JP4145314B2 - 腫瘍細胞成長阻害のための組成物及び方法 - Google Patents
腫瘍細胞成長阻害のための組成物及び方法 Download PDFInfo
- Publication number
- JP4145314B2 JP4145314B2 JP2005229454A JP2005229454A JP4145314B2 JP 4145314 B2 JP4145314 B2 JP 4145314B2 JP 2005229454 A JP2005229454 A JP 2005229454A JP 2005229454 A JP2005229454 A JP 2005229454A JP 4145314 B2 JP4145314 B2 JP 4145314B2
- Authority
- JP
- Japan
- Prior art keywords
- amino acid
- sequence
- polypeptide
- acid sequence
- antibody
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/08—Drugs for disorders of the urinary system of the prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/10—Drugs for disorders of the urinary system of the bladder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Endocrinology (AREA)
- Biochemistry (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Oncology (AREA)
- Reproductive Health (AREA)
- Hematology (AREA)
- Pulmonology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physical Education & Sports Medicine (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Description
本発明は、腫瘍細胞成長を阻害するための方法及び組成物に関する。特に本発明は、腫瘍治療のための抗腫瘍組成物及び方法に関する。さらに本発明は、成長阻害性、例えば抗腫瘍化合物を同定するためのスクリーニング方法に関する。
悪性腫瘍(癌)は、米国において心臓疾患に続き第2の主要な死亡原因である(Boring等, CA Cancel J. Clin., 43: 7 [1993])。
癌は、正常な組織から誘導されて腫瘍実体を形成する異常な、又は腫瘍形成性の細胞数の増加、これらの腫瘍形成性腫瘍細胞による隣接組織の侵襲、及び最終的に血液やリンパ系を介して局所のリンパ節及び離間部位に拡散(転移)する悪性細胞の生成を特徴とする。癌性状態においては、正常細胞が成長しない条件下で細胞が増殖する。癌自体は、異なる侵襲及び攻撃性の程度で特徴付けられる広範な種々の形態で顕現する。
近年の癌治療の進歩にもかかわらず、腫瘍細胞成長を阻害することのできる新たな治療薬が大いに必要とされている。従って、本発明の目的は、癌細胞といった腫瘍細胞の成長を阻害することのできる化合物を同定することである。
1. 実施態様
本発明は、腫瘍細胞成長を阻害するための方法及び組成物に関する。より詳細には、本発明は、哺乳動物患者、好ましくはヒトにおける乳癌、前立腺癌、直腸癌、肺癌、卵巣癌、腎臓癌及びCNS癌等の癌を含む腫瘍の治療のための方法及び組成物に関する。
一態様では、本発明は、製薬的に許容される担体と混合された、ここで定義されるPROポリペプチド、又はそのアゴニストの有効量を含有する、腫瘍細胞成長を阻害するのに有用な物質の組成物に関する。好ましい実施態様では、物質の組成物は、PROポリペプチド、又はそのアゴニストの成長阻害量を含有する。他の好ましい実施態様では、組成物は、PROポリペプチド、又はそのアゴニストの細胞毒性量を含有する。
場合によっては、物質の組成物は、一又は複数のさらなる成長阻害及び/又は細胞毒性及び/又は他の化学治療薬を含有してもよい。
他の態様では、本発明は腫瘍細胞の成長を阻害する方法に関し、当該細胞をここで定義されるPROポリペプチド、又はそのアゴニストの有効量に曝露することを含んでなる。特別な実施態様では、アゴニストは抗-PROアゴニスト抗体である。他の実施態様では、アゴニストはPROポリペプチドの生物学的活性を模倣する小分子である。
この方法は、インビトロ又はインビボで実施されうる。
(1)容器;
(2)当該容器内に収容された活性剤を含有する組成物であって、当該組成物は新生細胞成長、例えば腫瘍細胞成長の阻害に有効であり、該組成物中の活性剤はここで定義されるPROポリペプチド、又はそのアゴニストである;及び
(3)前記PROポリペプチド又はそのアゴニストの腫瘍細胞成長阻害のための用途を記載した、前記容器に貼付されたラベル、又は前記容器内に封入される包装挿入物;
を具備する製造品に関し、当該アゴニストはPROポリペプチドに結合する抗体であってよい。
本発明の他の実施態様では、当該発明は、PROポリペプチドをコードする核酸配列を含む単離された核酸分子を提供する。
一態様では、単離された核酸分子は、(a)ここに開示する全長アミノ酸配列、ここに開示するシグナルペプチドを欠くアミノ酸配列、ここに開示するシグナルペプチド有又は無の膜貫通タンパク質の細胞外ドメイン、又はここに開示する全長アミノ酸配列の特に同定された他の断片を持つPROポリペプチドをコードするDNA分子、又は(b)(a)のDNA分子の補体に対して、少なくとも約80%の配列同一性、好ましくは少なくとも約81%の配列同一性、より好ましくは少なくとも約82%の配列同一性、より好ましくは少なくとも約83%の配列同一性、より好ましくは少なくとも約84%の配列同一性、より好ましくは少なくとも約85%の配列同一性、より好ましくは少なくとも約86%の配列同一性、より好ましくは少なくとも約87%の配列同一性、より好ましくは少なくとも約88%の配列同一性、より好ましくは少なくとも約89%の配列同一性、より好ましくは少なくとも約90%の配列同一性、より好ましくは少なくとも約91%の配列同一性、より好ましくは少なくとも約92%の配列同一性、より好ましくは少なくとも約93%の配列同一性、より好ましくは少なくとも約94%の配列同一性、より好ましくは少なくとも約95%の配列同一性、より好ましくは少なくとも約96%の配列同一性、より好ましくは少なくとも約97%の配列同一性、より好ましくは少なくとも約98%の配列同一性、そして、より好ましくは少なくとも約99%の配列同一性を有するヌクレオチド配列を含む。
或る態様では、本発明は、ここに開示する全長アミノ酸配列、ここに開示するシグナルペプチドを欠くアミノ酸配列、ここに開示するシグナルペプチド有又は無の膜貫通タンパク質の細胞外ドメイン、又はここに開示する全長アミノ酸配列の特に同定された他の断片を持つPROポリペプチドに対して少なくとも約80%の配列同一性、好ましくは少なくとも約81%の配列同一性、より好ましくは少なくとも約82%の配列同一性、より好ましくは少なくとも約83%の配列同一性、より好ましくは少なくとも約84%の配列同一性、より好ましくは少なくとも約85%の配列同一性、より好ましくは少なくとも約86%の配列同一性、より好ましくは少なくとも約87%の配列同一性、より好ましくは少なくとも約88%の配列同一性、より好ましくは少なくとも約89%の配列同一性、より好ましくは少なくとも約90%の配列同一性、より好ましくは少なくとも約91%の配列同一性、より好ましくは少なくとも約92%の配列同一性、より好ましくは少なくとも約93%の配列同一性、より好ましくは少なくとも約94%の配列同一性、より好ましくは少なくとも約95%の配列同一性、より好ましくは少なくとも約96%の配列同一性、より好ましくは少なくとも約97%の配列同一性、より好ましくは少なくとも約98%の配列同一性、そして、より好ましくは少なくとも約99%の配列同一性を有するアミノ酸配列を含む単離されたPROポリペプチドに関する。
本発明の他の態様は、膜貫通ドメインの欠失した又は膜貫通ドメインが不活性化された、単離されたPROポリペプチドを提供する。それらを製造する方法もここに記載され、それらの方法は、適当なコード化核酸分子を含むベクターを含む宿主細胞をPROポリペプチドの発現に適した条件下で培養し、培養培地からPROポリペプチドを回収することを含む。
さらなる実施態様では、本発明は、PROポリペプチドのアゴニストを同定する方法に関し、それは、PROポリペプチドを候補分子と接触させ、前記PROポリペプチドによって媒介される生物学的活性を監視することを含む。好ましくは、PROポリペプチドは天然PROポリペプチドである。
さらに他の実施態様では、本発明は、PROポリペプチド、又はここに記載するPROポリペプチドのアンタゴニスト、又は抗-PRO抗体を、担体と組み合わせて含有する物質の組成物に関する。場合によっては、担体は製薬的に許容される担体である。
本発明のさらなる実施態様では、本発明は、ここに記載するポリペプチドの任意のものをコードするDNAを含むベクターを提供する。そのようなベクターの任意のものを含む宿主細胞も提供される。例として、宿主細胞はCHO細胞、大腸菌、酵母、又はバキュウロウイルス感染昆虫細胞であってよい。ここに記載する任意のポリペプチドの製造方法がさらに提供され、それは、宿主細胞を所望のポリペプチドの発現に適した条件下で培養し、細胞培地から所望のポリペプチドを回収することを含む。
さらに他の実施態様では、本発明は、上記又は下記のポリペプチドの任意のものに特異的に結合する抗体を提供する。場合によっては、抗体はモノクローナル抗体、ヒト化抗体、抗体断片又は一本鎖抗体である。
またさらに他の実施態様では、本発明は、ゲノム及びcDNAヌクレオチド配列又はアンチセンスプローブの単離に有用なオリゴヌクレオチドプローブを提供し、それらのプローブは上記又は下記のヌクレオチド配列の任意のものから誘導されうる。
ここで使用される際の「PROポリペプチド」及び「PRO」という用語は、直後に数値符号がある場合に種々のポリペプチドを指し、完全な符号(例えば、PRO/数字)は、ここに記載する特定のポリペプチド配列を意味する。ここで使用される「PRO/数字ポリペプチド」及び「PRO/数字」であって、「数字」がここで使用される実際の数値符号として与えられる用語は、天然配列ポリペプチド及び変異体(ここで更に詳細に定義する)を含む。ここに記載されるPROポリペプチドは、ヒト組織型又は他の供給源といった種々の供給源から単離してもよく、組換え又は合成方法によって調製してもよい。
「天然配列PROポリペプチド」は、天然由来の対応するPROポリペプチドと同一のアミノ酸配列を有するポリペプチドを含んでいる。このような天然配列PROポリペプチドは、自然から単離することもできるし、組換え又は合成手段により生産することもできる。「天然配列PROポリペプチド」という用語には、特に、特定のPROポリペプチドの自然に生じる切断又は分泌形態(例えば、細胞外ドメイン配列)、自然に生じる変異形態(例えば、選択的にスプライシングされた形態)及びそのポリペプチドの自然に生じる対立遺伝子変異体が含まれる。本発明の種々の実施態様において、天然配列PROポリペプチドは、添付の図面に示される全長アミノ酸配列を含む成熟又は全長天然配列ポリペプチドである。開始及び停止コドンは、図において太字又は下線で示した。しかし、添付の図面に開示したPROポリペプチドは、図面におけるアミノ酸位置1としてここに命名されるメチオニン残基で始まるように示されているが、図面におけるアミノ酸位置1の上流又は下流に位置する他のメチオニン残基をPROポリペプチドの開始アミノ酸残基として用いることも考えられるし可能でもある。
ここに開示する種々のPROポリペプチドの「シグナルペプチド」の適切な位置は、添付の図面に示す。しかし、注記するように、シグナルペプチドのC-末端境界は変化しうるが、ここで最初に定義したようにシグナルペプチドC-末端境界のいずれかの側で約5アミノ酸未満である可能性が最も高く、シグナルペプチドのC-末端境界は、そのような型のアミノ酸配列成分を同定するのに日常的に使用される基準に従って同定しうる(例えば、Nielsen等, Prot. Eng. 10: 1-6 (1997)及びvon Heinje等, Nucl. Acids. Res. 14: 4683-4690 (1986))。さらに、幾つかの場合には、分泌ポリペプチドからのシグナルペプチドの切断は完全に均一ではなく、一以上の分泌種をもたらすことも認められる。シグナルペプチドがここに定義されるシグナルペプチドのC-末端境界の何れかの側の約5アミノ酸未満内で切断されるこれらの成熟ポリペプチド、及びそれらをコードするポリヌクレオチドは、本発明で考慮される。
分率X/Yの100倍
ここで、Xは配列アラインメントプログラムALIGN-2のA及びBのアラインメントによって同一であると一致したスコアのアミノ酸残基の数であり、YはBの全アミノ酸残基数である。アミノ酸配列Aの長さがアミノ酸配列Bの長さと異なる場合、AのBに対する%アミノ酸配列同一性は、BのAに対する%アミノ酸配列同一性とは異なることは理解されるであろう。この方法を用いた%アミノ酸配列同一性の計算の例として、表2Aと2Bは、「比較タンパク質」と称されるアミノ酸配列の「PRO」と称されるアミノ酸配列に対する%アミノ酸配列同一性の計算方法を示す。
特に断らない限り、ここで用いられる全ての%アミノ酸配列同一性値は、上記したようにしてALIGN-2配列比較コンピュータプログラムを用いて得られる。しかしながら、%アミノ酸配列同一性は、配列比較コンピュータプログラムNCBI-BLAST-2(Altschul等, Nucleic Acids Res., 25: 3389-3402 (1997))を用いて決定してもよい。NCBI-BLAST2配列比較プログラムは、http://ww.ncbi.nlm.nih.govからダウンロードできる。NCBI-BLAST2は幾つかの検索パラメータを使用し、それら検索パラメータの全ては初期値に設定され、例えば、unmask=可、鎖=全て、予測される発生=10、最小低複合長=15/5、マルチパスe-値=0.01、マルチパスの定数=25、最終ギャップアラインメントのドロップオフ=25、及びスコアリングマトリクス=BLOSUM62を含む。
分率X/Yの100倍
ここで、Xは配列アラインメントプログラムNCBI-BLAST2のA及びBのアラインメントによって同一であると一致したスコアのアミノ酸残基の数であり、YはBの全アミノ酸残基数である。アミノ酸配列Aの長さがアミノ酸配列Bの長さと異なる場合、AのBに対する%アミノ酸配列同一性は、BのAに対する%アミノ酸配列同一性とは異なることは理解されるであろう。
さらに、%アミノ酸配列同一性値は、WU-BLAST-2コンピュータプログラム(Altschul等, Methods in Enzymology 266: 460-480 (1996))を用いて決定してもよい。殆どのWU-BLAST-2検索パラメータは初期値に設定される。初期値に設定されない、即ち調節可能なパラメータは以下の値に設定する:オーバーラップスパン=1、オーバーラップフラクション=0.125、ワード閾値(T)=11、及びスコアリングマトリクス=BLOSUM62。ここでの目的のために、%アミノ酸配列同一性値は、(a)天然PROポリペプチドから誘導された配列を有する対象とするPROポリペプチドのアミノ酸配列と、対象とする比較アミノ酸配列(即ち、対象とするPROポリペプチドが比較されるPROポリペプチド変異体であってもよい配列)との間の、WU-BLAST-2によって決定した一致する同一アミノ酸残基の数を、(b)対象とするPROポリペプチドの残基の総数で除した商によって決定される。例えば、「アミノ酸配列Bに対して少なくとも80%のアミノ酸配列同一性を持つ又は持っているアミノ酸配列Aを含んでなるポリペプチド」という表現では、アミノ酸配列Aが対象とする比較アミノ酸配列であり、アミノ酸配列Bが対象とするPROポリペプチドのアミノ酸配列である。
通常は、PRO変異体ポリヌクレオチドは、少なくとも約30ヌクレオチド長、より多くは少なくとも約60ヌクレオチド長、より多くは少なくとも約90ヌクレオチド長、より多くは少なくとも約120ヌクレオチド長、より多くは少なくとも約150ヌクレオチド長、より多くは少なくとも約180ヌクレオチド長、より多くは少なくとも約210ヌクレオチド長、より多くは少なくとも約240ヌクレオチド長、より多くは少なくとも約270ヌクレオチド長、より多くは少なくとも約300ヌクレオチド長、より多くは少なくとも約450ヌクレオチド長、より多くは少なくとも約600ヌクレオチド長、より多くは少なくとも約900ヌクレオチド長、又はそれ以上である。
分率W/Zの100倍
ここで、Wは配列アラインメントプログラムALIGN-2のC及びDのアラインメントによって同一であると一致したスコアのヌクレオチドの数であり、ZはDの全ヌクレオチド数である。核酸配列Cの長さが核酸配列Dの長さと異なる場合、CのDに対する%核酸配列同一性は、DのCに対する%核酸配列同一性とは異なることは理解されるであろう。この方法を用いた%核酸配列同一性の計算の例として、表2C-Dは、「比較DNA」と称される核酸配列の「PRO-DNA」と称される核酸配列に対する%核酸配列同一性の計算方法を示す。
特に断らない限りは、ここでの全ての%核酸配列同一性値は上記のようにALIGN-2配列比較コンピュータプログラムを用いて得られる。しかしながら、%核酸配列同一性は、配列比較プログラムNCBI-BLAST2(Altschul等, Nucleic Acids Res. 25: 3389-3402 (1997))を用いて決定してもよい。NCBI-BLAST2配列比較プログラムは、http://ww.ncbi.nlm.nih.govからダウンロードできる。NCBI-BLAST2は幾つかの検索パラメータを使用し、それら検索パラメータの全ては初期値に設定され、例えば、unmask=可、鎖=全て、予測される発生=10、最小低複合長=15/5、マルチパスe-値=0.01、マルチパスの定数=25、最終ギャップアラインメントのドロップオフ=25、及びスコアリングマトリクス=BLOSUM62を含む。
配列比較にNCBI-BLAST2が用いれれる状況では、与えられた核酸配列Cの、与えられた核酸配列Dとの、又はそれに対する%核酸配列同一性(あるいは、与えられた核酸配列Dと、又はそれに対して或る程度の%核酸配列同一性を持つ又は含む与えられた核酸配列Cと言うこともできる)は次のように計算される:
分率W/Zの100倍
ここで、Wは配列アラインメントプログラムNCBI-BLAST2のC及びDのアラインメントによって同一であると一致したスコアのヌクレオチドの数であり、ZはDの全ヌクレオチド数である。核酸配列Cの長さが核酸配列Dの長さと異なる場合、CのDに対する%核酸配列同一性は、DのCに対する%核酸配列同一性とは異なることは理解されるであろう。
上記のように実施されるアミノ酸配列同一性比較の文脈における「ポジティブ(陽性)」という用語は、比較された配列において同一であるアミノ酸残基ばかりでなく特性を有するものも含む。対象とするアミノ酸残基に対してポジティブ値をスコアされるアミノ酸残基は、対象とするアミノ酸残基と同一であるか、又は対象とするアミノ酸残基の(下記の表6で特定するように)好ましい置換とされるものである。
ここでの目的のために、与えられたアミノ酸配列Aの、与えられたアミノ酸配列Bとの、又はそれに対する%ポジティブ値(あるいは、与えられたアミノ酸配列Bと、又はそれに対して或る程度の%ポジティブを持つ又は含む与えられたアミノ酸配列Aと言うこともできる)は次のように計算される:
分率X/Yの100倍
ここで、Xは配列アラインメントプログラムALIGN-2のA及びBのアラインメントによってポジティブであるとのスコアのアミノ酸残基の数であり、YはBの全アミノ酸残基数である。アミノ酸配列Aの長さがアミノ酸配列Bの長さと異なる場合、AのBに対する%ポジティブは、BのAに対する%ポジティブとは異なることは理解されるであろう。
PROポリペプチドをコードする「単離された」核酸分子又は抗-PRO抗体をコードする「単離された」核酸分子は、同定され、PROコード化核酸の天然源又は抗-PROコード化核酸の天然源に通常付随している少なくとも1つの汚染核酸分子から分離された核酸分子である。好ましくは、単離された核酸は、それに天然に付随する全ての成分を伴わない。単離されたPROコード化核酸分子又は抗-PROコード化核酸分子は、天然に見出される形態あるいは設定以外のものである。ゆえに、単離された核酸分子は、天然の細胞中に存在するPROコード化核酸分子又は抗-PROコード化核酸分子とは区別される。しかし、PROポリペプチド又は抗-PRO抗体をコードする単離された核酸分子は、例えば、核酸分子が天然細胞のものとは異なった染色体位置にあるPROポリペプチドを通常発現する又は抗-PRO抗体を発現する細胞に含まれるPRO核酸分子及び抗-PRO核酸分子を含む。
核酸は、他の核酸配列と機能的な関係にあるときに「作用可能に結合し」ている。例えば、プレ配列あるいは分泌リーダーのDNAは、ポリペプチドの分泌に参画するプレタンパク質として発現されているなら、そのポリペプチドのDNAに作用可能に結合している;プロモーター又はエンハンサーは、配列の転写に影響を及ぼすならば、コード配列に作用可能に結合している;又はリボソーム結合部位は、もしそれが翻訳を容易にするような位置にあるなら、コード配列と作用可能に結合している。一般的に、「作用可能に結合している」とは、結合したDNA配列が近接しており、分泌リーダーの場合には近接していて読みフェーズにあることを意味する。しかし、エンハンサーは必ずしも近接している必要はない。結合は簡便な制限部位でのライゲーションにより達成される。そのような部位が存在しない場合は、従来の手法に従って、合成オリゴヌクレオチドアダプターあるいはリンカーが使用される。
「抗体」という用語は最も広い意味において使用され、例えば、単一の抗-PROモノクローナル抗体(アゴニスト抗体を含む)、多エピトープ特異性を持つ抗-PRO抗体組成物、一本鎖の抗-PRO抗体、及び抗-PRO抗体の断片を包含している(下記参照)。ここで使用される「モノクローナル抗体」という用語は、実質的に均一な抗体の集団、すなわち、構成する個々の抗体が、少量存在しうる自然に生じる可能性のある突然変異を除いて同一である集団から得られる抗体を称する。
ここで定義される「緊縮性条件」又は「高度の緊縮性条件」は、(1)洗浄のために低イオン強度及び高温度、例えば、50℃において0.015Mの塩化ナトリウム/0.0015Mのクエン酸ナトリウム/0.1%のドデシル硫酸ナトリウムを用いるもの;(2)ハイブリッド形成中にホルムアミド等の変性剤、例えば、42℃において50%(v/v)ホルムアミドと0.1%ウシ血清アルブミン/0.1%フィコール/0.1%のポリビニルピロリドン/50mMのpH6.5のリン酸ナトリウムバッファー、及び750mMの塩化ナトリウム、75mMクエン酸ナトリウムを用いるもの;(3)42℃における50%ホルムアミド、5xSSC(0.75MのNaCl、0.075Mのクエン酸ナトリウム)、50mMのリン酸ナトリウム(pH6.8)、0.1%のピロリン酸ナトリウム、5xデンハート液、超音波処理サケ精子DNA(50μg/ml)、0.1%SDS、及び10%のデキストラン硫酸と、42℃における0.2xSSC(塩化ナトリウム/クエン酸ナトリウム)中の洗浄及び55℃での50%ホルムアミド、次いで55℃におけるEDTAを含む0.1xSSCからなる高緊縮性洗浄を用いるものによって同定される。
「中程度の緊縮性条件」は、Sambrook等, Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989に記載されているように同定され、上記の緊縮性より低い洗浄溶液及びハイブリッド形成条件(例えば、温度、イオン強度及び%SDS)の使用を含む。中程度の緊縮性条件は、20%ホルムアミド、5xSSC(150mMのNaCl、15mMのクエン酸三ナトリウム)、50mMリン酸ナトリウム(pH7.6)、5xデンハート液、10%デキストラン硫酸、及び20mg/mLの変性剪断サケ精子DNAを含む溶液中の37℃での終夜インキュベーション、次いで1xSSC中37−50℃でのフィルターの洗浄といった条件である。当業者であれば、プローブ長などの因子に適合させる必要に応じて、どのようにして温度、イオン強度等を調節するかを認識するであろう。
ここで用いる「イムノアドヘシン」という用語は、免疫グロブリン定常ドメインのエフェクター機能を持つ異種タンパク質(「アドヘシン」)の結合特異性を付与した抗体様分子を指す。構造的には、イムノアドヘシンは抗体の抗原認識及び結合部位以外の所望の結合特異性を持つアミノ酸配列(即ち「異種」)と免疫グロブリン定常ドメイン配列との融合物である。イムノアドヘシン分子のアドへシン部分は、典型的には少なくともレセプター又はリガンドの結合部位を含む近接アミノ酸配列である。イムノアドヘシンの免疫グロブリン定常ドメイン配列は、IgG-1、IgG-2、IgG-3、又はIgG-4サブタイプ、IgA(IgA-1及びIgA-2を含む)、IgE、IgD又はIgMなどの任意の免疫グロブリンから得ることができる。
ここに開示されるスクリーニングアッセイによって同定できる抗体又は他のアンタゴニスト分子(例えば、有機又は無機小分子、ペプチド等)の文脈における「生物学的活性」は、それらの分子が「治療的有効量」の定義に関してここに列挙する効果の一又は複数を誘起する能力を指す。好ましい生物学的活性は、標的腫瘍(例えば癌)細胞の成長の遅延及び完全な停止を含む阻害である。他の好ましい生物学的活性は、標的腫瘍(例えば癌)細胞の死をもたらす細胞毒性活性である。さらに他の好ましい生物学的活性は、標的腫瘍(例えば癌)細胞のアポトーシスの誘発である。
ここで用いられる「免疫学的交差反応性」とは、候補ポリペプチドが、この活性を持つPROポリペプチドの定性的生物学的活性を、周知の活性なPROポリペプチドに対して生じたポリクローナル抗血清と競合的に阻害できることを意味する。そのような抗血清は、例えばヤギ又はウサギに、完全フロイントアジュバント中の周知の活性類似物を皮下注射し、次いで不完全フロイント中で腹膜内又は皮下に追加免疫することにより従来の方法で調製される。免疫学的交差反応性は好ましくは「特異的」であり、これは同定される免疫学的交差反応性分子(例えば抗体)の対応するPROポリペプチドに対する結合親和性が、その分子の他の任意の知られた天然ポリペプチドに対する結合親和性より有意に高い(好ましくは少なくとも約2倍、より好ましくは少なくとも約4倍、さらにより好ましくは少なくとも約8倍、最も好ましくは少なくとも約10倍高い)ことを意味する。
「癌」及び「癌性」という用語は、典型的には調節されない細胞成長を特徴とする、哺乳動物における生理学的状態を指すか記述する。癌の例には、これらに限定されるものではないが、腺癌、リンパ腫、芽細胞腫、肉腫、及び白血病が含まれる。このような癌のより特定の例には、乳癌、前立腺癌、大腸癌、扁平上皮細胞癌、小細胞肺癌、非小細胞肺癌、卵巣癌、子宮頸癌、胃腸癌、膵臓癌、神経膠芽細胞腫、肝臓癌、膀胱癌、肝細胞腫、結腸直腸癌、子宮体癌、唾液腺癌、腎臓癌、肝臓癌、産卵口癌、甲状腺癌、肝癌及び様々な種類の頭部及び頸部の癌が含まれる。
癌の「病理」は、患者の良好な生存を危うくさせる全ての現象を含む。これは、限定されるものではないが、異常又は制御不能な細胞成長、転移、隣接細胞の正常機能の阻害、サイトカイン又は他の分泌生成物の異常レベルでの放出、炎症又は免疫反応の抑制又は悪化などを含む。
「治療的有効量」は、腫瘍の治療に関しては、次の効果:(1)遅延化及び完全な成長停止を含む、腫瘍成長の或る程度の阻害;(2)腫瘍細胞数の減少;(3)腫瘍サイズの縮小;(4)腫瘍細胞の末梢器官への浸潤の阻害(即ち、減少、遅延化又は完全な停止);(5)転移の阻害(即ち、減少、遅延化又は完全な停止);(6)抗腫瘍免疫反応の促進、これは、腫瘍の退行又は拒絶をもたらしてもよいが、必ずしも必要ではない;及び/又は(7)疾患に伴う徴候の1つ又は複数の或る程度の軽減の1つ又は複数を誘起することのできる量を意味する。腫瘍の治療の目的のためのPROポリペプチド又はそのアゴニストの「治療的有効量」は、経験的に日常的手法で決定できる。
「化学治療薬」は、癌の治療に有用な化合物である。化学治療薬の例は、アドリアマイシン、ドキソルビシン、エピルビシン、5-フルオロウラシル、シトシンアラビノシド(「Ara−C」)、シクロホスファミド、チオテパ、ブスルファン、サイトキシン、タキソイド、例えばパクリタキセル(Taxol, Bristol-Myers Squibb Oncology, Princeton, NJ)及びドキセタキセル(Taxotere, Rhone-Poulenc Rorer, Antony, France)、トキソテール、メトトレキセート、シスプラチン、メルファラン、ビンブラスチン、ブレオマイシン、エトポシド、イフォスファミド、マイトマイシンC、マイトキサントロン、ビンクリスチン、ビノレルビン、カルボプラチン、テニポシド、ダウノマイシン、カルミノマイシン、アミノプテリン、ダクチノマイシン、マイトマイシン、エスペラマイシン(米国特許第4,675,187号参照)、メルファラン、及び他の関連するナイトロジェンマスタードを含む。また、この定義に含まれるのは、タモキシフェン及びオナプリストンなどの腫瘍へのホルモン作用を調節又は阻害するように作用するホルモン様薬剤である。
ここで用いられる際の「成長阻害剤」は、細胞、特に腫瘍、例えば癌細胞の成長を、インビトロ又はインビボで阻害する化合物又は組成物を意味する。即ち、成長阻害剤は、S相でそのような遺伝子を過剰発現する細胞の割合を有意に減少させるものである。成長阻害剤の例は、細胞周期を(S相以外の位置で)阻害する薬剤、例えばG1停止又はM相停止を誘発する薬剤を含む。古典的なM相ブロッカーは、ビンカス(ビンクリスチン及びビンブラスチン)、タキソール、及びトポII、例えばドキソルビシン、エピルビシン、ダウノルビシン、エトポシド、及びブレオマイシンを含む。G1停止させるこれらの薬剤は、S相停止にも溢流し、例えば、DNAアルキル化剤、例えば、タモキシフェン、プレドニゾン、ダカルバジン、メクロレタミン、シスプラチン、メトトレキセート、5-フルオロウラシル、及びara-Cである。さらなる情報は、The Molecular Basis of Cancer, Mendelsohn及びIsrael, 編, Chapter 1, 表題「Cell cycle reguration, oncogene, and antineoplastic drugs」, Murakami等, (WB Saunders: Philadelphia, 1995)、特にp13に見出すことができる。
「慢性」投与とは、初期の治療効果(活性)を長期間にわたって維持するようにするために、急性態様とは異なり連続的な態様での薬剤の投与を意味する。「間欠」投与とは、中断無く連続的になされるのではなく、むしろ本質的に周期的になされる処理である。
治療の目的とされる「哺乳動物」は、哺乳類に分類される任意の動物を意味し、ヒト、家畜用及び農場用動物、動物園、スポーツ、又はペット動物、例えばイヌ、ウマ、ネコ、ウシなどを含む。好ましくは、哺乳動物はヒトである。
ここで用いられる「担体」は製薬的に許容される担体、賦形剤、又は安定化剤を含み、それらは、用いられる用量及び濃度でそれに暴露される細胞又は哺乳動物に対して非毒性である。生理学的に許容される担体は、pH緩衝水溶液であることが多い。生理学的に許容される担体の例は、リン酸塩、クエン酸塩、及び他の有機酸バッファー;アスコルビン酸を含む酸化防止剤;低分子量(約10残基未満)のポリペプチド;タンパク質、例えば血清アルブミン、ゼラチン、または免疫グロブリン;ポリビニルピロリドン等の親水性ポリマー、グリシン、グルタミン、アスパラギン、アルギニン又はリジン等のアミノ酸;グルコース、マンノース又はデキストラン等の単糖類、二糖類及び他の炭水化物;EDTA等のキレート化剤;マンニトール又はソルビトール等の糖アルコール;ナトリウム等の自己形成対イオン;及び/又はTWEEN(商品名)、ポリエチレングリコール(PEG)、及びPLURONICS(商品名)等の非イオン性界面活性剤を含む。
「可変」という用語は、可変ドメインのある部位が、抗体の中で配列が広範囲に異なっており、その特定の抗原に対する各特定の抗体の結合性及び特異性に使用されているという事実を意味する。しかしながら、可変性は抗体の可変ドメインにわたって一様には分布していない。軽鎖及び重鎖の可変ドメインの両方の高頻度可変領域又は相補性決定領域(CDRs)と呼ばれる3つ又は4つののセグメントに濃縮される。可変ドメインのより高度に保持された部分はフレームワーク(FR)領域と呼ばれる。天然の重鎖及び軽鎖の可変ドメインは、β-シート構造を結合し、ある場合にはその一部を形成するループ結合を形成する、CDRにより連結されたβ-シート配置を主にとる4つ又5つのFR領域をそれぞれ含んでいる。各鎖のCDRは、FRにより近接して結合せしめられ、他の鎖のCDRと共に、抗体の抗原結合部位の形成に寄与している(Kabat等, NIH Publ. No.91-3242, Vol.I, 647-669頁[1991]を参照のこと)。定常ドメインは、抗体の抗原への結合に直接関連しているものではないが、種々のエフェクター機能、例えば抗体依存性細胞毒性活性への抗体の関与を示す。
「抗体断片」は、未変性の抗体の一部、好ましくは未変性の抗体の抗原結合又は可変領域を含む。抗体断片の例は、Fab、Fab'、F(ab')2、及びFv断片;ダイアボディ(diabody);直鎖状抗体(Zapata等, Protein Eng. 8(10): 1057-1062 [1995]);一本鎖抗体分子;及び抗体断片から形成される多重特異的抗体を含む。
「Fv」は、完全な抗原認識及び結合部位を含む最小抗体断片である。この領域は、緊密に非共有的に結合した1つの重鎖と1つの軽鎖の二量体からなる。この配置では、VH−VL二量体の表面における抗原結合部位を決定するために各可変領域の3つのCDRが相互作用する。正確には、6つのCDRが抗体に抗原結合特異性を与える。しかし、単一の可変ドメイン(又は抗原特異的な3つのCDRしか含まないFvの半分)でさえも抗原を認識し結合する能力を持つが、結合部位全体よりは親和性が低い。
任意の種からの抗体(免疫グロブリン)の「軽鎖」は、それらの定常ドメインのアミノ酸配列に基づいて、カッパ(κ)及びラムダ(λ)と呼ばれる1つ又は2つの明らかに異なる型に分類できる。
それらの重鎖の定常ドメインのアミノ酸配列に応じて、免疫グロブリンは異なるクラスに分けられる。免疫グロブリンの5つの主要なクラス:IgA、IgD、IgE、IgG、及びIgMがあり、これらの幾つかは、更にサブクラス(アイソタイプ)、例えばIgG1、IgG2、IgG3、IgG4、IgA及びIgA2に分けられる。
非ヒト(例えばマウス)抗体の「ヒト化」型は、非ヒト免疫グロブリンから誘導された最小配列を含有する特定のキメラ免疫グロブリン、免疫グロブリン鎖又はそれらの断片(例えば、Fv、Fab、Fab'、F(ab')2あるいは抗体の他の抗原結合性配列)である。大部分において、ヒト化抗体はヒト免疫グロブリン(レシピエント抗体)であって、そのレシピエントの相補性決定領域(CDR)が、マウス、ラット、ヤギなどのヒト以外の種のCDR(ドナー抗体)に由来する所望の特異性、親和性及び容量を持つ残基で置換されている。ある場合は、ヒト免疫グロブリンのFvFR枠残基が対応する非ヒト残基で置換される。さらに、ヒト化抗体は、レシピエント抗体にも、輸入されるCDR又は枠配列にも見られない残基を含んでもよい。これらの修飾は、抗体の性能をさらに精密かつ最適化するために施される。一般にヒト化抗体は、CDR領域の全て又は実質上全てが非ヒト免疫グロブリンのものに対応し、FR領域の全て又は実質上全てがヒト免疫グロブリン共通配列のものである少なくとも1つ、典型的には2つの可変ドメインの実質的に全部を含有するであろう。また、最適なヒト化抗体は、免疫グロブリン定常領域(Fc)、典型的にはヒト免疫グロブリンのものの少なくとも一部も含有するであろう。さらなる詳細については、Jones等, Nature 321: 522 -525 (1986);Reichmann等, Nature 332: 323-329 (1988);Presta, Curr. Op. struct. Biol. 2: 593 -596 (1992)を参照のこと。ヒト化抗体は、抗体の抗原結合領域が、関心のある抗原でマカクザルを免疫化することにより生産された抗体から由来するプリマタイズしたPRIMATIZED(商品名)抗体を含む。
「ダイアボディ」なる用語は、二つの抗原結合部位を持つ小さい抗体断片を指し、その断片は同一のポリペプチド鎖(VH−VL)内で軽鎖可変ドメイン(VL)に重鎖可変ドメイン(VH)が結合している。非常に短いために同一鎖上で二つのドメインの対形成を可能にするリンカーを使用して、ドメインを他の鎖の相補ドメインと強制的に対形成させ、二つの抗原結合部位を創製する。ダイアボディーは、例えば、EP404097;WO93 /11161;及びHollinger等, Proc.Natl.Acad.Sci. USA 90:6444-6448 (1993)に更に詳細に記載されている。
「単離された」抗体とは、その自然環境の成分から同定され分離され又は回収されたものを意味する。その自然環境の汚染成分とは、抗体の診断又は治療への使用を妨害する物質であり、酵素、ホルモン、及び他の非タンパク質様溶質が含まれる。好ましい実施態様において、抗体は、(1)ローリー(Lowry)法によって決定した場合95重量%以上の、最も好ましくは99重量%の抗体まで、(2)スピニングカップシークエネーターを使用することにより、少なくとも15のN末端あるいは内部アミノ酸配列の残基を得るのに充分な程度まで、あるいは(3)クーマシーブルーあるいは好ましくは銀染色を用いた還元又は非還元条件下でのSDS-PAGEによる均一性まで精製される。単離された抗体には、組換え細胞内のインサイツの抗体が含まれるが、これは抗体の自然環境の少なくとも1つの成分が存在しないからである。しかしながら、通常は、単離された抗体は少なくとも1つの精製工程により調製される。
「固相」とは、本発明の抗体が接着できる非水性マトリクスを意味する。ここに包含される固相の例は、部分的又は全体的にガラス(例えば、孔の制御されたガラス)、ポリサッカリド(例えばアガロース)、ポリアクリルアミド、ポリスチレン、ポリビニルアルコール及びシリコーンで形成されたものを含む。或る実施態様では、前後関係に応じて、固相はアッセイ用プレートのウェル;その他では精製用カラム(例えばアフィニティクロマトグラフィカラム)を含むことができる。また、この用語は、米国特許第4,275,149号に記載されたような別々の粒子の不連続な固体相も含む。
「小分子」は、ここで約500ダルトン未満の分子量を有すると定義される。
さらに、表2−5は、ALIGN-2配列比較コンピュータプログラムを使用して%アミノ酸同一性(表2-3)及び%核酸配列同一性(表4-5)を決定する後述の方法を使用するための仮説的例示を示し、「PRO」とは対象とする仮のPROポリペプチドのアミノ酸配列を意味し、「比較タンパク質」とは対象とする「PRO」ポリペプチドと比較されるポリペプチドのアミノ酸配列を意味し、「PRO-DNA」とは、対象とする仮のPRO-コード化核酸配列を意味し、「比較DNA」とは対象とする「PRO-DNA」核酸分子と比較される核酸分子のヌクレオチド配列を意味し、「X」、「Y」、及び「Z」は各々異なる仮のアミノ酸配列、そして「N」、「L」及び「V」は各々異なる仮のヌクレオチド配列を意味する。
A.全長PROポリペプチド
本発明は、本出願でPROポリペプチドと呼称されるポリペプチドをコードする新規に同定され単離された核酸配列を提供する。特に下記の実施例でさらに詳細に説明するように、PROポリペプチドをコードするcDNAが同定され単離された。
下記の実施例に開示するように、cDNAクローンがATCCに寄託されている。これらのクローンの正確なヌクレオチド配列は、この分野で日常的な方法を用いて寄託されたクローンを配列決定することにより容易に決定することができる。予測されるアミノ酸配列は、ヌクレオチド配列から常套的技量を用いて決定できる。ここに記載したPROポリペプチド及びコード化核酸について、本出願人は、現時点で入手可能な配列情報と最も良く一致するリーディングフレームであると考えられるものを同定した。
ここに記載した全長天然配列PROポリペプチドに加えて、PRO変異体も調製できると考えられる。PRO変異体は、PRODNAに適当なヌクレオチド変化を導入することにより、及び/又は所望のPROポリペプチドを合成することにより調製できる。当業者は、グリコシル化部位の数又は位置の変化あるいは膜固着特性の変化などのアミノ酸変化がPRO翻訳後プロセスを変えうることを理解するであろう。
天然全長配列PROポリペプチド又はここに記載したPROポリペプチドの種々のドメインにおける変異は、例えば、米国特許第5,364,934号に記載されている保存的及び非保存的変異についての技術及び指針の任意のものを用いてなすことができる。変異は、結果として天然配列PROポリペプチドと比較してPROポリペプチドのアミノ酸配列が変化する、PROポリペプチドをコードする一又は複数のコドンの置換、欠失又は挿入であってよい。場合によっては、変異は少なくとも1つのアミノ酸のPROポリペプチドの一又は複数のドメインの任意の他のアミノ酸による置換による。いずれのアミノ酸残基が所望の活性に悪影響を与えることなく挿入、置換又は欠失されるかの指針は、PROポリペプチドの配列を相同性の知られたタンパク質分子の配列と比較し、相同性の高い領域内でなされるアミノ酸配列変化を最小にすることによって見出される。アミノ酸置換は、一のアミノ酸の類似した構造及び/又は化学特性を持つ他のアミノ酸での置換、例えばロイシンのセリンでの置換、即ち保存的アミノ酸置換の結果とすることができる。挿入及び欠失は、場合によっては1から5のアミノ酸の範囲内とすることができる。許容される変異は、配列においてアミノ酸の挿入、欠失又は置換を系統的に作成し、得られた変異体を全長又は成熟天然タンパク質によって提示された活性について試験することにより決定される。
PRO断片は、多くの従来技術の任意のものによって調製してよい。所望のペプチド断片は化学合成してもよい。代替的方法は、酵素的消化、例えば特定のアミノ酸残基によって決定される部位のタンパク質を切断することが知られた酵素でタンパク質を処理することにより、あるいは適当な制限酵素でDNAを消化して所望の断片を単離することによるPRO断片の生成を含む。さらに他の好適な技術は、ポリメラーゼ連鎖反応(PCR)により、所望のポリペプチド断片をコードするDNA断片を単離し増幅することを含む。DNA断片の所望の末端を決定するオリゴヌクレオチドは、PCRの5’及び3’プライマーで用いられる。好ましくは、PROポリペプチド断片は、天然のPROポリペプチドと少なくとも1つの生物学的及び/又は免疫学的活性を共有する。
特別の実施態様では、対象とする保存的置換を、好ましい置換と題して表3に示す。このような置換が生物学的活性の変化をもたらす場合、表6に例示的置換と名前を付けた又は以下にアミノ酸分類でさらに記載するように、より置換的な変化が導入され生成物がスクリーニングされる。
(1)疎水性:ノルロイシン, met, ala, val, leu, ile;
(2)中性の親水性:cys, ser, thr;
(3)酸性:asp, glu;
(4)塩基性:asn, gln, his, lys, arg;
(5)鎖配向に影響する残基:gly, pro; 及び
(6)芳香族:trp, tyr, phe。
非保存的置換は、これらの分類の一つのメンバーを他の分類に交換することを必要とするであろう。また、そのように置換された残基は、保存的置換部位、好ましくは残された(非保存)部位に導入されうる。
また、隣接配列に沿って一又は複数のアミノ酸を同定するのにスキャンニングアミノ酸分析を用いることができる。好ましいスキャンニングアミノ酸は比較的小さく、中性のアミノ酸である。そのようなアミノ酸は、アラニン、グリシン、セリン、及びシステインを含む。アラニンは、ベータ炭素を越える側鎖を排除し変異体の主鎖構造を変化させにくいので、この群の中で典型的に好ましいスキャンニングアミノ酸である[Cuningham及びWells, Science, 244: 1081-1085 (1989)]。また、アラニンは最もありふれたアミノ酸であるため典型的には好ましい。さらに、それは埋もれた及び露出した位置の両方に見られることが多い[Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150: 1 (1976)]。アラニン置換が十分な量の変異体を生じない場合は、アイソテリック(isoteric)アミノ酸を用いることができる。
PROの共有結合的修飾は本発明の範囲内に含まれる。共有結合的修飾の一型は、PROポリペプチドの標的とするアミノ酸残基を、PROポリペプチドの選択された側鎖又はN-又はC-末端残基と反応できる有機誘導体化試薬と反応させることである。二官能性試薬での誘導体化が、例えばPROを水不溶性支持体マトリクスあるいは抗-PRO抗体の精製方法又はその逆で用いるための表面に架橋させるのに有用である。通常用いられる架橋剤は、例えば、1,1-ビス(ジアゾアセチル)-2-フェニルエタン、グルタルアルデヒド、N-ヒドロキシスクシンイミドエステル、例えば4-アジドサリチル酸、3,3’-ジチオビス(スクシンイミジルプロピオネート)等のジスクシンイミジルエステルを含むホモ二官能性イミドエステル、ビス-N-マレイミド-1,8-オクタン等の二官能性マレイミド、及びメチル-3-[(p-アジドフェニル)-ジチオ]プロピオイミダート等の試薬を含む。
他の修飾は、グルタミニル及びアスパラギニル残基の各々対応するグルタミル及びアスパルチルへの脱アミノ化、プロリン及びリシンのヒドロキシル化、セリル又はトレオニル残基のヒドロキシル基のリン酸化、リシン、アルギニン、及びヒスチジン側鎖のα-アミノ基のメチル化[T.E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp.79-86 (1983)]、N-末端アミンのアセチル化、及び任意のC-末端カルボキシル基のアミド化を含む。
PROポリペプチドへのグリコシル化部位の付加はアミノ酸配列の変更を伴ってもよい。この変更は、例えば、1又は複数のセリン又はトレオニン残基の天然配列PROポリペプチド(O-結合グリコシル化部位)への付加、又は置換によってなされてもよい。PROポリペプチドアミノ酸配列は、場合によっては、DNAレベルでの変化、特に、PROポリペプチドをコードするDNAを予め選択された塩基において変異させ、所望のアミノ酸に翻訳されるコドンを生成させることを通して変更されてもよい。
PROポリペプチド上に炭水化物部分の数を増加させる他の手段は、グリコシドのポリペプチドへの化学的又は酵素的結合による。このような方法は、この技術分野において、例えば、1987年9月11日に発行されたWO 87/05330、及びAplin及びWriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981)に記載されている。
PROポリペプチド上に存在する炭水化物部分の除去は、化学的又は酵素的に、あるいはグルコシル化の標的として提示されたアミノ酸残基をコードするコドンの変異的置換によってなすことができる。化学的脱グリコシル化技術は、この分野で知られており、例えば、Hakimuddin等, Arch. Biochem. Biophys., 259:52 (1987)により、及びEdge等, Anal. Biochem., 118: 131 (1981)により記載されている。ポリペプチド上の炭水化物部分の酵素的切断は、Thotakura等, Meth. Enzymol. 138:350 (1987)に記載されているように、種々のエンド及びエキソグリコシダーゼを用いることにより達成される。
また、本発明のPROポリペプチドは、他の異種ポリペプチド又はアミノ酸配列に融合したPROを含むキメラ分子を形成する方法で修飾してもよい。
一実施態様では、このようなキメラ分子は、抗-タグ抗体が選択的に結合できるエピトープを提供するタグポリペプチドとPROポリペプチドとの融合を含む。エピトープタグは、一般的にはPROポリペプチドのアミノ-又はカルボキシル-末端に位置する。このようなPROポリペプチドのエピトープタグ形態の存在は、タグポリペプチドに対する抗体を用いて検出することができる。また、エピトープタグの提供は、抗-タグ抗体又はエピトープタグに結合する他の型の親和性マトリクスを用いたアフィニティ精製によってPROポリペプチドを容易に精製できるようにする。種々のタグポリペプチド及びそれら各々の抗体はこの分野で良く知られている。例としては、ポリ−ヒスチジン(poly-His)又はポリ−ヒスチジン−グリシン(poly-His-gly)タグ;flu HAタグポリペプチド及びその抗体12CA5[Field等, Mol. Cell. Biol., 8:2159-2165 (1988)];c-mycタグ及びそれに対する8F9、3C7、6E10、G4、B7及び9E10抗体[Evan等, Molecular and Cellular Biology, 5:3610-3616 (1985)];及び単純ヘルペスウイルス糖タンパク質D(gD)タグ及びその抗体[Paborsky等, Protein Engineering, 3(6):547-553 (1990)]を含む。他のタグポリペプチドは、フラッグペプチド[Hopp等, BioTechnology, 6:1204-1210 (1988)];KT3エピトープペプチド[Martin等, Science, 255:192-194 (1992)];α-チューブリンエピトープペプチド[Skinner等, J. Biol. Chem., 266:15163-15166 (1991)];及びT7遺伝子10タンパク質ペプチドタグ[Lutz-Freyermuth等, Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)]を含む。
それに換わる実施態様では、キメラ分子はPROポリペプチドの免疫グロブリン又は免疫グロブリンの特定領域との融合を含んでもよい。キメラ分子の二価形態(「イムノアドヘシン」とも呼ばれる)については、そのような融合体はIgG分子のFc領域であり得る。Ig融合体は、好ましくはIg分子内の少なくとも1つの可変領域に換えてPROポリペプチドの可溶化(膜貫通ドメイン欠失又は不活性化)形態を含む。特に好ましい実施態様では、免疫グロブリン融合体は、IgG分子のヒンジ、CH2及びCH3、又はヒンジ、CH1、CH2及びCH3領域を含む。免疫グロブリン融合体の製造については、1995年6月27日発行の米国特許第5,428,130号を参照のこと。
以下の説明は、主として、PROポリペプチド核酸を含むベクターで形質転換又は形質移入された細胞を培養することによりPROポリペプチドを生産する方法に関する。もちろん、当該分野においてよく知られている他の方法を用いてPROポリペプチドを調製することができると考えられる。例えば、PROポリペプチド配列、又はその一部は、固相技術を用いた直接ペプチド合成によって生産してもよい[例えば、Stewart等, Solid-Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, CA (1969);Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)参照]。手動技術又は自動によるインビトロタンパク質合成を行ってもよい。自動合成は、例えば、アプライド・バイオシステムズ・ペプチド合成機(Foster City, CA)を用いて、製造者の指示により実施してもよい。PROポリペプチドの種々の部分は、別々に化学的に合成され、化学的又は酵素的方法を用いて結合させて全長PROポリペプチドを生産してもよい。
PROポリペプチドをコードするDNAは、PROmRNAを保有していてそれを検出可能なレベルで発現すると考えられる組織から調製されたcDNAライブラリから得ることができる。従って、ヒトPRODNAは、実施例に記載されるように、ヒトの組織から調製されたcDNAライブラリから簡便に得ることができる。またPROコード化遺伝子は、ゲノムライブラリから又は既知の合成方法(例えば、自動化核酸合成)により得ることもできる。
ライブラリは、対象となる遺伝子あるいはその遺伝子によりコードされるタンパク質を同定するために設計されたプローブ(PROポリペプチドに対する抗体又は少なくとも約20−80塩基のオリゴヌクレオチド等)によってスクリーニングできる。選択されたプローブによるcDNA又はゲノムライブラリのスクリーニングは、例えばSambrook等, Molecular Cloning: A Laboratory Manual(New York: Cold Spring Harbor Laboratory Press, 1989)に記載されている標準的な手順を使用して実施することができる。PROをコードする遺伝子を単離する他の方法はPCR法を使用するものである[Sambrook等,上掲;Dieffenbach等, PCR Primer:A Laboratory Manual(Cold Spring Harbor Laboratory Press, 1995)]。
このようなライブラリースクリーニング法において同定された配列は、Genbank等の公共データベース又は個人の配列データベースに寄託され公衆に利用可能とされている周知の配列と比較及びアラインメントすることができる。分子の決定された領域内又は全長に渡っての(アミノ酸又は核酸レベルのいずれかでの)配列同一性は、この分野で知られた、そしてここに記載した方法を用いて決定することができる。
タンパク質コード化配列を有する核酸は、初めてここで開示された推定アミノ酸配列を使用し、また必要ならば、cDNAに逆転写されなかったmRNAの生成中間体及び先駆物質を検出する上掲のSambrook等に記述されているような従来のプライマー伸展法を使用し、選択されたcDNA又はゲノムライブラリをスクリーニングすることにより得られる。
宿主細胞を、ここに記載したPROポリペプチド生産のための発現又はクローニングベクターで形質移入又は形質転換し、プロモーターを誘導し、形質転換体を選択し、又は所望の配列をコードする遺伝子を増幅するために適当に変性された常套的栄養培地で培養する。培養条件、例えば培地、温度、pH等々は、過度の実験をすることなく当業者が選ぶことができる。一般に、細胞培養の生産性を最大にするための原理、プロトコール、及び実用技術は、Mammalian Cell Biotechnology: a Practical Approach, M.Butler編 (IRL Press, 1991)及びSambrook等, 上掲に見出すことができる。
原核生物細胞形質移入及び真核生物細胞形質移入の方法、例えば、CaCl2、CaPO4、リポソーム媒介及びエレクトロポレーションは当業者に知られている。用いられる宿主細胞に応じて、その細胞に対して適した標準的な方法を用いて形質転換はなされる。前掲のSambrook等に記載された塩化カルシウムを用いるカルシウム処理又はエレクトロポレーションが、一般的に原核生物に対して用いられる。アグロバクテリウム・トゥメファシエンスによる感染が、Shaw等, Gene, 23:315 (1983)及び1989年6月29日公開のWO 89/05859に記載されているように、或る種の植物細胞の形質転換に用いられる。このような細胞壁のない哺乳動物の細胞に対しては、Graham及びvan der Eb, Virology, 52:456-457 (1978)のリン酸カルシウム沈降法が好ましい。哺乳動物細胞の宿主系形質転換の一般的な態様は米国特許第4,399,216号に記載されている。酵母菌中への形質転換は、典型的には、Van solingen等, J. Bact., 130:946 (1977)及びHsiao等, Proc. Natl. Acad. Sci. USA, 76:3829 (1979)の方法に従って実施される。しかしながら、DNAを細胞中に導入する他の方法、例えば、核マイクロインジェクション、エレクトロポレーション、無傷の細胞、又はポリカチオン、例えばポリブレン、ポリオルニチン等を用いる細菌プロトプラスト融合もまた用いることもできる。哺乳動物細胞を形質転換するための種々の技術については、Keown等, Methods in Enzymology, 185:527-537 (1990)及び Mansour等, Nature, 336:348-352 (1988)を参照のこと。
グリコシル化PROポリペプチドの発現に適切な宿主細胞は、多細胞生物から誘導される。無脊椎動物細胞の例としては、ショウジョウバエS2及びスポドスペラSf9等の昆虫細胞並びに植物細胞が含まれる。有用な哺乳動物宿主株化細胞の例は、チャイニーズハムスター卵巣(CHO)及びCOS細胞を含む。より詳細な例は、SV40によって形質転換されたサル腎臓CV1株 (COS-7, ATCC CRL 1651);ヒト胚腎臓株(293又は懸濁培養での増殖のためにサブクローン化された293細胞、Graham等, J. Gen Virol., 36:59 (1977));チャイニーズハムスター卵巣細胞/-DHFR(CHO, Urlaub及びChasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980));マウスのセルトリ細胞(TM4, Mather, Biol. Reprod., 23:243-251 (1980))ヒト肺細胞 (W138, ATCC CCL 75); ヒト肝細胞 (Hep G2, HB 8065); 及びマウス乳房腫瘍細胞 (MMT 060562, ATTC CCL51)を含む。適切な宿主細胞の選択は、この分野の技術常識内にある。
PROポリペプチドをコードする核酸(例えば、cDNA又はゲノムDNA)は、クローニング(DNAの増幅)又は発現のために複製可能なベクター内に挿入される。様々なベクターが公的に入手可能である。ベクターは、例えば、プラスミド、コスミド、ウイルス粒子、又はファージの形態とすることができる。適切な核酸配列が、種々の手法によってベクターに挿入される。一般に、DNAはこの分野で周知の技術を用いて適当な制限エンドヌクレアーゼ部位に挿入される。ベクター成分としては、一般に、これらに制限されるものではないが、一又は複数のシグナル配列、複製開始点、一又は複数のマーカー遺伝子、エンハンサーエレメント、プロモーター、及び転写終結配列を含む。これらの成分の一又は複数を含む適当なベクターの作成には、当業者に知られた標準的なライゲーション技術を用いる。
PROポリペプチドは直接的に組換え手法によって生産されるだけではなく、シグナル配列あるいは成熟タンパク質あるいはポリペプチドのN-末端に特異的切断部位を有する他のポリペプチドである異種性ポリペプチドとの融合ペプチドとしても生産される。一般に、シグナル配列はベクターの成分であるか、ベクターに挿入されるPRO-コード化DNAの一部である。シグナル配列は、例えばアルカリホスファターゼ、ペニシリナーゼ、lppあるいは熱安定性エンテロトキシンIIリーダーの群から選択される原核生物シグナル配列であってよい。酵母の分泌に関しては、シグナル配列は、酵母インベルターゼリーダー、アルファ因子リーダー(酵母菌属(Saccharomyces)及びクルイベロマイシス(Kluyveromyces)α因子リーダーを含み、後者は米国特許第5,010,182号に記載されている)、又は酸ホスフォターゼリーダー、白体(C.albicans)グルコアミラーゼリーダー(1990年4月4日発行のEP362179)、又は1990年11月15日に公開されたWO 90/13646に記載されているシグナルであり得る。哺乳動物細胞の発現においては、哺乳動物シグナル配列は、同一あるいは関連ある種の分泌ポリペプチド由来のシグナル配列並びにウイルス分泌リーダーのようなタンパク質の直接分泌に使用してもよい。
発現及びクローニングベクターは、典型的には、選べるマーカーとも称される選択遺伝子を含む。典型的な選択遺伝子は、(a)アンピシリン、ネオマイシン、メトトレキセートあるいはテトラサイクリンのような抗生物質あるいは他の毒素に耐性を与え、(b)栄養要求性欠陥を補い、又は(c)例えばバシリに対する遺伝子コードD-アラニンラセマーゼのような、複合培地から得られない重要な栄養素を供給するタンパク質をコードする。
発現及びクローニングベクターは、通常、PRO-コード化核酸配列に作用可能に結合し、mRNA合成を制御するプロモーターを含む。種々の可能な宿主細胞により認識される好適なプロモーターが知られている。原核生物宿主での使用に好適なプロモーターはβ-ラクタマーゼ及びラクトースプロモーター系[Cahng等, Nature, 275:615 (1978); Goeddel等, Nature, 281:544 (1979)]、アルカリホスファターゼ、トリプトファン(trp)プロモーター系[Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776]、及びハイブリッドプロモーター、例えばtacプロモーター[deBoer 等, Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)]を含む。細菌系で使用するプロモータもまたPROポリペプチドをコードするDNAと作用可能に結合したシャイン-ダルガーノ(S.D.)配列を有する。
他の酵母プロモーターとしては、成長条件によって転写が制御される付加的効果を有する誘発的プロモーターであり、アルコールデヒドロゲナーゼ2、イソチトクロムC、酸ホスファターゼ、窒素代謝と関連する分解性酵素、メタロチオネイン、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ、及びマルトース及びガラクトースの利用を支配する酵素のプロモーター領域がある。酵母菌での発現に好適に用いられるベクターとプロモータはEP 73,657に更に記載されている。
より高等の真核生物によるPROをコードするDNAの転写は、ベクター中にエンハンサー配列を挿入することによって増強され得る。エンハンサーは、通常は約10から300塩基対で、プロモーターに作用してその転写を増強するDNAのシス作動要素である。哺乳動物遺伝子由来の多くのエンハンサー配列が現在知られている(グロビン、エラスターゼ、アルブミン、α-フェトプロテイン及びインスリン)。しかしながら、典型的には、真核細胞ウィルス由来のエンハンサーが用いられるであろう。例としては、複製起点の後期側のSV40エンハンサー(100−270塩基対)、サイトメガロウィルス初期プロモーターエンハンサー、複製起点の後期側のポリオーマエンハンサー及びアデノウィルスエンハンサーが含まれる。エンハンサーは、PROポリペプチドコード化配列の5’又は3’位でベクター中にスプライシングされ得るが、好ましくはプロモーターから5’位に位置している。
また真核生物宿主細胞(酵母、真菌、昆虫、植物、動物、ヒト、又は他の多細胞生物由来の有核細胞)に用いられる発現ベクターは、転写の終結及びmRNAの安定化に必要な配列も含む。このような配列は、真核生物又はウィルスのDNA又はcDNAの通常は5'、時には3'の非翻訳領域から取得できる。これらの領域は、PROポリペプチドをコードするmRNAの非翻訳部分にポリアデニル化断片として転写されるヌクレオチドセグメントを含む。
組換え脊椎動物細胞培養でのPROポリペプチドの合成に適応化するのに適切な他の方法、ベクター及び宿主細胞は、Gething等, Nature, 293:620-625 (1981); Mantei等, Nature, 281:40-46 (1979); EP 117,060; 及びEP 117,058に記載されている。
遺伝子の増幅及び/又は発現は、ここで提供された配列に基づき、適切に標識されたプローブを用い、例えば、従来よりのサザンブロット法、mRNAの転写を定量化するノーザンブロット法[Thomas, Proc. Natl. Acad. Sci. USA,77:5201-5205 (1980)]、ドットブロット法(DNA分析)、又はインサイツハイブリッド形成法によって、直接的に試料中で測定することができる。あるいは、DNA二本鎖、RNA二本鎖及びDNA−RNAハイブリッド二本鎖又はDNA-タンパク二本鎖を含む、特異的二本鎖を認識することができる抗体を用いることもできる。次いで、抗体を標識し、アッセイを実施することができ、ここで二本鎖は表面に結合しており、その結果二本鎖の表面での形成の時点でその二本鎖に結合した抗体の存在を検出することができる。
あるいは、遺伝子の発現は、遺伝子産物の発現を直接的に定量する免疫学的な方法、例えば細胞又は組織切片の免疫組織化学的染色及び細胞培養又は体液のアッセイによって、測定することもできる。試料液の免疫組織化学的染色及び/又はアッセイに有用な抗体は、モノクローナルでもポリクローナルでもよく、任意の哺乳動物で調製することができる。簡便には、抗体は、天然配列PROポリペプチドに対して、又はここで提供されるDNA配列をベースとした合成ペプチドに対して、又はPRODNAに融合し特異的抗体エピトープをコードする外因性配列に対して調製され得る。
PROポリペプチドの形態は、培地又は宿主細胞の溶菌液から回収することができる。膜結合性であるならば、適切な洗浄液(例えばトリトン-X100)又は酵素的切断を用いて膜から引き離すことができる。PROの発現に用いられる細胞は、凍結融解サイクル、超音波処理、機械的破壊、又は細胞溶解剤などの種々の化学的又は物理的手段によって破壊することができる。
PROポリペプチドを、組換え細胞タンパク又はポリペプチドから精製することが望ましい。適切な精製手順の例である次の手順により精製される:すなわち、イオン交換カラムでの分画;エタノール沈殿;逆相HPLC;シリカ又はカチオン交換樹脂、例えばDEAEによるクロマトグラフィー;クロマトフォーカシング;SDS-PAGE;硫酸アンモニウム沈殿;例えばセファデックスG-75を用いるゲル濾過;IgGのような汚染物を除くプロテインAセファロースカラム;及びPROポリペプチドのエピトープタグ形態を結合させる金属キレート化カラムである。この分野で知られ、例えば、Deutcher, Methodes in Enzymology, 182 (1990);Scopes, Protein Purification: Principles and Practice, Springer-Verlag, New York (1982)に記載された多くのタンパク質精製方法を用いることができる。選ばれる精製過程は、例えば、用いられる生産方法及び特に生産される特定のPROポリペプチドの性質に依存する。
本発明の組成物及び方法で使用する候補薬剤の幾つかは、PROポリペプチドの生物学的活性を模倣する抗体及び抗体断片である。
1.ポリクローナル抗体
ポリクローナル抗体の調製方法は当業者に知られている。哺乳動物においてポリクローナル抗体は、例えば免疫化剤、及び所望するのであればアジュバントを、一又は複数回注射することで発生させることができる。典型的には、免疫化剤又はアジュバントを複数回皮下又は腹腔内注射により、哺乳動物に注射する。免疫化剤は、PROポリペプチド又はその融合タンパク質を含みうる。免疫化剤を免疫化された哺乳動物において免疫原性が知られているタンパク質に抱合させるのが有用である。このような免疫原タンパク質の例は、これらに限られないが、キーホールリンペットヘモシアニン、血清アルブミン、ウシサイログロブリン及び大豆トリプシンインヒビターが含まれる。使用され得るアジュバントの例には、フロイント完全アジュバント及びMPL-TDMアジュバント(モノホスホリル脂質A、合成トレハロースジコリノミコラート)が含まれる。免疫化プロトコールは、過度の実験なく当業者により選択されるであろう。
あるいは、抗体はモノクローナル抗体であってもよい。モノクローナル抗体は、Kohler及びMilstein, Nature, 256:495 (1975)に記載されているようなハイブリドーマ法を使用することで調製することができる。ハイブリドーマ法では、マウス、ハムスター又は他の適切な宿主動物を典型的には免疫化剤により免疫化することで、免疫化剤に特異的に結合する抗体を生成するかあるいは生成可能なリンパ球を誘発する。また、リンパ球をインビトロで免疫化することもできる。
免疫化剤は、典型的には断片を含むPROポリペプチド、又はそのタンパク質又はその断片の融合タンパク質を含む。一般にヒト由来の細胞が望まれる場合には末梢血リンパ球(「PBL」)が使用されるか、あるいは非ヒト哺乳動物源が望まれている場合は、脾臓細胞又はリンパ節細胞が使用される。次いで、ポリエチレングリコール等の適当な融合剤を用いてリンパ球を不死化細胞系と融合させ、ハイブリドーマ細胞を形成する[Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]。不死化細胞系は、通常は、形質転換した哺乳動物細胞、特に齧歯動物、ウシ、及びヒト由来の骨髄腫細胞である。通常、ラット又はマウスの骨髄腫細胞系が使用される。ハイブリドーマ細胞は、好ましくは、未融合の不死化細胞の生存又は成長を阻害する一又は複数の物質を含有する適切な培地で培養される。例えば、親細胞が、酵素のヒポキサンチングアニンホスホリボシルトランスフェラーゼ(HGPRT又はHPRT)を欠いていると、ハイブリドーマの培地は、典型的には、ヒポキサチン、アミノプチリン及びチミジンを含み(「HAT培地」)、この物質がHGPRT欠乏性細胞の増殖を阻止する。
次いでハイブリドーマ細胞が培養される培養培地を、PROポリペプチド対するモノクローナル抗体の存在について検定する。好ましくは、ハイブリドーマ細胞によって生成されたモノクローナル抗体の結合特異性は免疫沈降又はラジオイムノアッセイ(RIA)や酵素結合免疫測定法(ELISA)等のインビトロ結合検定法によって測定する。このような技術及びアッセイは、当該分野において公知である。モノクローナル抗体の結合親和性は、例えばMunson及びPollard, Anal. Biochem., 107:220 (1980)によるスキャッチャード分析法によって測定することができる。
サブクローンによって分泌されたモノクローナル抗体は、例えばプロテインA−セファロース法、ヒドロキシルアパタイトクロマトグラフィー法、ゲル電気泳動法、透析法又はアフィニティークロマトグラフィー等の従来の免疫グロブリン精製方法によって培養培地又は腹水液から単離又は精製される。
また、モノクローナル抗体は、組換えDNA法、例えば米国特許第4,816,567号に記載された方法により作成することができる。本発明のモノクローナル抗体をコードするDNAは、常套的な方法を用いて(例えば、マウス抗体の重鎖及び軽鎖をコードする遺伝子に特異的に結合可能なオリゴヌクレオチドプローブを使用して)、容易に単離し配列決定することができる。本発明のハイブリドーマ細胞はそのようなDNAの好ましい供給源となる。ひとたび単離されたら、DNAは発現ベクター内に配することができ、これが宿主細胞、例えばサルCOS細胞、チャイニーズハムスター卵巣(CHO)細胞、あるいは免疫グロブリンタンパク質を生成などしない骨髄腫細胞内に形質移入され、組換え宿主細胞内でモノクローナル抗体の合成をすることができる。また、DNAは、例えば相同マウス配列に換えてヒト重鎖及び軽鎖定常ドメインのコード配列を置換することにより[US. Patent No.4,816,567;Morrison等, 上掲]、又は免疫グロブリンコード配列に非免疫グロブリンポリペプチドのコード配列の一部又は全部を共有結合することにより修飾することができる。このような非免疫グロブリンポリペプチドは、本発明の抗体の定常ドメインの代わりに置換するか、本発明の抗体の一つの抗原結合部位の可変ドメインの代わりに置換し、キメラ性二価抗体を産生することができる。このような非免疫グロブリンポリペプチドは、本発明の抗体の定常ドメインに置換でき、あるいは本発明の抗体の1つの抗原結合部位の可変ドメインに置換でき、キメラ性二価抗体を生成する。
一価抗体の調製にはインビトロ法がまた適している。抗体の消化による、その断片、特にFab断片の生成は、当該分野において知られている慣用的技術を使用して達成できる。
本発明の抗体は、さらにヒト化抗体又はヒト抗体を含んでよい。非ヒト(例えばマウス)抗体のヒト化形とは、キメラ免疫グロブリン、免疫グロブリン鎖あるいはその断片(例えばFv、Fab、Fab'、F(ab')2あるいは抗体の他の抗原結合サブ配列)であって、非ヒト免疫グロブリンに由来する最小配列を含むものである。ヒト化抗体はレシピエントの相補性決定領域(CDR)の残基が、マウス、ラット又はウサギのような所望の特異性、親和性及び能力を有する非ヒト種(ドナー抗体)のCDRの残基によって置換されたヒト免疫グロブリン(レシピエント抗体)を含む。幾つかの例では、ヒト免疫グロブリンのFvフレームワーク残基は、対応する非ヒト残基によって置換されている。また、ヒト化抗体は、レシピエント抗体にも、移入されたCDRもしくはフレームワーク配列にも見出されない残基を含んでいてもよい。一般に、ヒト化抗体は、全てあるいはほとんど全てのCDR領域が非ヒト免疫グロブリンのものに対応し、全てあるいはほとんど全てのFR領域がヒト免疫グロブリンコンセンサス配列のものである、少なくとも1つ、典型的には2つの可変ドメインの実質的に全てを含む。ヒト化抗体は、最適には免疫グロブリン定常領域(Fc)、典型的にはヒトの免疫グロブリンの定常領域の少なくとも一部を含んでなる[Jones等, Nature, 321:522-525 (1986); Riechmann等, Nature, 332:323-329 (1988); 及びPresta, Curr. Op Struct. Biol., 2:593-596 (1992)]。
また、ヒト抗体は、ファージ表示ライブラリ[Hoogenboom及びWinter, J. Mol. Biol., 227:381 (1992);Marks等, J. Mol. Biol., 222:581 (1991)]を含むこの分野で知られた種々の方法を用いて作成することもできる。また、Cole等及びBoerner等の技術も、ヒトモノクローナル抗体の調製に利用することができる[Cole等, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss. p.77(1985)及びBoerner等, J. Immunol., 147(1):86-95(1991) ]。同様に、ヒト抗体はヒト免疫グロブリン座位をトランスジェニック動物、例えば内在性免疫グロブリン遺伝子は部分的又は完全に不活性化されたマウスに導入することにより産生することができる。投与の際に、遺伝子再配列、組立、及び抗体レパートリーを含むあらゆる観点においてヒトに見られるものに非常に類似しているヒト抗体の生産が観察される。このアプローチは、例えば米国特許第5,545,807号;同第5,545,806号;同第5,569,825号;同第5,625,126号;同第5,633,425号;同第5,661,016号、及び次の科学文献:Marks等, Bio/Technology 10, 779-783 (1992); Lonberg等, Nature 368 856-859 (1994); Morrison, Nature 368, 812-13 (1994); Fishwild等, Nature Biotechnology 14, 845-51 (1996); Neuberger, Nature Biotechnology 14, 826 (1996); Lonberg及びHuszar, Intern. Rev. Immunol. 13 65-93 (1995)に記載されている。
二重特異性抗体は、少なくとも2つの異なる抗原に対して結合特異性を有するモノクローナル抗体、好ましくはヒトもしくはヒト化抗体である。本発明の場合において、結合特異性の一方はPROポリペプチドに対してであり、他方は任意の他の抗原、好ましくは細胞表面タンパク質又はレセプター又はレセプターサブユニットに対してである。
二重特異性抗体を作成する方法は当該技術分野において周知である。伝統的には、二重特異性抗体の組換え生産は、二つの重鎖が異なる特異性を持つ二つの免疫グロブリン重鎖/軽鎖対の同時発現に基づく[Milstein及びCuello, Nature, 305:537-539 (1983)]。免疫グロブリンの重鎖と軽鎖を無作為に取り揃えるため、これらハイブリドーマ(クアドローマ)は10種の異なる抗体分子の潜在的混合物を生成し、その内一種のみが正しい二重特異性構造を有する。正しい分子の精製は、アフィニティークロマトグラフィー工程によって通常達成される。同様の手順が1993年5月13日公開のWO 93/08829、及びTraunecker等, EMBO J.,10:3655-3656 (1991)に開示されている。
国際公開WO 96/27011号に記載された他のアプローチ法によれば、一対の抗体分子間の界面を操作して組換え細胞培養から回収されるヘテロ二量体のパーセントを最大にすることができる。好適な界面は抗体定常ドメインのCH3ドメインの少なくとも一部を含む。この方法では、第1抗体分子の界面からの一又は複数の小さいアミノ酸側鎖がより大きな側鎖(例えばチロシン又はトリプトファン)と置換される。大きな側鎖と同じ又はより小さいサイズの相補的「キャビティ」を、大きなアミノ酸側鎖を小さいもの(アラニン又はスレオニン)と置き換えることにより第2の抗体分子の界面に作り出す。これにより、ホモ二量体のような不要の他の最終産物に対してヘテロダイマーの収量を増大させるメカニズムが提供される。
大腸菌からFab'フラグメントを直接回収でき、これは化学的に結合して二重特異性抗体を形成することができる。Shalaby等, J. Exp. Med., 175:217-225 (1992)は完全にヒト化された二重特異性抗体F(ab')2分子の製造を記述している。各Fab'フラグメントは大腸菌から別個に分泌され、インビトロで定方向化学共役を受けて二重特異性抗体を形成する。このようにして形成された二重特異性抗体は、正常なヒトT細胞及びErbB2レセプターを過剰発現する細胞に結合可能で、ヒト乳房腫瘍標的に対するヒト細胞障害性リンパ球の細胞溶解活性の誘因となる。
組換え細胞培養から直接的に二重特異性抗体フラグメントを作成し分離する様々な方法もまた記述されている。例えば、二重特異性抗体はロイシンジッパーを使用して生産されている。Kostelny等, J. Immunol. 148(5):1547-1553 (1992)。Fos及びJunタンパク質からのロイシンジッパーペプチドを遺伝子融合により二つの異なった抗体のFab'部分に結合させる。抗体ホモダイマーをヒンジ領域で還元してモノマーを形成し、ついで再酸化して抗体ヘテロダイマーを形成する。この方法はまた抗体ホモダイマーの生産に対して使用することができる。Hollinger等, Proc.Natl.Acad.Sci. USA, 90:6444-6448 (1993)により記述された「ダイアボディ」技術は二重特異性抗体フラグメントを作成する別のメカニズムを提供した。フラグメントは、同一鎖上の2つのドメイン間の対形成を可能にするには十分に短いリンカーにより軽鎖可変ドメイン(VL)に重鎖可変ドメイン(VH)を結合してなる。従って、一つのフラグメントのVH及びVLドメインは他のフラグメントの相補的VL及びVHドメインと強制的に対形成させられ、2つの抗原結合部位を形成する。単鎖Fv(sFv)ダイマーの使用により二重特異性抗体フラグメントを製造する他の方策もまた報告されている。Gruber等, J. Immunol. 152:5368 (1994)を参照されたい。
例示的二重特異性抗体は、ここで与えられるタンパク質上の2つの異なるエピトープに結合しうる。あるいは、抗-ポリペプチドアームは、T細胞レセプター分子(例えばCD2、CD3、CD28又はB7)等の白血球上のトリガー分子、又はFcγRI(CD64)、FcγRII(CD32)及びFcγRIII(CD16)等のIgGのFcレセプター(FcγR)に結合するアームに結合し、細胞防御メカニズムを特定のタンパク質発現細胞に集中するようにしてもよい。二重特異性抗体は、特定のポリペプチドを発現する細胞に対する局所的細胞毒性薬として使用してもよい。これらの抗体は、ポリペプチド結合アーム及び細胞毒性薬又はキレート化剤、例えばEOTUBE、DPTA、DOTA、又はTETAに結合するアームを有する。他の対象とする二重特異性抗体は、ポリペプチドに結合し、さらに組織因子(TF)に結合する。
ヘテロ抱合抗体もまた本発明の範囲に入る。ヘテロ抱合抗体は、2つの共有結合した抗体からなる。このような抗体は、例えば、免疫系細胞を不要な細胞に対してターゲティングさせるため[米国特許第4,676,980号]及びHIV感染の治療のために[WO 91/00360; WO 92/200373; EP 03089]提案されている。この抗体は、架橋剤に関連したものを含む合成タンパク化学における既知の方法を使用して、インビトロで調製することができると考えられる。例えば、ジスルフィド交換反応を使用するか又はチオエーテル結合を形成することにより、免疫毒素を作成することができる。この目的に対して好適な試薬の例には、イミノチオレート及びメチル-4-メルカプトブチリミデート、及び例えば米国特許第4,6767,980号に開示されているものが含まれる。
本発明の抗体をエフェクター機能について改変し、例えばガンの治療における抗体の効能を増強することが望ましい。例えば、システイン残基をFc領域に導入して、この領域における鎖間ジスルイド結合を形成させる。このようにして産生されたホモダイマー抗体は改善されたインターナリゼーション能力及び/又は増加した補体媒介細胞死滅及び抗体依存性細胞障害活性(ADCC)を有しうる。Caron等, J. Exp. Med. 176:1191-1195 (1992)及びShopes, B. J. Immunol. 148:2918-2922 (1992)を参照されたい。抗腫瘍活性が高められたホモダイマー抗体は、Wolff等, Cancer Research 53:2560-2565(1993)に記載されているようなヘテロ二官能性架橋剤を使用して調製することもできる。あるいは二重Fc領域を有し、よって増強された補体溶解及びADCC能を有しうる抗体を設計することができる。Stevensonら, Anti-cancer Drug Design 3:219-230 (1989)を参照。
本発明はまた、化学治療薬、毒素(例えば、細菌、真菌、植物又は動物由来の酵素活性毒素、又はその断片)などの細胞毒性薬、あるいは放射性同位体(即ち、放射性抱合)に抱合された抗体を含む免疫複合体にも関する。
このような免疫複合体の生成に有用な化学治療薬は上記した。用いることのできる酵素活性毒素及びその断片は、ジフテリアA鎖、ジフテリア毒素の非結合活性断片、コレラ毒素、ボツリヌス毒素、(緑膿菌からの)外毒素A鎖、リシンA鎖、アブリンA鎖、モデクシン(modeccin)A鎖、アルファ-サルシン、アレウリテス・フォーディ(Aleurites fordii)タンパク質、ジアンチン(dianthin)タンパク質、フィトラカ・アメリカーナ(Phytolaca americana)タンパク質(PAPI、PAPII、及びPAP-S)、モモルディカ・チャランチア(momordica charantia)インヒビター、クルシン(curcin)、クロチン(crotin)、サパオナリア・オフィシナリス(sapaonaria oficinalis)インヒビター、ゲロニン(gelonin)、ミトゲリン(mitogellin)、レストリクトシン(restrictocin)、フェノマイシン(phenomycin)、エノマイシン(enomycin)及びトリコテセン(tricothecene)を含む。様々な放射性ヌクレオチドが放射性抱合抗体の生成に利用可能である。例として、212Bi、131I、131In、90Y及び186Reを含む。
他の実施態様では、腫瘍の予備標的化で使用するために、抗体は「レセプター」(ストレプトアビジン等)に抱合されてもよく、抗体-レセプター複合体は患者に投与され、次いで清澄化剤を用いて未結合複合体を循環から除去し、次に細胞毒性薬(例えば、放射性ヌクレオチド等)に抱合された「リガンド」(例えばアビジン)を投与する。
また、ここに開示する抗体は、免疫リポソームとして調製してもよい。抗体を含むリポソームは、Epstein等, Proc. Natl. acad. Sci. USA, 82: 3688 (1985); Hwang等, Proc. natl. Acad. Sci. USA, 77: 4030 (1980); 及び米国特許第4,485,045号及び第4,544,545号に記載されたような、この分野で知られた方法で調製される。向上した循環時間を持つリポソームは、米国特許第5,013,556号に開示されている。
特に有用なリポソームは、ホスファチジルコリン、コレステロール及びPEG-誘導ホスファチジルエタノールアミン(PEG-PE)を含む脂質組成物での逆相蒸発法によって生成される。リポソームは、所定サイズのフィルターを通して押し出され、所望の径を有するリポソームが生成される。本発明の抗体のFab’断片は、Martin等, J. Biol. Chem. 257: 286-288 (1982)に記載されているように、ジスルフィド交換反応を介してリポソームに抱合され得る。化学治療薬(ドキソルビシン等)は、場合によってはリポソーム内に包含される。Gabizon等, J. National Cancer Inst. 81(19) 1484 (1989)参照。
本出願で開示したタンパク質を、国立癌学会(NCI)の実験的、疾患指向性、インビトロ薬剤スクリーニングで現在使用されている60腫瘍系のパネルで検定した。このスクリーニングの目的は、異なる型の腫瘍に対する細胞毒性及び/又は細胞増殖抑制活性を有する分子を同定することである。NCIは毎年10,000を越える新たな分子をスクリーニングしている(Monks等, J. Natl. Cancer Inst., 83: 757-766 (1991); Boyd, Cancer: Princ. Pract. Oncol. Update, 3(10): 1-12 [1989])。この実験に使用された腫瘍細胞系は、上掲のMonks等に記載されている。本出願のタンパク質によって成長が有意に阻害された細胞系を実施例で特定した。
結果は、試験したタンパク質が種々の癌細胞系において細胞増殖抑制性、そして或る場合及び濃度では細胞毒性活性を示すことを明らかにした。
腫瘍(例えば癌)についての他の細胞ベースのアッセイ及び動物モデルも、NCI癌スクリーニングの発見を裏付け、ここで同定したタンパク質と腫瘍精細胞成長の進行及び病因当量の関係をさらに理解するのに使用できる。例えば、(以下に記載するような)トランスジェニック動物における腫瘍から一次培地は、ここの細胞ベースのアッセイで使用できるが、安定な細胞系が好ましい。トランスジェニック動物から連続細胞系を誘導する技術はこの分野で公知である(例えば、Small等, Mol. Cell. Biol., 5: 642-648 [1985]参照)。
腫瘍の進行及び原因におけるここに同定される遺伝子の役割を更に理解するために、そして抗体、及び小分子アゴニストを含む天然ポリペプチドの他のアゴニストを含む候補治療薬の有効性を試験するために、種々の良く知られた動物モデルが使用できる。これらのモデルのインビボ性質により、特にヒト患者における反応を予測できる。腫瘍及び癌(例えば、乳癌、大腸癌、前立腺癌、肺癌など)の動物モデルは、非組換え及び組換え(トランスジェニック)動物の両方を含む。非組換え動物モデルは、例えば、齧歯類、例えばマウスモデルを含む。このようなモデルは、標準的な技術、例えば、皮下注射、尾部静脈注射、脾臓移植、腹膜内移植、腎被膜下移植、又はオルトピン(orthopin)移植、例えば大腸組織に移植された大腸癌細胞により、腫瘍細胞を同系マウスに導入することにより作成される。(1997年9月18日に発行されたPCT公報WO 97/33551参照。)
癌遺伝子の研究におそらく最もしばしば用いられる動物種は、免疫不全マウス、特にヌードマウスである。ハイポ/形成不全を持つヌードマウスがヒト腫瘍異種移植の宿主として行動するという観察は、この目的のための広い用途を導いた。常染色体劣性nu遺伝子が、例えば、ASW、A/He、AKR、BALB/c、B10.LP、C17、C3H、C57BL、C57、CBA、DBA、DDD、I/st、NC、NFR、NFS、NFS/N、NZB、NZC、NZW、P、RIII及びSJLを含むヌードマウスの極めて多数の異なる共通遺伝子系統に導入された。さらに、遺伝的な免疫不全を持つヌードマウス以外の広範な他の動物が生育され、腫瘍異種移植のレシピエントとして用いられた。さらなる詳細については、The Nude Mouse in Oncology Research, E. Boven 及び B. Winograd 編, CRC Press, Inc., 1991を参照。
腫瘍細胞は、ヌードマウスなどの動物に、種々の手法によって導入できる。マウスの皮下(s.c.)空間は、腫瘍移植に非常に好ましい。腫瘍は、固体ブロックとして、トロチャー(trochar)を用いてニードル生検として、細胞懸濁物としてs.c.移植できる。固体ブロック又はトロチャー移植のために、適切な大きさの腫瘍組織断片がs.c.空間に導入される。細胞懸濁物は、原発腫瘍又は安定な腫瘍細胞系から新たに調製され、皮下注射される。また腫瘍細胞は、皮下植え込みとして注射することもできる。この位置において、種菌が皮膚結合組織の下層とs.c.組織との間に析出される。Boven及びWinograd (1991), 上掲。乳癌の動物モデルは、例えば、神経芽腫細胞(それからneu癌遺伝子が最初に単離される)、又はneu形質移入NIH-3T3細胞をヌードマウスに移植することにより、基本的にはDrebin等, PNAS USA 83, 9129-9133 (1986)に記載されているように生成される。
動物に生じた腫瘍は、取り出してインビトロで培養することができる。インビトロ培地からの細胞は、次いで動物に継代することができる。これらの腫瘍は、さらなる試験及び薬物スクリーニングの標的として提供され得る。あるいは、継代から得られる腫瘍は単離でき、継代前細胞及び1又はそれ以上の継代後に単離した細胞のRNAを、対象とする遺伝子の識別可能な発現について分析する。このような継代技術は、周知の腫瘍又は癌細胞系で実施することができる。
例えば、Meth A、CMS4、CMS5、CMS21、及びWEHI-164がBALB/c雌マウスの線維肉腫に導入され(DeLeo等, J. Exp. Med. 146, 720 [1977])、それは、種々の抗原の抗-腫瘍活性の研究のための高度に制御可能なモデル系を提供する(Palladino等, J. Immunol. 138, 4023-4032 [1987])。簡便には、腫瘍細胞は細胞培地中でインビトロで成長させる。動物に注射する前に、細胞系は洗浄してバッファー中に約10x106から10x107細胞/mlの細胞密度で懸濁する。次いで動物を10から100μlの細胞懸濁物で皮下感染し、腫瘍が現れるまで1から3週間放置する。
移植された腫瘍の動物モデルにおける試験化合物の有効性を評価する一つの方法は、治療前後での腫瘍の大きさを測定することである。伝統的に、移植した腫瘍の大きさは、二又は三次元のスライドキャリパーで測定される。二次元に制限された測定は、腫瘍の大きさを正確に反映せず、従って、通常は数式を用いて対応する容積に換算される。しかしながら、腫瘍の大きさの測定は極めて不正確である。候補薬の治療効果は、治療-誘発性の成長遅延及び特異的な成長遅延としてより良く記述できる。腫瘍成長の記述における他の重要な変数は、腫瘍容積倍加時間である。Rygaard及びSpang-Thomsen, Proc. 6th Int. Workshop on Immune-Deficient Animals, Wu及びSheng編, Basel, 1989, 301によって報告されたプログラムなどの、腫瘍成長の計算及び記述のためのコンピュータプログラムも利用可能である。しかし、腫瘍に続く壊死及び炎症反応が実際には少なくとも初期に腫瘍の大きさを増大させ得ることを注記しておく。従って、これらの変化は、形態学的方法及びフローサイトメトリー分析を組み合わせて、注意深く監視する必要がある。
本発明の目的のために、トランスジェニック動物は、その一部にのみ導入遺伝子を有するもの(「モザイク動物」)を含む。導入遺伝子は、単一の導入遺伝子として、又はコンカテマー、例えば頭部と頭部又は頭部と尾部の直列型として組み込まれる。特定の細胞型への導入遺伝子の選択的導入も、例えば、Lasko等, Proc. Natl. Acad. Sci. USA 89, 6232-636 (1992)の技術に従って可能である。
トランスジェニック動物における導入遺伝子の発現は、標準的技術によって監視できる。例えば、導入遺伝子の組み込みの確認にサザンブロット分析又はPCR増幅が用いられる。次いで、mRNA発現のレベルは、インサイツハイブリッド形成、ノーザンブロット分析、PCR、又は免疫組織化学などの技術を用いて分析できる。動物は、腫瘍又は癌発生の徴候についてさらに試験される。
さらに、他の自発的動物腫瘍、例えばイヌ、ネコ、及びヒヒの線維肉腫、腺癌、リンパ腫、クロンドローマ(chrondroma)、平滑筋肉腫も試験できる。これらのイヌ及びネコでの乳腺癌は、その発現及び挙動がヒトのものに極めて類似しているので、好ましいモデルである。しかし、このモデルの使用は動物におけるこの型の腫瘍の発生比率によって制限される。
候補薬のスクリーニングアッセイは、ここで同定される遺伝子にコードされるポリペプチドと結合又は抱合する化合物、あるいはコード化ポリペプチドと他の細胞性タンパク質との相互作用を阻害する化合物を同定するために設計される。このようなスクリーニングアッセイは、特に小分子候補薬の同定に適したものにする、化学的ライブラリの高スループットスクリーニングに従うアッセイを含む。小分子とは、合成有機又は無機化合物を含むと考え、それらは、ペプチド、好ましくは可溶性ペプチド、(ポリ)ペプチド-免疫グロブリン融合体、特に、限定されないが、ポリ-及びモノクローナル抗体及び抗体断片、一本鎖抗体、抗-イディオタイプ抗体、及びそれらの抗体又は断片のキメラ又はヒト化形、並びにヒト抗体及び抗体断片を含む抗体を含んでいる。アッセイは、種々の形式で実施でき、この分野で良く特徴付けられたタンパク質-タンパク質結合アッセイ、生化学的スクリーニングアッセイ、イムノアッセイ及び細胞ベースのアッセイを含む。
結合アッセイにおいて、相互作用は結合であり、形成された複合体は単離されるか、又は反応混合物中で検出される。特別な実施態様では、ここに同定された遺伝子にコードされるポリペプチドのレセプター即ち候補薬が、共有又は非共有結合により固相、例えばマイクロタイタープレートに固定化される。非共有結合は、一般的に固体表面をポリペプチドの溶液で被覆し乾燥させることにより達成される。あるいは、固定化すべきペプチドに特異的な固定化抗体、例えばモノクローナル抗体を、そのペプチドを固体表面に固着させるために用いることができる。アッセイは、固定化成分、例えば固着成分を含む被覆表面に、検出可能な標識で標識されていてもよい非固定化成分を添加することにより実施される。反応が完了したとき、未反応成分を例えば洗浄により除去し、固体表面に固着した複合体を検出する。最初の非固定化成分が検出可能な標識を有している場合、表面に固定化された標識の検出は複合体形成が起こったことを示す。最初の非固定化成分が標識を持たない場合は、複合体形成は、例えば、固定化された複合体に特異的に結合する標識抗体によって検出できる。
本発明のポリペプチド、ここに同定したタンパク質に特異的に結合するアゴニスト抗体、並びに上記に開示したスクリーニングアッセイで同定された他の分子は、癌を含む腫瘍の治療のために、製薬組成物の形態で投与することができる。
抗体断片が用いられる場合、標的タンパク質の結合ドメインに特異的に結合する最小阻害断片が通常は好ましい。例えば、抗体の可変領域配列に基づいて、標的タンパク質配列に結合する能力を保持したペプチド分子が設計できる。このようなペプチドは、化学的に合成でき及び/又は組換えDNA技術によって生成できる(例えば、Marasco等, Proc. Natl. Acad. Sci. USA 90, 7889-7893 [1993])。
また、ここでの製剤は、治療すべき特定の徴候に必要な場合に1以上の活性化合物、好ましくは互いに悪影響を及ぼさない相補的活性を持つものも含んでよい。あるいは、又はそれに加えて、組成物は、例えば細胞毒性薬、サイトカイン、化学治療薬、又は成長阻害剤といったその機能を向上させる薬剤を含んでもよい。これらの分子は、適切には、意図する目的に有効な量の組み合わせで存在する。
ここでの製剤は、治療すべき特定の徴候に必要な場合に1以上の活性化合物、好ましくは互いに悪影響を及ぼさない相補的活性を持つものも含んでよい。あるいは、又はそれに加えて、組成物は、細胞毒性薬、サイトカイン又は成長阻害剤を含んでもよい。これらの分子は、適切には、意図する目的に有効な量の組み合わせで存在する。
インビボ投与に使用される製剤は無菌でなけらばならない。これは、滅菌濾過膜を通した濾過により容易に達成される。
治療的抗体組成物は、一般的に無菌のアクセスポートを具備する容器、例えば、静脈内溶液バッグ又は皮下注射針で貫通可能なストッパーを備えたバッグ又はバイアルに入れられる。
本発明のポリペプチド及び抗体、ペプチド及び小分子アゴニストを含むそれらのアゴニストは、種々の腫瘍、例えば癌の治療に用いてもよい。治療される状態又は疾患の例としては、良性又は悪性腫瘍(例えば、腎臓(renal)、肝臓、腎臓(kidney)、膀胱、乳房、胃、卵巣、結腸直腸、前立腺、膵臓、肺、外陰部、胸腺、肝癌(hepatic carcinoma);肉腫;膠芽細胞腫;及び種々の頭部及び頸部の腫瘍);白血病及びリンパ悪性疾患;ニューロン、グリア、星状、視床下部及び腺、マクロファージ、上皮、間質及び胞胚腔疾患などの疾患;及び炎症、脈管形成及び免疫学的疾患が含まれる。本発明の抗腫瘍剤(ここに開示したポリペプチド及びそれらの活性に類似したアゴニスト、例えば抗体、ペプチド及び有機小分子を含む)は、哺乳動物、好ましくはヒトに、周知の方法、例えば、ボーラスとして又は所定時間に渡る連続注入による静脈内投与、又は筋肉内、腹膜内、脳脊髄内、眼内、動脈内、病巣内、皮下、関節間、滑膜内、鞘内、経口、局所、又は吸入経路などにより投与される。
他の治療的養生法を本発明の抗癌剤の投与に組み合わせてもよい。例えば、このような抗癌剤で治療される患者は放射線治療を受けてもよい。あるいは、又はそれに加えて、患者に化学治療薬を投与してもよい。このような化学治療薬の調製法及び用量スケジュールは、製造者の指示に従って使用されるか、熟練した実務者により経験的に決定される。そのような化学治療に対する調製法及び用量スケジュールはまたChemotherapy Service M.C. Perry編, Williams & Wilkins, Baltimore, MD (1992)にも記載されている。化学治療薬は、本発明の抗腫瘍剤の投与に先立って、又は続いて投与してもよく、あるいはそれらと同時に投与してもよい。本発明の抗癌剤は、タモキシフェンなどの抗エストロゲン化合物又はオナプリストンなどの抗プロゲステロン(EP 616812参照)の、これらの分子について知られた用量と組み合わせてもよい。
疾患の防止又は治療のための、ここでの抗腫瘍剤の適切な用量は、上記で定義したような治療される疾患の型、疾患の重篤さ及び経過、防止又は治療目的で薬剤が投与されるか否か、従前の治療、患者の臨床履歴及び薬剤に対する反応、及び主治医の裁量に依存する。薬剤は、患者に、一回又は一連の治療に渡って適切に投与される。動物実験は、ヒトの治療に有効な用量を決定するための信頼性のある指針を提供する。有効な用量の種間スケーリングは、例えば、Mordenti J.及びChappell. W.「The Use of Interspecies Scaling in Toxicokinetics」,Toxicokinetics and New Drug Development, Yacobiら編, Pergamon Press, New York 1989, 42-46に開示されているような原理に従い実施することができる。
本発明の他の実施態様では、上記の疾患の診断又は治療に有用な物質を含む製造品が提供される。この製造品は容器とラベルとを具備する。好適な容器は、例えば、ビン、バイアル、シリンジ、及び試験管を含む。容器は、ガラス又はプラスチックなどの材料から形成されてよい。容器は、状態を診断し治療するのに有効な組成物を収容し、無菌のアクセスポートを有し得る(例えば、容器は皮下注射針で貫通可能なストッパーを有する静脈内溶液バッグ又はバイアルであってよい)。組成物中の活性剤は本発明の抗腫瘍剤である。容器上又は添付されるラベルは、組成物が選択した状態の診断又は治療のために使用されることを示す。製造品はさらに、リン酸緩衝塩水、リンガー液及びデキストロース溶液などの製薬的に許容されるバッファーを含む第2の容器を具備してもよい。さらに、他のバッファー、希釈剤、フィルター、針、シリンジ、及び使用上の指示を付けたパッケージ挿入物を含む商業的及び使用者の見地から望ましい他の材料を含んでもよい。
以下の実施例は例示するためにのみ提供されるものであって、本発明の範囲を決して限定することを意図するものではない。
本明細書で引用した全ての特許及び文献の全体を、出典明示によりここに取り込む。
実施例で言及されている全ての他の市販試薬は、特に示さない限りは製造者の使用説明に従い使用した。ATCC登録番号により以下の実施例及び明細書全体を通して特定されている細胞の供給源はアメリカン・タイプ・カルチャー・コレクション、マナッサス、VAである。
新規なポリペプチド及びそれをコードするcDNAを同定するための細胞外ドメイン相同性スクリーニング
Swiss-Prot公的データベースからの約950の既知の分泌タンパク質からの細胞外ドメイン(ECD)配列(もしあれば、分泌シグナル配列を含む)を、ESTデータベースの検索に使用した。ESTデータベースは、公的データベース(例えば、Dayhoff、GenBank)及び企業のデータベース(例えば、LIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CA)を含む。検索は、コンピュータプログラムBLAST又はBLAST-2(Altschul等, Methods in Enzymology 266: 460-480 (1996))を用いて、ECDタンパク質配列のEST配列の6フレーム翻訳との比較として実施した。既知のタンパク質をコードせず、BLASTスコア70(90の場合もある)又はそれ以上を持つ比較物は、プログラム「phrap」(Phil Green, University of Washington, Seattle, WA)で集団化してコンセンサスDNA配列を構築した。
上記のように得られたコンセンサス配列に基づいて、次いでオリゴヌクレオチドを合成し、PCRにより対象とする配列を含むcDNAライブラリを同定するため、及びPROポリペプチドの全長コード化配列のクローンを単離するプローブとして用いるために使用した。正方向及び逆方向PCRプライマーは一般的に20から30ヌクレオチドの範囲であり、しばしば約100−1000bp長のPCR産物を与えるために設計される。プローブ配列は、典型的に40−55bp長である。幾つかの場合には、コンセンサス配列が約1−1.5kbpより大きいときに付加的なオリゴヌクレオチドが合成される。全長クローンについて幾つかのライブラリをスクリーニングするために、ライブラリからのDNAを、Ausubel等, Current Protocols in Molecular Biology, のように、PCRプライマー対でのPCRによりスクリーニングした。ポジティブライブラリを、次いで、プローブオリゴヌクレオチド及びプライマー対の一方を用いて対象とする遺伝子をコードするクローンの単離するのに使用した。
cDNAクローンの単離に用いたcDNAライブラリは、Invitrogen, San Diego, CAからのもの等の市販試薬を用いて標準的な方法によって作成した。cDNAは、NotI部位を含むオリゴdTでプライムし、平滑末端でSalIヘミキナーゼアダプターに結合させ、NotIで切断し、ゲル電気泳動でおよそのサイズ分類し、そして適切なクローニングベクター(pRKB又はpRKD等;pRK5BはSfiI部位を含まないpRK5Dの前駆体である;Holmes等, Science, 253: 1278-1280 (1991)参照)に、独特のXhoI及びNotI部位において、所定の方向でクローニングした。
アミラーゼスクリーニングによるcDNAクローンの単離
1.オリゴdTプライムcDNAライブラリの調製
mRNAを対象とするヒト組織からInvitrogen, San Diego, CAからの試薬及びプロトコールを用いて単離した(Fast Track 2)。このRNAを、Life Technologies, Gaithersburg, MD (Super Script Plasmid system)からの試薬及びプロトコールを用いるベクターpRK5DにおけるオリゴdTプライムしたcDNAの生成に使用した。この方法において、二本鎖cDNAは1000bpを越えるサイズ分類し、SalI/NotI結合cDNAをXhoI/NotI切断ベクターにクローニングした。pRK5Dを、sp6転写開始部位、それに続くSfiI制限酵素部位、さらにXhiI/NotI cDNAクローニング部位を持つベクターにクローニングした。
一次cDNAクローンの5' 末端を好ましく表現するために二次cDNAライブラリを作成した。Sp6 RNAを(上記の)一次ライブラリから生成し、このRNAを、ベクターpSST-AMY.0におけるLife Technologies (上で参照したSuper Script Plasmid System)からの試薬及びプロ値コールを用いたランダムプライムしたcDNAライブラリの生成に使用した。この方法において、二本鎖cDNAを500-1000bpにサイズ分類し、平滑末端でNotIアダプターに結合させ、SfiI部位で切断し、そしてSfiI/NotI切断ベクターにクローニングした。pSST-AMY.0は、cDNAクローニング部位の前に酵母アルコールデヒドロゲナーゼプロモータ、及びクローニング部位の後にマウスアミラーゼ配列(分泌シグナルを持たない成熟配列)に次いでアルコールデヒドロゲナーゼ転写終結区を有するクローニングベクターである。即ち、アミラーゼ配列でフレームに融合するこのベクターにクローニングされたcDNAは、適当に形質移入された酵母コロニーからのアミラーゼの分泌を導くであろう。
上記2パラグラフに記載したライブラリからのDNAを氷上で冷却し、それにエレクトロコンピテントDH10B細菌(Life Technoligies、20ml)を添加した。細菌及びベクターの混合物は、次いで製造者に推奨されているように電気穿孔た。次いで、SOC培地(Life Technplogies、1ml)を添加し、この号物を37℃で30分間インキュベートした。形質転換体は、次いでアンピシリンを含む20標準150mmLBプレートに蒔き、16時間インキュベートした(37℃)。ポジティブコロニーをプレートから廃棄し、細菌ペレットから標準的な方法、例えばCsCl-勾配を用いてDNAを単離した。精製DNAは、次いで以下の酵母プロトコールにのせた。
酵母方法は3つの範疇に分けられる:(1)酵母のプラスミド/cDNA結合ベクターでの形質転換;(2)アミラーゼを分泌する酵母クローンの検出及び単離;及び(3)酵母コロニーから直接的な挿入物のPCR増幅及び配列決定及びさらなる分析のためのDNAの精製。
用いた酵母菌株はHD56-5A(ATCC-90785)であった。この株は以下の遺伝子型:MATアルファ、ura3-52、leu2-3、leu2-112、his3-11、his3-15、MAL+、SUC+、GAL+を有する。好ましくは、不完全な翻訳後経路を持つ酵母変異体を用いることができるが、。このような変異体は、sec71、sec72、sec62に転位不全対立遺伝子を持つが、切断されたsec71が最も好ましい。あるいは、これらの遺伝子の正常な操作を阻害するアンタゴニスト(アンチセンスヌクレオチド及び/又はリガンドを含む)、この翻訳後経路に含まれる他のタンパク質(例えば、SEC61p、SEC72p、SEC62p、SEC63p、TDJ1p、SSA1p-4p)又はこれらのタンパク質の複合体形成も、アミラーゼ発現酵母と組み合わせて好ましく用いられる。
次いで細胞を収穫し、5,000rpmで5分間のSorval GS3 ローターのGS3ローターボトルに移し、上清を捨て、次いで無菌水に再懸濁することにより形質転換のために調製し、そして50mlのファルコン管内で、Beckman GS-6KR遠心機において3,500rpmで再度遠心分離した。上清を捨て、細胞をLiAc/TE(10ml, 10mMのトリス-HCl, 1mMのEDTA pH7.5, 100mMのLi2OOCCH3)で続けて洗浄し、LiAc/TE(2.5ml)中に再懸濁させた。
次いで、細胞をTE(1ml)中に希釈し、アリコート(200μl)を150mm成長プレート(VWR)に予め調製した選択培地に拡げた。
あるいは、複数の少量反応ではなく、形質転換を1回の大規模反応で実施したが、しやくの量はしかるべくスケールアップした。
用いた選択培地は、Kaiserら, Methods in Yeast Genetics, Cold Spring Harbor press, Cold Spring Harbor, NY, p. 208-210 (1994)に記載されているように調製したウラシルを欠く合成完全デキストロース寒天(SCD-Ura)であった。形質転換体は30℃で2-3日成長させた。
ポジティブコロニーを拾って新鮮な選択培地(150mmプレート)に画線し、良好に単離され同定可能な単一コロニーを得た。アミラーゼ分泌についてポジティブな良好に単離されたコロニーは、緩衝SCD-Ura寒天への赤色団分の直接導入により検出した。ポジティブコロニーは、デンプンを分解して、ポジティブコロニーの周囲に直接目視できる暈を形成する能力により決定した。
ポジティブコロニーが単離された場合、その一部を楊枝で拾い、96ウェルプレートにおいて無菌水(30μl)に希釈した。この時点で、ポジティブコロニーは凍結して次の分析のために保存するか、即座に増幅するかのいずれかである。細胞のアリコート(5μl)を、0.5μlのKlentaq(Clontech, Palo Alto, CA); 4.0μlの10mM dNTP(Perkin Elmer-Cetus); 2.5μlのKentaqバッファー(Clontech); 0.25μlの正方向オリゴ1;0.25μlの逆方向オリゴ2;12.5μlの蒸留水を含有する25μl容量におけるPCR反応のテンプレートとして使用した。正方向オリゴヌクレオチド1の配列は:
5'-TGTAAAACGACGGCCAGTTAAATAGACCTGCAATTATTAATCT-3'(配列番号:57)
であった。
逆方向オリゴヌクレオチド2の配列は:
5'-CAGGAAACAGCTATGACCACCTGCACACCTGCAAATCCATT-3'(配列番号:58)
であった。
次いで、PCRは以下の通り実施した:
a. 変性 92℃、 5分間
b.次の3サイクル 変性 92℃、30秒間
アニール 59℃、30秒間
伸長 72℃、60秒間
c.次の3サイクル 変性 92℃、30秒間
アニール 57℃、30秒間
伸長 72℃、60秒間
d.次の25サイクル 変性 92℃、30秒間
アニール 55℃、30秒間
伸長 72℃、60秒間
e. 保持 4℃
PCRに続いて、反応のアリコート(5μl)を、上掲のSambrook等に記載されたように1%アガロースゲル中でトリス-ホウ酸塩-EDTA(TBE)緩衝系を用いたアガローススゲル電気泳動により試験した。400bpより大きな単一で強いPCR産物をもたらすクローンを、96 Qiaquick PCR 清浄化カラム(Quagen Inc., Charsworth, CA)での精製の後にDNA配列によりさらに分析した。
シグナルアルゴリズム分析を用いたcDNAクローンの単離
種々のポリペプチド-コード化核酸配列は、ジェネンテク,インク(South San Francisco, CA)によって開発された独自の配列発見アルゴリズムを、公的(例えば、GenBank)及び/又は私的(LIFESEQ(登録商標), Incyte Pharmaceuticals, Inc., Palo Alto, CA)データベースからのESTs並びに集団化及び構築されたEST断片に適用することにより同定した。シグナル配列アルゴリズムは、考慮している配列又は配列断片の5'-末端の第1の、場合によっては第2のメチオニンコドン(ATG)を取り囲むDNAヌクレオチドの文字に基づく分泌シグナルスコアを計算する。第1のATGに続くヌクレオチドは、停止コドンを持たない少なくとも35の不明瞭でないアミノ酸をコードしなければならない。第1のATGが必要なアミノ酸を有する場合、第2のものは試験しない。何れも要件を満たさない場合、候補配列にスコアをつけなかった。EST配列が真正のシグナル配列を含むか否かを決定するために、ATGコドンを取り囲むDNA及び対応するアミノ酸配列を、分泌シグナルに関連することが知られた7つのセンサー(評価パラメータ)の組を用いてスコアをつけた。このアルゴリズムの使用により、多くのポリペプチド-コード化核酸配列の同定がなされた。
ヒトPRO240をコードするcDNAクローンの単離
実施例1に記載したように、phrapを用いて他のEST配列に対してコンセンサスDNA配列を構築した。このコンセンサス配列を、ここでDNA30873と命名する。DNA30873コンセンサス配列に基づいて、1)PCRにより対象とする配列を含むcDNAライブラリを同定するため、及び2)PRO240の全長コード化配列のクローンを単離するプローブとして使用するために、オリゴヌクレオチドを合成した。
PCRプライマー(正方向及び逆方向)を合成した:
正方向PCRプライマー:
5'-TCAGCTCCAGACTCTGATACTGCC-3'(配列番号:59)
逆方向PCRプライマー:
5'-TGCCTTTCTAGGAGGCAGAGCTCC-3'(配列番号:60)
さらに、DNA30873コンセンサス配列から合成オリゴヌクレオチドハイブリッド形成プローブを作成し、それは以下のヌクレオチド配列を有していた:
ハイブリッド形成プローブ:
5'-GGACCCAGAAATGTGTCCTGAGAATGGATCTTGTGTACCTGATGGTCCAG-3'(配列番号:61)
cDNAライブラリの構築のためのRNAはヒト胎児肝臓組織から単離した。cDNAクローンの単離に用いたcDNAライブラリは、Invitrogen, San Diego, CAからのもの等の市販試薬を用いて標準的な方法によって作成した。cDNAは、NotI部位を含むオリゴdTでプライムし、平滑末端でSalIヘミキナーゼアダプターに結合させ、NotIで切断し、ゲル電気泳動でおよそのサイズ分類し、そして適切なクローニングベクター(pRKB又はpRKD等;pRK5BはSfiI部位を含まないpRK5Dの前駆体である;Holmesら, Science, 253: 1278-1280 (1991)参照)に、独特のXhoI及びNotI部位において、所定の方向でクローニングした。
上記のように単離したクローンのDNA配列決定により、PRO240ポリペプチドについての全長DNA配列(ここで、DNA34387−1138[図1、配列番号:1])及びPRO240の誘導タンパク質配列が得られた。
上記で同定した全長クローンは、単一のオープンリーディングフレームを含み、ヌクレオチド位置12−14に見かけの翻訳開始部位、そしてヌクレオチド位置699−701に停止シグナルを持つ(図1、配列番号:1)。予測されるポリペプチド前駆体は229アミノ酸長であり図2(配列番号:2)に示す。図2(配列番号:2)に示した全長PRO240配列の分析により、図2に示す種々の重要なポリペプチドドメインの存在が明らかになり、それらの重要なポリペプチドドメインに与えられた位置は上記のようにおよそのものである。全長PRO240配列の分析により以下の存在が明らかになった:約アミノ酸1〜約アミノ酸30のシグナルペプチド及び約アミノ酸198〜アミノ酸212の膜貫通ドメイン。クローンDNA34387−1138は1997年9月16日にATCCに寄託され、ATCC寄託番号209260が付与された。
図2(配列番号:2)に示した全長配列のALIGN-2配列アラインメント分析を用いたDayhoffデータベース(バージョン35.45、SwissProt 35)により、PRO240アミノ酸配列と、Drosophilia melanogasterからの鋸歯状タンパク質前駆体及びGallus gallusからのC-鋸歯状-1タンパク質との間の配列同一性が明らかとなった(各々、30%及び35%)。
ヒトPRO381をコードするcDNAクローンの単離
実施例1に記載したように、phrapを用いて他のEST配列に対してコンセンサスDNA配列を構築した。このコンセンサス配列を、ここでDNA39651と命名する。DNA39651コンセンサス配列に基づいて、1)PCRにより対象とする配列を含むcDNAライブラリを同定するため、及び2)PRO381の全長コード化配列のクローンを単離するプローブとして使用するために、オリゴヌクレオチドを合成した。
PCRプライマー(正方向及び逆方向)を合成した:
正方向PCRプライマー(39651.f1):
5'-CTTTCCTTGCTTCAGCAACATGAGGC-3'(配列番号:62)
逆方向PCRプライマー(39651.r1):
5'-GCCCAGAGCAGGAGGAATGATGAGC-3'(配列番号:63)
さらに、DNA39651コンセンサス配列から合成オリゴヌクレオチドハイブリッド形成プローブを作成し、それは以下のヌクレオチド配列を有していた:
ハイブリッド形成プローブ(39651.p1):
5'-GTGGAACGCGGTCTTGACTCTGTTCGTCACTTCTTTGATTGGGGCTTTG-3'(配列番号:64)
上記のように単離したクローンのDNA配列決定により、DNA44194−1317[図3、配列番号:3]の全長DNA配列;及びPRO381の誘導タンパク質配列が得られた。
DNA44194−1317の全コード化配列が図3(配列番号:3)に含まれる。クローンDNA44194−1317は単一のオープンリーディングフレームを含み、ヌクレオチド位置174−176に見かけの翻訳開始部位、そしてヌクレオチド位置807−809に見かけの停止コドンを持つ。予測されるポリペプチド前駆体は211アミノ酸長である。図4(配列番号:4)に示した全長PRO381配列の分析により、種々の重要なポリペプチドドメインの存在が明らかになり、それらの重要なポリペプチドドメインに与えられた位置は上記のようにおよそのものである。図4に示した全長PRO381ポリペプチドの分析により以下の存在が明らかになった:約アミノ酸1〜約アミノ酸20のシグナルペプチド;約アミノ酸176〜アミノ酸180の潜在的N-グリコシル化部位;約アミノ酸208〜約アミノ酸212の小胞体標的化配列;約アミノ酸78〜約アミノ酸115、及び約アミノ酸118〜約アミノ酸132のFKBP-型ペプチジル-プロリル・シス-トランスイソメラーゼ部位;約アミノ酸140〜約アミノ酸160、約アミノ酸184〜約アミノ酸204、及び約アミノ酸191〜約アミノ酸204のEF-ハンドカルシウム結合ドメイン;及び約アミノ酸183〜約アミノ酸201のS-100/ICaBp型カルシウム結合ドメイン。クローンDNA44194−1317は1998年4月28日にATCCに寄託され、ATCC寄託番号209808が付与された。図4に示す全長PRO381タンパク質は、約24,172ダルトンの見積もり分子量と約5.99のpIを有する。
全長PRO381ポリペプチドのアミノ酸配列の分析は、それがFKBPイムノフィリンタンパク質に対して有意な配列類似性を持ち、よってPRO381が新規なFKBPイムノフィリン相同体であることを示唆した。より詳細には、図4(配列番号:4)に示した全長配列のWU-BLAST2配列アラインメント分析を用いたDayhoffデータベース(バージョン35.45 SwissProt 35)の分析により、PRO381アミノ酸配列と以下に示すDayhoff配列との間に配列相同性が見いだされた:AF040252_1, I49669, P_R93551, S71238, CELC05C8_1, CEU27353_1, MIP_TRYCR, CEZC455_3, FKB4_HUMAN 及び I40718。
ヒトPRO534をコードするcDNAクローンの単離
実施例1に記載したように、phrapを用いて他のEST配列に対してコンセンサスDNA配列を構築した。このコンセンサス配列を、ここでDNA43048と命名する。DNA43048コンセンサス配列に基づいて、1)PCRにより対象とする配列を含むcDNAライブラリを同定するため、及び2)PRO534の全長コード化配列のクローンを単離するプローブとして使用するために、オリゴヌクレオチドを合成した。
PCRプライマー(正方向及び逆方向)を合成した:
正方向PCRプライマー:
5'-CACAGAGCCAGAAGTGGCGGAATC-3'(配列番号:65)
逆方向PCRプライマー:
5'-CCACATGTTCCTGCTCTTGTCCTGG-3'(配列番号:66)
さらに、DNA43048コンセンサス配列から合成オリゴヌクレオチドハイブリッド形成プローブを作成し、それは以下のヌクレオチド配列を有していた:
ハイブリッド形成プローブ:
5'-CGGTAGTGACTGTACTCTAGTCCTGTTTTACACCCCGTGGTGCCG-3'(配列番号:67)
上記のように単離したクローンのDNA配列決定により、DNA48333−1321[図5、配列番号:5]の全長DNA配列;及びPRO534の誘導タンパク質配列が得られた。
DNA48333−1321の全コード化配列を図5(配列番号:5)に示す。クローンDNA48333−1321は単一のオープンリーディングフレームを含み、ヌクレオチド位置87−89に見かけの翻訳開始部位、そしてヌクレオチド位置1167−1169に見かけの停止コドンを持つ(図5)。予測されるポリペプチド前駆体は360アミノ酸長である(図6)。図6に示した全長PRO534タンパク質は、約39,885ダルトンの見積もり分子量と約4.79のpIを有する。クローンDNA48333−1321は1998年3月26日にATCCに寄託され、ATCC寄託番号2097001が付与された。寄託されたクローンは正しい配列を含み、ここに提供される配列は現在の配列決定技術に基づく代表的なものであると理解される。
全長PRO534ポリペプチドのアミノ酸配列の分析は、その一部がタンパク質ジスルフィドイソメラーゼに対して有意な配列類似性を持ち、よってPRO534が新規なジスルフィドイソメラーゼであることを示唆した。
PRO534のアミノ酸配列をさらに分析すると、シグナルペプチドは配列番号:6の約アミノ酸1〜25に存在する。膜貫通ドメインは配列番号:6の約アミノ酸321〜340に存在する。ジスルフィドイソメラーゼ相当領域は配列番号:6の約アミノ酸212〜302に存在する。チオレドキシンドメインは配列番号:6の約アミノ酸211〜228に存在する。N-グリコシル化部位は配列番号:6の約アミノ酸165〜169、181〜185、187〜191、194〜198、206〜210、278〜282、及び293〜297にある。N-ミリストイル化部位は配列番号:6の約アミノ酸32〜38、70〜76、111〜117、115〜121、118〜124、及び207〜213にある。アミド化部位は配列番号:6の約アミノ酸5〜9に存在する。対応するヌクレオチドは、ここに提供するアミノ酸配列から日常的に決定しうる。PRO534は、他のタンパク質ジスルフィドイソメラーゼと同様に、ER保持ポリペプチドではなく膜貫通ドメインを有する。さらに、PRO534は5プライム末端にイントロンを有しうる。
ヒトPRO540をコードするcDNAクローンの単離
実施例1に記載したように、phrapを用いて他のEST配列に対してコンセンサスDNA配列を構築した。このコンセンサス配列を、ここでDNA39631と命名する。DNA39631コンセンサス配列に基づいて、1)PCRにより対象とする配列を含むcDNAライブラリを同定するため、及び2)PRO540の全長コード化配列のクローンを単離するプローブとして使用するために、オリゴヌクレオチドを合成した。
PCRプライマー(正方向及び逆方向)を合成した:
正方向PCRプライマー(39631.f1):
5'-CTGGGGCTACACACGGGGTGAGG-3'(配列番号:68)
逆方向PCRプライマー(39631.r1):
5'-GGTGCCGCTGCAGAAAGTAGAGCG-3'(配列番号:69)
ハイブリッド形成プローブ(39631.p1):
5'-GCCCCAAATGAAAACGGGCCCTACTTCCTGGCCCTCCGCGAGATG-3'(配列番号:70)
cDNAライブラリの構築のためのRNAはヒト胎児腎臓組織(LIB227)から単離した。cDNAクローンの単離に用いたcDNAライブラリは、Invitrogen, San Diego, CAからのもの等の市販試薬を用いて標準的な方法によって作成した。cDNAは、NotI部位を含むオリゴdTでプライムし、平滑末端でSalIヘミキナーゼアダプターに結合させ、NotIで切断し、ゲル電気泳動でおよそのサイズ分類し、そして適切なクローニングベクター(pRKB又はpRKD等;pRK5BはSfiI部位を含まないpRK5Dの前駆体である;Holmesら, Science, 253: 1278-1280 (1991)参照)に、独特のXhoI及びNotI部位において、所定の方向でクローニングした。
上記のように単離したクローンのDNA配列決定により、ここで、DNA44189−1322(配列番号:7)と命名されるPRO540ポリペプチドについての全長DNA配列を得た。クローンDNA44189−1322は、単一のオープンリーディングフレームを含み、ヌクレオチド位置21−23に見かけの翻訳開始部位を持ち、そしてヌクレオチド位置1257−1259の停止コドンで終端する(図7)。予測されるコード化ポリペプチド前駆体は412アミノ酸長であり(図8、配列番号:8)。図8に示した全長PRO540タンパク質は、約46,658ダルトンの見積もり分子量と約6.65のpIを有する。PRO540のアミノ酸配列の重要な領域(およその位置を含む)は、シグナルペプチド(残基1−28)、潜在的N-グリコシル化部位(残基99−103、273−277、289−293、398−402)、潜在的脂質基質結合部位(残基147−164)、リパーゼ及びセリンタンパク質の典型的配列(残基189−202)、チロシンキナーゼリン酸化部位(残基165−174及び178−186)、ベータ伝達ファミリーTrp-Aspリピート(残基353−366)及びN-ミリストイル化部位(残基200−206、227−233、232−238及び316−322)。クローンDNA44189−1322は1998年3月26日にATCCに寄託され、ATCC寄託番号209699が付与された。
ヒトPRO698をコードするcDNAクローンの単離
潜在的な分泌タンパク質をコードするcDNAを同定するために酵母スクリーニングアッセイを使用した。この酵母スクリーニングの使用により、ここでDNA39906と命名される単一のcDNAが同定された。DNA39906配列に基づいて、1)PCRにより対象とする配列を含むcDNAライブラリを同定するため、及び2)PRO698の全長コード化配列のクローンを単離するプローブとして使用するために、オリゴヌクレオチドを合成した。全長クローンについて幾つかのライブラリをスクリーニングするために、ライブラリからのDNAを、Ausubel等, Current Protocols in Molecular Biology, のように、PCRプライマー対でのPCRによりスクリーニングした。ポジティブライブラリを、次いで、プローブオリゴヌクレオチド及びプライマー対の一方を用いて対象とする遺伝子をコードするクローンの単離するのに使用した。
PCRプライマー(正方向及び逆方向)を合成した:
正方向PCRプライマー:
5'-AGCTGTGGTCATGGTGGTGTGGTG-3'(配列番号:71)
逆方向PCRプライマー:
5'-CTACCTTGGCCATAGGTGATCCGC-3'(配列番号:72)
さらに、DNA39906配列から合成オリゴヌクレオチドハイブリッド形成プローブを作成し、それは以下のヌクレオチド配列を有していた:
ハイブリッド形成プローブ:
5'-CATCAGCAAACCGTCTGTGGTTCAGCTCAACTGGAGAGGGTT-3'(配列番号:73)
全長クローンの供給源について幾つかのライブラリをスクリーニングするために、ライブラリからのDNAを上で同定したPCRプライマー対でPCR増幅した。次いで、ポジティブライブラリを、プローブオリゴヌクレオチド及びPCRプライマー対の一方を用いてPRO698遺伝子をコードするクローンを単離するのに使用した。cDNAライブラリの構築のためのRNAはヒト骨髄組織(LIB255)から単離した。cDNAクローンの単離に用いたcDNAライブラリは、Invitrogen, San Diego, CAからのもの等の市販試薬を用いて標準的な方法によって作成した。cDNAは、NotI部位を含むオリゴdTでプライムし、平滑末端でSalIヘミキナーゼアダプターに結合させ、NotIで切断し、ゲル電気泳動でおよそのサイズ分類し、そして適切なクローニングベクター(pRKB又はpRKD等;pRK5BはSfiI部位を含まないpRK5Dの前駆体である;Holmesら, Science, 253: 1278-1280 (1991)参照)に、独特のXhoI及びNotI部位において、所定の方向でクローニングした。
全長PRO698ポリペプチドのアミノ酸配列の分析は、それがオルファクトメディン(olfactomedin)タンパク質に対して有意な配列類似性を持ち、よってPRO698が新規なオルファクトメディン相同体であることを示唆した。より詳細には、Dayhoffデータベース(バージョン35.45 SwissProt 35)の分析により、PRO698アミノ酸配列と以下に示すDayhoff配列との間に配列相同性が見いだされた:OLFM_RANCA, I73637, AB006686S3_1, RNU78105_1, RNU72487_1, P_R98225, CELC48E7_4, CEF11C3_3, XLU85970_1 及び S42257。
ヒトPRO982をコードするcDNAの単離
上記の実施例3に記載した企業のシグナル配列発見アルゴリズムを適用してDNA57700−1408を同定した。上述のシグナル配列アルゴリズムの使用により、ここでIncyteESTクラスター番号43715と命名されるESTクラスター配列のIncyteデータベースからの同定が可能となった。次いでこのESTクラスター配列を、公的データベース(例えば、GenBank)及び企業のEST DNAデータベース(LIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CA)を含む種々の発現配列タグ(EST)データベースと比較して、存在する相同性を同定した。相同体検索は、コンピュータプログラムBLAST又はBLAST2(Altschul等, Methods in Enzymology 266: 460-480 (1996))を用いて実施した。既知のタンパク質をコードせず、BLASTスコア70(90の場合もある)又はそれ以上を持つ比較物は、プログラム「phrap」(Phil Green, University of Washington, Seattle, Washington)で集団化してコンセンサスDNA配列を構築した。そこから得られたコンセンサス配列を、ここでDNA56095と命名する。
DNA56095コンセンサス配列とMerckデータベースからのMerckEST番号AA024389との間の観察された配列相同性に鑑みて、MerckEST番号AA024389を購入し、cDNA挿入物を得て配列決定した。ここで、cDNA挿入物が全長タンパク質をコードすることが見出された。このcDNA挿入物の配列を図11(配列番号:11)に示し、ここでDNA57700−1408と命名する。
クローンDNA57700−1408は単一のオープンリーディングフレームを含み、ヌクレオチド位置26−28に見かけの翻訳開始部位を持ち、そしてヌクレオチド位置401−403の停止コドンで終端する(図11;配列番号:11)。予測されるポリペプチド前駆体は125アミノ酸長であり(図12)、約14,198ダルトンの算定分子量及び約9.01の見積もりpIを有する(図12)。さらに図12に示す全長PRO982(配列番号:12)の分析により、約アミノ酸1〜約アミノ酸21のシグナルペプチド;約アミノ酸33〜アミノ酸39及び約アミノ酸70〜約アミノ酸76のN-ミリストイル化部位;及び約アミノ酸50〜約アミノ酸60の潜在的アナフィラトキシンドメインが明らかとなった。クローンDNA57700−1408は1999年1月12日にATCCに寄託され、ATCC寄託番号203583が付与された。
ヒトPRO1005をコードするcDNAの単離
上記の実施例3に記載した企業のシグナル配列発見アルゴリズムを適用してDNA57708−1411を同定した。上述のシグナル配列アルゴリズムの使用により、ここでIncyteESTクラスター番号49243と命名されるESTクラスター配列のIncyteデータベースからの同定が可能となった。次いでこのESTクラスター配列を、公的データベース(例えば、GenBank)及び企業のEST DNAデータベース(LIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CA)を含む種々の発現配列タグ(EST)データベースと比較して、存在する相同性を同定した。相同体検索は、コンピュータプログラムBLAST又はBLAST2(Altschul等, Methods in Enzymology 266: 460-480 (1996))を用いて実施した。既知のタンパク質をコードせず、BLASTスコア70(90の場合もある)又はそれ以上を持つ比較物は、プログラム「phrap」(Phil Green, University of Washington, Seattle, Washington)で集団化してコンセンサスDNA配列を構築した。そこから得られたコンセンサス配列を、ここでDNA56095と命名する。
DNA56095コンセンサス配列とMerckデータベースからのMerckEST番号AA256657との間の観察された配列相同性に鑑みて、MerckEST番号AA256657を購入し、cDNA挿入物を得て配列決定した。ここで、cDNA挿入物が全長タンパク質をコードすることが見出された。このcDNA挿入物の配列を図13(配列番号:13)に示し、ここでDNA57708−1411と命名する。
クローンDNA57708−1411(図13;配列番号:13)は単一のオープンリーディングフレームを含み、ヌクレオチド位置30−32に見かけの翻訳開始部位を持ち、そしてヌクレオチド位置585−587の停止コドンで終端する(図13;配列番号:13)。予測されるポリペプチド前駆体は185アミノ酸長であり(図14)、約20,331ダルトンの見積もり分子量及び約5.85のpIを有する(図14)。図14に示す全長PRO1005配列(配列番号:14)の分析により、図14に示す種々の重要なポリペプチドドメインの存在が明らかになり、それらの重要なポリペプチドドメインに与えられた位置は上記のようにおよそのものである。図14に示す全長PRO1005配列の分析により以下の存在が明らかになった:約アミノ酸1〜約アミノ酸20のシグナルペプチド;約アミノ酸67〜約アミノ酸73、約アミノ酸118〜約アミノ酸124、及び約アミノ酸163〜約アミノ酸169のN-ミリストイル化部位;約アミノ酸156〜約アミノ酸175のフラボドキシン相同体。クローンDNA57708−1411は1998年6月23日にATCCに寄託され、ATCC寄託番号203021が付与された。
図14(配列番号:14)に示した全長配列のALIGN-2配列アラインメント分析を用いたDayhoffデータベース(バージョン35.45 SwissProt 35)の分析により、PRO1005アミノ酸配列と以下に示すDayhoff配列との間に配列相同性が見いだされた:DDU07187_1, DDU87912_1, CELD1007_14, A42239, DDU42597_1, CYAG_DICDI, S50452, MRKC_KLEPN, P_R41998, 及び XYNA_RUMFL。
ヒトPRO1007をコードするcDNAクローンの単離
コンセンサスDNA配列を実施例1に記載したように他のEST配列に対してphrapを用いて作成した。上述のECD相同性手法を使用し、ヒト肝臓組織(ライブラリ341からのクローン83012)から誘導され、Merck EST T70513と命名されるEST配列を同定した。Merck EST T70513を入手し、更に検査して配列決定し、ここでDNA57690−1374(図15、配列番号:15)と命名される全長DNA配列及び誘導PRO1007天然配列ポリペプチド(図16、配列番号:16)を単離した。
クローンDNA57690−1374は、下線で示すように、単一のオープンリーディングフレームリーディングフレームを含み、ヌクレオチド位置16−18に見かけの翻訳開始部位及びヌクレオチド位置1054−1056の停止コドン(TGA)で終端する(図15)。予測されるPRO1007ポリペプチド前駆体は346アミノ酸長であり(図16)、約35,917ダルトンの見積もられた分子量及び約8.17のpIを有する。DNA57690−1374を含むクローンは1998年6月9日にATCCに寄託され、
寄託番号209950が付与されている。
PRO1007ポリペプチドのアミノ酸配列(配列番号:16)の分析により、アミノ酸残基約1−30の推定シグナルペプチド;アミノ酸残基約325−346の膜貫通ドメイン;アミノ酸残基約118−121、129−132、136−166、176−179、183−186及び227−130のN-グリコシル化部位;アミノ酸残基約17−36及び209−222のLy-6/u-Parドメインタンパク質相同体;アミノ酸残基約26−32、43−49、57−63、66−72、81−87、128−134、171−171、218−224、298−304及び310−316のN-ミリストイル化部位;及びアミノ酸残基約205−216の原核生物膜リポタンパク脂質接着部位が明らかになった。対応するヌクレオチドは、ここに提供された配列が与えられれば日常的に決定できる。
ヒトPRO1131をコードするcDNAクローンの単離
上記の実施例2に記載したアミラーゼスクリーニングにおいて単離されたcDNA配列をここでDNA43546と命名する。ついで、該DNA43546配列を、公のESTデータベース(例えばGenBank)と企業のEST DNAデータベース(LIFESEQ(商品名), Incyte Pharmaceuticals, Palo Alto, CA)を含む様々な発現配列タグ(EST)と比較して、現存の相同体を同定した。相同体サーチはコンピュータプログラムBLAST又はBLAST2(Altshul等, Methods in Enzymology 266:460-480 (1996))を使用して行った。既知のタンパク質をコードしなかった70(又はある場合には90)以上のBLASTスコアになったその比較物を集合化し、「phrap」プログラム(Phil Green, University of Washington, Seattle, Washington)でコンセンサスDNA配列を構築した。得られたコンセンサス配列をここでDNA45627と命名する。
DNA45627配列に基づいて、オリゴヌクレオチドプローブを産生し、上述の実施例2の第1段落に記載したヒトライブラリをスクリーニングするために使用した。クローニングベクターはpRK5Bであり(pRK5BはSfiI部位を含まないpRK5Dの前駆体である;Holmes等, Science 253:1278-1280 (1991)を参照されたい)、切断されたcDNAサイズは2800bp未満であった。
PCRプライマー(正方向及び2つの逆方向)を合成した:
正方向PCRプライマー:
5'-ATGCAGGCCAAGTACAGCAGCAC-3'(配列番号:74)
逆方向PCRプライマー1:
5'-CATGCTGACGACTTCCTGCAAGC-3'(配列番号:75)
逆方向PCRプライマー2:
5'-CCACACAGTCTCTGCTTCTTGGG-3'(配列番号:76)
さらに、合成オリゴヌクレオチドハイブリッド形成プローブは、次のヌクレオチド配列を持つDNA45627配列から作成した:
ハイブリッド形成プローブ:
5'-ATGCTGGATGATGATGGGGACACCACCATGAGCCTGCATT-3'(配列番号:77)
ヌクレオチド位置144−146に見かけの翻訳開始部位を有し、ヌクレオチド位置984−986に停止シグナルを有する単一の読み取り枠を含む全長クローンが同定された(図17;配列番号:17)。予測されたポリペプチド前駆体は280アミノ酸長であり、約31,966ダルトンの算定分子量と約6.26の推定pIを有する。膜貫通ドメインは配列番号:18のアミノ酸残基約49−74にあり;N-グリコシル化部位は配列番号:18のアミノ酸残基約95−98及び169−172にあり;チロシンキナーゼリン酸化部位は配列番号:18のアミノ酸残基約142−150及び156−164にある;N-ミリストイル化部位は配列番号:18の130−136、214−220及び242−248にあり;LDLレセプターと配列同一性を有する領域は配列番号:18の約50−265にある。クローンDNA59777−1480は1998年8月11日にATCCに寄託され、ATCC寄託番号203111が付されている。
図18(配列番号:18)に示した全長配列のWU-BLAST2配列アラインメント分析法を使用してのDayhoffデータベース(バージョン35.45、SwissProt35)の解析により、PRO1131アミノ酸配列と次のDayhoff配列、AB010710_1, I49053, I49115, RNU56863_1, LY4A_MOUSE, I55686, MMU56404_1, I49361, AF030313_1及びMMU09739_1の間のある配列同一性が証明された。
ヒトPRO1157をコードするcDNAの単離
上記の実施例3に記載した企業のシグナル配列発見アルゴリズムを適用してDNA60292−1506を同定した。上述のシグナル配列アルゴリズムの使用により、ここでIncyteESTクラスター番号49243と命名されるESTクラスター配列のIncyteデータベースからの同定が可能となった。次いでこのESTクラスター配列を、公的データベース(例えば、GenBank)及び企業のEST DNAデータベース(LIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CA)を含む種々の発現配列タグ(EST)データベースと比較して、存在する相同性を同定した。相同体検索は、コンピュータプログラムBLAST又はBLAST2(Altschul等, Methods in Enzymology 266: 460-480 (1996))を用いて実施した。既知のタンパク質をコードせず、BLASTスコア70(90の場合もある)又はそれ以上を持つ比較物は、プログラム「phrap」(Phil Green, University of Washington, Seattle, Washington)で集団化してコンセンサスDNA配列を構築した。そこから得られたコンセンサス配列を、ここでDNA56095と命名する。
DNA56095コンセンサス配列とMerckデータベースからのMerckEST番号AA516481との間の観察された配列相同性に鑑みて、MerckEST番号AA516481を購入し、cDNA挿入物を得て配列決定した。このcDNA挿入物の配列を図19(配列番号:19)に示し、ここでDNA60292−1506と命名する。
図20(配列番号:20)に示した全長配列のWU-BLAST2配列アラインメント分析法を使用してのDayhoffデータベース(バージョン35.45、SwissProt35)の解析により、PRO1157アミノ酸配列と次のDayhoff配列:PTPN_HUMAN, B69251, I51419, AF019562_1, AF019563_1, C211_HUMAN, I37577, A39171, GAT5_MOUSE, ACR3_MOUSE, 5H6_RAT, P_W31512, and S58082との間のある配列同一性が証明された。
ヒトPRO1199をコードするcDNAの単離
公的な発現配列タグ(EST)DNAデータベース(GenBank)を全長マウスm-FIZZ1DNA(DNA53517)でサーチし、m-FIZZ1DNAと相同性を示したEST[AA311223と命名し、DNA53028と改名]を同定した。
EST配列に基づいて、1)PCRにより対象とする配列を含むcDNAライブラリを同定するために、及び2)PRO1199の全長コード化配列のクローンを単離するプローブとして用いるために、オリゴヌクレオチドを合成した。正方向及び逆方向PCRプライマーは一般に20から30のヌクレオチドの範囲であり、しばしば約100−1000bp長のPCR産物をもたらすように設計される。プローブ配列は、典型的には40−55bp長である。全長クローンについて幾つかのライブラリをスクリーニングするために、ライブラリからのDNAを、Ausubel等, Current Protocols in Molecular Biology に従って、PCRプライマー対でのPCR増幅によりスクリーニングした。ついで、ポジティブライブラリをプローブオリゴヌクレオチド及びプライマー対の一方を用いて対象とする遺伝子をコードするクローンを単離するのに使用した。
用いたオリゴヌクレオチドプローブは以下の通り:
正方向PCRプライマー(h-FIZZ3.f):
5'-GGATTTGGTTAGCTGAGCCCACCGAGA-3'(配列番号:78)
逆方向PCRプライマー(h-FIZZ3.r):
5'-GCACTGCGCGCGACCTCAGGGCTGCA-3'(配列番号:79)
プローブ(h-FIZZ3.p):
5'-CTTATTGCCCTAAATATTAGGGAGCCGGCGACCTCCTGGATCCTCTCATT-3'(配列番号:80)
遺伝子をコードしているクローンを単離した。cDNAクローンの単離に用いたcDNAライブラリは、Invitrogen, San Diego, CAからのもの等の市販試薬を用いて標準的な方法によって作成した。cDNAは、NotI部位を含むオリゴdTでプライムし、平滑末端でSalIヘミキナーゼアダプターに結合させ、NotIで切断し、ゲル電気泳動でおよそのサイズ分類し、そして適切なクローニングベクター(pRKB又はpRKD等;pRK5BはSfiI部位を含まないpRK5Dの前駆体である;Holmesら, Science, 253: 1278-1280 (1991)参照)に、独特のXhoI及びNotI部位において、所定の方向でクローニングした。
全長クローンDNA65351−1366−1が同定され、それは、単一のオープンリーディングフレームを含み、ヌクレオチド位置25−27に見かけの翻訳開始部位を持ち、そしてヌクレオチド位置349−351に停止コドンが観られた(図21;配列番号:21)。予測されるポリペプチド前駆体は108アミノ酸長であり、約11,419ダルトンの算定分子量及び約7.05の見積もりpIを有する。図22(配列番号:22)に示した全長PRO1199配列の分析により、種々の重要なポリペプチドドメインの存在が明らかになり、それらの重要なポリペプチドドメインに与えられた位置は上記のようにおよそのものである。図22(配列番号:22)に示した全長PRO1199配列の分析により、以下の存在が明らかになった:約アミノ酸1〜約アミノ酸18のシグナルペプチド;約アミノ酸57〜アミノ酸60の細胞接着配列モチーフ(RGD);約アミノ酸13〜約アミノ酸19、約アミノ酸71〜約アミノ酸77、約アミノ酸75〜約アミノ酸81、約アミノ酸95〜約アミノ酸101、及び約アミノ酸100〜約アミノ酸106のN-ミリストイル化部位。クローンDNA65251−1366−1は1998年5月12日にATCCに寄託され、ATCC寄託番号209856が付与された。
ヒトPRO1265をコードするcDNAクローンの単離
上記の実施例3に記載した企業のシグナル配列発見アルゴリズムを適用してDNA60764−1533を同定した。上述のシグナル配列アルゴリズムの使用により、IncyteESTクラスター番号86995と命名されるLIFESEQ(商品名)データベースからのESTクラスター配列の同定が可能となった。次いでこのESTクラスター配列を、公的ESTデータベース(例えば、GenBank)及び企業のEST DNAデータベース(LIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CA)を含む種々の発現配列タグ(EST)データベースと比較して、存在する相同性を同定した。相同体検索は、コンピュータプログラムBLAST又はBLAST2(Altschul等, Methods in Enzymology 266: 460-480 (1996))を用いて実施した。既知のタンパク質をコードせず、BLASTスコア70(90の場合もある)又はそれ以上を持つ比較物は、プログラム「phrap」(Phil Green, University of Washington, Seattle, Washington)で集団化してコンセンサスDNA配列を構築した。そこから得られたコンセンサス配列を、ここでDNA55717と命名する。
DNA55717配列とIncyteEST番号20965との間の配列相同性に鑑みて、IncyteEST番号20965を購入し、cDNA挿入物を得て配列決定した。このcDNA挿入物の配列を図7(配列番号:23)に示し、ここでDNA60764−1533と命名する。
図24(配列番号:24)に示した全長配列のWU-BLAST-2配列アラインメント分析を用いたDayhoffデータベース(バージョン35.45 SwissProt 35)の分析により、PRO1265アミノ酸配列とDayhoff配列番号MMU70429_1との間の有意な配列同一性が明らかになった。配列相同性は、図24(配列番号:24)に示す全長配列と以下のDayhoff配列との間にも存在することが見いだされた:BC542A_1, E69899, S76290, MYV014_14, AOFB_HUMAN, ZMJ002204_1, S45812_1, DBRNAPD_1, 及びCRT1_SOYBN。
ヒトPRO1286をコードするcDNAクローンの単離
上記の実施例3に記載した独自に開発したシグナル配列アルゴリズムを使用することにより、DNA64903−1553が同定された。上記のシグナル配列アルゴリズムの使用により、ESTクラスター番号86809と命名したLIFESEQ(商品名)データベースからのESTクラスター配列の同定が可能となった。次いでこのESTクラスター配列を、公的データベース(例えば、GenBank)及び企業のESTDNAデータベース(LIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CA)を含む種々の発現配列タグ(EST)データベースと比較して、存在する相同性を同定した。相同体検索は、コンピュータプログラムBLAST又はBLAST2(Altschul等, Methods in Enzymology 266: 460-480 (1996))を用いて実施した。既知のタンパク質をコードせず、BLASTスコア70(90の場合もある)又はそれ以上を持つ比較物は、プログラム「phrap」(Phil Green, University of Washington, Seattle, Washington)で集団化してコンセンサスDNA配列を構築した。アセンブリ中のESTは腫瘍、株化細胞、又は病変組織から同定されたものを含んでいた。ESTの一又は複数は病変大腸組織から単離されたRNAから作成されたcDNAライブラリから得られた。そこから得られたコンセンサス配列を、ここでDNA58822と命名する。
DNA58822配列とIncyteのEST番号1695434に含まれるEST配列との間の配列相同性に鑑みて、ESTクローン番号1695434を購入し、cDNA挿入物を得て配列決定した。このcDNA挿入物の配列を図25(配列番号:25)に示し、ここでDNA64903−1553と命名する。
図26(配列番号:26)に示した全長配列のWU-BLAST-2配列アラインメント分析を用いたDayhoffデータベース(バージョン35.45 SwissProt 35)の分析により、PRO1286アミノ酸配列と以下のDayhoff配列:SR5C_ARATH, CELC17H12_11, MCPD_ENTAE, JQ2283, INVO_LEMCA, P_R07309, ADEVBCAGN_4, AF020947_1, CELT23H2_1, 及びMDH_STRARとの間のいくらかの相同性が明らかにされた。
ヒトPRO1313をコードするcDNAクローンの単離
実施例1に記載したように、phrapを用いて他のEST配列に対してコンセンサスDNA配列を構築した。このコンセンサス配列を、ここでDNA64876と命名する。DNA64876コンセンサス配列、及びDNA57711と称されるジェネンテクが独自に開発したEST配列との配列相同性の検索にに基づいて、Merck/ワシントン大学EST配列(R80613と称する)が、DNA64876及びDNA57711と有意な相同性を持つことがわかった。従って、Merck/ワシントン大学ESTクローン番号R80613を購入し、その挿入物を得て配列決定することにより、図31(配列番号:31)に示すDNA64966−1575配列、及びPRO1313の誘導タンパク質配列を与えた。
DNA64966−1575の全コード化配列が図27(配列番号:27)に含まれる。クローンDNA64966−1575は単一のオープンリーディングフレームを含み、ヌクレオチド位置115−117に見かけの翻訳開始部位、そしてヌクレオチド位置1036−1038に見かけの停止コドンを持つ。予測されるポリペプチド前駆体は307アミノ酸長であり、約35,098ダルトンの見積もり分子量及び約8.11のpIを持つ。図88(配列番号:216)に示した全長PRO1313配列の分析により、種々の重要なポリペプチドドメインの存在が明らかになり、それらの重要なポリペプチドドメインに与えられた位置は、およそ上記の通りである。図28に示した全長PRO1313ポリペプチドの分析により、以下の存在が明らかになった:約アミノ酸1〜約アミノ酸15のシグナル配列;約アミノ酸134〜約アミノ酸157、約アミノ酸169〜約アミノ酸189、約アミノ酸230〜約アミノ酸248、約アミノ酸271〜約アミノ酸185の膜貫通ドメイン;約アミノ酸34〜約アミノ酸38、約アミノ酸135〜約アミノ酸139、及び約アミノ酸203〜約アミノ酸207のN-グリコシル化部位;約アミノ酸59〜約アミノ酸67のチロシンキナーゼリン酸化部位;約アミノ酸165〜アミノ酸171、約アミノ酸196〜約アミノ酸202、約アミノ酸240〜約アミノ酸246及び約アミノ酸247〜約アミノ酸253のN-ミリストイル化部位;約アミノ酸53〜約アミノ酸61のATP/GTP結合部位モチーフA(P-loop)。クローンDNA64966−1575は1999年1月12日にATCCに寄託され、ATCC寄託番号203575が付与された。
図28(配列番号:28)に示した全長配列のWU-BLAST-2配列アラインメント分析を用いたDayhoffデータベース(バージョン35.45 SwissProt 35)の分析により、PRO1313アミノ酸配列と以下のDayhoff配列との間の有意な相同性が明らかになった:CELT27A1_3, CEF09C06_7, U93688_9, H64896, YDCX_ECOLI, 及びRNU06101_1。
ヒトPRO1338をコードするcDNAクローンの単離
酵母菌スクリーニングを使用してEST配列を得、ついで、ECD相同性下で上述したもの(実施例1)と類似した方法で公的及び私的な種々のESTデータベースと比較し、胆嚢炎のある胆嚢組織から得られたESTであるIncyteEST2615184を同定した。対応する全長配列の分析により、DNA66667(配列番号:29、図29)及び誘導PRO1338天然配列タンパク質(配列番号:30、図30)を単離した。
図29に示すDNA66667(配列番号:29)は、単一のオープンリーディングフレームを含み、およそヌクレオチド残基115−117に翻訳開始部位を有し、ヌクレオチド位置2263−2265の停止コドン(TAA)で終端する、下線で示した。予測されるPRO1338ポリペプチド前駆体(配列番号:30)は716アミノ酸長であり(図30)、80,716ダルトンの算定分子量と6.06のpIを持つ。
図30PRO1313ポリペプチド(配列番号:30)の分析により、およそアミノ酸残基1〜25にシグナルペプチド、およそアミノ酸残基629〜648に膜貫通ドメイン、およそアミノ酸残基69〜73、96〜100、106〜110、117〜121、385〜389、517〜521、582〜586及び611〜615にN-グルコシル化部位、およそ残基573〜582にチロシンキナーゼリン酸化部位、及びおよそアミノ酸残基16〜22、224〜230、464〜470、637〜643及び698〜704にN-ミリストイル化部位があることが明らかになった。
DNA66667を含むcDNAは1998年9月22日にATCCに寄託され、ATCC寄託番号203267が付与されている。
ヒトPRO1375をコードするcDNAクローンの単離
Merck/Wash.U.データベースをサーチしてMerk ESTを同定した。ついで、この配列をSwiss-Prot公的データベース、公のESTデータベース(例えばGenBank、Merck/Wash. U.)と企業のESTデータベース(LIFESEQ(商品名), Incyte Pharmaceuticals, Palo Alto, CA)からの他の配列とそれを整列化させるプログラムに入力した。サーチは、EST配列の6フレーム翻訳との細胞外ドメイン(ECD)タンパク質配列の比較としてコンピュータプログラムBLAST又はBLAST2[Altshul等, Methods in Enzymology 266:460-480 (1996)]を使用して行った。既知のタンパク質をコードしなかった70(又はある場合には90)以上のBLASTスコアになったその比較物を集合化し、「phrap」プログラム(Phil Green, University of Washington, Seattle, Washington)でコンセンサスDNA配列を構築した。
phrapを使用して他のEST配列に対してコンセンサスDNA配列が構築された。このコンセンサス配列はここで「DNA67003」と命名する。
DNA67003コンセンサス配列に基づいて、ヒト膵臓ライブラリにおいて核酸(配列番号:417)を同定した。クローンのDNA配列決定により、PRO1375に対する全長DNA配列とPRO1375に対する誘導タンパク質配列が得られた。
図32に示した全長配列のWU-BLAST2配列アラインメント分析法を使用してのDayhoffデータベース(バージョン35.45 SwissProt35)の解析により、PRO1375アミノ酸配列と次のDayhoff配列:AF026198_5, CELR12C12_5, S73465, Y011_MYCPN, S64538_1, P_P8150, MUVSHPO10_1, VSH_MUMPL及びCVU59751_5の間の配列同一性が明らかにされた。
ヒトPRO1410をコードするcDNAクローンの単離
上記の実施例3に記載した独自開発のシグナル配列発見アルゴリズムを用いることによりDNA68874−1622を同定した。上記のシグナル配列アルゴリズムの使用により、IncyteデータベースからのESTクラスター配列の同定が可能となり、それをIncyteESTクラスター配列番号98502と命名した。次いでこのESTクラスター配列を、公的ESTデータベース(例えば、GenBank)及び企業のESTDNAデータベース(LIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CA)を含む種々の発現配列タグ(EST)データベースと比較して、存在する相同性を同定した。相同体検索は、コンピュータプログラムBLAST又はBLAST2(Altschul等, Methods in Enzymology 266: 460-480 (1996))を用いて実施した。既知のタンパク質をコードせず、BLASTスコア70(90の場合もある)又はそれ以上を持つ比較物は、プログラム「phrap」(Phil Green, University of Washington, Seattle, Washington)で集団化してコンセンサスDNA配列を構築した。そこから得られたコンセンサス配列を、ここでDNA56451と命名する。
DNA56451配列とIncyteESTクローン番号1257046内に含まれるEST配列との間の配列相同性に鑑みて、IncyteESTクローン1257046を購入し、cDNA挿入物を得て配列決定した。このcDNA挿入物の配列を図33(配列番号:33)に示し、ここでDNA68874−1622と命名する。
図34(配列番号:34)に示した全長配列のWU-BLAST2配列アラインメント分析法を使用しての、Dayhoffデータベース(バージョン35.45 SwissProt 35)の分析により、PRO1410のアミノ酸配列と以下のDayhoff配列:I48652, P_R76466, HSMHC3W36A_2, EPB4_HUMAN, P_R14256, EPA8_MOUSE, P_R77285, P_W13569, AF000560_1, 及びASF1_HELANとの間の有意な相同性が証明された。
ヒトPRO1488をコードするcDNAクローンの単離
発現配列タグ(EST)DNAデータベース(LIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CA)を検索してEST番号3639112H1をCPE-Rと相同性を有するものとして同定した。EST番号3639112H1はここで「DNA69562」と命名される。ESTクローン3639112H1は、パトー症候群で死亡した20週齢の胎児の肺組織ライブラリから取り出されたもので、購入され、cDNA挿入断片が得られ、その全体が配列決定された。PRO1488の全ヌクレオチド配列は図189(配列番号:329)に含まれ、ここでDNA73736−1657と命名された。DNA73736−1657は単一のオープンリーディングフレームを含み、ヌクレオチド位置6−8に見かけの翻訳開始部位を持ち、そしてヌクレオチド位置666−668に見かけの停止コドンを持つ(図35;配列番号:35)。予測されるポリペプチド前駆体は220アミノ酸長である。
図36に示す全長PRO1488タンパク質は約23,292ダルトンの推定分子量及び約8.43のpIを有する。4つの膜貫通ドメインが約アミノ酸位置8−30、82−102、121−140、及び166−186に位置しているものと同定された。
図36(配列番号:36)に示した全長配列のWU-BLAST2配列アラインメント分析法を使用しての、Dayhoffデータベース(バージョン35.45 SwissProt 35)の分析により、PRO1488のアミノ酸配列とDayhoff配列AB000712_1の間の有意な相同性が明らかにされた。相同性はまたPRO1488アミノ酸配列と次のDayhoff配列:AB000714_1, AF007189_1, AF000959_1, P_W63697, MMU82758_1, AF072127_1, AF072128_1, HSU89916_1, AF068863_1, CEAF000418_1, 及びAF077739_1との間にも見いだされた。
クローンDNA73736−1657は1998年11月17日にATCCに寄託され、ATCC寄託番号203466が付与された。
ヒトPRO3438をコードするcDNAの単離
上記の実施例3に記載した企業のシグナル配列発見アルゴリズムを適用してDNA82364−2538を同定した。上述のシグナル配列アルゴリズムの使用により、ここでIncyteESTクラスター番号49243と命名されるESTクラスター配列のIncyteデータベースからの同定が可能となった。次いでこのESTクラスター配列を、公的データベース(例えば、GenBank)及び企業のEST DNAデータベース(LIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CA)を含む種々の発現配列タグ(EST)データベースと比較して、存在する相同性を同定した。相同体検索は、コンピュータプログラムBLAST又はBLAST2(Altschul等, Methods in Enzymology 266: 460-480 (1996))を用いて実施した。既知のタンパク質をコードせず、BLASTスコア70(90の場合もある)又はそれ以上を持つ比較物は、プログラム「phrap」(Phil Green, University of Washington, Seattle, Washington)で集団化してコンセンサスDNA配列を構築した。そこから得られたコンセンサス配列を、ここでDNA56095と命名する。
DNA56095コンセンサス配列とMerckデータベースからのMerckEST番号AA256657との間の観察された配列相同性に鑑みて、MerckEST番号AA256657を購入し、cDNA挿入物を得て配列決定した。ここで、cDNA挿入物が全長タンパク質をコードすることが見出された。このcDNA挿入物の配列を図13(配列番号:13)に示し、ここでDNA82364−2538と命名した。
図38(配列番号:38)に示した全長配列のWU-BLAST2配列アラインメント分析を用いたDayhoffデータベース(バージョン35.45 SwissProt 35)の分析により、PRO3438アミノ酸配列と以下に示すDayhoff配列との間に配列相同性が見いだされた:S48841, P_W03179, P_W03178, PIGR_HUMAN, HGS_A215, AB001489_1, HGS_B471, P_W61380, P_R15068 and MML1L_1。
ヒトPRO4302をコードするcDNAクローンの単離
ヒト組織から単離した組織について上記の実施例2に記載したアミラーゼスクリーニング手法を使用してEST配列を得、ついでこれを種々のESTデータベースと比較し、アミラーゼスクリーニング手順及び/又はECD相同性手法下で、上述の方法によりコンセンサス配列を作成した。このコンセンサス配列を、ここでDNA78875と命名する。DNA78875コンセンサス配列とIncyte EST番号2408081H1との間の相同性に基づいてIncyte EST番号2408081H1を購入し、その挿入物を得て配列決定した。このcDNA挿入物の配列を図39(配列番号:39)に示し、ここでDNA92218−2554と命名し、PRO4302全長天然配列タンパク質(配列番号:40)を誘導した。
太字の下線で示したように、図39に示す全長クローンDNA92218−2554(配列番号:39)は、単一のオープンリーディングフレームを含み、ヌクレオチド位置174-176に見かけの翻訳開始部位と、ヌクレオチド位置768-770に停止シグナル(TAG)を有する。予測されるPRO4302ポリペプチド前駆体は198アミノ酸長であり、約22,285ダルトンの算定分子量と約9.35の見積pIを持つ。図40(配列番号:40)に示した全長PRO4302ポリペプチド配列の分析により、およそアミノ酸残基約1から23にシグナルペプチド;アミノ酸残基約111から130に膜貫通ドメイン;アミノ酸残基約26−30にcAMP-及びcGMP-依存性プロテインキナーゼリン酸化部位;アミノ酸残基約36−43にチロシンキナーゼリン酸化部位;及びアミノ酸残基約124−130、144−150及び189−195にN-ミリストイル化部位があることが明らかになった。
DNA92218−2554を含むcDNAクローンは1999年3月9日にATCCに寄託され、寄託番号203834が付与されている。
ヒトPRO4400をコードするcDNAクローンの単離
実施例1に記載したように、phrapを用いて他のEST配列に対してコンセンサスDNA配列を構築した。ESTデータベースは、公的データベース(例えば、GenBank)及び企業のEST DNAデータベース(LIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CA)及びジェネンテクが独自に開発したESTを含んでいた。このコンセンサス配列を、ここでDNA77634と命名する。DNA77634コンセンサス配列に基づいて、1)PCRにより対象とする配列を含むcDNAライブラリを同定するため、及び2)PRO4400の全長コード化配列のクローンを単離するプローブとして使用するために、オリゴヌクレオチドを合成した。
PCRプライマー(正方向及び逆方向)の対を合成した:
正方向PCRプライマー:
5'-GCTGCTGCCGTCCATGCTGATG-3'(配列番号:81)
逆方向PCRプライマー:
5'-CTCGGGGAATGTGACATCGTCGC-3'(配列番号:82)
さらに、DNA77634コンセンサス配列から合成オリゴヌクレオチドハイブリッド形成プローブを作成し、それは以下のヌクレオチド配列を有していた:
ハイブリッド形成プローブ:
5'-GCTGCCGTCCATGCTGATGTTTGCGGTGATCGTGG-3'(配列番号:83)
cDNAライブラリの構築のためのRNAはヒト胎児肝臓組織から単離した。cDNAクローンの単離に用いたcDNAライブラリは、Invitrogen, San Diego, CAからのもの等の市販試薬を用いて標準的な方法によって作成した。cDNAは、NotI部位を含むオリゴdTでプライムし、平滑末端でSalIヘミキナーゼアダプターに結合させ、NotIで切断し、ゲル電気泳動でおよそのサイズ分類し、そして適切なクローニングベクター(pRKB又はpRKD等;pRK5BはSfiI部位を含まないpRK5Dの前駆体である;Holmesら, Science, 253: 1278-1280 (1991)参照)に、独特のXhoI及びNotI部位において、所定の方向でクローニングした。
DNA87974−2609の全長コード化配列が図41(配列番号:41)に含まれる。クローンDNA87974−2609は、単一のオープンリーディングフレームを含み、ヌクレオチド位置27−29に見かけの翻訳開始部位、そしてヌクレオチド位置1026−1028に見かけの停止コドンを持つ。予測されるポリペプチド前駆体は333アミノ酸長であり、約38,618の見積分子量及び約9.27のpIを有する。図42(配列番号:42)に示した全長PRO4400配列の分析により、種々の重要なポリペプチドドメインの存在が明らかになり、それらの重要なポリペプチドドメインに与えられた位置は上記のようにおよそのものである。全長PRO4400配列の分析により以下の存在が明らかになった:約アミノ酸1〜約アミノ酸23のシグナルペプチド;約アミノ酸67〜約アミノ酸71及び約アミノ酸325〜約アミノ酸329のN-グリコシル化部位;約アミノ酸152〜約アミノ酸159及び約アミノ酸183のチロシンキナーゼリン酸化部位;及び約アミノ酸89〜約アミノ酸95及び約アミノ酸128〜約アミノ酸134のN-ミリストイル化部位。クローンDNA87974−2609は1999年4月27日にATCCに寄託され、ATCC寄託番号203963が付与された。
図42(配列番号:42)に示した全長配列のWU-BLAST2配列アラインメント分析を用いたDayhoffデータベース(バージョン35.45、SwissProt 35)により、PRO4400アミノ酸配列と以下のDayhoff配列との間の配列同一性が明らかとなった:
AF033827_1, AF070594_1, AF022729_1, CEC34F6_4, SYFB_THETH, G70405, SD_DROME, S64023, ALK1_YEAST and VG04_HSVII。
ヒトPRO5725をコードするcDNAの単離
発現配列タグ(EST)DNAデータベース(LIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CA)を検索し、ニューリチン(Neuritin)と相同性を持つESTを同定した。IncyteESTクローン番号3705684をLIFESEQ(商品名)、Incyte Pharmaceuticals、Palo Alto, CAから購入し、ここでDNA92265−2669と命名するそのクローンのcDNA挿入物を得て全体を配列決定した[図43;配列番号:43]。
全長クローンDNA92265−2669(配列番号:43)は、単一のオープンリーディングフレームを含み、ヌクレオチド位置27−29に見かけの翻訳開始部位を持ち、そしてヌクレオチド位置522−524に見かけの停止シグナルを持つ(図43;配列番号:43)。予測されるポリペプチド前駆体は165アミノ酸長であり、約17,786の算定分子量及び約8.43のpIを有する。図44(配列番号:44)に示した全長PRO5725配列の分析により、図44に示す種々の重要なポリペプチドドメインの存在が明らかになり、それらの重要なポリペプチドドメインに与えられた位置は上記のようにおよそのものである。図44に示した全長PRO5725配列の分析により、以下の存在が明らかになった:約アミノ酸1〜約アミノ酸35のシグナルペプチド;約アミノ酸141〜約アミノ酸157の膜貫通ドメイン;約アミノ酸127〜約アミノ酸133のN-ミリストイル化部位;約アミノ酸77〜約アミノ酸88の原核生物膜リポタンパク脂質結合部位。クローンDNA92265−2669は1999年6月22日にATCCに寄託され、ATCC寄託番号PTA-256が付与された。
図44(配列番号:44)に示した全長配列のWU-BLAST2配列アラインメント分析を用いたDayhoffデータベース(バージョン35.45 SwissProt 35)の分析により、PRO5725アミノ酸配列と以下のDayhoff配列との間の相同性が明らかになった:RNU88958_1, P_W37859, P_W37858, JC6305, HGS_RE778, HGS_RE777, P_W27652, P_W44088, HGS_RE776, 及びHGS_RE425。
インサイツハイブリッド形成
インサイツハイブリッド形成は、細胞又は組織調製物内での核酸配列の検出及び局在化のための強力で多用途の技術である。それは、例えば、遺伝子発現部位の同定、転写物の組織分布の分析、ウイルス感染の同定及び局在化、特定mRNA合成及び染色体マッピングにおける追跡に有用である。
インサイツハイブリッド形成は、Lu及びGillett, Cell Vision 1: 169-176 (1994)のプロトコールの最適な変形に従って、PCR生成33P-標識リボプローブを用いて実施される。簡単には、ホルマリン固定、パラフィン包埋ヒト組織を切片化し、脱パラフィンし、プロテイナーゼK(20g/ml)で15分間37℃で脱タンパクし、さらに上掲のLu及びGillettに記載されたようにインサイツハイブリッド形成する。[33-P]UTP-標識アンチセンスリボプローブをPCR産物から生成し、55℃で終夜ハイブリッド形成する。スライドをKodak NTB2(商品名)核トラックエマルションに浸漬して4週間露出する。
6.0μl(125mCi)の33P-UTP(Amersham BF 1002, SA<2000 Ci/mmol)をスピード真空乾燥させた。乾燥33P-UTPを含む管に以下の成分を添加した:
2.0μlの5x転写バッファー
1.0μlのDTT(100mM)
2.0μlのNTP混合物(2.5mM: 10μl; 10mMのGTP, CTP及びATP+10μlのH2O)
1.0μlのUTP(50μM)
1.0μlのRNAsin
1.0μlのDNAテンプレート(1μg)
1.0μlのH2O
1.0μlのRNAポメラーゼ(PCR産物についてT3=AS, T7=S,通常)
管を37℃で1時間インキュベートし、1.0μlのRQ1 DNaseを添加し、次いで37℃で15分間インキュベートした。90μlのTE(10mMトリスpH7.6/1mMのEDTApH8.0)を添加し、混合物をDE81紙にピペットした。残りの溶液をMicrocon-50限外濾過ユニットに負荷し、プログラム10を用いてスピンさせた(6分間)。濾過ユニットを第2の管に変換し、プログラム2を用いてスピンさせた(3分間)。最終回収スピンの後、100μlのTEを添加した。1μlの最終生成物をDE81紙にピペットし6mlのBiofluor IIで数えた。
プローブをTBE/尿素ゲル上で走らせた。1-3μlのプローブ又は5μlのRNA MrkIIIを3μlの負荷バッファーに添加した。加熱ブロック上で95℃に3分間加熱した後、ゲルを即座に氷上に置いた。ゲルのウェルをフラッシングし、試料を負荷し、180-250ボルトで45分間走らせた。ゲルをサランラップでラップし、−70℃冷凍機内で補強スクリーンを持つXARフィルムに1時間から終夜露出した。
A.凍結切片の前処理: スライドを冷凍機から取り出し、アルミニウムトレイに配置して室温で5分間解凍した。トレイを55℃のインキュベータに5分間配置して凝結を減らした。スライドを蒸気フード内において4%パラホルムアルデヒド中で5分間固定し、0.5xSSCで5分間室温で洗浄した(25ml 20xSSC + 975ml SQ H2O)。0.5μg/mlのプロテイナーゼ中、37℃で10分間の脱タンパクの後(250mlの予備加熱RNase無しRNaseバッファー中の10mg/mlストック12.5μl)、切片を0.5xSSCで10分間室温で洗浄した。切片を、70%、95%、100%エタノール中、各2分間脱水した。
B.パラフィン包埋切片の前処理: スライドを脱パラフィンし、SQ H2O中に配置し、2xSSCで室温において各々5分間2回リンスした。切片を20μg/mlのプロテイナーゼK(250mlのRNase無しRNaseバッファー中10mg/mlを500μl;37℃、15分間)−ヒト胚又は8xプロテイナーゼK(250mlのRNaseバッファー中100μl、37℃、30分間)−ホルマリン組織で脱タンパクした。続く0.5xSSCでのリンス及び脱水は上記のように実施した。
C.プレハイブリッド化: スライドをBoxバッファー(4xSSC、50%ホルムアミド)−飽和濾紙で列を作ったプラスチックボックスに並べた。組織を50μlのハイブリッド形成バッファー(3.75gデキストラン硫酸+6mlSQ H2O)で被覆し、ボルテックスし、キャップを外して2分間マイクロ波で加熱した。氷上で冷却した後、18.75mlのホルムアミド、3.75mlの20xSSC及び9mlのSQ H2Oを添加し、組織を良くボルテックスし、42℃で1-4時間インキュベートした。
E.洗浄: 洗浄は、2x10分間、2xSSC、EDTAで室温で実施し(400mlの20xSSC+16mlの0.25M EDTA、Vf=4L)、次いでRNaseA処理を37℃で30分間行った(250mlRNaseバッファー中10mg/mlを500μl=20μg/ml)。スライドを2x10分間、EDTAで室温において洗浄した。緊縮性洗浄条件は次の通り:55℃で2時間、0.1xSSC、EDTA(20mlの20xSSC+16mlのEDTA、Vf=4L)。
インサイツハイブリッド形成は、ここに開示したDNAのうち6つについて実施した。これらの分析に使用したオリゴヌクレオチドは以下の通り:
(1)DNA34387-1138(PRO240)(鋸歯状/EGF相同体)
オリゴB-231W48mer:
5'-GGATTCTAATACGACTCACTATAGGGCCCGAGATATGCACCCAATGTC-3' (配列番号:84)
オリゴB-231W47mer:
5'-CTATGAAATTAACCCTCACTAAAGGGATCCCAGAATCCCGAAGAACA-3' (配列番号:85)
(2)DNA57708-1411(PRO1005)(新規な分泌CA関連タンパク質)
678.p1:
5'-GGATTCTAATACGACTCACTATAGGGCCCTCTGTCCACTGCTTTCGTG-3' (配列番号:86)
678.p2:
5'-CTATGAAATTAACCCTCACTAAAGGGAGTTCTCCACCGTGTCTCCACA-3' (配列番号:87)
(3)DNA60764-1533(PRO1265)(Fig-1相同体)
DNA60764-p1:
5'-GGATTCTAATACGACTCACTATAGGGCCGCGCTGTCCTGCTGTCACCA-3' (配列番号:88)
DNA60764-p2:
5'-CTATGAAATTAACCCTCACTAAAGGGAGTTCCCCTCCCCGAGAAGATA-3' (配列番号:89)
(4)DNA28498(PRO183)(FHF-2)
DNA28498-p1:
5'-GGATTCTAATACGACTCACTATAGGGCCAGCAAAAGAAGCGGTGGTG-3' (配列番号:90)
DNA28498-p1:
5'-CTATGAAATTAACCCTCACTAAAGGGATTCAGCACGCCAGAGACACTT-3' (配列番号:91)
インサイツ分析をここに開示する上記の4つのDNAに対して実施した。これらの分析からの結果は以下の通りである:
(1)DNA34387-1138(PRO240)(鋸歯状/EGF相同体)
ヒト成人及び胎児組織における発現パターン
増大したシグナルが以下の部位で観察された:
胎児組織:甲状腺上皮、小腸上皮、生殖腺、膵臓上皮、腎臓及び尿細管における肝実質細胞;発現は、発育中の血管組織でも見られた。
成人組織:胎盤細胞栄養芽層、尿細管、膀胱上皮、副甲状腺及び上皮性腫瘍における中程度のシグナル。
肺腺癌及び扁平上皮癌における発現
発現は、8つ全ての扁平上皮癌及び8つの腺癌のうち6つで観察された。発現は、インサイツ及び浸潤成分において見られた。発現レベルは腺癌において低から中程度であった。一般に、発現は、扁平上皮癌においてより高く、これらの2つにおいて発現は強かった。腫瘍間質、肺胞及び正常呼吸器上皮において発現は見られなかった。リンパ節では低レベルの発現の可能性があった。
(2)DNA57708-1411(PRO1005)(新規な分泌CA関連タンパク質)
極めて強い発現が、胃腸襞の粘液頚部細胞(チンパンジー)及び洞(ヒト)粘膜全体に見られた。これらの細胞は、増殖及び胃の粘膜再生において重要である。硬化性小結節の辺縁における胎児肝実質細胞及び成人肝実質細胞の全体でも見られた。胎児の外眼筋及び下肢の骨格筋全体で可能な発現が現れた。試験した16の一次肺癌(8つの扁平上皮癌及び8つの腺癌)のいずれにおいても有意な発現は観察されなかった。
試験した16肺腫瘍のうち15が分析に適していた(8つの腺癌及び7つの扁平上皮癌)。殆どの腫瘍がDNA60764の発現を幾分示した。発現は、浸潤腫瘍に隣接する単核細胞に大いに限局されていた。一つの扁平上皮癌では、発現は悪性上皮に見られた。
また発現は、不明な組織形成の胎児胸腺髄質の細胞全体に見られた。発現は、損傷腎臓間質の単核細胞及び腎細胞癌の内膜細胞の全体で見られた。また発現は、胚中心の細胞全体で見られ、殆どのFig-1陽性細胞が発生においておそらく炎症性であるという事実に符合する。
(4)DNA28498(PRO183)(FHF-2)
胎児網膜の内面全体で発現が観察された。強い発現が、脊髄神経節全体及びヒト胎児の脊髄の前角におけるニューロン全体で見られた。ヒト胎児の脳では有意な発現は観察されなかったが、海馬ニューロンを含むアカゲザル脳のニューロン全体で高い発現が見られた。また、発現はラット胚の脊髄及び発育中の後脳でも見られた。
PROのハイブリッド形成プローブとしての使用
以下の方法は、PROをコードする核酸配列のハイブリッド形成プローブとしての使用を記述する。
ここに開示されるような全長又は成熟PRO又はその断片のコード化配列を含むDNAは、ヒト組織cDNAライブラリ又はヒト組織ゲノムライブラリにおける同種DNA(PROの天然発生変異体をコードするもの等)のスクリーニングのためのプローブとして用いられ得る。
ハイブリッド形成及びいずれかのライブラリを含むフィルターの洗浄は、以下の高い緊縮性条件下で実施される。PROポリペプチドコード化遺伝子から誘導された放射性標識プローブのフィルターへのハイブリッド形成は、50%ホルムアミド、5xSSc、0.1%ピロリン酸ナトリウム、50mMリン酸ナトリウム、pH6.8、2xデンハード液、及び10%デキストラン硫酸の溶液中で42℃で20時間実施した。フィルターの洗浄は、0.1xSSC及び0.1%SDS水溶液中で、42℃で実施した。
全長天然配列PROをコードするDNAと所望の同一性を持つDNAは、次いでこの分野で知られた標準的技術を用いて同定できる。
大腸菌におけるPROの発現
この実施例は、大腸菌での組換え発現による非グリコシル化形態のPROの調製を例示する。
PROをコードするDNA配列を、選択したPCRプライマーを用いて最初に増幅した。プライマーは、選択された発現ベクターの制限酵素部位に対応する制限酵素部位を持たなければならない。種々の発現ベクターが用いられる。好適なベクターの例は、pBR322(大腸菌から誘導されたもの;Bolivar等, Gene, 2:95 (1977)参照)であり、アンピシリン及びテトラサイクリン耐性についての遺伝子を含む。ベクターは、制限酵素で消化され脱リン酸される。PCR増幅した配列は、次いでベクターに結合させる。ベクターは、好ましくは抗生物質耐性遺伝子、trpプロモーター、ポリhisリーダー(最初の6つのSTIIコドン、ポリhis配列、及びエンテロキナーゼ切断部位を含む)、PROコード化領域、ラムダ転写終結区、及びargU遺伝子を含む。
選択されたクローンは、抗生物質を添加したLBブロスなどの液体培地で終夜成長させることができる。終夜培地は、続いて大規模培地の播種に用いられる。次に細胞を最適密度で成長させ、その間に発現プロモーターが作動する。
更に数時間の培養の後、細胞を採集して遠心分離できる。遠心分離で得られた細胞ペレットは、この分野で知られた種々の試薬を用いて可溶化され、可溶化PROタンパク質を金属キレート化カラムを用いてタンパク質を緊密に結合させる条件下で精製した。
所望の折りたたまれたPROを含有する画分をプールし、溶液に向けた窒素の弱い気流を用いてアセトニトリルを除去した。タンパク質を、透析又は調製バッファーで平衡化したG25 Superfine(Pharmacia)樹脂でのゲル濾過及び滅菌濾過により、0.14Mの塩化ナトリウム及び4%のマンニトールを含む20mMのHEPES、pH6.8に調製した。
哺乳動物細胞におけるPROの発現
この実施例は、哺乳動物細胞での組換え発現によるグリコシル化形態のPROの調製を例示する。
発現ベクターとしてベクターpRK5(1989年3月15日発行のEP 307,247参照)を用いた。場合によっては、PRODNAを選択した制限酵素でpRK5に結合させ、上掲のSambrook等に記載されたような結合方法を用いてPRODNAの挿入を行う。得られたベクターは、pRK5-PROと呼ばれる。
一実施態様では、選択された宿主細胞は293細胞とすることができる。ヒト293細胞(ATCC CCL 1573)は、ウシ胎児血清及び場合によっては滋養成分又は抗生物質を添加したDMEMなどの媒質中で組織培養プレートにおいて成長させて集密化した。約10μgのpRK5-PRODNAを約1μgのVA RNA遺伝子をコードするDNA[Thimmappaya等, Cell, 31:543 (1982))]と混合し、500μlの1mMトリス-HCl、0.1mMのEDTA、0.227MのCaCl2に溶解させた。この混合物に、滴状の、500μlの50mMのHEPES(pH7.35)、280mmのNaCl、1.5mMのNaPO4を添加し、25℃で10分間析出物を形成させた。析出物を懸濁し、293細胞に加えて37℃で約4時間定着させた。培養培地を吸引し、2mlのPBS中20%グリセロールを30秒間添加した。293細胞は、次いで無血清培地で洗浄し、新鮮な培地を添加し、細胞を約5日間インキュベートした。
これに換わる技術において、PROは、Somparyac等, Proc. Natl. Acad. Sci., 12:7575 (1981)に記載されたデキストラン硫酸法を用いて293細胞に一過的に導入される。293細胞は、スピナーフラスコ内で最大密度まで成長させ、700μgのpRK5-PRODNAを添加する。細胞は、まずスピナーフラスコから遠心分離によって濃縮し、PBSで洗浄した。DNA−デキストラン沈殿物を細胞ペレット上で4時間インキュベートした。細胞を20%グリセロールで90秒間処理し、組織培養培地で洗浄し、組織培養培地、5μg/mlウシインシュリン及び0.1μg/mlウシトランスフェリンを含むスピナーフラスコに再度導入した。約4日後に、条件培地を遠心分離して濾過し、細胞及び細胞片を除去した。次いで発現されたPROを含む試料を濃縮し、透析及び/又はカラムクロマトグラフィー等の選択した方法によって精製した。
また、エピトープタグPROは、宿主CHO細胞において発現させてもよい。PROはpRK5ベクターからサブクローニングしてよい。サブクローン挿入物は、次いで、PCRを施してバキュロウイルス発現ベクター中のポリ-hisタグ等の選択されたエピトープタグを持つ枠に融合できる。ポリ-hisタグPRO挿入物は、次いで、安定なクローンの選択のためのDHFR等の選択マーカーを含むSV40誘導ベクターにサブクローニングできる。最後に、CHO細胞をSV40誘導ベクターで(上記のように)形質移入した。発現を確認するために、上記のように標識化を行ってもよい。発現されたポリ-hisタグPROを含む培養培地は、次いで濃縮し、Ni2+-キレートアフィニティクロマトグラフィー等の選択された方法により精製できる。
また、PROは、一過性発現手法によってCHO及び/又はCOS細胞で、又は他の安定発現手法によりCHO細胞で発現させてもよい。
PCR増幅に続いて、対応するDNAを、Ausubel等, Current Protocols of Molecular Biology, Unit 3.26, John Wiley and Sons (1997)に記載されたような標準的技術を用いてCHO発現ベクターにサブクローニングした。CHO発現ベクターは、対象とするDNAの5’及び3’に適合する制限部位を有し、cDNAの便利なシャトル化ができるように作成される。ベクターは、Lucas等, Nucl. Acids res. 24: 9, 1774-1779 (1996)に記載されたようにCHO細胞での発現を用い、対象とするcDNA及びジヒドロフォレートレダクターゼ(DHFR)の発現の制御にSV40初期プロモーター/エンハンサーを用いる。DHFR発現は、形質移入に続くプラスミドの安定な維持のための選択を可能にする。
プラスミドDNAを含むアンプルを水槽に配して解凍し、ボルテックスにより混合した。内容物を10mLの媒質を含む遠心管にピペットして、1000rpmで5分間遠心分離した。上清を吸引して細胞を10mLの選択培地(0.2μm濾過PS20、5%の0.2μm透析濾過ウシ胎児血清を添加)中に懸濁させた。次いで細胞を90mLの選択培地を含む100mlスピナーに分けた1-2日後、細胞を150mLの選択培地を満たした250mLスピナーに移し、37℃でインキュベートした。さらに2-3日後、250mL、500mL及び2000mLのスピナーを3x105細胞/mLで播種した。細胞培地を遠心分離により新鮮培地に交換し、生産培地に再懸濁させた。任意の適切なCHO培地を用いてもよいが、実際には1992年6月16日に発行の米国特許第5,122,469号に記載された生産培地を使用した。3Lの生産スピナーを1.2x106細胞/mLで播種した。0日目に、細胞数とpHを測定した。1日目に、スピナーをサンプルし、濾過空気での散布を実施した。2日目に、スピナーをサンプルし、温度を33℃に変え、500g/Lのグルコース及び0.6mLの10%消泡剤(例えば35%ポリジメチルシロキサンエマルション、Dow Corning 365 Medical Grade Emulsion)の30mLとした。生産を通して、pHは7.2近傍に調節し維持した。10日後、又は生存率が70%を下回るまで、細胞培地を遠心分離で回収して0.22μmフィルターを通して濾過した。濾過物は、4℃で貯蔵するか、即座に精製用カラムに負荷した。
イムノアドヘシン(Fc含有)作成物を以下のようにして条件培地から精製した。条件培地を、20mMのリン酸ナトリウムバッファー, pH6.8で平衡化した5mlのプロテインAカラム(Pharmacia)に負荷した。負荷後、カラムを平衡バッファーで強く洗浄した後、100mMのクエン酸, pH3.5で溶離した。溶離したタンパク質は、1mlの画分を275μlの1Mトリスバッファー, pH9を含む管に回収することにより即座に中性化した。高度に精製されたタンパク質は、続いてポリ-Hisタグタンパク質について上記した貯蔵バッファー中で脱塩した。均一性はSDSポリアクリルアミドゲルで試験し、エドマン(Edman)分解によりN-末端アミノ酸配列決定した。
ここに開示するPROの多くが、上記のように成功裏に発現された。
酵母菌でのPROの発現
以下の方法は、酵母菌中でのPROの組換え発現を記載する。
第1に、ADH2/GAPDHプロモーターからのPROの細胞内生産又は分泌のための酵母菌発現ベクターを作成する。PROをコードするDNA及びプロモーターを選択したプラスミドの適当な制限酵素部位に挿入してPROの細胞内発現を指示する。分泌のために、PROをコードするDNAを選択したプラスミドに、ADH2/GAPDHプロモーター、天然PROシグナルペプチド又は他の哺乳類シグナルペプチドをコードするDNA、又は、例えば酵母菌アルファ因子分泌シグナル/リーダー配列、及び(必要ならば)PROの発現のためのリンカー配列とともにクローニングすることができる。
酵母菌株AB110等の酵母菌は、次いで上記の発現プラスミドで形質転換し、選択された発酵培地中で培養できる。形質転換した酵母菌上清は、10%トリクロロ酢酸での沈降及びSDS−PAGEによる分離で分析し、次いでクマシーブルー染色でゲルの染色をすることができる。
続いて組換えPROは、発酵培地から遠心分離により酵母菌細胞を除去し、次いで選択されたカートリッジフィルターを用いて培地を濃縮することによって単離及び精製できる。PROを含む濃縮物は、選択されたカラムクロマトグラフィー樹脂を用いてさらに精製してもよい。
ここに開示したPROポリペプチドの多くが、上記のように成功裏に発現された。
バキュロウイルス感染昆虫細胞でのPROの発現
以下の方法は、バキュロウイルス感染昆虫細胞中における組換え発現を記載する。
PROのコード化配列は、バキュロウイルス発現ベクターに含まれるエピトープタグの上流に融合させた。このようなエピトープタグは、ポリ-hisタグ及び免疫グロブリンタグ(IgGのFc領域など)を含む。pVL1393(Navogen)などの市販されているプラスミドから誘導されるプラスミドを含む種々のプラスミドを用いることができる。簡単には、PROあるいはPROのコード化配列の所定部分(膜貫通タンパク質の細胞外ドメインをコードする配列など)が、5'及び3'領域に相補的なプライマーでのPCRにより増幅される。5'プライマーは、隣接する(選択された)制限酵素部位を包含していてもよい。生成物は、次いで、選択された制限酵素で消化され、発現ベクターにサブクローニングされる。
組換えバキュロウイルスは、上記のプラスミド及びBaculoGold(商品名)ウイルスDNA(Pharmingen)を、Spodoptera frugiperda(「Sf9」)細胞(ATCC CRL 1711)中にリポフェクチン(GIBCO-BRLから市販)を用いて同時形質移入することにより作成される。28℃で4−5日インキュベートした後、放出されたウイルスを回収し、更なる増幅に用いた。ウイルス感染及びタンパク質発現は、O'Reilley等, Baculovirus expression vectors: A laboratory Manual, Oxford: Oxford University Press (1994)に記載されているように実施した。
あるいは、IgGタグ(又はFcタグ)PROの精製は、例えば、プロテインA又はプロテインGカラムクロマトグラフィーを含む公知のクロマトグラフィー技術を用いて実施できる。
ここに開示したPROポリペプチドの多くが、上記のように成功裏に発現された。
PROに結合する抗体の調製
この実施例は、PROに特異的に結合できるモノクローナル抗体の調製を例示する。
モノクローナル抗体の生産のための技術は、この分野で知られており、例えば、Goding,上掲に記載されている。用いられ得る免疫原は、精製PRO又はPROを含む融合タンパク質、細胞表面に組換えPROを発現する細胞を含む。免疫原の選択は、当業者が過度の実験をすることなくなすことができる。
Balb/c等のマウスを、完全フロイントアジュバントに乳化して皮下又は腹腔内に1−100マイクログラムで注入したPRO免疫原で免疫化する。あるいは、免疫原をMPL−TDMアジュバント(Ribi Immunochemical Researh, Hamilton, MT)に乳化し、動物の後足蹠に注入してもよい。免疫化したマウスは、次いで10から12日後に、選択したアジュバント中に乳化した付加的免疫源で追加免疫する。その後、数週間、マウスをさらなる免疫化注射で追加免疫する。抗-PRO抗体の検出のためのELISAアッセイで試験するために、レトロオービタル出血からの血清試料をマウスから周期的に採取してもよい。
ハイブリドーマ細胞は、PROに対する反応性についてのELISAでスクリーニングされる。所望のPROに対するモノクローナル抗体を分泌する「ポジティブ」ハイブリドーマ細胞の決定は、技術常識の範囲内である。
ポジティブハイブリドーマ細胞を同系のBalb/cマウスに腹腔内注入し、抗-PROモノクローナル抗体を含む腹水を生成させる。あるいは、ハイブリドーマ細胞を、組織培養フラスコ又はローラーボトルで成長させることもできる。腹水中に生成されたモノクローナル抗体の精製は、硫酸アンモニウム沈降、それに続くゲル排除クロマトグラフィ−を用いて行うことができる。あるいは、抗体のプロテインA又はプロテインGへの親和性に基づくアフィニティクロマトグラフィーを用いることもできる。
特異的抗体を用いたPROポリペプチドの精製
天然又は組換えPROポリペプチドは、この分野の種々の標準的なタンパク質精製方法によって精製できる。例えば、プロ-PROポリペプチド、成熟ポリペプチド、又はプレ-PROポリペプチドは、対象とするPROポリペプチドに特異的な抗体を用いた免疫親和性クロマトグラフィーによって精製される。一般に、免疫親和性カラムは抗PROポリペプチド抗体を活性化クロマトグラフィー樹脂に共有結合させて作成される。
ポリクローナル免疫グロブリンは、硫酸アンモニウムでの沈殿又は固定化プロテインA(Pharmacia LKB Biotechnology, Piscataway, N.J.)での精製のいずれかにより免疫血清から調製される。同様に、モノクローナル抗体は、硫酸アンモニウム沈殿又は固定化プロテインAでのクロマトグラフィーによりマウス腹水液から調製される。部分的に精製された免疫グロブリンは、CnBr-活性化セファロース(商品名)(Pharmacia LKB Biotechnology)等のクロマトグラフィー樹脂に共有結合される。抗体が樹脂に結合され、樹脂がブロックされ、誘導体樹脂は製造者の指示に従って洗浄される。
可溶化PROポリペプチド含有調製物は、免疫親和性カラムを通され、カラムはPROポリペプチドの好ましい吸着をさせる条件下(例えば、洗浄剤存在下の高イオン強度バッファー)で洗浄される。次いで、カラムは、抗体/PROポリペプチド結合を分解する条件下(例えば、約2-3といった低pH、高濃度の尿素又はチオシアン酸イオン等のカオトロープ)で溶離され、PROポリペプチドが回収される。
薬剤スクリーニング
本発明は、PROポリペプチド又はその結合断片を種々の薬剤スクリーニング技術において使用することによる化合物のスクリーニングに特に有用である。そのような試験に用いられるPROポリペプチド又は断片は、溶液中の自由状態でも、固体支持体に固定されても、細胞表面に担持されていても、細胞内に位置していてもよい。薬剤スクリーニングの1つの方法は、PROポリペプチド又は断片を発現する組換え核酸で安定に形質移入される真核生物又は原核生物宿主細胞を利用する。薬剤は、そのような形質移入細胞に対して、競合的結合アッセイにおいてスクリーニングされる。そのような細胞は、生存可能又は固定化形態のいずれかにおいて、標準的な結合アッセイに使用できる。例えば、PROポリペプチド又は断片と試験される試薬の間での複合体の形成を測定してよい。あるいは、試験する試薬によって生ずるPROポリペプチドとその標的細胞との間の複合体形成における減少を試験することもできる。
しかして、本発明は、PROポリペプチド関連疾患又は障害に影響を与えうる薬剤又は任意の他の試薬のスクリーニング方法を提供する。これらの方法は、その試薬をPROポリペプチド又は断片に接触させ、(I)試薬とPROポリペプチド又は断片との間の複合体の存在について、又は(ii)PROポリペプチド又は断片と細胞との間の複合体の存在について検定することを含む。これらの競合結合アッセイでは、PROポリペプチド又は断片が典型的には標識される。適切なインキュベーションの後、自由なPROポリペプチド又は断片を結合形態のものから分離し、自由又は未複合の標識の量が、特定の試薬がPROポリペプチドに結合する又はPROポリペプチド/細胞複合体を阻害する能力の尺度となる。
また、本発明は、PROポリペプチドに結合可能な中和抗体がPROポリペプチド又はその断片について試験化合物と特異的に競合する競合薬剤スクリーニングアッセイも考慮する。この方法において、抗体は、PROポリペプチドで、一又は複数の抗原決定基を持つ任意のペプチドの存在を検出するのに使用できる。
合理的薬剤設計
合理的薬剤設計の目的は、対象とする生物学的活性ポリペプチド(例えば、PROポリペプチド)又はそれらが相互作用する小分子、例えばアゴニスト、アンタゴニスト、又はインヒビターの構造的類似物を製造することである。これらの例の任意のものが、PROポリペプチドのより活性で安定な形態又はインビボでPROポリペプチドに機能を促進又は阻害する薬剤の創作に使用できる(参考、Hodgson, Bio/Technology, 9: 19-21 (1991))。
1つの方法において、PROポリペプチド、又はPROポリペプチド-インヒビター複合体の三次元構造が、x線結晶学により、コンピュータモデル化により、最も典型的には2つの方法の組み合わせにより決定される。分子の構造を解明し活性部位を決定するためには、PROポリペプチドの形状及び電荷の両方が確認されなければならない。数は少ないが、PROポリペプチドの構造に関する有用な情報が相同タンパク質の構造に基づいたモデル化によって得られることもある。両方の場合において、関連する構造情報は、類似PROポリペプチド様分子の設計又は効果的なインヒビターの同定に使用される。合理的な薬剤設計の有用な例は、Braxton及びWells, Biochemistry, 31: 7796-7801 (1992)に示されているような向上した活性又は安定性を持つ分子、又はAthaudaら, J.Biochem.,113: 742-746 (1993)に示されているような天然ペプチドのインヒビター、アゴニスト、又はアンタゴニストとして作用する分子を含む。
本発明により、十分な量のPROポリペプチドがX線結晶学などの分析実験を実施するために入手可能である。さらに、ここに提供したPROポリペプチドアミノ酸配列の知識は、X線結晶学に換える、又はそれに加えるコンピュータモデル化技術で用いられる知識を提供する。
インビトロ抗腫瘍アッセイ
PRO240、PRO381、PRO534、PRO540、PRO698、PRO982、PRO1005、PRO1007、PRO1131、PRO1157、PRO1199、PRO1265、PRO1286、PRO1313、PRO1338、PRO1375、PRO1410、PRO1488、PRO3438、PRO4302、PRO4400、PRO5725、PRO183、PRO202、PRO542、PRO861、PRO1096又はPRO3562ポリペプチドの抗増殖活性を、Skehan等, J. Natl. Cancer Inst., 82:1107-1112(1990)により本質的に記載されているようなスルホローダミンB(SRB)染色結合アッセイを使用して、国立ガン研究所(NCI)の治験疾患指向インビトロ抗ガン薬発見アッセイにおいて決定した。この研究で使用した60の腫瘍細胞株(「NCIパネル」)並びにインビトロでの維持と培養の条件はMonks等, J. Natl. Cancer Inst., 83:757-766 (1991)によって記載されている。このスクリーニングの目的は異なったタイプの腫瘍に対して試験化合物の細胞障害及び/又は細胞分裂停止活性を最初に評価することである(上掲のMonks等;Boyd, Cancer: Princ. Pract. Oncol. Update, 3(10):1-12[1989])。
試験試料は一回又は複数の濃度で少なくとも40%の成長阻害効果を示すとポジティブと考えられる。結果を次の表7に示すが、そこでは腫瘍細胞型の略号は次の通りである:
NSCL=非小細胞肺癌;CNS=中枢神経系
上記の文書による明細書は、当業者に本発明を実施できるようにするために十分であると考えられる。寄託した態様は、本発明のある側面の一つの説明として意図されており、機能的に等価なあらゆる作成物がこの発明の範囲内にあるため、寄託された作成物により、本発明の範囲が限定されるものではない。ここでの物質の寄託は、ここに含まれる文書による説明が、そのベストモードを含む、本発明の任意の側面の実施を可能にするために不十分であることを認めるものではないし、それが表す特定の例証に対して請求の範囲を制限するものと解釈されるものでもない。実際、ここに示し記載したものに加えて、本発明を様々に改変することは、前記の記載から当業者にとっては明らかなものであり、添付の請求の範囲内に入るものである。
Claims (27)
- 配列番号:42で示されるアミノ酸配列と少なくとも80%のアミノ酸配列同一性を有し、腫瘍性細胞成長阻害活性を有するポリペプチドの有効量を製薬的に許容される担体と混合して含んでなる、腫瘍性細胞成長阻害のための医薬組成物。
- 配列番号:42で示されるアミノ酸配列において1または数個の置換、付加または欠失を有するアミノ酸配列を有し、腫瘍性細胞成長阻害活性を有するポリペプチドの有効量を製薬的に許容される担体と混合して含んでなる、腫瘍性細胞成長阻害のための医薬組成物。
- 前記ポリペプチドの成長阻害量を含有する請求項1又は2に記載の医薬組成物。
- 哺乳動物における腫瘍の治療のための請求項1〜3のいずれかに記載の医薬組成物。
- 前記腫瘍が癌である請求項4に記載の医薬組成物。
- 癌が、乳癌、卵巣癌、腎臓癌、大腸癌、前立腺癌、肺癌、中枢神経系癌、黒色腫及び白血病からなる群から選択される請求項5に記載の医薬組成物。
- 前記腫瘍細胞を生体外において、配列番号:42で示されるアミノ酸配列と少なくとも80%のアミノ酸配列同一性を有し、腫瘍性細胞成長阻害活性を有するポリペプチドの有効量に暴露することを含んでなる腫瘍細胞の成長を阻害する方法。
- 前記腫瘍細胞を生体外において、配列番号:42で示されるアミノ酸配列において1または数個の置換、付加または欠失を有するアミノ酸配列を有し、腫瘍性細胞成長阻害活性を有するポリペプチドの有効量に暴露することを含んでなる腫瘍細胞の成長を阻害する方法。
- (a)容器と
(b)該容器に収容された医薬組成物とを具備し、前記医薬組成物が請求項1ないし6のいずれかに記載の組成物である、製造品。 - 前記組成物の腫瘍性細胞の成長阻害における使用について言及するラベルがさらに前記容器へ取り付けられるか、又は包装挿入物が前記容器に含まれてなる請求項9に記載の製造品。
- 配列番号:42で示されるアミノ酸配列と少なくとも80%のアミノ酸配列同一性を有し、腫瘍性細胞成長阻害活性を有するポリペプチドをコードする単離された核酸。
- 配列番号:42で示されるアミノ酸配列アミノ酸配列において1または数個の置換、付加または欠失を有するアミノ酸配列を有し、腫瘍性細胞成長阻害活性を有するポリペプチドをコードする単離された核酸。
- 以下の(a)又は(b)に示されるヌクレオチド配列を有する単離された核酸:
(a)配列番号:41で示されるヌクレオチド配列を有する核酸、及び
(b)配列番号:41で示されるヌクレオチド配列に相補的な配列を有する核酸とストリ
ンジェントな条件下でハイブリダイズする核酸であって、かつ腫瘍性細胞成長阻害活性を
有するポリペプチドをコードする核酸。 - 請求項11〜13に記載のいずれかの核酸を含んでなるベクター。
- 当該ベクターで形質転換された宿主細胞によって認識されるコントロール配列に作用可能
に結合した請求項14に記載のベクター。 - 請求項14に記載のベクターを含んでなる宿主細胞。
- 前記細胞がCHO細胞である請求項16の宿主細胞。
- 前記細胞が大腸菌である請求項16の宿主細胞。
- 前記細胞が酵母菌細胞である請求項16の宿主細胞。
- 前記細胞がバキュウロウイルス感染昆虫細胞である請求項16の宿主細胞。
- 請求項11〜13のいずれかに記載の核酸がコードする、単離されたポリペプチド。
- 請求項21に記載のポリペプチドの生産方法であって、請求項16に記載の宿主細胞を前記ポリペプチドの発現に適する条件下で培養し、前記ポリペプチドを細胞培養液より回収することを含んでなる方法。
- 請求項21に記載のポリペプチドを、異種アミノ酸配列へ融合したことからなるキメラ分子。
- 前記異種アミノ酸配列がエピトープタグ配列である請求項23のキメラ分子。
- 前記異種アミノ酸配列が免疫グロブリンのFc領域である請求項23のキメラ分子。
- 請求項21に記載されたポリペプチドに特異的に結合する抗体。
- 前記抗体がモノクローナル抗体、ヒト化抗体、ヒト抗体又は単鎖抗体である請求項26の
抗体。
Applications Claiming Priority (23)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1999/012252 WO1999063088A2 (en) | 1998-06-02 | 1999-06-02 | Membrane-bound proteins and nucleic acids encoding the same |
US14065099P | 1999-06-22 | 1999-06-22 | |
US14103799P | 1999-06-23 | 1999-06-23 | |
US14475899P | 1999-07-20 | 1999-07-20 | |
PCT/US1999/020111 WO2000012708A2 (en) | 1998-09-01 | 1999-09-01 | Further pro polypeptides and sequences thereof |
PCT/US1999/020594 WO2000015666A2 (en) | 1998-09-10 | 1999-09-08 | Compositions and methods for the treatment of tumors |
US16250699P | 1999-10-29 | 1999-10-29 | |
PCT/US1999/028313 WO2000032221A2 (en) | 1998-12-01 | 1999-11-30 | Promotion or inhibition of angiogenesis and cardiovascularization |
PCT/US1999/028634 WO2000036102A2 (en) | 1998-12-16 | 1999-12-01 | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
PCT/US1999/028551 WO2000053750A1 (en) | 1999-03-08 | 1999-12-02 | Compositions and methods for the treatment of tumors |
US17026299P | 1999-12-09 | 1999-12-09 | |
PCT/US1999/030095 WO2000037640A2 (en) | 1998-12-22 | 1999-12-16 | Compositions and methods for the treatment of tumor |
PCT/US1999/030999 WO2001005836A1 (en) | 1999-07-20 | 1999-12-20 | Polypeptidic compositions and methods for the treatment of tumors |
PCT/US2000/000376 WO2000053755A2 (en) | 1999-03-08 | 2000-01-06 | Compositions and methods for the treatment of tumor |
PCT/US2000/003565 WO2001053486A1 (en) | 1999-03-08 | 2000-02-11 | Compositions and methods for the treatment of tumor |
PCT/US2000/004342 WO2000078961A1 (en) | 1999-06-23 | 2000-02-18 | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
PCT/US2000/004341 WO2000053756A2 (en) | 1999-03-08 | 2000-02-18 | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
PCT/US2000/005841 WO2000053758A2 (en) | 1999-03-08 | 2000-03-02 | Compositions and methods for the treatment of immune related diseases |
US18720200P | 2000-03-03 | 2000-03-03 | |
PCT/US2000/006319 WO2000053760A2 (en) | 1999-03-12 | 2000-03-10 | Method of preventing the death of retinal neurons and treating ocular diseases |
PCT/US2000/006884 WO2001005972A1 (en) | 1999-07-20 | 2000-03-15 | Compositions and methods for the treatment of immune related diseases |
PCT/US2000/008439 WO2000073454A1 (en) | 1999-06-02 | 2000-03-30 | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
PCT/US2000/013705 WO2000073445A2 (en) | 1999-06-02 | 2000-05-17 | Interleukin-1-receptor associated kinase-3 (irak3) |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001500672A Division JP2003524406A (ja) | 1999-06-02 | 2000-05-30 | 腫瘍細胞成長阻害のための組成物及び方法 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006225772A Division JP2007029098A (ja) | 1999-06-02 | 2006-08-22 | 腫瘍細胞成長阻害のための組成物及び方法 |
JP2006225770A Division JP4072181B2 (ja) | 1999-06-02 | 2006-08-22 | 腫瘍細胞成長阻害のための組成物及び方法 |
JP2006225771A Division JP4074645B2 (ja) | 1999-06-02 | 2006-08-22 | 腫瘍細胞成長阻害のための組成物及び方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006025793A JP2006025793A (ja) | 2006-02-02 |
JP2006025793A5 JP2006025793A5 (ja) | 2007-07-12 |
JP4145314B2 true JP4145314B2 (ja) | 2008-09-03 |
Family
ID=40532223
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005229454A Expired - Lifetime JP4145314B2 (ja) | 1999-06-02 | 2005-08-08 | 腫瘍細胞成長阻害のための組成物及び方法 |
JP2006225772A Pending JP2007029098A (ja) | 1999-06-02 | 2006-08-22 | 腫瘍細胞成長阻害のための組成物及び方法 |
JP2006225770A Expired - Lifetime JP4072181B2 (ja) | 1999-06-02 | 2006-08-22 | 腫瘍細胞成長阻害のための組成物及び方法 |
JP2006225771A Expired - Lifetime JP4074645B2 (ja) | 1999-06-02 | 2006-08-22 | 腫瘍細胞成長阻害のための組成物及び方法 |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006225772A Pending JP2007029098A (ja) | 1999-06-02 | 2006-08-22 | 腫瘍細胞成長阻害のための組成物及び方法 |
JP2006225770A Expired - Lifetime JP4072181B2 (ja) | 1999-06-02 | 2006-08-22 | 腫瘍細胞成長阻害のための組成物及び方法 |
JP2006225771A Expired - Lifetime JP4074645B2 (ja) | 1999-06-02 | 2006-08-22 | 腫瘍細胞成長阻害のための組成物及び方法 |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1185648B1 (ja) |
JP (4) | JP4145314B2 (ja) |
AT (1) | ATE357518T1 (ja) |
CA (1) | CA2373915A1 (ja) |
DK (1) | DK1185648T3 (ja) |
ES (1) | ES2287020T3 (ja) |
PT (1) | PT1185648E (ja) |
WO (1) | WO2000073348A2 (ja) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001066740A2 (en) * | 2000-03-03 | 2001-09-13 | Genentech, Inc. | Compositions and methods for the treatment of immune related diseases |
US20020192752A1 (en) | 1998-09-09 | 2002-12-19 | Genentech, Inc. | Compositions and methods for the treatment of immune related diseases |
US6623923B1 (en) | 1998-12-23 | 2003-09-23 | Corixa Corporation | Compounds for immunotherapy and diagnosis of colon cancer and methods for their use |
US20020055467A1 (en) * | 1998-07-06 | 2002-05-09 | Johansen Teit E. | Novel neurotrophic factors |
US6593133B1 (en) * | 1998-07-06 | 2003-07-15 | Nsgene A/S | Neurotrophic factors |
US20070014787A1 (en) | 1998-07-15 | 2007-01-18 | Human Genome Sciences, Inc. | 71 human secreted proteins |
EP1767636A3 (en) * | 1998-12-23 | 2007-06-13 | Corixa Corporation | Compounds for immunotherapy and diagnosis of colon cancer and methods for their use |
PT1632499E (pt) * | 1999-03-08 | 2007-09-11 | Genentech Inc | Dispositivo de detecção de impacto para automóveis. |
US7576182B1 (en) | 1999-08-31 | 2009-08-18 | Genentech, Inc. | Compositions and methods for the treatment of immune related diseases |
EP1208201B9 (en) * | 1999-08-31 | 2009-08-19 | Genentech, Inc. | Compositions and methods for the treatment of immune related diseases |
EP1220919A2 (en) * | 1999-09-29 | 2002-07-10 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Metastasis-associated antigen c4.4a |
WO2001049716A2 (en) * | 1999-12-30 | 2001-07-12 | Corixa Corporation | Compounds for immunotherapy and diagnosis of colon cancer and methods for their use |
AU2001249608A1 (en) * | 2000-03-28 | 2001-10-08 | Beth Israel Deaconess Medical Center | Bladder cancer-specific peptides for diagnosis and therapy |
US7442370B2 (en) | 2001-02-01 | 2008-10-28 | Biogen Idec Ma Inc. | Polymer conjugates of mutated neublastin |
US7276580B2 (en) | 2001-03-12 | 2007-10-02 | Biogen Idec Ma Inc. | Neurotrophic factors |
US6734289B2 (en) * | 2001-03-29 | 2004-05-11 | The University Of Chicago | Gastrokines and derived peptides including inhibitors |
US7629317B2 (en) | 2001-03-29 | 2009-12-08 | The University Of Chicago | Control of growth and repair of gastro-intestinal tissues by gastrokines and inhibitors |
AU2002325088C1 (en) * | 2001-09-14 | 2008-09-25 | Clinical Genomics Pty. Ltd. | Nucleic acid markers for use in determining predisposition to neoplasm and/or adenoma |
JP2005513084A (ja) * | 2001-12-19 | 2005-05-12 | ジェネンテック・インコーポレーテッド | 腫瘍の診断と治療のための組成物及び方法 |
MXPA04010092A (es) * | 2002-04-16 | 2004-12-13 | Genentech Inc | Composiciones y metodos para el diagnostico y tratamiento de tumores. |
AU2003253677A1 (en) * | 2002-06-11 | 2003-12-22 | Avalon Pharmaceuticals, Inc. | Cancer-linked gene as target for chemotherapy |
AU2003267096B9 (en) * | 2002-09-11 | 2010-11-11 | Genentech, Inc. | Novel compositions and methods for the treatment of immune related diseases |
DE10254601A1 (de) | 2002-11-22 | 2004-06-03 | Ganymed Pharmaceuticals Ag | Differentiell in Tumoren exprimierte Genprodukte und deren Verwendung |
WO2005032476A2 (en) * | 2003-09-30 | 2005-04-14 | Massachusetts Institute Of Technology | Methods and compositions for cpg15-2 |
DE102004024617A1 (de) | 2004-05-18 | 2005-12-29 | Ganymed Pharmaceuticals Ag | Differentiell in Tumoren exprimierte Genprodukte und deren Verwendung |
NZ553420A (en) | 2004-08-19 | 2010-02-26 | Biogen Idec Inc | Refolding transforming growth factor beta family proteins |
US8017576B2 (en) | 2005-05-10 | 2011-09-13 | The University Of Chicago | Methods and compositions to treat mucositis |
EP1790664A1 (en) | 2005-11-24 | 2007-05-30 | Ganymed Pharmaceuticals AG | Monoclonal antibodies against claudin-18 for treatment of cancer |
WO2007095113A2 (en) | 2006-02-10 | 2007-08-23 | Massachusetts Institute Of Technology | Cpg15 and cpg15-2 compounds and inhibitors as insulin receptor and insulin-like growth factor receptor agonists and antagonists |
TWI501774B (zh) | 2006-02-27 | 2015-10-01 | Biogen Idec Inc | 神經性病症之治療 |
WO2008137574A1 (en) | 2007-05-01 | 2008-11-13 | Biogen Idec Ma Inc. | Compositions and methods for increasing vascularization |
SG10201402493UA (en) | 2009-02-20 | 2014-10-30 | Ganymed Pharmaceuticals Ag | Methods and compositions for diagnosis and treatment of cancer |
WO2011057788A1 (en) | 2009-11-11 | 2011-05-19 | Ganymed Pharmaceuticals Ag | Antibodies specific for claudin 6 (cldn6) |
EP2404936A1 (en) | 2010-07-06 | 2012-01-11 | Ganymed Pharmaceuticals AG | Cancer therapy using CLDN6 target-directed antibodies in vivo |
NZ724296A (en) | 2011-05-13 | 2020-05-29 | Ganymed Pharmaceuticals Ag | Antibodies for treatment of cancer expressing claudin 6 |
JP5891561B2 (ja) * | 2011-06-03 | 2016-03-23 | 学校法人自治医科大学 | ミトコンドリア膜タンパク質群およびそれらをコードする遺伝子群 |
WO2013167153A1 (en) | 2012-05-09 | 2013-11-14 | Ganymed Pharmaceuticals Ag | Antibodies useful in cancer diagnosis |
WO2015014376A1 (en) | 2013-07-31 | 2015-02-05 | Biontech Ag | Diagnosis and therapy of cancer involving cancer stem cells |
CN115197301B (zh) * | 2022-06-10 | 2024-07-16 | 北京师范大学 | 用于胞内钙信号检测及相关药物筛选的钙指示工具及其应用 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ226799A (en) * | 1987-11-06 | 1991-08-27 | Oncogen | Breast cancer inhibitory factor and method for inhibiting proliferation of neoplastic cells and compositions therefor |
US5814307A (en) * | 1989-04-10 | 1998-09-29 | Bristol-Myers Squibb Company | Method for regulating cell growth, leukocyte differentiation and tumor cell growth using Oncostatin M to stimulate synthesis of IL-6 |
US5416192A (en) * | 1990-04-03 | 1995-05-16 | Bristol-Myers Squibb Company | Epithelins: novel cysteine-rich growth modulating proteins |
CA2242633A1 (en) * | 1996-01-04 | 1997-07-17 | Human Genome Sciences, Inc. | Transforming growth factor alpha hiii |
AU9312198A (en) * | 1997-09-17 | 1999-04-05 | Genentech Inc. | Genes amplified in tumours, antibodies against the proteins encoded thereby, andtheir use in diagnosis and treatment of cancer |
CA2305886A1 (en) * | 1997-10-08 | 1999-04-15 | Sagami Chemical Research Center | Human proteins having transmembrane domains and cdnas encoding these proteins |
KR20010103576A (ko) * | 1998-09-10 | 2001-11-23 | 제넨테크, 인크. | 종양 치료용 조성물 및 치료 방법 |
-
2000
- 2000-05-30 PT PT00941164T patent/PT1185648E/pt unknown
- 2000-05-30 DK DK00941164T patent/DK1185648T3/da active
- 2000-05-30 ES ES00941164T patent/ES2287020T3/es not_active Expired - Lifetime
- 2000-05-30 CA CA002373915A patent/CA2373915A1/en not_active Abandoned
- 2000-05-30 WO PCT/US2000/014941 patent/WO2000073348A2/en active IP Right Grant
- 2000-05-30 EP EP00941164A patent/EP1185648B1/en not_active Expired - Lifetime
- 2000-05-30 AT AT00941164T patent/ATE357518T1/de not_active IP Right Cessation
-
2005
- 2005-08-08 JP JP2005229454A patent/JP4145314B2/ja not_active Expired - Lifetime
-
2006
- 2006-08-22 JP JP2006225772A patent/JP2007029098A/ja active Pending
- 2006-08-22 JP JP2006225770A patent/JP4072181B2/ja not_active Expired - Lifetime
- 2006-08-22 JP JP2006225771A patent/JP4074645B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
WO2000073348A2 (en) | 2000-12-07 |
JP4074645B2 (ja) | 2008-04-09 |
JP2007029098A (ja) | 2007-02-08 |
JP2007014346A (ja) | 2007-01-25 |
PT1185648E (pt) | 2007-06-29 |
JP2006025793A (ja) | 2006-02-02 |
CA2373915A1 (en) | 2000-12-07 |
EP1185648A2 (en) | 2002-03-13 |
JP2007029097A (ja) | 2007-02-08 |
ATE357518T1 (de) | 2007-04-15 |
JP4072181B2 (ja) | 2008-04-09 |
ES2287020T3 (es) | 2007-12-16 |
EP1185648B1 (en) | 2007-03-21 |
DK1185648T3 (da) | 2007-07-30 |
WO2000073348A3 (en) | 2001-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4072181B2 (ja) | 腫瘍細胞成長阻害のための組成物及び方法 | |
JP4037876B2 (ja) | 腫瘍性細胞成長阻害のための組成物及び方法 | |
JP4451059B2 (ja) | 分泌及び膜貫通ポリペプチドとそれをコードする核酸 | |
JP2004000008A (ja) | 新規なポリペプチド及びそれをコードする核酸 | |
JP4226605B2 (ja) | 免疫関連疾患を治療するための組成物及び方法 | |
JP2003505350A5 (ja) | ||
JP2002531092A (ja) | 腫瘍性細胞成長阻害のための組成物及び方法 | |
JP4280444B2 (ja) | 腫瘍性細胞成長阻害のための組成物及び方法 | |
JP2003530082A6 (ja) | 免疫関連疾患を治療するための組成物及び方法 | |
EP1820859B9 (en) | Methods and compositions for inhibiting neoplastic cell growth | |
JP2002527452A (ja) | 腫瘍性細胞成長阻害のための組成物及び方法 | |
JP2003524406A (ja) | 腫瘍細胞成長阻害のための組成物及び方法 | |
EP1870464A2 (en) | Methods and compositions for inhibiting neoplastic cell growth | |
JP2007238619A (ja) | 腫瘍性細胞成長阻害のための組成物及び方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070530 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071213 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20071213 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071225 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080324 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080523 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080617 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4145314 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |