- 238000006298 dechlorination reaction Methods 0.000 description 5
- 238000003912 environmental pollution Methods 0.000 description 5
- 229910003439 heavy metal oxide Inorganic materials 0.000 description 5
- 239000003864 humus Substances 0.000 description 5
- 239000000395 magnesium oxide Substances 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 238000000197 pyrolysis Methods 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 231100000331 toxic Toxicity 0.000 description 5
- 230000002588 toxic effect Effects 0.000 description 5
- 239000010969 white metal Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 229910052793 cadmium Inorganic materials 0.000 description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000006356 dehydrogenation reaction Methods 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 150000003568 thioethers Chemical class 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- 238000004056 waste incineration Methods 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 150000004645 aluminates Chemical class 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 150000001805 chlorine compounds Chemical class 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- 239000006148 magnetic separator Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 229910052762 osmium Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 231100000614 poison Toxicity 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000003440 toxic substance Substances 0.000 description 3
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical class [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000809 air pollutant Substances 0.000 description 2
- 231100001243 air pollutant Toxicity 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000010882 bottom ash Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 2
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 2
- 239000002734 clay mineral Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000007033 dehydrochlorination reaction Methods 0.000 description 2
- HOOWDPSAHIOHCC-UHFFFAOYSA-N dialuminum tricalcium oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[Al+3].[Al+3].[Ca++].[Ca++].[Ca++] HOOWDPSAHIOHCC-UHFFFAOYSA-N 0.000 description 2
- 150000004826 dibenzofurans Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 229910001653 ettringite Inorganic materials 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000007327 hydrogenolysis reaction Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 150000008040 ionic compounds Chemical class 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910001510 metal chloride Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 150000002927 oxygen compounds Chemical class 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 238000010517 secondary reaction Methods 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 231100000770 Toxic Equivalency Factor Toxicity 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940063013 borate ion Drugs 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical class [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000008422 chlorobenzenes Chemical class 0.000 description 1
- DIWKDXFZXXCDLF-UHFFFAOYSA-N chloroethyne Chemical group ClC#C DIWKDXFZXXCDLF-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N chromium trioxide Inorganic materials O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229940117975 chromium trioxide Drugs 0.000 description 1
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 150000004827 dibenzo-1,4-dioxins Chemical class 0.000 description 1
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- FZFYOUJTOSBFPQ-UHFFFAOYSA-M dipotassium;hydroxide Chemical compound [OH-].[K+].[K+] FZFYOUJTOSBFPQ-UHFFFAOYSA-M 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 239000011396 hydraulic cement Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- NFBOHOGPQUYFRF-UHFFFAOYSA-N oxanthrene Chemical class C1=CC=C2OC3=CC=CC=C3OC2=C1 NFBOHOGPQUYFRF-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229940031826 phenolate Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 150000003058 platinum compounds Chemical class 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WCFYIJPMFMSWLT-UHFFFAOYSA-N tricalcium chloro(trioxido)silane Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-][Si]([O-])([O-])Cl.[O-][Si]([O-])([O-])Cl WCFYIJPMFMSWLT-UHFFFAOYSA-N 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Fire-Extinguishing Compositions (AREA)
- Processing Of Solid Wastes (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
【0001】
【産業上の利用分野】
本発明は環境汚染の観点から、一般焼却灰(飛灰、主灰)を、発生する排ガスを無害化処理しつつ安全な形で有効に利用するための焼却灰の処理方法およびその装置に関する。
【0002】
【従来の技術】
ここ十年、我が国では家庭や事務所から出るゴミと、事業所から排出される産業廃棄物の増加と処理、処分の問題が、各地で論議されるようになってきた。これらの問題に対応して「廃棄物の処理及び清掃に関する法律」が改正され、国民一人ひとりにゴミの排出量の抑制と分別が求められ、「再生資源の利用の促進に関する法律」も制定されて、ゴミの中の再生可能な資源の有効利用を図るように求められた。しかし、その後も全国各地のゴミは増え続けており、不法に投棄されるゴミによる環境汚染が出てきた。昨今、発ガン性物質ダイオキシンが焼却灰の中に含まれているということが現実に起こり、緊急対策が急務となった。
【0003】
ゴミの焼却場では焼却した後に相当量の焼却灰と燃焼ガスの冷却によって発生した微小な灰(フライアッシュ)および大気汚染防止のために設置されている集塵器で集められた煤塵も発生する。これらの灰を焼却残渣といい、ゴミの焼却に伴って発生した新たなゴミである。年間に全国の焼却場で発生した焼却残渣は700万tにも達しており、最終処分場に埋め立てられることになる。
焼却による減量化の意味は、大気中に捨てることである。物質は固体・液体・気体の三態のいずれかの形で存在する。固体としてあった物質がなくなれば、消えてなくなったのではなく気体として変わったのである。残渣の前はゴミであり、残渣の10〜20倍の量である。これをこのまま埋めると5〜10年で処分場を埋め尽くし、日本中がゴミの丘陵と化してしまうから、少しでも埋立地を延命させるため、リサイクルできるものは、リサイクルするべきである。ところが、焼却灰もそのままでは使用できない。
【0004】
最もよい条件で燃やされた焼却灰であっても、燃やされたことにより、酸化されて、さらにはゴミには塩化ビニルなどのような塩素を含んだプラスチック類を多量に含有しているから、焼却すると高い濃度の塩素が含まれた化合物になっている可能性がある。これがダイオキシンの問題である。昭和58年には国内7都市の清掃工場の焼却灰から猛毒のダイオキシン2・3・7・8TCDDガ検出されている。この種類はダイオキシン類のなかでもとびぬけて毒性が強く、青酸カリの5000倍といわれている。ダイオキシンの発生のメカニズムは定かではないが、有機塩素化合物(塩化ビニルなど)が300〜600℃程度の温度で不完全燃焼した結果、熱分解によって生成したという説と、有機塩素化合物の熱分解によって生成した塩化水素の触媒作用とも考えられている。こうした都市ゴミの中の塩化ビニルなどのプラスチック類や各種染料、防虫剤等のクロロベンゼン類が豊富に混入した、無数の有機化学物質を一緒に燃やしてしまう焼却炉は、いわば、何が作りだされているかわからない化学合成プラントともいえる。燃焼に伴う化学反応によって物質がさまざまに形を変えている。すなわち、ダイオキシン等の有害化学物質を生み出しているゴミ焼却処理の燃焼技術を向上させてダイオキシンそのものの生成を抑制できたとしても、第2、第3の問題の発生を防ぐことにはならない。
【0005】
そこでこうした問題を根本的に解決しようとすると、炉の中にあるゴミの成分組成が何であるか、反応生成物として何が作り出されるかを分からなければならない。もう一つは生成された焼却灰をさらに安定した物質に変えてやることである。現在ある焼却炉をすぐ建てかえるとかなくしてしまうことは不可能である。安全で安定で安心できることはこの残渣をもう一度処理して、処理した残渣が溶出試験に合格し、ダイオキシンの測定値がゼロと出ることである。この灰をそのまま埋め立てることは、10年、20年先に炭酸ガスと排熱によりジワジワと地球環境を変える力となり、その残灰は水に溶け出し、公害発生の原因となる。
【0006】
残灰に化したゴミの元の姿は、日常生活に絶対必要なもの、紙や木、生ゴミ、プラスチックや金属化合物などあらゆるものである。そのもとになる原料素材は地球の地殻から人間が掘り出し、精練して金属をつくり、物質をつくっているので、この原料は何十万年も安定な物質として地球の中に存在しているのである。その時の化合物の状態で地球に返してやるべきである。それを焼却炉で燃やして金属酸化物や金属塩化物にして埋めようとすることは自然に対して無理を与えているため、自然の力で浄化できない。これを埋めることは、単に緑豊かな谷間をつぶすという直接的な破壊の問題だけではない。地球に埋められた灰が水に溶け出すことのない物質となれば安全である。天然に存在する物質はほとんどが水に溶けにくいもの、すなわち難溶性の化合物である。このような化合物に変えてやらねばならない。
【0007】
都市ゴミ一般焼却灰(飛灰、主灰)のほとんどは、最終的には埋立処分される。これらは雨水や海水に浸蝕する過程で共存している廃棄物などによって様々な変化をうけ重金属類や飛灰に含まれているダイオキシン類が侵出水と共に流出することが予想される。重金属類は酸化物が塩化物となっており、比較的水に溶け易い金属化合物となっており、ダイオキシンは水溶性物質ではないが、少しずつ水に溶け出した場合の環境汚染の観点から処理方法の確立が必要である。
【0008】
【発明が解決しようとする課題】
本発明は、発生する排ガスを無害化処理しつつ、都市ゴミ一般焼却灰から将来にわたり重金属類やダイオキシン類で環境を汚染することがない安全なセメント系の資材をつくる焼却灰の処理方法およびその装置を提供しようとするものである。本発明は、焼却灰再資源化物におけるダイオキシンの分析で不検出の、また、水和反応により強酸性環境下での加速試験で重金属の溶出防止が可能な焼却灰再資源化物(セメント系の資材)を環境汚染のない作り方で製造する方法およびその装置を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明は、焼却灰である原灰を、外気と絶縁された低酸素状態の空間で一定温度および一定時間維持する焼却灰の無害化・再資源化のための処理において、原灰を乾燥処理して含水率を低減するとともに排ガス中のダイオキシン類を熱分解するための乾燥処理工程、ならびに、乾燥処理をした原灰を表面積拡大のための粉砕処理工程を設けたことを特徴とする焼却灰の処理方法を要旨としている。
上記の外気と絶縁された低酸素状態の空間で、一定温度および一定時間維持して処理する工程は、排煙処理工程を付属させることができる。
【0010】
また、上記の外気と絶縁された低酸素状態の空間で、一定温度および一定時間維持して処理する工程は、還元反応処理工程と安定化反応処理工程とからなる。すなわち、ダイオキシン類の分解反応および酸化重金属類の還元反応を主反応とする還元反応処理と重金属類の不溶化反応を主反応とする安定化反応処理(すなわちここでいう安定化とは、この反応処理灰を水和反応させることにより安定固化し、重金属の溶出防止効果が生ずるようにすることである。)を行う。
上記の乾燥処理工程、ならびに、乾燥処理工程は、還元反応処理工程に入る前に設けることが好ましい。
当該乾燥処理工程において、窒素ガス導入下、炉内温度800〜900℃に加熱する。ここで原灰(未燃焼焼却灰)を完全燃焼させ、かつ、そこからの排ガスを無害化処する。発生する排ガスに窒素ガスを混合し、当該混合ガスを加熱して、好ましくは当該混合ガスを触媒の存在下加熱して、排ガスを無害化処理する。。
上記の粉砕処理工程において、100〜150メッシュの微粒子に粉砕処理する。上記の還元反応処理工程において、焼却灰温度約400℃〜600℃に、時間20分〜40分維持する。安定化反応処理工程において、処理温度200℃〜450℃に、時間40分〜60分維持する。
【0011】
また、本発明は上記の方法を実施するための装置であって、乾燥処理装置、粉砕処理装置、還元反応処理装置および安定化反応処理装置からなることを特徴とする焼却灰の処理装置を要旨としている。還元反応処理装置および安定化反応処理装置のそれぞれに排煙処理装置を付属させることができる。また、乾燥処理装置および還元反応処理装置を同一装置を使用することができる。さらに窒素ガス混合、循環手段を設備していることが好ましい。
【0012】
【発明の実施の形態】
本発明の方法では、ボトムアッシュまたはボトムアッシュとフライアッシュの混合灰など、一般廃棄物を焼却した後に出る焼却灰すべてを原灰として用いることができる。
一般廃棄物の焼却灰等の原灰は、焼却する際の温度が低いために、未燃炭素、炭化水素などを含有していることが多い。また、焼却施設の各種集塵機によって補集された焼却飛灰中には、4塩化〜8塩化のポリ塩化ダイベンゾパラダイオキシンやポリ塩化ダイベンゾフラン等の有害なダイオキシン類が含まれている。
さらにまた、一般廃棄物焼却灰は、炭酸カルシウムやカルシウムシリケート化合物が含まれていて、ガラス化成分の多いことも分かっているが、時折有害重金属が含有していることも報告されている。本発明の方法では、成分的には、未燃炭素、炭化水素などとともに有害な重金属類およびダイオキシン類を含む焼却灰を原灰として用いることができる。
原灰は不純物を多く含んでいるために粒度によるふるい分けと鉄分の除去を行った後用いる。
【0013】
《低温度処理の必要性》
本発明は、焼却灰の重金属類およびダイオキシン類の処理に際し、低温度で行う処理方法を採用している。
環境問題は経済問題と一心同体であるべきである。特に焼却灰などは、日常生活で使用しているものを燃焼して灰になった残りもので新たなゴミとして出てきたものであるが、ただ水に溶け出す性質になっているので、水に溶け出さない性質に変えればいいことであり、易くて安全性があり、安定した方法で環境問題が解決するならば良いことであると思われる。それを、焼却灰を高温で溶融して高い設備費と高いランニングコストで気化させてしまうということは、地下に埋めにくくなったので大気に捨て場を変えるという方向である。そしてそれらの物質はそれぞれの性質をもつものであり、再び解決できない問題として大気中からクローズアップされてくるのは必然である。
少ない熱量とわずかの触媒を使って化学反応を起こさせ「焼却灰」を危険物質は一つも入っていない“自然に合う物質”にすることがたいせつである。
また、大気汚染のポテンシャルは確実に増大している。大気光化学反応による光化学スモッグはあらゆる反応を起こし数多くの副産物を合成していく。大気中でラジカルな反応を次々と起こし、猛毒物質が大気中で合成されていくようになるかもしれない。このように高温で燃焼させ、物質を気化させることだけが処理方法ではない。焼却灰が目に見える固体として減った分だけ気体として目に見えないだけの物質元素が大気中に走り回っているだけである。低温で化学反応が可能であるならばそうすべきであって、このことに関心を持つべきであろう。
環境問題は経済的に安価である手段を採用することが解決のための大切な要件である。特に焼却灰などは、日常生活で使用しているものを燃焼して灰になった残りものであり、新たなゴミとして出てきたものであり、これをいかに安全な状態の、価値あるものに変えるかに高いコストは見合わない。例えば、焼却灰を溶融しスラグとして回収する溶融法は、1200℃以上の高温にする必要がありエネルギーコストが高く、かつ設備投資が莫大なものとなる。低温度で行う処理方法は高温度で行う処理方法と比べて、設備費がかからない点でまず優れている。また、別の解決できない問題を発生させる解決方法であってはならない。一般廃棄物の原灰や下水汚泥の中にはカドミウム、鉛、六価クロムのような有害物質が含有されている場合があるが、900℃付近、好ましくは850℃前後で焼却することにより、水に溶け出さない安全な性質のものに(たとえば三価クロム)に変えることができる。
高温度処理の採用は別の解決できない問題を発生させおそれがある。焼却灰を有効に利用するには、重金属などの有害な物質が環境へ溶け出す性質になっているので、水に溶け出さない性質に変えさえすればよく、低温度で行う処理方法で解決できる。それを、例えば高温で溶融して高い設備費と高いランニングコストで気化させてしまうということは、大気に捨て場を変えるという方向であり、別の解決できない問題を発生させてしまう。
ダイオキシンの問題も同様で、原灰の中にあったダイオキシンを分解すること、新しく発生させないことが肝要である。
【0014】
《低温度処理の実現》
低温度処理で、焼却灰の水溶性物質をダイオキシン類の発生を抑制しつつ難溶性物質に変える。
水溶性物質を難溶性物質に変えることが必要であるが、そのために高温・高圧を用いたのでは経済性に欠ける。触媒作用による金属反応を促進させ、また、イオン反応による物質構成がおこりやすくするため、粉末化による反応表面積を拡大し、反応雰囲気の空間状態など外気と絶縁された脱酸素状態の空間で一定温度および一定時間維持する。触媒になる物質は気体、液体、固体を問わず多種多様である。金属触媒は金属の表面積が小さく触媒としては能率が悪いので、金属を細かい粉末としてできるだけ表面積を広くした状態で用いる。すなわち、これらの触媒になる成分を含有する焼却灰を粉砕し粒度を小さくしてから処理すると、結果として、触媒になる成分も表面積が増大し触媒活性が大きくなる。
ダイオキシン類の発生抑制や排出低減にあたっては、焼却炉内での燃焼プロセス、排出口から排ガス処理装置までの熱回収、ガス冷却過程そして排ガス処理装置におけるダストを中心とした大気汚染物質の除去等により抑制される。
【0015】
本発明における低温度で行う処理方法は、原灰そのものの反応性を高めることにより以下のような原理を利用して達成される。
地球上に存在する元素について、地球の地殻にあたる部分(岩石圏)深さ1.6キロメートルまでと、海水や陸水や大陸氷の部分(水圏)、大気にあたる部分(大気圏)の化学分析値をもとに、地球の表面付近の構成元素の存在度を出している。最も多いのは酸素で、重量%でいえば全元素のおよそ46.6%を占めている。その次がケイ素で27.7%、続いてアルミニウムの8.13%で、これらはケイ酸塩の主要構成元素で、この後に鉄、カルシウム、ナトリウム、カリウム、マグネシウムなどの順で、ケイ酸塩の構成元素で全体の98.6%を占めている。これらの元素を分類するには、周期表によるものもあるが、周期表とは別に元素が地球上でどのような化合物をつくりやすいかという観点から分類していくものもあり、次の4つの元素に分けられる。
1)親石元素 地球上で岩石圏の地殻のケイ酸塩相に集まる元素(ケイ素、アルミニウム、カルシウム、ナトリウム、カリウム、マグネシウム、フッ素、塩素などのアルカリ金属、アルカリ土類金属、ハロゲン元素など)
2)親鉄元素 地球の核の部分に集まる元素(鉄、ニッケル、コバルト、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金など)
3)親銅元素 地球上で主として硫化物相に集まる元素(銅、銀、亜鉛、カドミウム、水銀、鉛、砒素、硫黄など)
4)親気元素 大気圏に分配されやすい元素(水素、窒素、炭素、酸素、希ガスなど)
【0016】
一般的に親銅元素は還元的環境では酸素より硫黄に対する親和力(結合力)が大きく、親石元素は硫黄より酸素との親和力が大きい。また、親鉄元素は硫黄や酸素と比較的結合しにくい。これらの元素は地球上で様々な物質をつくるが、天然に存在する固体の無機物質は鉱物と呼ばれ、岩石圏を構成している。この中に単体の金(Au)、ダイヤモンド(C)は一般的にまれであり、希少価値を持つが、化合物は地球上に比較的広く産し、硫化物、酸化物、水酸化物、硫酸化物など無数の化合物で安定して存在している。
このような安定な化合物を焼却灰からつくりだすために、本発明は、最小限の熱の力と有効な触媒少量を使うことにより行う。焼却灰を微粉末にすることで浮遊させ“触媒燃焼”という触媒表面における触媒酸化反応により、完全燃焼が可能となり、低い温度で反応を完結させようとするものである。
【0017】
《不活性ガスによる乾燥》
焼却灰は金属もしくは非金属元素の酸化物の混合体であり、場合によっては毒性物質の発生もあり得るため酸化反応を極力小さくし、金属酸化物を金属化するため、不活性ガスによる乾燥を行う。ダイオキシン類の分解には当該処理は800℃以上の温度で十分目的を達成することができるが、ダイオキシン類の完全な分解を考慮して、処理温度は雰囲気温度900℃前後が好ましい。本発明は焼却灰の処理に当たり、あらかじめ乾燥処理をする。この乾燥処理工程において、炉内温度800〜900℃で処理することにより、焼却灰の含水率を低減(2%以下)するとともに排ガス中のダイオキシン類の熱分解を行う。不活性ガスとしては窒素(N2)ガスを使用し、ガスは循環使用する。ブロックフローとしては図2のようになる。
不活性ガスとして窒素(N2)ガスを使用する場合、窒素の分子量は28であり、その熱的特性(熱容量、熱伝導度、伝熱係数等)は、分子量が29の空気とほとんど差がない。したがって乾燥特性には変わりがない。
加熱機から乾燥装置へ送りこまれるガスの温度、湿度は常に一定でないと安定した運転が保持できないので、加熱器へのリターンも温度条件が一定となるよう、ガスの熱交換を行う熱回収器をつける。
【0018】
《ダイオキシン類の分解》
本発明は乾燥処理工程において、焼却灰を完全に燃焼させることによりダイオキシン類の分解反応を行う。
ダイオキシン類の分解には当該処理は800℃以上の温度で十分目的を達成することができるが、ダイオキシン類の完全な分解を考慮して、処理温度は雰囲気温度900℃前後、焼成灰温度約600℃が好ましい。
一般焼却場の焼却炉から排出された燃焼灰は、未燃焼物を多く含み、焼却施設の各種集塵機によって補集された焼却飛灰中には有害なダイオキシン類が含まれている。ダイオキシンの生成機構は、都市ゴミを焼却する燃焼過程における熱力学や、反応速度、さらには分子の電子状態による反応機構や処理装置から発生し、未燃分の残留炭素、酸素および塩化物(金属塩化物など)の反応による有機塩素化合物の生成からなるものである。焼却炉においては、塩化ビニル系プラスチックの焼却、水溶性塩素の排ガス中のCO2,SO2との反応による塩化水素の発生がみられる。大量の炭化水素(CnHm)が発生し、O2との接触により、CO2とH2Oに分解する。しかし不完全燃焼によるダイオキシンや前駆体の発生もありうる。
燃焼に伴って発生する炭素数2や炭素数4の化合物が、塩酸と酸素から高温で生成する塩素ガスや金属塩化物によって触媒反応で塩素化され、クロロエチレンやクロロアセチレン系の化合物を経てクロロベンゼンが生成する。クロロベンゼンはヒドロキシルラジカル(OH・)や酸素、その他の燃焼排ガスと反応しクロロフェノールやクロロフェノキシルラジカルとなり、炭素数2や炭素数4の化合物と結合してポリクロロモノベンヅジオキシンやポリクロロモノベンゾフラン、さらにはダイオキシンが生成する。
これらダイオキシン類の発生抑制や排出低減にあたっては、焼却炉内での燃焼プロセス、排出口から排ガス処理装置までの熱回収、ガス冷却過程そして排ガス処理装置におけるダストを中心とした大気汚染物質の除去等により抑制される。ダイオキシン類は完全燃焼により発生抑制が可能で、燃焼と排ガス処理過程で不完全燃焼物を発生させなければダイオキシン類の発生のおそれはない。
【0019】
そこで排出された焼却灰につても、完全燃焼をするため、排出された焼却灰をさらに燃焼させ、不燃物を取り除き、燃焼キルンによる燃焼ガス温度を一定に保ち充分なガスの滞留時間でキルン内での充分なガス撹拌、二次空気との混合することにより、燃焼ガス中の未燃カーボン、炭化水素等の物質を減らすことが必要である。一般にこれらのダイオキシン類は、通常、焼成温度が950℃以下では完全に分解しない。焼成温度が950℃以上になるとダイオキシン類は分解し無害化するとともに、塩素の大部分は、カルシウムクロロアルミネート(11CaO・7Al2O3・CaCl2)やカルシウムクロロシリケート(2CaO・SiO2・CaCl2・3CaO・SiO2・CaCl2)等の水硬性鉱物として固定される。本発明はこの還元反応処理において、触媒の作用等により、上記の温度よりも低い焼却灰温度約400℃〜600℃でダイオキシン類を分解することができる。
しかし、フライアッシュ等の焼却灰を低酸素雰囲気下で加熱処理することは、フライアッシュの酸化雰囲気下での加熱(250〜400℃)が、各種金属化合物の触媒作用によりダイオキシンを生成させるのと表裏一体を成していることを考慮しなくてはならない。フライアッシュ等の焼却灰の加熱を酸素欠乏下の低酸素雰囲気下で行うことより、灰中のダイオキシン類を脱塩素化して分解し、また、処理装置内のダイオキシン類も熱分解することができる。酸化雰囲気下ではダイオキシン類は前駆体物質等からフライアッシュ中の塩化物、炭素等と反応して300℃付近で多く生成されるが、還元雰囲気下で雰囲気温度450℃以上に加熱すれば、触媒作用によりダイオキシン類は分解される。
本発明では、低温処理の過程でダイオキシン類の発生をなくするために当該処理の前に未燃焼物を完全に燃焼させ、含まれるダイオキシン類を完全に分解しておくとともに、その排ガスを窒素ガスの存在下加熱処理してダイオキシン類が発生しないように完全に分解することを特徴とする。フライアッシュ加熱を酸素欠乏下の低酸素雰囲気で行うことより、ダイオキシン類の脱塩素化/水素化が図られることになる。
【0020】
《還元処理反応の採用》
焼却灰を微粒子にして表面積を拡大し、減酸素雰囲気の燃結キルンに投入する。キルン内の化学反応は触媒反応であり、自由エネルギーが減少され、反応速度が高まりラジカルが生成し、連鎖機構によって気相に拡散し反応が促進される。CaO,K2O,Al2O3,SiO2などラジカルの反応により固体表面の吸着や温度変化によって反応気体と触れ、表面に触媒機能をもった物質を合成することにより活性点の高い触媒となる。
還元処理反応の主反応は、有機塩素化合物の脱塩素化と灰中のダイオキシン類分解、有機塩素化合物の熱分解、炉内のダイオキシン類分解、酸化重金属類の還元、重金属類の活性化である。
酸化雰囲気ではダイオキシン類は前駆体物質から飛灰中の塩化物や炭素を触媒として300℃付近で多く生成されるが、還元雰囲気下で450℃以上に加熱すれば、触媒作用により分解できる。まず、脱塩酸反応が生じ、その後に還元され、脱塩素化/水素化の処理になる。この乾留状態の中からアンモニア(NH3)が排出し、その還元力によりNOxを抑制することもできる。同時に重金属類の安定化処理も施される。
【0021】
《触媒機能の利用》
本発明に使用される触媒については特に制限を設けるものではないが、触媒(担体)原料の主成分は処理された燃焼灰の微粉化物である。セメント状になった微粉体の含有成分は、Na、Mg、Al、Si、P、S、Cl、K、Ca、Ti、V、Cr、Mn、Fe、Cu、Zn、Pb等が酸化物として存在するものである。これら元素の酸化物の混合物にアルミン酸石灰3%〜5%、ポルトランドセメント25%〜27%を加え、まず乾燥混合し、成形に必要な水分、成形助剤として無機系固化剤を添加し、十分湿式混練し、目的形状(図5に示す蓄熱塔参照)に成形し、養生硬化を行う。形状はペレット状,板状,円筒状,格子状,ハニカム状など任意の形状が可能である。また、本触媒は機械的特性、物理的特性が極めて優れており、安定して長期使用に耐え得るものである。このようにして得られた成形物にPt等の貴金属触媒物質および必要によりMn,Cu,Cr,Fe等を金属として、又はその酸化物として担持せしめ製品の触媒が得られる。上記の触媒担体の特徴は、それ自体活性をもち、それゆえ最小の担持量で希望する水準の性能を有する触媒を得ることができる。特に触媒を大量に調製する場合はこれらの長所が有利に発揮される。白金属処理は1l当たリ0.5g〜1.0gの量で表面に適用される。白金化合物を担持した組成物は70〜170℃で乾燥され、ついで空気中400〜600℃で焼成するか、あるいは水素ガス,水素−窒素ガス中250〜500℃で還元処理する。なお、これらの空気加熱処理,水素ガス,水素−窒素ガス処理の代りに被処理排出ガスで処理して活性化することにより製品とすることもできる。製造法はこれらに限定されないことは言うまでもない。反応器の形式としては特に限定はないが、通常の固定床,移動床,流動床等の反応器を適用することができる。
本発明の方法は、焼却炉排ガス等に含まれるポリ塩化ジベンゾダイオキシンまたはポリ塩化ジベンゾフランを当該触媒を用いて除去する排ガス処理方法であり、低温度で上記毒性有機塩素化合物の除去が行なえるのでランニングコストや設備コストを低減することができる。
本発明は、ダイオキシン類の分解反応ならびに酸化重金属類の還元反応を主反応とする還元反応処理を行う。一般廃棄物焼却灰の成分は、主としてケイ素、カルシウムであり、そのほか、アルミニウム、鉄などの金属酸化物が含まれている。そして、最近問題となっている有害重金属については鉛が多く、次に水銀やカドミウムがある。さらに、塩素が多いのも特徴である。これら重金属の混入が焼却灰の有効利用の促進を妨害している。還元触媒の反応機構の理論的解明は困難であり、試行錯誤的に各種添加剤および/または触媒を用いて、当該生成物の重金属溶出性の評価を行い、酸化重金属類の還元反応とその重金属の還元触媒としての利用および/または安定化合物へ化学反応させる一応の技術を確立している。
触媒には金属触媒、金属酸化物触媒などがある。金属元素の中の遷移金属である鉄、コバルト、ニッケル、銅および白金属と云われるルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金は水素分子を解離して、水素原子にして活性化を高める。普通水素分子を解離するエネルギーは約450キロジュールのエネルギーがないと解離されないが水素原子はNi、Pd、Ptなどの表面上では、室温で容易に解離してNi、Pd、Pt上に吸着する。この解離をさせる原動力は金属表面の水素原子に対する化学親和力である。解離した水素原子は反応性に富み、金属表面に近づいてくる炭化水素(エチレンやプロピレンなど)に付加したり炭素と酸素の化合物など有機化合物に付加して水素化生成物をつくる。また、白金属やFe、Co、Niは炭化水素のC−H結合をも解離して、水素化分解も行う。このように触媒は金属分子を活性のある金属原子にして、化学反応を熱源にたよらず、促進する力をもっている。
【0022】
焼却灰の中には、典型元素が多く、遷移元素は少ない、遷移金属のTi、V、Cr、Mn、Fe、Cu、Znなどは酸素との結合が強すぎて金属酸化物となってしまうため、酸素量を6%に減らしている。遷移金属酸化物は酸化に活性を示すものと、脱水素に活性を示すものに分けられる。Fe2O3、Cr2O3は水素分子が存在していても金属状態に還元されないので脱水素に対して良い触媒となる。焼却灰中のCrはCrO3の三酸化クロムで水に溶け易い化合物なので水素との反応で水酸化クロムとなり、水酸化クロムの燃焼行程により安定不溶化の三酸化二クロム化合物となる。典型金属酸化物は反応分子と酸塩基相互作用をし、反応分子にプロトンを与えたり、反応分子がプロトンを引き抜いて分子を活性化する。SiO2、Al2O3、MgOなどがある。
焼却灰中に含まれる金属触媒は、反応器内の触媒粒子の外表面積が大きいほど活性が大きくなるので、触媒粒子は小さいほどよい。反応物質と触媒が同一体であるため、反応器のタイプは流動式で反応物が連続的に反応器に供給され、生成物が連続的に取り出される。反応器内は十分に撹拌され、完全混合流れである。一般に、触媒には金属触媒、金属酸化物触媒などがある。遷移金属であるFe、Co、Ni、Cuおよび白金属であるRu、Rh、Pd、Os、Ir、Ptは水素分子を解離して、水素原子にして活性化を高める。普通水素分子を解離するエネルギーは約450キロジュールのエネルギーが必要であるが、Ni、Pd、Ptなどの表面上では、室温で容易に解離してNi、Pd、Pt上に吸着する。この解離をさせる原動力は金属表面の水素原子に対する化学親和力である。解離した水素原子は反応性に富み、金属表面に近づいてくる炭化水素に付加したり炭素と酸素の化合物など有機化合物に付加して水素化生成物をつくる。また、白金属やFe、Co、Niは炭化水素のC−H結合をも解離して、水素化分解も行う。このように触媒は金属分子を活性のある金属原子にして、化学反応を熱源にたよらず、促進する力をもっている。
焼却灰の中には、典型元素が多く、遷移元素は少ない。遷移金属のTi、V、Cr、Mn、Fe、Cu、Znなどは酸素との結合が強すぎて金属酸化物となってしまうため、反応(燃焼)系は酸素量を6%に減らした低酸素状態の空間としている。遷移金属酸化物は酸化に活性を示すものと、脱水素に活性を示すものに分けられる。Fe2O3、Cr2O3は水素分子が存在していても金属状態に還元されないので脱水素に対して良い触媒となる。焼却灰中のCrはCrO3で水に溶け易い化合物なので水素との反応でCr(OH)3となり、Cr(OH)3の燃焼工程により、安定不溶化のCr2O3となる。SiO2、Al2O3、MgOなどの典型金属酸化物は反応分子と酸塩基相互作用をし、反応分子にプロトンを与えたり、反応分子からプロトンを引き抜いたりして分子を活性化する。
触媒は、主成分として、酸化鉄(Fe3O4)、助触媒として酸化カリウム(K2O)(0.5〜1.5%)、アルミナ(Al2O3)(2〜4%)、酸化カルシウム(CaO)(1〜3%)、シリカ(SiO2)(0.2〜1%)、酸化マグネシウム(MgO)(0.2〜4%)などを用いる。触媒の作用によって難溶性の化合物を形成する。主な反応は硫化反応である。
焼却灰中に含まれる金属触媒は、反応器内の触媒粒子の外表面積が大きいほど活性が大きくなるので、触媒粒子は小さいほどよい。反応物質と触媒が同一体であるため、反応器のタイプは流動式で反応物が連続的に反応器に供給され、生成物が連続的に取り出される。反応器内は十分に撹拌され、完全混合流れである。
【0023】
《表面積の拡大》
処理を受ける焼却灰は微粉末に粉砕してその表面積を大きくすることで、その反応性を高めることができる。
まず、粒度選別、鉄分選別等により粒度を10メッシュ以下にして、減酸素雰囲気下の燃結キルンに投入する。さらに還元反応処理を受けた原灰は安定化反応処理を受ける前に、100〜150メッシュの微粉末にする。キルン内の化学反応は触媒反応であり、反応器内の触媒粒子の外表面積が大きいほど活性が大きくなるので、触媒粒子は小さいほどよい。微粉末に粉砕してその表面積を大きくすることで、自由エネルギーが減少され、反応速度が高まりラジカルが生成し、連鎖機構によって気相に拡散し反応が促進される。CaO,K2O,Al2O3,SiO2などラジカルの反応により固体表面の吸着や温度変化によって反応気体と触れ、表面に触媒機能をもった物質を合成することにより活性点の高い触媒となる。酸化雰囲気ではダイオキシン類は前駆体物質から飛灰中の塩化物や炭素を触媒として300℃付近で多く生成されるが、還元雰囲気下で450℃以上に加熱すれば、触媒作用により分解できる。まず、脱塩酸反応が生じ、その後に還元され、脱塩素化/水素化の処理になる。この乾留状態の中からアンモニア(NH3)が排出し、その還元力によりNOxを抑制することもできる。同時に重金属類の安定化処理も施される。
【0024】
《焼却灰の安定化》
重金属を含む異種金属の混合物である焼却灰を効率よく相互分解させ、重金属塩類を触媒として利用して金属塩を溶離し、その時、結晶化させることにより安定化する。すなわちここでいう安定化とは、この反応処理灰を水和反応させることにより安定固化し、重金属の溶出防止効果が生ずるようにすることである。
焼却灰は、Na,Mg,Al,Si,P,S.Cl,K,Ca,Ti,V,Cr,Mn,Fe,Cu,Zn,P,Bの7元素のほかに未燃カーボンCが含まれており、金属や非金属の混合物である。金属は化合物となって安定化され、金属種により、酸化物、水酸化物、硫酸化物、硫化物、リン酸化物、リン化物等金属化合物によって安定化する。アルカリ金属とアルカリ土類金属以外の水酸化物は水に溶けにくい化合物〔Cu(OH)2,Al(OH)2,Zn(OH)2,Pb(OH)2,Fe(OH)2など〕、As,PなどはCaOと反応して安定化合物となる。
金属化合物は地下に埋蔵されると、土壌中の微生物が構成元素の大半を徐々に無機化して、CO2,H2O,N2などの形で大気中に還元する。またCa2+,Mg2+,K+,NH4などの無機陽イオンは腐植や粘土に吸着される。腐植では、その有機酸としての官能基が、粘土では粘土鉱物の層間位置や格子破端の陰荷電が、これらの陽イオンを吸着する。NO3-,Cl-,SO4 2-などの陰イオンも腐植や粘土の部分的陽電荷により吸着される。安定金属化合物は大部分が、一次鉱物、粘土鉱物および腐植の内部構造に組み込まれた形で存在するようになり、イオンの形で溶液中あるいは粘土や腐植の表面のイオン交換部位に吸着保持される。また焼却灰は塩基度CaO/SiO2が高く徐冷により結晶化する性質があり、急冷するとガラス質になる。すなわち、水に溶けにくい物質として安定かつ安全な物質を生成することになる。反応として、元素には電気的に陽性になりやすいものと陰性になりやすいものがあり、陰陽の組み合わせによって安定な化合物が生まれる。多くの金属元素は陽性の元素で、また非金属元素は陰性の元素であり、その組み合わせで生まれる化合物(塩類)は陽成分と陰成分からなり、単塩であり、複塩、錯塩である。
貴金属といわれる金属以外の金属は単体として産出しない。アルカリ金属は水中にイオンとなって存在する。多くの金属はイオン化傾向があり、酸溶液で溶け出そうとする。元素は太陽エネルギーと地球内部の地殻エネルギーにより、岩石、大気、海水と変成作用を通じて循環しているのであって、O,Si,Al,Fe,Cu,Na,K,Mgとほとんどケイ酸塩でできている。他に化合物の種類としては、ハロゲン化物炭酸塩、ヒ酸塩、ホウ酸塩など、いずれもイオン性化合物としての性質をもっている。ハロゲン化物や硫化物、酸化物は陰性の元素が単独で陰イオンとなり、陽イオンと結合してできたものであり、その他の化合物はいずれも陰性の元素が酵素と結びついてオキソ酸イオンとなり、陽イオンと結合してできたものである。
陰イオン:塩化物イオン(Cl-)、硫化物イオン(S2-)、酸化物イオン(O2-)オキソ酸イオン:炭酸イオン(CO3 2-)、リン酸イオン(PO4 3-)、水酸化物イオン(OH)、ヒ酸イオン(ASO4 3-)、硫酸イオン(SO4 2-)、ホウ酸イオン(BO3 2-)、硝酸イオン(NO3 -)、ケイ酸イオン(SIO4 4-)
これらイオンが化合物を構成しているのであって、このイオン性化合物の陽イオン、陰イオンがそれぞれ溶けることのできる量を溶解度と規定され、S2-やSO4 2-、CO3 3-は金属イオンと反応して難溶性の化合物をつくる。しかし、水は強い配位子だから金属元素イオンに配位しやすく、多くの金属媒体は水に溶けると直ちにアクア媒体に変わってしまう。
水溶性物質を難溶性物質に変えるために、物質元素の化合物の性状を変える。焼却灰の資源化の阻害要因となっている有害重金属を溶解度の低い溶出しにくい形態で安定して不溶化する。
本発明は重金属溶出防止のための添加剤を添加するこができる。重金属溶出防止のための添加剤としては、加えて焼却処理するだけその溶出が検出限界以下となるような添加剤を選択する。焼却灰は金属や非金属の混合物であり、金属は化合物となって安定化される。金属種により、安定化の形態は異なり、酸化物、水酸化物、硫酸化物、硫化物、リン酸化物、リン化物等金属化合物になって安定化する。
【0025】
《本発明の生成物》
焼却灰は一般に含水率が高く、重金属等を多く含有しているため、水硬性セメントによる固化が最も難しい。この固化阻害要因をもつ金属の無害化、ならびに有機質化合物の硬化を促進させるために、乾留と減酸素雰囲気による燃焼により阻害要因を取り除く。
セメントは水と反応して水和物の結晶を析出し、これが互いに連結し合って固化するもので、その水和物結晶は常温で安定である。主要成分は石灰分(CaO)であり、次いでケイ酸分(SiO2)であり、これらの含量は全体の88%である。次いでアルミナ分(Al2O3)、鉄分(Fe2O3)、硫酸根(SO3)などである。これらの化学成分は単に酸化物として存在するのではなく、化合物として存在し、水と反応して水和物を生成する。いわゆる水硬性硬物として存在する。
普通ポルトランドセメントについて、その水和強さを支配する鉱物は一般に
Aliteと呼ばれる3CaO,SiO2、およびBeliteと呼ばれる2CaO,SiO2で、AliteとBeliteで全体の76%を占める。これらいずれも石灰分(CaO)とケイ酸分(SiO2)との化合物であって、水と接触して次の様な反応で水和物結晶となる。
2Ca3SiO5 + 6H2O = Ca3Si2O7・3H2O + 3Ca(OH)2
2Ca2Si4 + 4H2O = Ca3Si2O7・3H2O + Ca(OH)2
これら水硬性ケイ酸石灰塩は水和反応の速度や、結晶時のメカニズムに差はあるが、いずれも結果的には3CaO・2SiO3・3H2Oという形のケイ酸石灰塩水和物を形成する点で一致している。一方、このほかの主要化合物として、アルミナ分(Al2O3)を含む相に3CaO・Al2O3(アルミン酸三石灰)および、4CaO・Al2O3・Fe2O3(アルミン酸鉄酸四石灰)などがあるが、これらは水と反応して3CaO・Al2O3・6H2Oという形の結晶を析出する。
なお、ここで硫酸根(SO3)が存在するとアルミン酸石灰塩水和物はSO3と結びついて無機の複塩を生成する。これが一般にセメントパチルスと呼ばれるエトリンガイト(3CaO・Al2O3・3CaSO4・3H2O)である。このエトリンガイトが、セメントにおける重金属を封じ込める結晶である。1分子中に32分子もの水を結晶構造の単位として保有しているが、SO3の供給がなくなると3CaO・Al2O3・CaSO4・12H2Oに変化してこのようなコンバージョンにより構造体の密度変化、遊離水の発生により結合力を弱める。
本発明の生成物(以下、「ニューハード」と言うこともある。)は、潜在水硬性をもち、アルカリまたは硫酸塩などの刺激作用によって水硬性を発揮する。化学成分で示される塩基度の値(CaO+Al2O3+MgO)%/SiO2%が1.35〜1.45ぐらい。ポルトランドセメントに比べると1%ほど塩基度も低く、水和力も低い。このためポルトランドセメントと焼却灰を混合粉砕して、水和性と硬化性を高める。ポルトランドセメントの配合比率はセメント10%〜30%程度で焼却灰に含まれている化合物の構成比と粉末度の相異によりニューハードの性質も違ってくる。
また、ニューハードは水と炭酸ガスによる反応がないので、セメントのような風化されて固結してしまうことはない。ニューハードは反応の激しいアルミナやマグネシウムがカルシウム分に比べて多量に含まれているため、反応速度が早く膨張係数が高くなる。セメントよりも水酸化カルシウムが材令28日前後にニューハードの潜在水硬性による再反応を発揮、水和が進み、セメントの水和力を助けるため、長期にわたって強度が増進する。
ニューハードは、海水、下水、地下水の構造物に強い。コンクリート構造物が破壊しやすくなるのは、硫酸塩がコンクリート中のCa(OH)2と化合して硫酸カルシウム(CaSO4)をつくり、さらにアルミン酸三石灰水和物(3CaO・Al2O3・nH2O)と結合して、セメントパチルスになるためである。
ニューハードは膨張係数が大きく、反応が初期に始まるため、硬化物中のCa(OH)2が少なくなり、C3Aも少なくなるため、逆に抵抗性がよりでてくる。ニューハードは表面活性力が大きいため、固化に必要な起泡能力と分散能力に優れ、流動性があり、これらの面を合わせ持ち、セメントの水和反応を促進させる。起泡能力と分散能力の活性エネルギーが高いため、粘性度の強い土質を砂質に24時間で物理・化学変化させる。さらに、地盤改良など、強度補強に透水性があり、強度があるという特性がある。
【0026】
【実施例】
本発明の詳細を実施例で説明する。本発明はこれら実施例によっては何ら限定されることはない。
【0027】
実施例1
焼却灰サンプルはストーカ炉方式の焼却場および流動床炉方式の焼却場より採取したものを使用した。図1を参照しながら、焼却灰再資源化プラントシステムの還元反応設備、安定化反応設備、排煙処理設備などの機能を説明する。
【0028】
1)受入・供給設備:
受入れ:原灰受入ピット100m3、供給:灰クレーン13ton/h、受入れホッパー10m3、フィーダ15ton/h
2)選別設備:粒度選別:振動篩(スクリーン網目50mm、粒度50mm以上除外、粒度50mm以下次工程へ)鉄分選別:磁選機〔鉄分除外(比較的粗大な鉄分)〕
3)還元反応設備:
雰囲気温度約900℃、焼却灰温度約600℃、処理時間約40分、添加剤(反応促進剤2〜3%添加、ハイドロソーダライト、金属触媒等)、酸素濃度約6%、加熱源(A重油)
主反応(有機塩素化合物の脱塩素化;灰中のダイオキシン類分解、有機塩素化合物の熱分解;炉内のダイオキシン類分解、酸化重金属類の還元;重金属類の活性化)
4)破砕・粉砕設備:
破砕設備:粒度10〜20mm以下、鉄分選別:鉄分除外(比較的微細な鉄分)、粉砕処理:粒度100メッシュ(95%)
5)安定化反応設備:
処理温度約180〜200℃、処理時間約60分、添加剤(反応促進剤2〜3%添加、触媒・硫化金属等)、酸素濃度約6% 加熱源(廃熱利用)、主反応(重金属類の硫化;硫化物として安定化)
6)混合・袋詰設備:タンク:原料タンク40m3、セメントタンク40m3、定量供給機:ロスインウエイト、混合機:回転円盤型連続式、袋詰機:処理能力8ton/h、秤量1000kg/袋
7)排煙処理設備:急冷冷却装置(熱交換器にて180℃以下)、活性炭吸着(ダイオキシン類、HCl等の吸着)、バクフィルタ(入り口温度180℃以下、ダイオキシン類の再生成防止)
8)電気・計装設備:受電設備、起動盤、制御盤、中央操作盤、現場操作盤、計測監視システム、ITV監視装置
【0029】
飛灰原灰中のダイオキシン類濃度を測定したところ、「毒性等量」は「0.000」であった。また、生成物の重金属溶出性の評価実験を下。生成した焼却灰とセメントを重量比で4:1の割合で混合した混合物について含まれる金属などの検査をした。試料と溶媒を重量比10%の割合で混合した検液(pH4、7および9の3種類)を常温常圧で振とう機を用いて6時間連続振とうした。試験項目「アルキル水銀化合物」は0.0005未満mg/l、「水銀またはその化合物」は0.0005未満mg/l、「カドミウムまたはその化合物」は0.01未満mg/l、「鉛またはその化合物」は0.1未満mg/l、「六価クロムまたはその化合物」は0.01未満mg/l、「ひ素またはその化合物」は0.01未満mg/l、「セレンまたはその化合物」は0.01未満mg/lであった。
【0030】
実施例2
焼却灰サンプルはストーカ炉方式の焼却場より採取したものを使用した。実施例1と同様に、焼却灰再資源化プラントシステムは還元反応設備、安定化反応設備、排煙処理設備からなる(図1参照)。本実施例では、図3および図4に示すように、乾燥処理設備を付属させたものである。
本実施例では、二次反応処理工程(第2キルン)で電子炉を使用。電気加熱による電熱からは公害源となる臭気、煙、有害ガス等の物質の発生はない。温度を一定に制御したり、遠隔操作することも可能である。安全性、信頼性が高く保守費が低廉ですむ利点がある。欠点としては加熱容量が大きい場合にコスト高になる。発熱体は金属保護体の中央にコイル状の発熱抵抗線を入れ、高い電気絶縁性と、良好な熱伝導性をもつ特殊絶縁粉末を充填して、金属保護管と発熱抵抗体との熱伝導性を高めるとともに電気を絶縁し、それを物理的に加工して固形化する。
この装置は全体の面に対して180°(+−10°)の一定温度を維持しなければならず均一な加熱が要求される。乾留中の時間は30°分間で温度が200°をこえると反応が分解され、一定化されない。酸素量は3%に設定して、酸素媒体による反応を抑制する。還元的雰囲気内では、酸素よりも硫黄と反応しやすい元素が多い。特に有害元素等。けい酸塩類は逆に硫黄より酸素結合されやすい。
【0031】
発生する排ガスを遷移金属触媒の存在下に加熱処理する排煙処理工程を実施する別の装置を図5ないし図7に示す。使用する燃料はエマルジョン燃料であることを特徴とする。図面では、酸水素炎バーナーとして表示されている。燃料原の油は石油系(灯油・軽油・重油・廃油等)の燃料で、界面活性剤(乳化剤)を添加し、エマルジョン状態にしたものである。乳化剤としては特に制限はされないが、ポリエキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノラートなどが例示される。これらの乳化剤および水と上記燃料を激しく攪拌することによってエマルジョン化される。このエマルジョン燃料は圧縮ポンプで圧縮され、電極を備えたバーナーに充填され、バーナーノズルから噴霧され、燃焼炉に備え付けた蓄熱塔に吹き付けられる。この燃料は一次燃焼室にも使用することができることはいうまでもない。一次燃焼室および/または二次燃焼室の蓄熱塔は前述の如く焼却灰の処理物で成形されたものを用いることができる。あらかじめ乳化剤と燃料油を超音波によって攪拌し、その後で水と混合することができる。その場合、水80と灯油20の割合で混合が可能であった。この割合は水50〜80%の範囲で変えることができる。このバーナーから噴霧される数十ミクロンの粒子は、炉内に設置された蓄熱塔に噴霧され、例えばコバルト・マンガン・アルミナを触媒として混合した複合酸化物触媒、あるいは鉄・パラジウム・チタンの複合酸化物触媒で常時必要温度に昇温した蓄熱塔を形成する。炉内に充満している高温ガスとエマルジョン燃料の相乗効果で一気に温度が必要な高温に達する。なお、バーナーノズルから噴霧される時、気化されたガス状の水蒸気は電極板を接触したものは水素と酸素に分解する。
【0033】
【発明の効果】
一般焼却灰を無害化、再資源化のための経済的な処理方法を提供することができる。一般焼却灰から将来にわたり重金属類やダイオキシン類で環境を汚染することがない安全なセメント系の資材をつくる方法を提供することができる。
発生する排ガスを無害化処理しつつ、都市ゴミ一般焼却灰から将来にわたり重金属類やダイオキシン類で環境を汚染することがない安全なセメント系の資材を提供することができる。焼却灰再資源化物におけるダイオキシンの分析で不検出の、また、水和反応により強酸性環境下での加速試験で重金属の溶出防止が可能な焼却灰再資源化物(セメント系の資材)を環境汚染のない作り方で製造することができる。
【図面の簡単な説明】
【図1】本発明の方法を実施するための焼却灰再資源化プラントシステムのフローを示す図面である。
【図2】不活性ガスによる乾燥処理工程の説明図である。
【図3】本発明の乾燥処理設備および排煙処理設備を付属させた一次反応処理設備の説明図面である。
【図4】本発明の乾燥処理設備および排煙処理設備を付属させた二次反応処理設備の説明図面である。
【図5】本発明の付属させることができる別のタイプの二次焼却炉(排ガス用)の説明図である。
【図6】乾燥炉、一次燃焼室および二次燃焼室を有する酸水素炎燃焼式の高効率焼却炉(2000kg/1h)のタイプの高効率燃焼炉の説明図であり、(a)は正面概略図、(b)は上面概略図である。
【図7】図6の別のタイプの乾燥炉、一次燃焼室および二次燃焼室を有する酸水素炎燃焼式の高効率焼却炉(2000kg/1h)の説明図である。
【符号の説明】
1 供給クレーン設備
2 受入れホッパー
3 搬送装置
4 振動篩機
5 No.1磁選機
6 搬送装置
7 還元反応装置
8 搬送設備
9 破砕機
10 No.2磁選機
11 搬送装置
12 粉砕機
13 搬送装置
14 安定化反応装置
15 搬送装置
16,17 原料、セメントタンク
18,19 搬送装置
20,21 No.1、No.2定量供給機
22 混合機
23 搬送装置
24 袋詰機[0001]
[Industrial application fields]
The present invention relates to an incineration ash treatment method and apparatus for effectively using general incineration ash (fly ash, main ash) in a safe form while detoxifying the generated exhaust gas from the viewpoint of environmental pollution.
[0002]
[Prior art]
In recent decades, the issue of increasing and treating and disposing of garbage from households and offices and industrial waste discharged from business establishments has been discussed in various places in Japan. In response to these problems, the “Law on Waste Disposal and Cleaning” was revised, and each citizen was required to control and separate waste, and the “Law on Promotion of the Use of Recycled Resources” was also enacted. They were asked to make effective use of renewable resources in garbage. However, since then, the amount of trash in the whole country has continued to increase, and environmental pollution caused by illegally dumped trash has emerged. Recently, the carcinogenic substance dioxin has actually been included in the incineration ash, and urgent measures have become urgent.
[0003]
At the incineration plant, after burning, a considerable amount of incineration ash and fine ash (fly ash) generated by cooling the combustion gas and dust collected by a dust collector installed to prevent air pollution are also generated. . These ash is called incineration residue, and is new trash generated with incineration of trash. The incineration residue generated at incineration sites nationwide has reached 7 million tons and will be landfilled at the final disposal site.
The meaning of weight reduction by incineration is to throw it into the atmosphere. Substances exist in one of three forms: solid, liquid, and gas. When the material that was in the solid state disappeared, it did not disappear and changed into a gas. Before the residue is garbage, which is 10 to 20 times the amount of residue. If this is left as it is, it will fill up the disposal site in 5 to 10 years, and the whole of Japan will become garbage hills. Therefore, in order to prolong the life of the landfill, anything that can be recycled should be recycled. However, incineration ash cannot be used as it is.
[0004]
Even incineration ash burned under the best conditions, it is oxidized by being burned, and the garbage contains a large amount of plastics containing chlorine such as vinyl chloride. Incineration may result in compounds containing high concentrations of chlorine. This is the problem of dioxins. In 1983, highly toxic dioxin 2, 3, 7, and 8TCDD were detected in incineration ash from seven domestic cities. This type is extremely toxic among dioxins and is said to be 5000 times more potent than potassium cyanide. Although the mechanism of dioxin generation is not clear, the theory that organochlorine compounds (vinyl chloride, etc.) were generated by thermal decomposition as a result of incomplete combustion at a temperature of about 300 to 600 ° C. and the pyrolysis of organochlorine compounds It is also considered to be the catalytic action of the generated hydrogen chloride. What is created in an incinerator that burns together a myriad of organic chemicals that are abundantly mixed with plastics such as vinyl chloride, various dyes, and chlorobenzenes such as insecticides in such municipal waste? It can be said that it is a chemical synthesis plant. Substances change their shape in various ways due to chemical reactions associated with combustion. That is, even if it is possible to suppress the generation of dioxin itself by improving the combustion technology of the garbage incineration process that produces harmful chemical substances such as dioxin, it does not prevent the occurrence of the second and third problems.
[0005]
Therefore, in order to fundamentally solve these problems, it is necessary to know what is the composition of the garbage in the furnace and what is produced as a reaction product. The other is to change the generated incineration ash to a more stable substance. It is impossible to replace or eliminate an existing incinerator immediately. What is safe, stable and reliable is that this residue is processed once again, the processed residue passes the dissolution test, and the measured value of dioxin is zero. Reclaiming this ash as it is becomes the power to change the global environment by carbon dioxide and exhaust heat 10 or 20 years ahead, and the residual ash dissolves in water and causes pollution.
[0006]
The original form of garbage turned into residual ash is everything that is absolutely necessary for daily life, such as paper, wood, garbage, plastic, and metal compounds. The raw material that is the source of it is dug out of the earth's crust and scoured to create metal and materials, so this material has existed in the earth as a stable material for hundreds of thousands of years. It is. It should be returned to the earth in the state of the compound at that time. Burning it in an incinerator and trying to fill it with metal oxides or metal chlorides is unreasonable for nature and cannot be purified with natural power. Filling this is not just a matter of direct destruction, crushing lush valleys. It is safe if the ash buried in the earth becomes a substance that does not dissolve in water. Most of the naturally occurring substances are those that are hardly soluble in water, that is, poorly soluble compounds. It must be changed to such a compound.
[0007]
Most municipal waste incineration ash (fly ash, main ash) is finally landfilled. It is expected that dioxins contained in heavy metals and fly ash will flow out along with the leachate due to various changes caused by waste that coexists in the process of eroding rainwater and seawater. Heavy metals are oxides that are chlorides and are relatively water-soluble metal compounds. Dioxins are not water-soluble substances, but they are treated from the viewpoint of environmental pollution when they are gradually dissolved in water. It is necessary to establish a method.
[0008]
[Problems to be solved by the invention]
The present invention relates to a method for treating incineration ash that produces safe cement-based materials that do not pollute the environment with heavy metals and dioxins from municipal waste incineration ash in the future while detoxifying the generated exhaust gas, and The device is to be provided. The present invention relates to an incinerated ash recycling product (cement-based material that is not detected in the analysis of dioxins in the incinerated ash recycling product and that can prevent elution of heavy metals in an accelerated test under a strongly acidic environment by a hydration reaction. Is intended to provide a method and an apparatus for manufacturing the same in a manner free from environmental pollution.
[0009]
[Means for Solving the Problems]
In the present invention, the raw ash, which is incinerated ash, is dried in a process for detoxification and recycling of the incinerated ash, which is maintained in a low-oxygen space insulated from the outside air at a constant temperature and for a certain period of time. Incineration ash characterized by providing a drying process for reducing the water content and thermally decomposing dioxins in the exhaust gas, and a crushing process for expanding the surface area of the dried raw ash The processing method is the gist.
The process of maintaining and maintaining a constant temperature and a constant time in a low oxygen state space insulated from the outside air can be accompanied by a smoke treatment process.
[0010]
Moreover, the process of maintaining and maintaining a constant temperature and a fixed time in a low oxygen state space insulated from the outside air includes a reduction reaction treatment process and a stabilization reaction treatment process. That is, a reduction reaction process that mainly consists of a decomposition reaction of dioxins and a reduction reaction of heavy metal oxides and a stabilization reaction process that mainly consists of an insolubilization reaction of heavy metals (that is, stabilization here means this reaction process) This is to stabilize and solidify the ash by hydration and to prevent the elution of heavy metals.
The drying treatment step and the drying treatment step are preferably provided before entering the reduction reaction treatment step.
In the drying treatment step, the furnace is heated to a temperature of 800 to 900 ° C. while introducing nitrogen gas. Here, the raw ash (unburned incineration ash) is completely burned, and the exhaust gas from there is detoxified. Nitrogen gas is mixed with the generated exhaust gas, the mixed gas is heated, and preferably the mixed gas is heated in the presence of a catalyst to detoxify the exhaust gas. .
In the above pulverization step, pulverization is performed to 100 to 150 mesh fine particles. In the above reduction reaction treatment step, the incineration ash temperature is maintained at about 400 ° C. to 600 ° C. for 20 to 40 minutes. In the stabilization reaction treatment step, the treatment temperature is maintained at 200 to 450 ° C. for 40 to 60 minutes.
[0011]
Further, the present invention is an apparatus for carrying out the above-described method, and is a summary of an incineration ash treatment apparatus comprising a drying treatment apparatus, a pulverization treatment apparatus, a reduction reaction treatment apparatus, and a stabilization reaction treatment apparatus. It is said. A flue gas treatment device can be attached to each of the reduction reaction treatment device and the stabilization reaction treatment device. Moreover, the same apparatus can be used for a drying processing apparatus and a reduction reaction processing apparatus. Furthermore, it is preferable to provide nitrogen gas mixing and circulation means.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, all incineration ash generated after incineration of general waste, such as bottom ash or mixed ash of bottom ash and fly ash, can be used as raw ash.
Raw ash such as incineration ash of general waste often contains unburned carbon, hydrocarbons and the like because the temperature during incineration is low. Further, incineration fly ash collected by various dust collectors of incineration facilities contains harmful dioxins such as polychlorinated dibenzoparadioxins and polychlorinated dibenzofurans of tetrachloride to octachloride.
Furthermore, incineration ash for general waste contains calcium carbonate and calcium silicate compounds and is known to contain a lot of vitrification components, but it has also been reported that toxic heavy metals are occasionally contained. In the method of the present invention, incineration ash containing harmful heavy metals and dioxins as well as unburned carbon and hydrocarbons can be used as raw ash.
Since raw ash contains a lot of impurities, it is used after screening according to particle size and removal of iron.
[0013]
《Necessity of low temperature treatment》
The present invention employs a treatment method performed at a low temperature when treating heavy metals and dioxins of incinerated ash.
Environmental issues should be united with economic issues. Incineration ash, in particular, is a residue left after burning what is used in daily life, and has come out as new trash. It should be changed to a property that does not dissolve, it is easy and safe, and it should be good if environmental problems can be solved in a stable manner. If the incineration ash is melted at a high temperature and vaporized at a high equipment cost and a high running cost, it is difficult to bury it in the basement. And these substances have their own properties, and it is inevitable that they will be brought up from the atmosphere as problems that cannot be solved again.
It is important to use a small amount of heat and a small amount of catalyst to cause a chemical reaction so that “incineration ash” becomes a “naturally compatible substance” that contains no dangerous substances.
In addition, the potential for air pollution is steadily increasing. Photochemical smog by atmospheric photochemical reaction causes all reactions and synthesizes many by-products. A radical reaction may occur one after another in the atmosphere, and highly toxic substances may be synthesized in the atmosphere. Thus, it is not only a treatment method to burn at a high temperature and vaporize the substance. Only the amount of material elements that are invisible as gas is running around in the atmosphere because the incinerated ash is reduced as a visible solid. If chemical reactions are possible at low temperatures, this should be done and you should be interested in this.
It is an important requirement to solve environmental problems by adopting economically inexpensive means. Incineration ash, in particular, is the remaining ash produced by burning what we use in daily life, and it has emerged as new garbage, changing it to a safe and valuable one. The high cost is not worth it. For example, a melting method in which incinerated ash is melted and recovered as slag needs to be at a high temperature of 1200 ° C. or higher, resulting in high energy costs and huge capital investment. The treatment method performed at a low temperature is superior to the treatment method performed at a high temperature in that it does not require equipment costs. It should not be a solution that causes another problem that cannot be solved. In general waste ash and sewage sludge, toxic substances such as cadmium, lead and hexavalent chromium may be contained, but by incineration at around 900 ° C, preferably around 850 ° C, It can be changed to a safe property that does not dissolve in water (for example, trivalent chromium).
Employing high temperature processing can cause other unsolvable problems. In order to effectively use incinerated ash, harmful substances such as heavy metals dissolve into the environment, so it is only necessary to change to a property that does not dissolve in water, and it can be solved by a treatment method performed at a low temperature. . For example, melting it at a high temperature and evaporating it with a high equipment cost and a high running cost is a direction of changing the dumping site to the atmosphere, which causes another problem that cannot be solved.
The problem with dioxins is also the same. It is important that the dioxins in the raw ash are decomposed and not newly generated.
[0014]
《Realization of low temperature processing》
By low-temperature treatment, the water-soluble substance of incineration ash is changed to a hardly soluble substance while suppressing the generation of dioxins.
It is necessary to change the water-soluble substance to a poorly soluble substance. For this reason, the use of high temperature and high pressure is not economical. In order to promote metal reactions by catalysis and to facilitate the formation of substances by ionic reactions, the reaction surface area by pulverization is expanded, and the temperature is constant in a deoxygenated space that is insulated from the outside air, such as the space state of the reaction atmosphere. And maintain for a certain time. A variety of substances can be used as catalysts, whether they are gases, liquids, or solids. Since the metal catalyst has a small metal surface area and is not efficient as a catalyst, the metal catalyst is used in a state in which the surface area is made as wide as possible as a fine powder. That is, if the incinerated ash containing the component that becomes the catalyst is pulverized to reduce the particle size, the component that becomes the catalyst also increases the surface area and the catalytic activity increases.
In reducing the generation and reducing emissions of dioxins, the combustion process in the incinerator, the heat recovery from the exhaust port to the exhaust gas treatment device, the gas cooling process, and the removal of air pollutants, mainly dust in the exhaust gas treatment device, etc. It is suppressed.
[0015]
The processing method performed at a low temperature in the present invention is achieved by utilizing the following principle by increasing the reactivity of the raw ash itself.
For the elements present on the earth, the chemical analysis values of the part corresponding to the earth's crust (lithosphere) depth of 1.6 km, the part of seawater, land water and continental ice (hydrosphere), and the part corresponding to the atmosphere (atmosphere) Originally, the abundance of constituent elements near the surface of the earth is given. The most common is oxygen, which accounts for approximately 46.6% of all elements in weight percent. Next is 27.7% for silicon, followed by 8.13% for aluminum, which are the major constituents of silicates, followed by iron, calcium, sodium, potassium, magnesium, etc. Constitutes 98.6% of the total. Some of these elements are classified according to the periodic table, but apart from the periodic table, there are also those that are classified from the viewpoint of what kind of compounds the elements are likely to produce on the earth. Divided into elements.
1) Parent stone elements Elements gathered in the crustal silicate phase of the lithosphere on the earth (alkali metals such as silicon, aluminum, calcium, sodium, potassium, magnesium, fluorine, and chlorine, alkaline earth metals, and halogen elements)
2) Parent iron element Elements gathered in the core of the earth (iron, nickel, cobalt, ruthenium, rhodium, palladium, osmium, iridium, platinum, etc.)
3) Parent copper elements Elements that gather mainly in the sulfide phase on the earth (copper, silver, zinc, cadmium, mercury, lead, arsenic, sulfur, etc.)
4) Anaerobic elements Elements that are easily distributed to the atmosphere (hydrogen, nitrogen, carbon, oxygen, rare gases, etc.)
[0016]
In general, a parent copper element has a greater affinity (binding force) for sulfur than oxygen in a reducing environment, and a parent stone element has a greater affinity for oxygen than sulfur. In addition, parent iron elements are relatively difficult to bond with sulfur and oxygen. These elements produce various substances on the earth, but the solid inorganic substances that exist in nature are called minerals and constitute the lithosphere. Among these, simple gold (Au) and diamond (C) are rare and have rare values, but the compounds are relatively widely produced on the earth, and are sulfides, oxides, hydroxides, sulfuric acids. It exists stably with countless compounds such as chemical compounds.
In order to produce such stable compounds from incineration ash, the present invention is carried out by using minimal heat power and a small amount of effective catalyst. By making the incinerated ash into a fine powder, it floats, and the catalytic oxidation reaction on the catalyst surface called “catalytic combustion” enables complete combustion and completes the reaction at a low temperature.
[0017]
《Drying with inert gas》
Incineration ash is a mixture of oxides of metals or non-metallic elements, and in some cases, toxic substances may be generated, so the oxidation reaction is minimized and metal oxides are metallized. Do. For the decomposition of dioxins, the treatment can sufficiently achieve the purpose at a temperature of 800 ° C. or higher, but the treatment temperature is preferably around 900 ° C. in consideration of complete decomposition of the dioxins. In the present invention, the incineration ash is dried in advance. In this drying treatment step, the moisture content of the incinerated ash is reduced (2% or less) by treating at a furnace temperature of 800 to 900 ° C., and dioxins in the exhaust gas are thermally decomposed. Nitrogen (N2) Use gas and recycle gas. The block flow is as shown in FIG.
Nitrogen (N2) When using gas, the molecular weight of nitrogen is 28, and its thermal characteristics (heat capacity, thermal conductivity, heat transfer coefficient, etc.) are almost the same as air with a molecular weight of 29. Therefore, the drying characteristics are unchanged.
Since stable operation cannot be maintained unless the temperature and humidity of the gas sent from the heater to the drying device are always constant, a heat recovery unit that performs gas heat exchange so that the temperature condition is also constant for the return to the heater. Put on.
[0018]
<Decomposition of dioxins>
The present invention performs a decomposition reaction of dioxins by completely burning incineration ash in the drying process.
For the decomposition of dioxins, the treatment can achieve the purpose sufficiently at a temperature of 800 ° C. or higher. However, considering the complete decomposition of dioxins, the treatment temperature is around 900 ° C., and the calcination ash temperature is about 600 ° C. ° C is preferred.
Combustion ash discharged from an incinerator at a general incinerator contains a large amount of unburned matter, and incinerated fly ash collected by various dust collectors at an incineration facility contains harmful dioxins. Dioxin generation mechanism is generated from the thermodynamics in the combustion process of incineration of municipal waste, the reaction rate, and the reaction mechanism and processing equipment depending on the electronic state of the molecule. The production of organochlorine compounds by the reaction of chlorides and the like). In incinerators, incineration of vinyl chloride plastics, CO in water-soluble chlorine exhaust gas2, SO2Generation of hydrogen chloride due to reaction with. Large quantities of hydrocarbons (CnHm) Occurs and O2In contact with CO2And H2Decomposes into O. However, dioxins and precursors may be generated due to incomplete combustion.
Compounds with 2 or 4 carbon atoms generated by combustion are chlorinated by a catalytic reaction with chlorine gas or metal chlorides generated at high temperature from hydrochloric acid and oxygen, and after passing through chloroethylene and chloroacetylene compounds, chlorobenzene Produces. Chlorobenzene reacts with hydroxyl radicals (OH ·), oxygen, and other combustion exhaust gases to form chlorophenol and chlorophenoxyl radicals, which combine with carbon 2 and carbon 4 compounds to produce polychloromonobenzdioxin and polychloromono Benzofuran and dioxins are produced.
In suppressing the generation and emission reduction of these dioxins, the combustion process in the incinerator, the heat recovery from the exhaust port to the exhaust gas treatment device, the gas cooling process, the removal of air pollutants, mainly dust in the exhaust gas treatment device, etc. It is suppressed by. Dioxins can be suppressed by complete combustion, and there is no risk of dioxins unless incomplete combustion products are generated during combustion and exhaust gas treatment.
[0019]
The incinerated ash discharged there will be completely combusted, so the incinerated ash discharged will be further combusted to remove incombustibles, and the combustion gas temperature in the combustion kiln will be kept constant, with sufficient gas residence time in the kiln. It is necessary to reduce substances such as unburned carbon and hydrocarbons in the combustion gas by sufficient gas agitation and mixing with secondary air. Generally, these dioxins are not completely decomposed at a firing temperature of 950 ° C. or lower. When the firing temperature exceeds 950 ° C., dioxins are decomposed and rendered harmless, and most of the chlorine is calcium chloroaluminate (11CaO · 7Al2OThree・ CaCl2) And calcium chlorosilicate (2CaO · SiO)2・ CaCl2・ 3CaO ・ SiO2・ CaCl2) And other hydraulic minerals. In the reduction reaction treatment, the present invention can decompose dioxins at an incineration ash temperature of about 400 ° C. to 600 ° C. lower than the above temperature by the action of a catalyst or the like.
However, heat treatment of incinerated ash such as fly ash in a low-oxygen atmosphere means that heating (250-400 ° C.) in an oxidizing atmosphere of fly ash generates dioxins by the catalytic action of various metal compounds. It must be considered that the two sides are integrated. By heating incineration ash such as fly ash in a low-oxygen atmosphere under oxygen deficiency, dioxins in the ash can be dechlorinated and decomposed, and dioxins in the treatment equipment can also be thermally decomposed. . Under an oxidizing atmosphere, dioxins react with chlorides, carbon, etc. in fly ash from precursor materials, etc., and are mostly produced at around 300 ° C. If heated to a temperature of 450 ° C or higher in a reducing atmosphere, the catalyst Dioxins are decomposed by the action.
In the present invention, in order to eliminate generation of dioxins in the process of low-temperature treatment, unburned substances are completely burned before the treatment, and the contained dioxins are completely decomposed, and the exhaust gas is treated with nitrogen gas. It is characterized by being completely decomposed so that dioxins are not generated by heat treatment in the presence of water. By performing fly ash heating in a low-oxygen atmosphere under lack of oxygen, dechlorination / hydrogenation of dioxins can be achieved.
[0020]
<Adoption of reduction treatment reaction>
The incinerated ash is made into fine particles to increase the surface area and put into a burning kiln with reduced oxygen atmosphere. The chemical reaction in the kiln is a catalytic reaction, the free energy is reduced, the reaction rate is increased, radicals are generated, and the reaction is promoted by diffusing into the gas phase by a chain mechanism. CaO, K2O, Al2OThree, SiO2It becomes a catalyst with a high active site by contacting the reaction gas by adsorption of the solid surface or temperature change by the reaction of radicals, etc. and synthesizing a substance having a catalytic function on the surface.
The main reactions of the reduction treatment are dechlorination of organochlorine compounds and decomposition of dioxins in ash, pyrolysis of organochlorine compounds, decomposition of dioxins in the furnace, reduction of heavy metal oxides, and activation of heavy metals. .
In an oxidizing atmosphere, a large amount of dioxins are produced from the precursor material at around 300 ° C. using chloride or carbon in fly ash as a catalyst, but if heated to 450 ° C. or higher in a reducing atmosphere, it can be decomposed by catalytic action. First, a dehydrochlorination reaction occurs, and thereafter it is reduced to a dechlorination / hydrogenation treatment. From this dry distillation state, ammonia (NHThree) Is discharged and NO is reduced by its reducing powerxCan also be suppressed. At the same time, stabilization of heavy metals is performed.
[0021]
<Use of catalyst function>
The catalyst used in the present invention is not particularly limited, but the main component of the catalyst (support) raw material is a finely divided product of the treated combustion ash. The components contained in the cement-like fine powder are oxides such as Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, and Pb. It exists. Add 3% to 5% lime aluminate and 25% to 27% Portland cement to a mixture of oxides of these elements, first dry mix, add water necessary for molding, inorganic solidifying agent as a molding aid, Sufficiently wet-kneaded, molded into the target shape (see heat storage tower shown in FIG. 5), and cured and cured. The shape can be any shape such as a pellet, plate, cylinder, lattice, or honeycomb. In addition, this catalyst has extremely excellent mechanical and physical properties, and can stably withstand long-term use. The molded article thus obtained is loaded with a noble metal catalyst material such as Pt and, if necessary, Mn, Cu, Cr, Fe or the like as a metal or as an oxide thereof, thereby obtaining a product catalyst. The above characteristics of the catalyst support are themselves active, and therefore a catalyst having a desired level of performance can be obtained with a minimum loading. These advantages are advantageously exhibited particularly when a large amount of catalyst is prepared. The white metal treatment is applied to the surface in an amount of 0.5 g to 1.0 g per liter. The composition carrying the platinum compound is dried at 70 to 170 ° C. and then calcined at 400 to 600 ° C. in the air or reduced at 250 to 500 ° C. in hydrogen gas or hydrogen-nitrogen gas. In addition, it can also be set as a product by processing and activating with to-be-processed exhaust gas instead of these air heat processing, hydrogen gas, and hydrogen-nitrogen gas processing. It goes without saying that the manufacturing method is not limited to these. The type of the reactor is not particularly limited, but a normal fixed bed, moving bed, fluidized bed, or other reactor can be applied.
The method of the present invention is an exhaust gas treatment method for removing polychlorinated dibenzodioxin or polychlorinated dibenzofuran contained in incinerator exhaust gas etc. by using the catalyst, and the toxic organochlorine compound can be removed at a low temperature. Costs and equipment costs can be reduced.
In the present invention, a reduction reaction process including a decomposition reaction of dioxins and a reduction reaction of heavy metal oxides as main reactions is performed. The components of municipal waste incineration ash are mainly silicon and calcium, and in addition, metal oxides such as aluminum and iron are included. As for the harmful heavy metals that have recently become a problem, lead is the most, followed by mercury and cadmium. It is also characterized by a high amount of chlorine. The mixing of these heavy metals hinders the promotion of effective use of incinerated ash. It is difficult to theoretically elucidate the reaction mechanism of the reduction catalyst, and various additives and / or catalysts are used for trial and error to evaluate the heavy metal elution of the product, and the reduction reaction of heavy metal oxides and their heavy metals As a reduction catalyst, and / or a temporary technique for chemically reacting with a stable compound has been established.
Examples of the catalyst include a metal catalyst and a metal oxide catalyst. Among the metal elements, transition metals such as iron, cobalt, nickel, copper, and white metals such as ruthenium, rhodium, palladium, osmium, iridium, and platinum dissociate hydrogen molecules to form hydrogen atoms, thereby increasing activation. Normally, the energy for dissociating hydrogen molecules is not dissociated unless there is an energy of about 450 kilojoules. However, on the surface of Ni, Pd, Pt, etc., hydrogen atoms are easily dissociated at room temperature and adsorbed on Ni, Pd, Pt. . The driving force for this dissociation is the chemical affinity for hydrogen atoms on the metal surface. The dissociated hydrogen atoms are highly reactive and are added to hydrocarbons approaching the metal surface (ethylene, propylene, etc.) or to organic compounds such as carbon and oxygen compounds to form hydrogenated products. In addition, white metal, Fe, Co, and Ni also dissociate the C—H bond of the hydrocarbon and perform hydrogenolysis. In this way, the catalyst has the ability to convert a metal molecule into an active metal atom and promote a chemical reaction without depending on a heat source.
[0022]
Incinerated ash has many typical elements, few transition elements, and transition metals such as Ti, V, Cr, Mn, Fe, Cu, and Zn are too strong to bond with oxygen and become metal oxides. Therefore, the oxygen amount is reduced to 6%. Transition metal oxides are classified into those showing activity in oxidation and those showing activity in dehydrogenation. Fe2OThree, Cr2OThreeIs a good catalyst for dehydrogenation because it is not reduced to the metallic state even in the presence of hydrogen molecules. Cr in incineration ash is CrOThreeSince it is a compound easily dissolved in water with chromium trioxide, it becomes chromium hydroxide by reaction with hydrogen, and it becomes a stable insoluble dichromium trioxide compound by the combustion process of chromium hydroxide. A typical metal oxide interacts with a reactive molecule in an acid-base manner to give a proton to the reactive molecule, or the reactive molecule extracts a proton to activate the molecule. SiO2, Al2OThreeAnd MgO.
Since the activity of the metal catalyst contained in the incinerated ash increases as the outer surface area of the catalyst particles in the reactor increases, the smaller the catalyst particles, the better. Since the reactants and catalyst are the same, the reactor type is fluid and the reactants are continuously fed to the reactor and the product is continuously removed. The inside of the reactor is sufficiently agitated and has a completely mixed flow. In general, the catalyst includes a metal catalyst and a metal oxide catalyst. Transition metals Fe, Co, Ni, Cu and white metals Ru, Rh, Pd, Os, Ir, and Pt dissociate hydrogen molecules to form hydrogen atoms and increase activation. Normally, the energy for dissociating hydrogen molecules needs to be about 450 kilojoules. However, on the surface of Ni, Pd, Pt, etc., it is easily dissociated at room temperature and adsorbed on Ni, Pd, Pt. The driving force for this dissociation is the chemical affinity for hydrogen atoms on the metal surface. The dissociated hydrogen atoms are highly reactive and are added to hydrocarbons approaching the metal surface or added to organic compounds such as carbon and oxygen compounds to form hydrogenated products. In addition, white metal, Fe, Co, and Ni also dissociate the C—H bond of the hydrocarbon and perform hydrogenolysis. In this way, the catalyst has the ability to convert a metal molecule into an active metal atom and promote a chemical reaction without depending on a heat source.
Incinerated ash has many typical elements and few transition elements. Since transition metals such as Ti, V, Cr, Mn, Fe, Cu, and Zn are too strong to bond with oxygen and become metal oxides, the reaction (combustion) system has a low oxygen content of 6%. It is an oxygen state space. Transition metal oxides are classified into those showing activity in oxidation and those showing activity in dehydrogenation. Fe2OThree, Cr2OThreeIs a good catalyst for dehydrogenation because it is not reduced to the metallic state even in the presence of hydrogen molecules. Cr in incineration ash is CrOThreeBecause it is a compound that is easily soluble in water, Cr (OH) reacts with hydrogen.ThreeCr (OH)ThreeStable insolubilized Cr by the combustion process2OThreeIt becomes. SiO2, Al2OThreeTypical metal oxides such as MgO have acid-base interaction with the reaction molecule, and activate the molecule by giving a proton to the reaction molecule or drawing a proton from the reaction molecule.
The catalyst contains iron oxide (FeThreeOFour), Potassium oxide (K2O) (0.5 to 1.5%), alumina (Al2OThree) (2-4%), calcium oxide (CaO) (1-3%), silica (SiO2) (0.2 to 1%), magnesium oxide (MgO) (0.2 to 4%), or the like. A hardly soluble compound is formed by the action of the catalyst. The main reaction is a sulfurization reaction.
Since the activity of the metal catalyst contained in the incinerated ash increases as the outer surface area of the catalyst particles in the reactor increases, the smaller the catalyst particles, the better. Since the reactants and catalyst are the same, the reactor type is fluid and the reactants are continuously fed to the reactor and the product is continuously removed. The inside of the reactor is sufficiently agitated and has a completely mixed flow.
[0023]
《Expand surface area》
The incinerated ash to be treated can be pulverized into fine powder to increase its surface area, thereby increasing its reactivity.
First, the particle size is reduced to 10 mesh or less by particle size sorting, iron sorting, etc., and charged into a fire kiln in a reduced oxygen atmosphere. Further, the raw ash that has undergone the reduction reaction treatment is made into a fine powder of 100 to 150 mesh before undergoing the stabilization reaction treatment. The chemical reaction in the kiln is a catalytic reaction, and the larger the outer surface area of the catalyst particles in the reactor, the greater the activity. Therefore, the smaller the catalyst particles, the better. By crushing into fine powder and increasing its surface area, free energy is reduced, reaction rate is increased, radicals are generated, and the reaction is promoted by diffusion into the gas phase by a chain mechanism. CaO, K2O, Al2OThree, SiO2It becomes a catalyst with a high active site by contacting the reaction gas by adsorption of the solid surface or temperature change by the reaction of radicals, etc. and synthesizing a substance having a catalytic function on the surface. In an oxidizing atmosphere, a large amount of dioxins are produced from the precursor material at around 300 ° C. using chloride or carbon in fly ash as a catalyst, but if heated to 450 ° C. or higher in a reducing atmosphere, it can be decomposed by catalytic action. First, a dehydrochlorination reaction occurs, and thereafter it is reduced to a dechlorination / hydrogenation treatment. From this dry distillation state, ammonia (NHThree) Is discharged and NO is reduced by its reducing powerxCan also be suppressed. At the same time, stabilization of heavy metals is performed.
[0024]
<Stabilization of incineration ash>
Incineration ash, which is a mixture of different metals including heavy metals, is efficiently decomposed together, and metal salts are eluted using heavy metal salts as catalysts, and then stabilized by crystallization. That is, the stabilization here means to stabilize and solidify the reaction-treated ash by a hydration reaction so that the effect of preventing elution of heavy metals occurs.
Incineration ash is composed of Na, Mg, Al, Si, P, S.P. In addition to the seven elements Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, P, and B, unburned carbon C is included, and it is a mixture of metal and nonmetal. The metal is stabilized as a compound, and is stabilized by a metal compound such as an oxide, hydroxide, sulfate, sulfide, phosphorus oxide, or phosphide depending on the metal species. Hydroxides other than alkali metals and alkaline earth metals are difficult to dissolve in water [Cu (OH)2, Al (OH)2, Zn (OH)2, Pb (OH)2, Fe (OH)2Etc.], As, P and the like react with CaO to become stable compounds.
When metal compounds are buried underground, microorganisms in the soil gradually mineralize most of the constituent elements, and CO2, H2O, N2Reduce to the atmosphere in the form of Ca2+, Mg2+, K+, NHFourInorganic cations such as are adsorbed by humus and clay. In humus, these cations are adsorbed by the functional group as an organic acid, and in clay, the intercalation between clay minerals and the negative charge at the lattice fracture. NO3-, Cl-, SOFour 2-Anions such as are also adsorbed by the partial positive charge of humus and clay. Most of the stable metal compounds exist in the form incorporated into the internal structure of primary minerals, clay minerals and humus and are adsorbed and retained in solution or in the ion exchange sites on the surface of clay and humus. The Incineration ash has basicity CaO / SiO2Is high and has the property of crystallizing by slow cooling. That is, a stable and safe substance is generated as a substance that is hardly soluble in water. There are two types of reactions that are likely to be electrically positive and negative, and a combination of yin and yang produces a stable compound. Many metallic elements are positive elements, and nonmetallic elements are negative elements, and the compounds (salts) produced by the combination are composed of a positive component and a negative component, and are single salts, double salts, and complex salts.
Metals other than precious metals are not produced alone. Alkali metals exist as ions in water. Many metals tend to ionize and try to dissolve in acid solutions. Elements are circulated through rocks, air, seawater and metamorphism by solar energy and crustal energy inside the earth, and are mostly O, Si, Al, Fe, Cu, Na, K, Mg and silicates. is made of. Other types of compounds, such as halide carbonates, arsenates and borates, all have properties as ionic compounds. Halides, sulfides, and oxides are those in which negative elements become anions alone and bind to cations, and all other compounds combine negative elements with enzymes to become oxoacid ions, It is formed by combining with cations.
Anion: Chloride ion (Cl-), Sulfide ions (S2-), Oxide ions (O2-Oxo acid ion: Carbonate ion (COThree 2-), Phosphate ion (POFour 3-), Hydroxide ion (OH), arsenate ion (ASO)Four 3-), Sulfate ion (SOFour 2-), Borate ion (BOThree 2-), Nitrate ion (NOThree -), Silicate ion (SIOFour Four-)
These ions constitute a compound, and the amount that the cation and anion of this ionic compound can dissolve is defined as solubility, and S2-Or SOFour 2-, COThree 3-Reacts with metal ions to form poorly soluble compounds. However, since water is a strong ligand, it is easy to coordinate with metal element ions, and many metal media are immediately converted to aqua media when dissolved in water.
In order to change a water-soluble substance into a hardly soluble substance, the property of the compound of the substance element is changed. Harmful detoxification of toxic heavy metals, which are an impediment to the recycling of incinerated ash, in a form that has low solubility and is difficult to elute.
In the present invention, an additive for preventing heavy metal elution can be added. As an additive for preventing heavy metal elution, an additive is selected so that the elution is below the detection limit only by incineration. Incineration ash is a mixture of metals and non-metals, and metals are stabilized as compounds. The form of stabilization differs depending on the metal species, and becomes a metal compound such as an oxide, hydroxide, sulfate, sulfide, phosphorus oxide, or phosphide and stabilizes.
[0025]
<< Product of the Invention >>
Incinerated ash generally has a high moisture content and contains a large amount of heavy metals and the like, so that it is the most difficult to solidify with hydraulic cement. In order to promote the detoxification of the metal having the solidification inhibiting factor and the hardening of the organic compound, the inhibiting factor is removed by dry distillation and combustion in a reduced oxygen atmosphere.
Cement reacts with water to precipitate hydrate crystals, which are connected to each other and solidified. The hydrate crystals are stable at room temperature. The main component is lime (CaO), followed by silicic acid (SiO2And their content is 88% of the total. Next, alumina content (Al2OThree), Iron (Fe2OThree), Sulfate radical (SOThree) Etc. These chemical components are not simply present as oxides, but as compounds and react with water to form hydrates. It exists as a so-called hydraulic hard material.
For ordinary Portland cement, the minerals that govern its hydration strength are generally
3CaO, SiO called Alite2And 2CaO, SiO called Belite2Therefore, Alite and Belite account for 76% of the total. Both of these are lime (CaO) and silicic acid (SiO2) In contact with water to form hydrate crystals by the following reaction.
2CaThreeSiOFive + 6H2O = CaThreeSi2O7・ 3H2O + 3Ca (OH)2
2Ca2SiFour + 4H2O = CaThreeSi2O7・ 3H2O + Ca (OH)2
These hydraulic silicate lime salts differ in the rate of hydration reaction and the mechanism of crystallization, but both result in 3CaO · 2SiO.Three・ 3H2It agrees in that it forms a hydrated silicate silicate in the form of O. On the other hand, other main compounds include alumina (Al2OThree3CaO · Al in the phase containing2OThree(Tricalcium aluminate) and 4CaO · Al2OThree・ Fe2OThree(Tetralime aluminate) etc., but these react with water and 3CaO · Al2OThree・ 6H2Crystals of the form O are deposited.
Here, sulfate radical (SOThree) Is present, the hydrated aluminate hydrate is SOThreeTo form an inorganic double salt. This is ettringite (3CaO · Al2OThree・ 3CaSOFour・ 3H2O). This ettringite is a crystal that contains heavy metals in cement. It contains 32 molecules of water as a unit of crystal structure in one molecule.Three3CaO · Al when the supply is lost2OThree・ CaSOFour・ 12H2By changing to O, the density of the structure is changed by such conversion, and the binding force is weakened by generation of free water.
The product of the present invention (hereinafter sometimes referred to as “new hard”) has latent hydraulic properties, and exhibits hydraulic properties by stimulating action such as alkali or sulfate. Basicity value (CaO + Al)2OThree+ MgO)% / SiO2% Is about 1.35 to 1.45. Compared to Portland cement, basicity is about 1% lower and hydration power is lower. For this reason, Portland cement and incinerated ash are mixed and ground to improve hydration and curability. The blending ratio of Portland cement is about 10% to 30% of cement, and the properties of New Hard differ depending on the composition ratio and fineness of the compounds contained in the incinerated ash.
In addition, since New Hard does not react with water and carbon dioxide, it is not weathered like cement and solidifies. Since Neuhard contains a large amount of alumina and magnesium, which have a strong reaction, compared with calcium, the reaction rate is high and the expansion coefficient is high. Compared with cement, calcium hydroxide exhibits a re-reaction due to Newhard's latent hydraulic properties around the 28th day of the material age, promotes hydration and helps the cement's hydration power, and thus increases strength over a long period of time.
Newhard is strong against structures of seawater, sewage and groundwater. It is easy for concrete structures to break.2Combined with calcium sulfate (CaSOFour) And tricalcium aluminate hydrate (3CaO · Al2OThree・ NH2This is because it combines with O) to become cement pachis.
Since Neuhard has a large expansion coefficient and the reaction starts early, Ca (OH) in the cured product2Less, CThreeSince A is also reduced, the resistance is increased. Since Neuhard has a high surface activity, it has excellent foaming and dispersion capabilities necessary for solidification, fluidity, and has both of these surfaces to promote cement hydration. Because the active energy of foaming ability and dispersion ability is high, the soil with strong viscosity is changed to sandy material in 24 hours. Furthermore, there is a characteristic that strength reinforcement such as ground improvement has water permeability and strength.
[0026]
【Example】
Details of the present invention will be described in the examples. The present invention is not limited by these examples.
[0027]
Example 1
Incinerated ash samples were collected from a stoker furnace type incinerator and a fluidized bed furnace type incinerator. With reference to FIG. 1, functions of a reduction reaction facility, a stabilization reaction facility, a flue gas treatment facility, etc. of the incineration ash recycling plant system will be described.
[0028]
1) Reception / supply facilities:
Acceptance: Raw ash acceptance pit 100mThree, Supply: Ash crane 13ton / h, receiving hopper 10mThreeFeeder 15ton / h
2) Sorting equipment: Particle size sorting: Vibrating sieve (screen mesh 50 mm, particle size 50 mm or more excluded, particle size 50 mm or less to the next process) Iron sorting: Magnetic separator [Iron exclusion (relatively coarse iron)]
3) Reduction reaction equipment:
Atmospheric temperature of about 900 ° C, incineration ash temperature of about 600 ° C, processing time of about 40 minutes, additives (addition of 2-3% reaction accelerator, hydrosodalite, metal catalyst, etc.), oxygen concentration of about 6%, heating source (A heavy oil)
Main reaction (dechlorination of organic chlorine compounds; decomposition of dioxins in ash, thermal decomposition of organic chlorine compounds; decomposition of dioxins in the furnace, reduction of heavy metal oxides; activation of heavy metals)
4) Crushing and crushing equipment:
Crushing equipment: particle size 10-20mm or less, iron sorting: iron exclusion (relatively fine iron), grinding treatment: particle size 100 mesh (95%)
5) Stabilization reaction equipment:
Processing temperature: about 180-200 ° C, processing time: about 60 minutes, additive (addition of 2-3% of reaction accelerator, catalyst, metal sulfide, etc.), oxygen concentration of about 6%, heating source (utilizing waste heat), main reaction (heavy metal) Sulfides; stabilized as sulfides)
6) Mixing / packing equipment: Tank: Raw material tank 40mThree, Cement tank 40mThreeQuantitative feeder: Loss-in-weight, Mixer: Rotating disk type continuous, Bagging machine: Processing capacity 8 ton / h, Weighing 1000 kg / bag
7) Smoke treatment equipment: Rapid cooling system (180 ° C or less in heat exchanger), activated carbon adsorption (adsorption of dioxins, HCl, etc.), back filter (inlet temperature 180 ° C or less, prevention of dioxin regeneration)
8) Electrical / instrumentation equipment: power receiving equipment, start-up panel, control panel, central control panel, on-site control panel, measurement monitoring system, ITV monitoring device
[0029]
When the concentration of dioxins in the fly ash raw ash was measured, the “toxic equivalent amount” was “0.000”. In addition, the evaluation experiment of the heavy metal dissolution property of the product is below. The metal contained in the mixture in which the generated incinerated ash and cement were mixed at a weight ratio of 4: 1 was inspected. A test solution (three kinds of pH 4, 7, and 9) in which the sample and the solvent were mixed at a ratio of 10% by weight was shaken continuously for 6 hours using a shaker at normal temperature and pressure. Test item "alkylmercury compound" is less than 0.0005 mg / l, "mercury or its compound" is less than 0.0005 mg / l, "cadmium or its compound" is less than 0.01 mg / l, "lead or its "Compound" is less than 0.1 mg / l, "Hexavalent chromium or its compound" is less than 0.01 mg / l, "Arsenic or its compound" is less than 0.01 mg / l, and "Selenium or its compound" is It was less than 0.01 mg / l.
[0030]
Example 2
The incinerated ash sample was taken from a stoker furnace type incinerator. As in Example 1, the incineration ash recycling plant system includes a reduction reaction facility, a stabilization reaction facility, and a flue gas treatment facility (see FIG. 1). In this embodiment, as shown in FIGS. 3 and 4, a drying treatment facility is attached.
In this embodiment, an electron furnace is used in the secondary reaction processing step (second kiln). There is no generation of odor, smoke, harmful gas and other substances that are pollution sources from electric heating by electric heating. It is also possible to control the temperature at a constant level or remotely control the temperature. It has the advantage of high safety and reliability and low maintenance costs. As a disadvantage, the cost increases when the heating capacity is large. The heating element has a coiled heating resistance wire in the center of the metal protective body and is filled with special insulating powder with high electrical insulation and good thermal conductivity to conduct heat between the metal protective tube and the heating resistor. In addition to enhancing the properties, the electricity is insulated, and it is physically processed and solidified.
This apparatus must maintain a constant temperature of 180 ° (+ −10 °) with respect to the entire surface and requires uniform heating. The time during the carbonization is 30 ° minutes, and when the temperature exceeds 200 °, the reaction is decomposed and not stabilized. The amount of oxygen is set to 3% to suppress the reaction by the oxygen medium. In a reducing atmosphere, there are more elements that react more easily with sulfur than with oxygen. Especially harmful elements. Silicates, on the contrary, are more susceptible to oxygen bonding than sulfur.
[0031]
[0032]
FIG. 5 to FIG. 7 show another apparatus for performing a flue gas treatment process for heat-treating generated exhaust gas in the presence of a transition metal catalyst. The fuel used is an emulsion fuel. In the drawing, it is shown as an oxyhydrogen flame burner. The raw fuel oil is a petroleum-based (kerosene, light oil, heavy oil, waste oil, etc.) fuel that is made into an emulsion state by adding a surfactant (emulsifier). Although it does not restrict | limit especially as an emulsifier, Polyoxyethylene alkyl ether, polyoxyethylene alkyl phenolate, etc. are illustrated. These emulsifiers and water are emulsified by vigorously stirring the fuel. This emulsion fuel is compressed by a compression pump, filled in a burner equipped with electrodes, sprayed from a burner nozzle, and sprayed to a heat storage tower provided in a combustion furnace. It goes without saying that this fuel can also be used in the primary combustion chamber. As the heat storage tower of the primary combustion chamber and / or the secondary combustion chamber, the heat storage tower formed of the processed incinerated ash as described above can be used. The emulsifier and fuel oil can be agitated in advance by ultrasonic waves and then mixed with water. In that case, mixing was possible at a ratio of water 80 and kerosene 20. This proportion can be varied in the range of 50-80% water. Particles of several tens of microns sprayed from this burner are sprayed on a heat storage tower installed in the furnace, for example, a composite oxide catalyst mixed with cobalt / manganese / alumina as a catalyst, or a composite oxidation of iron / palladium / titanium. A heat storage tower that is constantly heated to the required temperature with a physical catalyst is formed. The synergistic effect of high temperature gas and emulsion fuel filling the furnace reaches the required high temperature. When sprayed from the burner nozzle, the vaporized gaseous water vapor which is in contact with the electrode plate is decomposed into hydrogen and oxygen.
[0033]
【The invention's effect】
An economical treatment method for detoxifying and recycling general incineration ash can be provided. It is possible to provide a method for producing a safe cement-based material that does not pollute the environment with heavy metals and dioxins in the future from general incineration ash.
It is possible to provide a safe cement-based material that does not pollute the environment with heavy metals or dioxins from municipal waste incineration ash in the future while detoxifying the generated exhaust gas. Environmental pollution of incinerated ash recycling material (cement-based material) that is not detected by dioxin analysis in incinerated ash recycling product and that can prevent elution of heavy metals in accelerated tests under strongly acidic environment by hydration reaction It can be manufactured in a way that does not have any.
[Brief description of the drawings]
FIG. 1 is a diagram showing a flow of an incineration ash recycling plant system for carrying out a method of the present invention.
FIG. 2 is an explanatory diagram of a drying process step using an inert gas.
FIG. 3 is an explanatory drawing of a primary reaction treatment facility to which a drying treatment facility and a flue gas treatment facility of the present invention are attached.
FIG. 4 is an explanatory drawing of a secondary reaction treatment facility to which a drying treatment facility and a flue gas treatment facility of the present invention are attached.
FIG. 5 is an explanatory view of another type of secondary incinerator (for exhaust gas) that can be attached to the present invention.
FIG. 6 is an explanatory view of a high-efficiency combustion furnace of the oxyhydrogen flame combustion type high-efficiency incinerator (2000 kg / 1h) having a drying furnace, a primary combustion chamber, and a secondary combustion chamber. Schematic view, (b) is a schematic top view.
7 is an explanatory diagram of a high-efficiency incinerator (2000 kg / 1h) of the oxyhydrogen flame combustion type having another type of drying furnace, primary combustion chamber, and secondary combustion chamber of FIG. 6;
[Explanation of symbols]
1 Supply crane equipment
2 Accepting hopper
3 Transport device
4 Vibrating sieve
5 No. 1 magnetic separator
6 Transport device
7 Reduction reactor
8 Transport equipment
9 Crusher
10 No. 2 magnetic separator
11 Transport device
12 Crusher
13 Transport device
14 Stabilization reactor
15 Transport device
16, 17 Raw material, cement tank
18, 19 Transport device
20, 21 No. 1, no. 2 metering machine
22 Mixer
23 Conveyor
24 Bagging machine
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11749799A JP4150801B2 (en) | 1998-04-24 | 1999-04-26 | Processing method and apparatus for detoxifying and recycling incineration ash |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11579298 | 1998-04-24 | ||
JP10-115792 | 1998-04-24 | ||
JP11749799A JP4150801B2 (en) | 1998-04-24 | 1999-04-26 | Processing method and apparatus for detoxifying and recycling incineration ash |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000024625A JP2000024625A (en) | 2000-01-25 |
JP4150801B2 true JP4150801B2 (en) | 2008-09-17 |
Family
ID=26454232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11749799A Expired - Fee Related JP4150801B2 (en) | 1998-04-24 | 1999-04-26 | Processing method and apparatus for detoxifying and recycling incineration ash |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4150801B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7428992B2 (en) | 2019-09-10 | 2024-02-07 | 有限会社コスモケア | skin contact sheet |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002177924A (en) * | 2000-12-18 | 2002-06-25 | Kazuko Iwasaki | Detoxification treatment process of incineration ash by diffusing and decomposing incineration ash atoms and equipment for the same process |
CN101247878B (en) | 2005-08-26 | 2013-05-08 | 太平洋水泥株式会社 | Apparatus and method for dissolution/reaction |
CN101296877A (en) * | 2005-10-31 | 2008-10-29 | 太平洋水泥株式会社 | Apparatus for adding wet ash to cement and addition method |
US8893892B2 (en) | 2005-12-07 | 2014-11-25 | Taiheiyo Cement Corporation | Apparatus and method for removing unburned carbon from fly ash |
TWI444351B (en) | 2006-06-28 | 2014-07-11 | Taiheiyo Cement Corp | Cement burning apparatus and method of drying organic waste with high water content |
EP2062989B1 (en) | 2006-10-24 | 2015-10-14 | Taiheiyo Cement Corporation | Method for removing lead from cement kiln |
CN104496224A (en) | 2006-12-05 | 2015-04-08 | 太平洋水泥株式会社 | Method Of Processing Coal Ash And Processing System |
-
1999
- 1999-04-26 JP JP11749799A patent/JP4150801B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7428992B2 (en) | 2019-09-10 | 2024-02-07 | 有限会社コスモケア | skin contact sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2000024625A (en) | 2000-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Al-Ghouti et al. | Recent advances and applications of municipal solid wastes bottom and fly ashes: Insights into sustainable management and conservation of resources | |
Jiang et al. | Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review | |
Zacco et al. | Review of fly ash inertisation treatments and recycling | |
Gianoncelli et al. | Fly ash pollutants, treatment and recycling | |
Ajorloo et al. | Heavy metals removal/stabilization from municipal solid waste incineration fly ash: a review and recent trends | |
Zoubeir et al. | The use of the Novosol process for the treatment of polluted marine sediment | |
Liang et al. | The resource utilization and environmental assessment of MSWI fly ash with solidification and stabilization: A review | |
JP4150801B2 (en) | Processing method and apparatus for detoxifying and recycling incineration ash | |
Zhan et al. | Migration, solidification/stabilization mechanism of heavy metal in lightweight ceramisite from co-sintering fly ash and electrolytic manganese residue | |
Teng et al. | Analysis of composition characteristics and treatment techniques of municipal solid waste incineration fly ash in China | |
JP4150800B2 (en) | Processing method and apparatus for detoxification and recycling of incinerated ash at low temperature | |
Tian et al. | Environmental standards and beneficial uses of waste-to-energy (WTE) residues in civil engineering applications | |
Chen et al. | Submicron tourmaline enhanced the solidification of municipal solid waste incineration fly ash by chemical structure reorganization and stabilized heavy metals | |
WO2002049780A1 (en) | Method and apparatus for treatment of decomposing atoms in incineration ash by diffusion to detoxify them | |
JP2000005730A (en) | Treatment for detoxifying/recycling of incinerate ash and device therefor | |
JPH05192568A (en) | Adsorptive material for polluted area, method for improving ground, method for preventing ground from pollution, method for reusing cement raw material and adsorptive material for polluted area | |
JP5583360B2 (en) | Purification equipment for contaminated soil | |
JP3971813B2 (en) | Method for treating heavy metals and dioxins in incinerated ash at low temperature | |
JP2000024624A (en) | Method and apparatus for detoxifying and recycling incineration ash at low temperature | |
Cai et al. | Power production waste | |
JP3963003B2 (en) | Method for treating heavy metals and dioxins in incinerated ash at low temperature | |
JP3854337B2 (en) | Solidification agent and solidification product for incineration ash | |
JP2010247047A (en) | Method and apparatus for purifying polluted soil | |
KR100258787B1 (en) | Tretment method of hazardous heavy metals and dioxins contained in the ash produced during the course of commbustion and reduced as residue from incinerator under the system of lower temperature kiln | |
Guo et al. | Cement-based immobilization of combustion/incineration residues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20060424 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080606 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080606 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S202 | Request for registration of non-exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R315201 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |