[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4149795B2 - Sludge dewatering agent - Google Patents

Sludge dewatering agent Download PDF

Info

Publication number
JP4149795B2
JP4149795B2 JP2002368994A JP2002368994A JP4149795B2 JP 4149795 B2 JP4149795 B2 JP 4149795B2 JP 2002368994 A JP2002368994 A JP 2002368994A JP 2002368994 A JP2002368994 A JP 2002368994A JP 4149795 B2 JP4149795 B2 JP 4149795B2
Authority
JP
Japan
Prior art keywords
sludge
examples
dewatering agent
sludge dewatering
cationic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002368994A
Other languages
Japanese (ja)
Other versions
JP2004167465A (en
Inventor
雄二 松岡
憲和 稲原
洋一郎 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2002368994A priority Critical patent/JP4149795B2/en
Publication of JP2004167465A publication Critical patent/JP2004167465A/en
Application granted granted Critical
Publication of JP4149795B2 publication Critical patent/JP4149795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は新規な組成の汚泥脱水剤およびそれを用いた汚泥の処理方法に関するものであり、さらに詳しくは、下水、し尿処理場等で発生する、特に難脱水性の有機性汚泥に対して優れた脱水性能を発揮する汚泥脱水剤に関するものである。
【0002】
【従来の技術】
都市下水やし尿処理場から発生する汚泥は、有機分の高含有化が進み、また汚泥の集中処理による輸送時間の増大などが重なって、ますます難脱水となってきている。一方、脱水ケーキの最終処分としての乾燥、焼却に要するエネルギーを極力少なくすることが望ましく、脱水ケーキの低含水率化が重要な課題となっている。この課題に対応するため、従来のカチオン性高分子凝集剤単独の使用に代わって種々の工夫が提案されてきた。例えば、無機凝集剤とカチオン性高分子凝集剤の併用、カチオン性高分子凝集剤とアニオン性高分子凝集剤の併用、無機凝集剤と両性高分子凝集剤の併用などがそれに当たる。しかし、これらはいずれも十分な方法とは言えず、それぞれに一長一短がある。
【0003】
また、ポリアミジン系のカチオン性高分子凝集剤はカチオン価が高いことから、優れた凝集性を発揮することで知られており、種々の凝集剤と組み合わせて使用され、余剰汚泥等の難脱水性汚泥にも高い性能を示している。特開平7−223000号には、アミジン単位を含むカチオン性水溶性ポリマーと特定の両性水溶性ポリマーと酸性物質との組み合わせが、都市下水やし尿処理から発生する難脱水性汚泥を効率よく脱水できる汚泥脱水剤として提案されている。
【0004】
しかしながら、アミジン単位を含むカチオン性水溶性ポリマーは、消化汚泥のようなpHの高い汚泥に対して脱水性能が低下するなど、当該特許の汚泥脱水剤は有効pH範囲が狭いなどの欠点を有する。対策として、汚泥pHをあらかじめ調節することが考えられるが、余分な操作が増えることになる。あるいは、脱水剤成分中の酸性物質含有量を増加することが考えられるが、相対的に汚泥脱水剤中のポリマー成分量が少なくなるため限度がある。また、低pH領域では両性高分子のアニオン性基が解離せず、十分な機能を発揮できなくなるという問題も生じる。
【0005】
【発明が解決しようとする課題】
本発明は、このような従来の汚泥脱水剤が有する欠点を克服し、消化汚泥などを含む広い範囲の性状の汚泥に対して効率よく脱水することができる汚泥脱水剤を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは前記目的を達成するために鋭意研究を重ねた結果、アミジン単位を含むカチオン性ポリマーと両性ポリマーと酸性物質の組成物に、さらにジアリルモノアルキルアンモニウムクロライドまたはジアリルジアルキルアンモニウムクロライドを環化重合して得られるカチオン性水溶性ポリマーを加えることによって、消化汚泥を始め種々の性状の汚泥を効率よく脱水する適用範囲の極めて広い汚泥脱水剤となることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は(A)アミジン単位を含むカチオン性水溶性ポリマー、(B)ジアリルモノアルキルアンモニウムクロライドまたはジアリルジアルキルアンモニウムクロライドを環化重合して得られるカチオン性水溶性ポリマー、(C)カチオン性ビニル系モノマーとアニオン性ビニル系モノマーとノニオン性ビニル系モノマーとを共重合して得られる両性水溶性ポリマーと(D)酸性物質とを含むことを特徴とする汚泥脱水剤に関するものである。
【0008】
A成分のアミジン単位を含むカチオン性水溶性ポリマーは下記一般式(1)で表され、アミジン単位を主体とし、さらに(メタ)アクリロニトリル、ビニルカルボン酸アミド類、ビニルアミン類等共重合可能な他のモノマーを共重合させて得られる。本ポリマー中にアミジン単位は20〜90モル%を含有されていることが好ましい。B成分のポリマーは下記一般式(2)で表され、例えばジアリルモノメチルアンモニウムクロライド、ジアリルジメチルアンモニウムクロライド、ジアリルモノエチルアンモニウムクロライド、ジアリルジエチルアンモニウムクロライドなどのモノマーを環化重合して得ることができる。C成分の両性水溶性ポリマーは下記一般式(3)で表され、カチオン性ビニル系モノマーとアニオン性ビニル系モノマーとノニオン性ビニル系モノマーとを共重合させることによって得られる。カチオン性ビニル系モノマーとしては、ジアルキルアミノアルキルアクリレート、ジアルキルアミノアルキルメタクリレート、ジアルキルアミノアルキルアクリルアミドなどの3級化物あるいは4級化物が挙げられ、例えばジメチルアミノエチルメタクリレート、ジメチルアミノエチルアクリレート、ジメチルアミノプロピルアクリルアミドの3級化物あるいは4級化物の1種または2種以上の組み合わせが具体例として挙げられるが、これらに限定されない。アニオン性ビニル系モノマーとしては、アクリル酸、メタクリル酸、ビニルスルホン酸、3−メタクリロイルオキシプロパンスルホン酸およびこれらのアルカリ金属塩、アンモニウム塩などが挙げられるが、これらに限定されない。これらのアニオン性ビニル系モノマーは1種あるいは2種以上組み合わせて用いることができる。ノニオン性ビニル系モノマーとしては、例えばアクリルアミド、メタクリルアミドなどのビニル基含有アミド類、さらにはビニル基含有ニトリル類、(メタ)アクリル酸のアルキルエステル類などが挙げられるが、これらに限定されない。これらのノニオン性ビニル系モノマーは1種あるいは2種以上を組み合わせて用いることができる。D成分の酸性物質としては、例えばスルファミン酸、硫酸水素ナトリウム、クエン酸、コハク酸、アジピン酸などを用いることができるがこれに限定されない。
【0009】
【化1】

Figure 0004149795
【化2】
Figure 0004149795
【化3】
Figure 0004149795
【0010】
本発明の汚泥脱水剤中のA、B、C、D各成分の構成比率には、特に制限はないが、好ましくはAの構成比率に対するBの比率はA:B=1:1〜1:0.1の範囲で選択される。本発明の汚泥脱水剤は、基本的に各成分を混合した形で、これを溶解し、汚泥に添加して用いるが、各成分を別々に同時に汚泥に添加して用いることも可能である。
【0011】
本発明の汚泥脱水剤は、上述したとおり、汚泥種類の適用範囲が広いことが特徴である。アミジン単位を含むカチオン性ポリマーは、カチオン基が1級アミン構造を有するため、汚泥pHがアルカリ側に傾くほどイオン解離ができにくくなり、そのカチオン性を失う。従って、消化汚泥のようなpHの高い汚泥に対しては十分な脱水効果を示さないなどの欠点を有する。これに対し、本発明の汚泥脱水剤は、ジアリルモノ(ジ)アルキルアンモニウムクロライドの環化ポリマーをさらに添加することによって、pHの高い汚泥についても凝集状態が良好で、含水率の低い脱水ケーキが得られることを見出し、ポリアミジンを含む汚泥脱水剤の従来の問題点を解決したものである。すなわち、本発明の汚泥脱水剤は、対象とする汚泥の種類については特に制限はなく、下水、し尿及び一般産業廃水処理などで生じる広い範囲の有機性汚泥に対して十分な脱水効果を示し、汚泥の適用範囲が広いことが特徴である。
【0012】
【実施例】
次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。なお、各実施例、比較例に使用したポリマーおよび汚泥脱水剤を表−1、表−2に示した。
表中の略号は以下の化合物を表す。
DADMAC:ジアリルジメチルアンモニウムクロライド
DMS:ジメチルアミノエチルメタクリレート/硫酸塩(3級塩)
DMC:ジメチルアミノエチルメタクリレート/メチルクロライド(4級塩)
DAC:ジメチルアミノエチルアクリレート/メチルクロライド(4級塩)
AAM:アクリルアミド
AA :アクリル酸
SFA:スルファミン酸
【0013】
【表−1】
Figure 0004149795
【表−2】
Figure 0004149795
【0014】
実施例1〜3
下水余剰汚泥(pH:5.54、TS:0.74%、SS:0.69%、VTS:56.1%)200mlを300mlのビーカーに採取し、水に溶解させた本発明組成P−1を量を変えて添加し、ジャーテスターにて回転数300rpmで60秒間凝集フロックを形成させた。その後、ヌッチェ(ろ過面積40cm/使用ろ布16メッシュ)で60秒間ろ過試験を行い、さらにプレス機によって圧力40kpaで60秒間加圧し、ケーキ水分を測定した。得られた結果を総合評価点数とともに表−3に示した。
実施例4〜6
実施例2において、汚泥脱水剤としてP−1の代わりにP−2、P−3、P−5を用いた以外は同様の試験を行った。結果を表−3に示した。
比較例1〜2
実施例4において、汚泥脱水剤P−2の代わりに比較組成R−1、R−2をそれぞれ用いた以外は同様の試験を行った。結果を表−3に示した。
実施例1〜6、比較例1〜2の結果から、供試汚泥に対して、本発明品P−1は凝集剤添加率1.3%で、ケーキ水分79.4%、総合評価点5点であった。
その他の実施例についても良好な結果が得られた。比較例はいずれも総合評価点3点以下で、ケーキ水分で劣った。
以下、表−3〜8において、凝集剤添加率:対TS重量%、総合評価点数:5→最良,4→良,3→普,2→やや悪,1→悪(2点以下は脱水に不適)を表す。
【表−3】
Figure 0004149795
【表−4】
Figure 0004149795
【0015】
実施例12〜13
下水農業集落廃水汚泥(pH:6.01、TS:1.97%、SS:1.91%、VTS:80.9%)を用い、水に溶解させた本発明組成P−2を量を変えて添加した以外は実施例7と同様の試験を行った。得られた結果を総合評価点数とともに表−5に示した。
実施例14〜15
実施例13において、汚泥脱水剤P−2の代わりにP−4、P−6を用いた以外は同様の試験を行った。結果を表−5に示した。
比較例5〜6
実施例12において、汚泥脱水剤P−2の代わりにR−2を用い、添加率を変えた以外は同様の試験を行った。結果を表−5に示した。
実施例12〜15、比較例5〜6の結果、本発明組成のP−2はろ過性、ケーキ水分ともに良好であり、総合評価点は5点であった。P−4、P−6はそれに次いで良好であった。R−2はフロック形成状態が劣った。
【表−5】
Figure 0004149795
【0016】
実施例16〜17
下水消化汚泥(pH:7.63、TS:2.07%、SS:1.98%、VTS:63.4%)100mlを200mlのビーカーに採取し、水に溶解させた本発明組成P−2を量を変えて添加し、ジャーテスターにて回転数1,000rpmで60秒間、凝集フロックを形成させ、小型遠心濾過機で回転数4,000rpmにて60秒間、遠心脱水試験を行った。得られた結果を総合評価点数とともに表−6に示した。
実施例18〜19
実施例17において、汚泥脱水剤P−2の代わりにP−4、P−6を用いた以外は全く同様の試験を行った。結果を表−6に示した。
比較例7〜8
実施例17において、汚泥脱水剤P−2の代わりにR−1、R−2を用いた以外は同様の試験を行った。結果を表−6に示した。
実施例16〜19、比較例7〜8の結果、pHの高い本汚泥に対して、本発明組成P−2、P−6は凝集性およびSS回収率に優れ、ケーキ水分も良好な結果が得られ、総合評価点は5点であった。比較例はすべての結果で劣り、総合評価点1点であった。
【表−6】
Figure 0004149795
【0017】
実施例20〜21
下水農業集落廃水汚泥(pH:6.49、TS:2.18%、SS:2.09%、VTS:78.4%)を用いて、水に溶解させた本発明組成P−2を量を変えて添加し、実施例17と同様の試験を行った。得られらた結果を総合評価点数とともに表−7に示した。
実施例22〜23
実施例21において、汚泥脱水剤P−2の代わりにP−4、P−6を用いた以外は同様の試験を行った。結果を表−5に示した。
比較例9〜10
実施例21において、汚泥脱水剤P−2の代わりにR−1、R−2を用いた以外は同様にして試験を行った。結果を表−7に示した。
実施例20〜23、比較例9〜10の結果、本汚泥に対して、本発明組成P−2はSS回収率及びケーキ水分共に良好で総合評価点は5点であった。比較例はすべて総合評価点2点であった。
【0018】
実施例24〜25
下水消化汚泥(pH:8.02、TS:2.21%、SS:2.07%、VTS:67.3%)を用いて、水に溶解させた本発明組成P−2を量を変えて添加し、実施例21と同様の試験を行った。得られらた結果を総合評価点数とともに表−8に示した。
【表−7】
Figure 0004149795
実施例26〜27
実施例25において、汚泥脱水剤P−1の代わりにP−3、P−5を用いた以外は同様の試験を行った。結果を表−8に示した。
比較例11〜12
実施例25において、汚泥脱水剤P−1の代わりにR−1、R−2を用いた以外は同様にして試験を行った。結果を表−8に示した。
実施例24〜26、比較例11〜12の結果、pHの高い本汚泥に対して、本発明組成P−5の総合評価点は5点であり、SS回収率、ケーキ水分共に良好であったが、比較例はフロック性及び回収性が劣り、総合評価点1点であった。
【表−8】
Figure 0004149795
【0019】
【発明の効果】
本発明の汚泥脱水剤および汚泥処理方法は、実施例で詳細に明示したとおり、下水、し尿汚泥等の幅広い性状の汚泥に対し、従来の汚泥脱水剤および汚泥処理方法と比較して、凝集性が良好で、ケーキ含水率の明らかな低減効果が認められた。本発明により、処理対象汚泥のpHに左右されず、広い範囲の性状の汚泥に対して、安定した凝集性能および脱水性能を持続することが可能となり、従来技術の問題点を解決することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sludge dewatering agent having a novel composition and a method for treating sludge using the same, and more specifically, it is excellent for particularly dewatering organic sludge generated in sewage, human waste treatment plants, etc. The present invention relates to a sludge dewatering agent that exhibits high dewatering performance.
[0002]
[Prior art]
Sludge generated from municipal sewage and human waste treatment plants has become increasingly difficult to dehydrate due to the increasing content of organic components and the increase in transportation time due to the concentrated treatment of sludge. On the other hand, it is desirable to reduce the energy required for drying and incineration as final disposal of the dehydrated cake as much as possible, and reducing the water content of the dehydrated cake is an important issue. In order to cope with this problem, various devices have been proposed in place of the conventional use of the cationic polymer flocculant alone. For example, the combined use of an inorganic flocculant and a cationic polymer flocculant, the combined use of a cationic polymer flocculant and an anionic polymer flocculant, and the combined use of an inorganic flocculant and an amphoteric polymer flocculant. However, none of these are sufficient methods, and each has advantages and disadvantages.
[0003]
In addition, polyamidine-based cationic polymer flocculants are known for their excellent flocculating properties due to their high cation number, and they are used in combination with various flocculants, making them difficult to dewater such as excess sludge. High performance in sludge. In JP-A-7-223000, a combination of a cationic water-soluble polymer containing an amidine unit, a specific amphoteric water-soluble polymer, and an acidic substance can efficiently dehydrate sludge dewatering sludge generated from municipal sewage and palm urine treatment. It has been proposed as a sludge dewatering agent.
[0004]
However, cationic water-soluble polymers containing amidine units have drawbacks such as the sludge dehydrating agent of the patent has a narrow effective pH range, such as the dewatering performance of a sludge having a high pH such as digested sludge is reduced. As a countermeasure, it is conceivable to adjust the sludge pH in advance, but the number of extra operations increases. Alternatively, it is conceivable to increase the content of acidic substances in the dehydrating agent component, but there is a limit because the amount of the polymer component in the sludge dehydrating agent becomes relatively small. Further, in the low pH region, the anionic group of the amphoteric polymer does not dissociate, and there arises a problem that a sufficient function cannot be exhibited.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a sludge dewatering agent that can overcome such disadvantages of conventional sludge dewatering agents and can efficiently dewater sludge having a wide range of properties including digested sludge. To do.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned object, the present inventors have further added diallyl monoalkylammonium chloride or diallyldialkylammonium chloride to the composition of the cationic polymer, amphoteric polymer and acidic substance containing amidine units. By adding a cationic water-soluble polymer obtained by chemical polymerization, it has been found that it becomes a sludge dehydrating agent with an extremely wide range of application for efficiently dewatering sludge of various properties including digested sludge. It came.
[0007]
That is, the present invention includes (A) a cationic water-soluble polymer containing amidine units, (B) a cationic water-soluble polymer obtained by cyclopolymerization of diallylmonoalkylammonium chloride or diallyldialkylammonium chloride, and (C) a cationic polymer. The present invention relates to a sludge dewatering agent comprising an amphoteric water-soluble polymer obtained by copolymerizing a vinyl monomer, an anionic vinyl monomer and a nonionic vinyl monomer, and (D) an acidic substance.
[0008]
The cationic water-soluble polymer containing the amidine unit of the component A is represented by the following general formula (1), and is mainly composed of the amidine unit, and may be copolymerized with (meth) acrylonitrile, vinylcarboxylic amides, vinylamines and the like. It is obtained by copolymerizing monomers. It is preferable that 20-90 mol% of amidine units are contained in this polymer. The polymer of component B is represented by the following general formula (2), and can be obtained by cyclopolymerizing monomers such as diallylmonomethylammonium chloride, diallyldimethylammonium chloride, diallylmonoethylammonium chloride, diallyldiethylammonium chloride. The amphoteric water-soluble polymer of component C is represented by the following general formula (3), and is obtained by copolymerizing a cationic vinyl monomer, an anionic vinyl monomer, and a nonionic vinyl monomer. Examples of cationic vinyl monomers include tertiary or quaternized products such as dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, and dialkylaminoalkyl acrylamide. For example, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylamide. Specific examples thereof include, but are not limited to, one or a combination of two or more of the quaternized or quaternized compounds. Examples of the anionic vinyl monomer include, but are not limited to, acrylic acid, methacrylic acid, vinyl sulfonic acid, 3-methacryloyloxypropane sulfonic acid, and alkali metal salts and ammonium salts thereof. These anionic vinyl monomers can be used alone or in combination of two or more. Examples of nonionic vinyl monomers include, but are not limited to, vinyl group-containing amides such as acrylamide and methacrylamide, vinyl group-containing nitriles, and alkyl esters of (meth) acrylic acid. These nonionic vinyl monomers can be used alone or in combination of two or more. Examples of the acidic substance of component D include, but are not limited to, sulfamic acid, sodium hydrogen sulfate, citric acid, succinic acid, and adipic acid.
[0009]
[Chemical 1]
Figure 0004149795
[Chemical 2]
Figure 0004149795
[Chemical 3]
Figure 0004149795
[0010]
Although there is no restriction | limiting in particular in the component ratio of each component of A, B, C, D in the sludge dehydrating agent of this invention, Preferably the ratio of B with respect to the component ratio of A is A: B = 1: 1 to 1: A range of 0.1 is selected. The sludge dehydrating agent of the present invention is basically mixed with each component, dissolved and added to the sludge, but each component can also be added to the sludge separately at the same time.
[0011]
As described above, the sludge dehydrating agent of the present invention is characterized by a wide range of application of the sludge type. The cationic polymer containing an amidine unit has a primary amine structure, so that the ionic dissociation becomes difficult and the cationic property is lost as the sludge pH is inclined toward the alkali side. Therefore, it has a drawback that it does not show a sufficient dewatering effect for sludge having a high pH such as digested sludge. On the other hand, the sludge dehydrating agent of the present invention can be obtained by adding a cyclized polymer of diallylmono (di) alkylammonium chloride to obtain a dehydrated cake having a good agglomeration state and low moisture content even for sludge having a high pH. The conventional problems of sludge dewatering agents containing polyamidine have been solved. That is, the sludge dewatering agent of the present invention is not particularly limited with respect to the type of sludge targeted, and exhibits a sufficient dewatering effect on a wide range of organic sludge generated in sewage, human waste, general industrial wastewater treatment, etc. It is characterized by a wide application range of sludge.
[0012]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these examples. The polymers and sludge dehydrating agents used in the examples and comparative examples are shown in Tables 1 and 2.
The abbreviations in the table represent the following compounds.
DADMAC: diallyldimethylammonium chloride DMS: dimethylaminoethyl methacrylate / sulfate (tertiary salt)
DMC: dimethylaminoethyl methacrylate / methyl chloride (quaternary salt)
DAC: Dimethylaminoethyl acrylate / methyl chloride (quaternary salt)
AAM: Acrylamide AA: Acrylic acid SFA: Sulfamic acid
[Table-1]
Figure 0004149795
[Table-2]
Figure 0004149795
[0014]
Examples 1-3
200 ml of sewage surplus sludge (pH: 5.54, TS: 0.74%, SS: 0.69%, VTS: 56.1%) was collected in a 300 ml beaker and dissolved in water. 1 was added in different amounts, and flocculated flocs were formed with a jar tester at a rotational speed of 300 rpm for 60 seconds. Then, the filtration test was performed for 60 seconds with Nutsche (filtration area 40 cm 2 / used filter cloth 16 mesh), and further pressurized with a press at a pressure of 40 kpa for 60 seconds to measure the cake moisture. The results obtained are shown in Table 3 together with the overall evaluation score.
Examples 4-6
In Example 2, the same test was performed except that P-2, P-3, and P-5 were used instead of P-1 as the sludge dehydrating agent. The results are shown in Table-3.
Comparative Examples 1-2
In Example 4, a similar test was performed except that comparative compositions R-1 and R-2 were used in place of the sludge dewatering agent P-2. The results are shown in Table-3.
From the results of Examples 1 to 6 and Comparative Examples 1 to 2, the product P-1 of the present invention has a flocculant addition rate of 1.3%, cake moisture of 79.4%, and overall evaluation score 5 for the test sludge. It was a point.
Good results were also obtained for the other examples. In all of the comparative examples, the overall evaluation score was 3 or less, and the cake moisture was inferior.
Hereinafter, in Tables 3 to 8, flocculant addition rate:% by weight of TS, overall evaluation score: 5 → best, 4 → good, 3 → normal, 2 → slightly bad, 1 → bad (less than 2 points for dehydration) Improper).
[Table-3]
Figure 0004149795
[Table-4]
Figure 0004149795
[0015]
Examples 12-13
Using the sewage agricultural settlement wastewater sludge (pH: 6.01, TS: 1.97%, SS: 1.91%, VTS: 80.9%), the amount of the present composition P-2 dissolved in water is measured. The same test as in Example 7 was performed except that the addition was changed. The results obtained are shown in Table 5 together with the overall evaluation score.
Examples 14-15
In Example 13, the same test was performed except that P-4 and P-6 were used instead of the sludge dewatering agent P-2. The results are shown in Table-5.
Comparative Examples 5-6
In Example 12, the same test was performed except that R-2 was used instead of the sludge dewatering agent P-2 and the addition rate was changed. The results are shown in Table-5.
As a result of Examples 12 to 15 and Comparative Examples 5 to 6, P-2 of the composition of the present invention had good filterability and cake moisture, and the overall evaluation score was 5 points. P-4 and P-6 were the next best. R-2 was inferior in floc formation.
[Table-5]
Figure 0004149795
[0016]
Examples 16-17
100 ml of sewage digested sludge (pH: 7.63, TS: 2.07%, SS: 1.98%, VTS: 63.4%) was collected in a 200 ml beaker and dissolved in water. 2 was added in various amounts, agglomeration floc was formed with a jar tester at a rotation speed of 1,000 rpm for 60 seconds, and a centrifugal dehydration test was performed with a small centrifugal filter at a rotation speed of 4,000 rpm for 60 seconds. The obtained results are shown in Table 6 together with the overall evaluation score.
Examples 18-19
In Example 17, the same test was performed except that P-4 and P-6 were used instead of the sludge dewatering agent P-2. The results are shown in Table-6.
Comparative Examples 7-8
In Example 17, the same test was performed except that R-1 and R-2 were used instead of the sludge dewatering agent P-2. The results are shown in Table-6.
As a result of Examples 16 to 19 and Comparative Examples 7 to 8, the present compositions P-2 and P-6 are excellent in cohesiveness and SS recovery rate, and the cake moisture is also good for the present sludge having a high pH. The overall evaluation score was 5 points. The comparative example was inferior in all results and had a comprehensive evaluation point of 1 point.
[Table-6]
Figure 0004149795
[0017]
Examples 20-21
Amount of the present composition P-2 dissolved in water using sewage agricultural village wastewater sludge (pH: 6.49, TS: 2.18%, SS: 2.09%, VTS: 78.4%) The same test as in Example 17 was performed. The results obtained are shown in Table 7 together with the overall evaluation score.
Examples 22-23
In Example 21, the same test was performed except that P-4 and P-6 were used instead of the sludge dewatering agent P-2. The results are shown in Table-5.
Comparative Examples 9-10
In Example 21, tests were conducted in the same manner except that R-1 and R-2 were used instead of the sludge dewatering agent P-2. The results are shown in Table-7.
As a result of Examples 20 to 23 and Comparative Examples 9 to 10, the composition P-2 of the present invention was good in SS recovery rate and cake moisture with respect to this sludge, and the overall evaluation score was 5 points. All of the comparative examples had a total evaluation score of 2 points.
[0018]
Examples 24-25
Using sewage digested sludge (pH: 8.02, TS: 2.21%, SS: 2.07%, VTS: 67.3%), the amount of the present composition P-2 dissolved in water was changed. And the same test as in Example 21 was performed. The results obtained are shown in Table 8 together with the overall evaluation score.
[Table-7]
Figure 0004149795
Examples 26-27
In Example 25, the same test was performed except that P-3 and P-5 were used instead of the sludge dewatering agent P-1. The results are shown in Table-8.
Comparative Examples 11-12
In Example 25, the test was performed in the same manner except that R-1 and R-2 were used instead of the sludge dewatering agent P-1. The results are shown in Table-8.
As a result of Examples 24-26 and Comparative Examples 11-12, the overall evaluation score of the composition P-5 of the present invention was 5 for the sludge having a high pH, and both the SS recovery rate and the cake moisture were good. However, the comparative example was inferior in the flocking property and recoverability, and was 1 point in overall evaluation.
[Table-8]
Figure 0004149795
[0019]
【The invention's effect】
The sludge dewatering agent and the sludge treatment method of the present invention, as clearly shown in the examples, are more cohesive than the conventional sludge dewatering agent and the sludge treatment method for sludge having a wide range of properties such as sewage and human waste sludge. The cake moisture content was clearly reduced. According to the present invention, stable coagulation performance and dewatering performance can be maintained for sludge having a wide range of properties regardless of the pH of the sludge to be treated, and the problems of the prior art can be solved. It was.

Claims (1)

(A)アミジン単位を含むカチオン性水溶性ポリマー、(B)ジアリルモノアルキルアンモニウムクロライドまたはジアリルジアルキルアンモニウムクロライドを環化重合して得られるカチオン性水溶性ポリマー、(C)カチオン性ビニル系モノマーとアニオン性ビニル系モノマーとノニオン性ビニル系モノマーとを共重合して得られる両性水溶性ポリマーと(D)酸性物質とを含むことを特徴とする汚泥脱水剤。(A) a cationic water-soluble polymer containing an amidine unit, (B) a cationic water-soluble polymer obtained by cyclopolymerization of diallylmonoalkylammonium chloride or diallyldialkylammonium chloride, (C) a cationic vinyl monomer and an anion A sludge dewatering agent comprising an amphoteric water-soluble polymer obtained by copolymerizing a reactive vinyl monomer and a nonionic vinyl monomer, and (D) an acidic substance.
JP2002368994A 2002-11-18 2002-11-18 Sludge dewatering agent Expired - Fee Related JP4149795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368994A JP4149795B2 (en) 2002-11-18 2002-11-18 Sludge dewatering agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368994A JP4149795B2 (en) 2002-11-18 2002-11-18 Sludge dewatering agent

Publications (2)

Publication Number Publication Date
JP2004167465A JP2004167465A (en) 2004-06-17
JP4149795B2 true JP4149795B2 (en) 2008-09-17

Family

ID=32708115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368994A Expired - Fee Related JP4149795B2 (en) 2002-11-18 2002-11-18 Sludge dewatering agent

Country Status (1)

Country Link
JP (1) JP4149795B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868127B2 (en) * 2006-03-31 2012-02-01 栗田工業株式会社 Organic sludge dewatering method
JP4854432B2 (en) * 2006-09-04 2012-01-18 ダイヤニトリックス株式会社 Sludge dewatering method
JP5348757B2 (en) * 2009-03-25 2013-11-20 ハイモ株式会社 Water-soluble polymer composition
JP5700354B2 (en) * 2010-04-15 2015-04-15 三菱レイヨン株式会社 Sludge dewatering agent and sludge dewatering treatment method
JP5963257B2 (en) * 2012-06-22 2016-08-03 ハイモ株式会社 Sludge dewatering agent
JP6131465B2 (en) * 2013-02-15 2017-05-24 三菱ケミカル株式会社 Sludge dewatering method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618611A (en) * 1979-07-24 1981-02-21 Nippon Kayaku Co Ltd Production of diallyldialkylammonium chloride
JP3097162B2 (en) * 1991-03-27 2000-10-10 栗田工業株式会社 Sludge dewatering agent and method for dewatering sludge using the same
JP3314431B2 (en) * 1993-01-27 2002-08-12 ダイヤニトリックス株式会社 Sludge dewatering agent
JP3178224B2 (en) * 1994-02-15 2001-06-18 栗田工業株式会社 Sludge dewatering agent
JP3281891B2 (en) * 1996-05-24 2002-05-13 ハイモ株式会社 Sludge dewatering agent and its use
JPH09323100A (en) * 1996-06-04 1997-12-16 Hymo Corp Sludge dehydrating agent and its use

Also Published As

Publication number Publication date
JP2004167465A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JPH08225621A (en) Amphoteric water-soluble polymer dispersion, its production and treatment comprising thin dispersion
JPH04298300A (en) Sludge dehydrating agent and method for dehydrating sludge by using this agent
WO2003072622A1 (en) Water-soluble copolymer, polymeric flocculant, and method of dehydrating sludge
JP3247795B2 (en) Amphoteric polymer sludge dewatering agent and sludge dewatering method using the same
JP4149795B2 (en) Sludge dewatering agent
JPH07256300A (en) Dehydration of sludge using both inorganic flocculant and amphoteric polymeric flocculant
CN106008798A (en) Method for preparing mico-crosslinking hydrophobically associating cation polyacrylamide flocculent
JP2976283B2 (en) Polymer flocculant
JP2535347B2 (en) Cationic polymer flocculant
JP3064878B2 (en) Organic sludge treatment
JP3709825B2 (en) Sludge dewatering method
JPWO2008047739A1 (en) Sewage sludge dewatering method
JP3222247B2 (en) Sludge dewatering method
JP4064194B2 (en) Flocculant and method of using the same
JP2002177709A (en) High molecular flocculating agent and method of dehydrating sludge
JP3775767B2 (en) Sludge dewatering agent
JP4142319B2 (en) Polymer flocculant composition
JP4206250B2 (en) Sludge dewatering method
JP2002045900A (en) Method for dewatering sludge
JPH0630800B2 (en) Sludge dehydrator
JP2002058909A (en) Amphoteric macromolecular flocculating agent and method for dehydrating sludge
JPH04293600A (en) Dehydration of sludge
JP3766564B2 (en) Sludge dewatering method
JP4287730B2 (en) Sludge dewatering method
JP3113172B2 (en) Sludge dewatering agent and sludge dewatering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees