JP4038361B2 - Non-tempered high strength and high toughness forged product and its manufacturing method - Google Patents
Non-tempered high strength and high toughness forged product and its manufacturing method Download PDFInfo
- Publication number
- JP4038361B2 JP4038361B2 JP2001349096A JP2001349096A JP4038361B2 JP 4038361 B2 JP4038361 B2 JP 4038361B2 JP 2001349096 A JP2001349096 A JP 2001349096A JP 2001349096 A JP2001349096 A JP 2001349096A JP 4038361 B2 JP4038361 B2 JP 4038361B2
- Authority
- JP
- Japan
- Prior art keywords
- strength
- toughness
- forging
- forged product
- tempered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【産業上の利用分野】
本発明は鍛造品及び鍛造方法に関し、さらに詳しくは、自動車、建設機械および各種産業機械等の部品として使用される材料として、熱間鍛造後に調質処理を行わずに優れた強度と靭性を有する鍛造品及び鍛造方法に関するものである。
【0002】
【従来の技術】
従来、機械構造用熱間鍛造品は、一般に、中炭素鋼または低合金鋼素材を熱間鍛造した後、再加熱し、焼入れ・焼戻し、すなわち調質処理を施し、目的、用途に応じた強度および靭性を付与して、使用に供されていた。しかし、上記調質処理には多大の熱エネルギー費用を要すると共に、処理工程の増加、仕掛品の増大等のために製造費用が高くならざるを得ない。そこで近年、機械構造用熱間鍛造品の製造において、製造工程を簡略化、特に、熱間鍛造後の調質処理を省略するために、種々の非調質型熱間鍛造用鋼や、非調質熱間鍛造品の製造方法が提案されている。このような従来の非調質型熱間鍛造用鋼の多くは、中炭素鋼に微量のV、Nb、Ti、Zr等のいわゆる析出硬化型合金元素を添加した析出硬化型非調質鋼であって、熱間鍛造後の冷却工程においてこれらを析出させ、その析出硬化によって高強度を得ようとするものである。
【0003】
例えば、特公昭58−2243号公報には、中炭素鋼に微量のVを添加し、これを1100℃以上の温度に加熱して型打鍛造し、この後、500℃まで10〜100℃/分の冷却速度で空冷することにより、フェライト中に微細なV炭窒化物を析出させたフェライト・パーライト組織からなる非調質鍛造品の製造方法が記載されている。しかし、このような析出硬化型非調質鋼を用いる場合には、上記のように1000〜1100℃またはそれ以上の高温に加熱することが必要であり、そのまま通常の鍛造を行った場合、鍛造品においても結晶粒が著しく粗大化するので、充分な靭性を得ることができない。
【0004】
このような問題を解決するために、素材鋼や鍛造方法に関して、析出硬化型元素の添加量を極力少なくする(例えば、特開昭55−82750号公報)、低C高Mn化する、(例えば特開昭54−121225号公報)、析出物の種類を制御する、(例えば、特開昭56−38448号公報)、制御冷却によって結晶粒を微細化する、(例えば特開昭56−169723号公報)等の方法が従来より提案されているが、いずれによっても、強度・靭性共に優れる非調質熱間鍛造品を得ることは、容易ではない。
【0005】
【発明が解決しようとする課題】
本発明は強度・靭性共に優れる非調質熱間鍛造品を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記の課題を解決するため、その要旨とするところは、下記の通りである。
(1) 質量%で、C:0.1〜0.6%、Si:0.05〜2.5%、Mn:0.2〜3%、Al:0.005〜0.1%、N:0.001〜0.02%を含有し、更に、V:0.05〜0.5%、Nb:0.005〜0.1%の1種または2種を含有し、残部がFeおよび不可避的不純物からなり、平均パケット・サイズが10μm以下のマルテンサイトからなることを特徴とする非調質高強度・高靭性鍛造品。
(2) (1)の成分に、質量%で、Mg:0.0001〜0.005%、Zr:0.0001〜0.005%の1種または2種を含有することを特徴とする非調質高強度・高靭性鍛造品。
(3) (1)又は(2)の成分に、質量%で、Cr:0.05〜3%、Ni:0.05〜3%、Mo:0.05〜3%、Cu:0.01〜2%、Ti:0.003〜0.05%、B:0.0005〜0.005%の1種または2種以上を含有することを特徴とする非調質高強度・高靭性鍛造品。
(4) (1)〜(3)の何れか1項に記載の成分に、質量%で、S:0.01〜0.3%、Pb:0.03〜0.3%、Ca:0.001〜0.05%、Bi:0.03〜0.3%の1種または2種以上を含有することを特徴とする非調質高強度・高靭性鍛造品。
(5) 引張強さが1300〜1800MPa であることを特徴とする(1)〜(4)の何れか1項に記載の非調質高強度・高靭性鍛造品。
(6) 降伏比が0.65〜0.95であることを特徴とする(1)〜(5)の何れか1項に記載の非調質高強度・高靭性鍛造品
(7) (1)〜(4)の何れか1項に記載の成分からなる鋼を熱間鍛造する際に、1050℃以上1350℃以下に加熱し、対数歪みで0.3〜3の加工を与える熱間鍛造を700℃以上未再結晶上限温度以下で少なくとも1回以上行うことを特徴とする非調質高強度・高靭性鍛造品の製造方法。
(8) 鍛造後、300℃以上Ar3点以下の温度域を下記(1)式で示した冷速(CR)で冷却することを特徴とする(7)記載の非調質高強度・高靭性鍛造品の製造方法。
(6ε+12)℃/sec≦CR≦60℃/sec …(1)
(ε:未再結晶温度域で与えた対数歪み)
(9) (7)または(8)に記載の対数歪みが、鍛造前素材の鍛造方向の高さの平均値である元厚高さ平均と、鍛造後の高さの平均値である仕上げ厚高さ平均により下記式(4)で示した対数歪みであることを特徴とする非調質高強度・高靭性鍛造品の製造方法。
対数歪み=ln(元厚高さ平均/仕上げ厚高さ平均) …(4)
【0008】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の根幹をなす技術思想は以下の通りである。
強度・靭性共に優れる鍛造品を得るためには、その鍛造品の金属組織を微細にすれば良いことは知られてきた。最終組織を微細化するには、その前組織であるγ(オーステナイト)に熱間鍛造により歪みを与えて再結晶により微細化する方法、および、より鍛造温度を低めて未再結晶温度で鍛造することにより通常再結晶により減少してしまう転位を変態時まで残留させ核生成速度を増加させる方法がある。従来は、再結晶温度域での鍛造、すなわち高温での鍛造の方が反力が少ないこと、および反力が少ない方が鍛造精度を上げやすい等の理由で、再結晶温度域の鍛造により組織を微細化することが前提であった。本発明者等は、従来鍛造で用いられなかった未再結晶温度域での鍛造を行うことにより、飛躍的に組織が微細化し、材質も向上することを見いだした。
【0009】
以下に本発明の限定理由を述べる。
【0010】
Cは、鋼を強化するのに有効な元素であるが、0.1%未満では充分な強度が得られない。一方、過多に添加すると靭性が低下するため、添加量の上限を0.6%とする。
【0011】
Siは、鋼の強化元素として有効であるが、0.05%未満ではその効果がない。一方、過多に添加すると靭性および被削性が低下するため、添加量の上限を2.5%とする。
【0012】
Mnは、鋼の強化に有効な元素であるが、0.2%未満では充分な効果が得られない。一方、過多に添加すると靭性および被削性が低下するため、添加量の上限を3%とする。
【0013】
Alは、鋼の脱酸および結晶粒の微細化のために有効な元素であるが、0.005%未満ではその効果がない。一方、過多に添加すると被削性が低下するため、添加量の上限を0.1%とする。
【0014】
Nは、V炭窒化物やNb炭窒化物を生成し析出強化のために必要な元素であるが、0.001%未満では充分な効果が得られない。一方、過多に添加すると靭性が劣化するため、添加量の上限を0.02%とする。
【0015】
Vは、固溶原子が転位の回復および再結晶を遅らせる効果がある。すなわち未再結晶温度域を高温側に広げ、未再結晶域鍛造を容易にする元素である。また、未再結晶圧延後、転位のもつれた部分にVの炭窒化物が微細に析出し、いわゆる加工誘起析出により、強度が上昇するため有効な元素である。これらの効果を享受するためには0.05%以上の添加が必要である。一方、過多に添加すると靭性が劣化するため、添加量の上限を0.5%とする。
【0016】
NbもVと同様、未再結晶を容易にし、析出強化のために必要な元素であるが、0.005%未満では充分な効果が得られない。一方、過多に添加すると靭性が劣化するため、添加量の上限を0.1%とする。
【0017】
MgおよびZrはともに酸化物や硫化物、あるいはこれらの複合物を形成し、加熱時のオーステナイトの粗大化を抑制する効果を持つ元素であるので組織微細化に有効である。またこれらの酸化物はMnSの析出核になるため被削性も向上する。いずれも、0.0001%未満ではその効果はなく、0.005%を越えると、靱性が劣化するため、添加量の上限を0.005%とする。
【0018】
Cr,Ni,Mo,Cuはいずれも適量の添加においては靱性を損なうことなく強度を増大する元素である。Cr,Ni,Moは、いずれも0.05%未満ではその効果はなく、3%を越えると靱性が大きく劣化するため、その添加量の下限をそれぞれ0.05%、上限を3%とする。また、Cuは0.01%未満ではその効果はなく、2%を越えると靱性が大きく劣化するため、その添加量の下限をそれぞれ0.01%、上限を2%とする。
【0019】
Tiは,窒化物・炭化物を生成する。窒化物は高温まで固溶せずに残るため、加熱時のオーステナイト粗大化を防止するのに有効である。また炭化物は微細に分散して析出強化に有効である。0.003%未満ではこれらの効果は現れず、0.05%を越えると靱性が劣化するため、その添加量の下限を0.003%、上限を0.05%とする。
【0020】
Bは焼き入れ性を増加する元素である。焼き入れ性を増加することにより強度を増し、さらに粗大な初析フェライトの生成を防止して組織を微細化を促進するのに有効な元素である。0.0005%未満ではこれらの効果は現れず、0.005%を越えると靱性が劣化するため、その添加量の下限を0.0005%、上限を0.005%とする。
【0021】
S,Pb,Ca,Biは、いずれも被削性を向上する元素である。いずれも過小の添加はその効果がなく、過大の添加は靱性を劣化させるため、Sは0.01%以上0.3%以下に、Pbは0.03%以上0.3%以下に、Caは0.001%以上0.05%以下に、Biは0.03%以上0.3%以下に添加量を限定する。
【0022】
次に、本発明の、組織の形態について述べる。
【0023】
通常、再結晶γでは再結晶により粒内の転位は整理され転位密度は低い。このため、ほとんどの変態はγ粒界を基点として始まり、粒内に向かって成長していく。また再結晶γである限り、粒界単位面積当たりの変態核生成数はほぼ一定の値をとる。このため変態後の組織の粒数は単位体積当たりのγ粒界の面積にほぼ比例し、再結晶後のγ粒径が小さいほど、変態後の組織は細かくなる。一方、未再結晶γでは再結晶による転位の整理が未だ行われていない状態であるので、粒内の転位密度は高い。これにより、粒界のみならず粒内からも変態が開始する。さらに粒界にも加工の影響が残っており、粒界単位面積当たりの変態核生成数も再結晶γと比べ大きい値をとる。このため粗大なγからでも、微細な変態組織が得られる。未再結晶γからの変態によって得られる変態組織は、加工後の冷速によってフェライト+パーライト、ベイナイト、マルテンサイトに大別できるが、いずれも平均結晶粒径が10μm以下となる。ただし、冷速によっては、これらの組織の混合組織となり、靭性が著しく劣化するため、後述の冷速制御によりマルテンサイト鋼とする。尚、ここで述べる平均結晶粒径とは、破壊の単位となる結晶粒径であり、フェライト+パーライトの場合はフェライトの平均粒径、ベイナイトおよびマルテンサイトの場合は平均パケット・サイズを指す。マルテンサイトを選定した理由は、組織強化により強度が得やすく、合金コストの削減に有効だからである。一方、粒径が微細になると強度、靭性、降伏比、伸びが向上する事は知られているが、平均粒径が10μm以下であると、これらの効果が顕著に現れてくる。さらに効果を求めるのであれば、平均粒径が5μm 以下であることが望ましい。一方、平均粒径の下限は特に定めないが、鍛造コストの面から、2μm 以上とすることが好ましい。
【0024】
尚、本発明において、平均粒径は光学顕微鏡により断面厚1/4t位置を200〜1000倍で3〜5視野観察し、切断法により求めた値と定義する。
【0025】
引張強さは、鍛造品の軽量化の点で下限を1300MPa に限定した。一方、1800MPa を越えると、靭性が著しく低下し、切削寿命および金型寿命も著しく低下するため、上限を1800MPa 以下にした。
【0026】
また、降伏比は疲労強度向上のため、0.65に下限を限定した。一方、0.95以上に降伏比を上げても疲労強度の向上は飽和するので、上限は0.95に限定した。
【0027】
次に、製造方法について述べる。
【0028】
加熱温度は、鍛造時にγ単相である必要性からAc3点以上とする。また、その上限は現在の炉の最高加熱温度1350℃とした。前述のように、未再結晶圧延を容易にするためには、VないしはNbをある程度固溶させておくことが望ましいため、1050℃以上の加熱が望ましい。
尚、Ac3 点は(2)式により求めた値と定義する。
【0029】
Ac3 =910−203(C)1/2 −15.2(Ni)+44.7(Si)+104(V)+31.5(Mo)+13.1(W) …(2)
未再結晶上限温度は、(3)式により求めた値と定義する。(3)式は、加工フォーマスターを用い、V、Nb含有成分の鋼について加工焼入試験を行い、組織観察を行った結果得られた回帰式である。尚、(3)式は加工度の影響を表す項を除いた簡易式である。
【0030】
未再結晶上限温度(℃)=819+61((V)+10(Nb))0.2 …(3)
未再結晶γからの変態による組織微細化の効果は、未再結晶温度域で与える歪みに依存する。対数歪みで0.3未満の歪みでは、充分な組織微細化ができないため、その下限を対数歪み0.3とする。でき得れば、0.8以上の歪みが望ましい。一方、歪みの増加は鍛造反力の増加を招きコストが上昇するため対数歪みは3以下とする。複数回の鍛造で成形する場合には、再結晶温度域での鍛造と組み合わせてもよい。更に今回規定した未再結晶温度域の鍛造で、特に800℃未満の鍛造は顕著に組織が微細化し強度上昇・靭性向上に寄与するので、800℃未満の鍛造が望ましい。また、700℃未満の鍛造温度では鍛造前にフェライトが生成し、鍛造時に加工フェライトとなり靭性を劣化させるため、鍛造下限温度を700℃とする。
【0031】
尚、ここで述べた対数歪みとは、(4)式で定義した歪みである。元厚高さ平均とは、鍛造前素材の鍛造方向を高さとしたときの平均値であり、仕上げ厚高さ平均とは、鍛造後の高さの平均値である。ただし、押し出し等の加工の場合は、(5)式に従うものとする。元断面積平均とは鍛造前素材の鍛造方向に垂直な面の平均断面積であり、仕上げ断面積平均とは、鍛造後の断面積平均である。
【0032】
対数歪み=ln(元厚高さ平均/仕上げ厚高さ平均) …(4)
対数歪み=ln(元断面積平均/仕上げ断面積平均) …(5)
鍛造後の冷速によって組織形態が異なることは前述したが、以下冷速について述べる。
未再結晶γからの変態は、核生成速度が増大しているため、T−T−Tノーズが短時間側にシフトし、フェライトが生成しやすくなっている。このため、マルテンサイトを生成するためには、300℃以上Ar3 点以下の温度域を(1)式に示した冷速で冷却すればよい。(1)式は図1の直線から求めた式である。冷却速度の下限を(6ε+12)℃/secとしたのは、それより遅い冷速であると、ベイナイト変態が生じてしまうからである。一方、上限を60℃/secとしたのは、これより速い冷速で冷却することが困難だからである。また、冷却制御温度域をAr3点以下としたのは、変態が始まる温度だからである。一方、その下限を300℃としたのは、この温度ではすでにマルテンサイト変態が終了しているからである。(1)式に示した冷速の冷却制御温度域の冷却方法は水冷、油冷、強制空冷等が考えられるが、特に限定しない。また、冷却後、焼戻しを行うことにより降伏比、靭性が向上するので、焼戻し処理を行ってもよい。
【0033】
(6ε+12)℃/sec≦CR≦60℃/sec …(1)
(ε:未再結晶温度域で与えた対数歪み)
尚、Ar3 点は(6)式により求めた値と定義する。
【0034】
Ar3 =868−396(C)+24.6(Si)−58.7(Mn)−50(Ni)−35(Cu)+190(V) …(6)
【0035】
【実施例】
第1表に示す成分の鋼から、φ50×h60の鍛造用試験片を切り出し、高周波で加熱して、第2表に示す本発明方法および比較方法を適用して高さ方向の平板圧縮鍛造を行った。第2表中の歪みは(4)式を適用して求めた。さらに本発明方法を適用して冷却した場合、第2表中に示したような粒径、強度、降伏比、靭性となった。尚、冷却時の温度制御は衝風ないしは水スプレー冷却で行った。組織は鍛造品の中央から30mm離れた場所の1/4t位置を光顕撮影し、切断法により平均粒径(平均パケット・サイズ)を求めた。中央から30mm離したのはデッドメタル部を避けるためである。機械特性はJISA3号引張試験片およびJIS3号シャルピー試験片(幅5mm)を用いて測定した。第2表中、比較鋼1,2,9は本発明必須元素のNb,Vを必要量含んでいないため再結晶が生じ、粗大な組織となっている。このため強度・降伏比・靭性が低値である。比較鋼8,10は、Nb,Vを必要以上含んでいるため、靭性が低値である。比較鋼3は、加熱温度が低すぎたため加熱時にγ単相とならず、γ+α二相状態で鍛造したため、αが加工されて強度・降伏比・靭性が低値である。比較鋼4は加工温度が高く再結晶が生じたため、粗大な組織となり強度・降伏比・靭性が低値である。比較鋼5は加工度が少ないため、充分な核生成速度が得られず、粗大な組織となり強度・降伏比・靭性が低値である。比較鋼6は加工後の冷速が遅すぎたため、一部ベイナイトが生成し、強度・降伏比・靭性が低値である。比較鋼7は加工温度が低すぎ、加工時に一部αが生成した状態で加工したため、αが加工されて強度・降伏比・靭性が低値である。
【0036】
【表1】
【0037】
【表2】
【0038】
【表3】
【0039】
【発明の効果】
本発明により、明らかに強度、降伏比、靭性が向上しており、本発明は有効である。
【図面の簡単な説明】
【図1】 組織生成に及ぼす未再結晶域で付与する対数歪みと500℃〜Ar3 の温度域の冷速の影響を示す図である。[0001]
[Industrial application fields]
The present invention relates to a forged product and a forging method. More specifically, the present invention has excellent strength and toughness without being subjected to a tempering treatment after hot forging as a material used as a part of automobiles, construction machines, and various industrial machines. The present invention relates to a forged product and a forging method.
[0002]
[Prior art]
Conventionally, hot forged products for machine structures are generally forged for medium-carbon steel or low alloy steel, then reheated, quenched and tempered, that is, subjected to tempering treatment, and strength according to the purpose and application. And provided toughness with use. However, the tempering treatment requires a large amount of heat energy, and the manufacturing cost is inevitably increased due to an increase in processing steps and an increase in work in progress. Therefore, in recent years, in the manufacture of hot forged products for machine structures, various non-tempered hot forging steels, A method for producing a tempered hot forged product has been proposed. Many of these conventional non-tempered hot forging steels are precipitation hardened non-heat treated steels in which so-called precipitation hardening alloying elements such as V, Nb, Ti and Zr are added to medium carbon steel. Then, these are precipitated in the cooling step after hot forging, and high strength is obtained by precipitation hardening.
[0003]
For example, in Japanese Examined Patent Publication No. 58-2243, a small amount of V is added to medium carbon steel, and this is heated to a temperature of 1100 ° C. or higher and die-cut forged. Describes a method for producing a non-tempered forged product comprising a ferrite pearlite structure in which fine V carbonitrides are precipitated in ferrite by air cooling at a cooling rate of 1 minute. However, when using such precipitation hardening type non-tempered steel, it is necessary to heat it to 1000 to 1100 ° C. or higher as described above. Also in the product, crystal grains are remarkably coarsened, so that sufficient toughness cannot be obtained.
[0004]
In order to solve such a problem, the amount of precipitation hardening type elements is reduced as much as possible with respect to the raw steel and the forging method (for example, JP-A-55-82750), and the low C and the high Mn are achieved (for example, JP-A-54-121225), controlling the kind of precipitates (for example, JP-A-56-38448), refining crystal grains by controlled cooling (for example, JP-A-56-169723). However, in any case, it is not easy to obtain a non-tempered hot forged product excellent in both strength and toughness.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a non-tempered hot forged product excellent in both strength and toughness.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the gist of the present invention is as follows.
(1) By mass%, C: 0.1-0.6%, Si: 0.05-2.5%, Mn: 0.2-3%, Al: 0.005-0.1%, N : 0.001 to 0.02%, V: 0.05 to 0.5%, Nb: 0.005 to 0.1% of one or two, with the balance being Fe and A non-tempered, high-strength, high-toughness forged product comprising inevitable impurities and martensite having an average packet size of 10 μm or less.
(2) The component (1) contains one or two of Mg: 0.0001 to 0.005% and Zr: 0.0001 to 0.005% by mass%. Tempered high strength and high toughness forged products.
(3) In the component (1) or (2), in mass%, Cr: 0.05-3%, Ni: 0.05-3%, Mo: 0.05-3%, Cu: 0.01 Non-tempered high-strength and high-toughness forged product characterized by containing one or more of ˜2%, Ti: 0.003-0.05%, B: 0.0005-0.005% .
(4) In the component according to any one of (1) to (3), in mass%, S: 0.01 to 0.3%, Pb: 0.03 to 0.3%, Ca: 0 A non-tempered high-strength and high-toughness forged product characterized by containing one or more of 0.001 to 0.05% and Bi: 0.03 to 0.3%.
(5) The non-tempered high strength / toughness forged product according to any one of (1) to (4), wherein the tensile strength is 1300 to 1800 MPa.
(6) The non-refined high strength / toughness forged product according to any one of (1) to (5), wherein the yield ratio is 0.65 to 0.95 (1) ) To (4), when hot forging the steel comprising the component according to any one of the items, the hot forging is heated to 1050 ° C. or higher and 1350 ° C. or lower to give a processing of 0.3 to 3 with logarithmic strain. Is performed at least once at 700 ° C. or more and not higher than the non-recrystallization upper limit temperature. A method for producing a non-tempered high strength / toughness forged product.
(8) After forging, the temperature range of 300 ° C. or more and Ar 3 points or less is cooled at a cooling rate (CR) represented by the following formula (1): Manufacturing method for toughened forged products.
(6ε + 12) ° C./sec≦CR≦60° C./sec (1)
(Ε: logarithmic strain given in the non-recrystallization temperature range)
(9) The logarithmic distortion described in ( 7) or (8) is the average thickness of the original thickness, which is the average value in the forging direction of the material before forging, and the finished thickness, which is the average value of the height after forging. A method for producing a non-tempered, high-strength, high-toughness forged product characterized by having a logarithmic strain represented by the following formula (4) by average height:
Logarithmic strain = ln (original thickness average / finish thickness average) ... (4)
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The technical idea forming the basis of the present invention is as follows.
It has been known that in order to obtain a forged product excellent in both strength and toughness, the metal structure of the forged product should be made fine. In order to refine the final structure, γ (austenite), which is the previous structure, is strained by hot forging and refined by recrystallization, and forging is performed at a lower forging temperature by lowering the forging temperature. Therefore, there is a method of increasing the nucleation rate by allowing dislocations that are usually reduced by recrystallization to remain until transformation. Conventionally, forging in the recrystallization temperature range, that is, forging at a high temperature has less reaction force, and forging in the recrystallization temperature range is easier because the forging accuracy is easier when the reaction force is less. It was premised on miniaturization. The present inventors have found that by performing forging in a non-recrystallization temperature range that has not been used in conventional forging, the structure is remarkably refined and the material is improved.
[0009]
The reasons for limiting the present invention will be described below.
[0010]
C is an element effective for strengthening steel, but if it is less than 0.1%, sufficient strength cannot be obtained. On the other hand, if added excessively, toughness decreases, so the upper limit of the amount added is 0.6%.
[0011]
Si is effective as a steel strengthening element, but less than 0.05% has no effect. On the other hand, if added in excess, the toughness and machinability deteriorate, so the upper limit of the amount added is 2.5%.
[0012]
Mn is an element effective for strengthening steel, but if it is less than 0.2%, a sufficient effect cannot be obtained. On the other hand, if added in excess, the toughness and machinability deteriorate, so the upper limit of the amount added is 3%.
[0013]
Al is an element effective for deoxidation of steel and refinement of crystal grains, but if it is less than 0.005%, there is no effect. On the other hand, if added in excess, the machinability decreases, so the upper limit of the amount added is 0.1%.
[0014]
N is an element necessary for precipitation strengthening by generating V carbonitride and Nb carbonitride, but if it is less than 0.001%, sufficient effects cannot be obtained. On the other hand, if added excessively, the toughness deteriorates, so the upper limit of the amount added is 0.02%.
[0015]
V has an effect that the solid solution atoms delay recovery of dislocation and recrystallization. That is, it is an element that widens the non-recrystallized temperature range to the high temperature side and facilitates forging of the non-recrystallized region. Further, after non-recrystallizing rolling, V carbonitride is finely precipitated in the entangled portion, and the strength is increased by so-called process-induced precipitation, which is an effective element. In order to enjoy these effects, addition of 0.05% or more is necessary. On the other hand, if added excessively, the toughness deteriorates, so the upper limit of the amount added is 0.5%.
[0016]
Nb, like V, facilitates non-recrystallization and is an element necessary for precipitation strengthening, but if it is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if added excessively, toughness deteriorates, so the upper limit of the amount added is 0.1%.
[0017]
Mg and Zr both form oxides, sulfides, or composites thereof, and are effective in refining the structure because they are effective in suppressing the austenite coarsening during heating. Moreover, since these oxides become MnS precipitation nuclei, machinability is also improved. In any case, if less than 0.0001%, there is no effect, and if over 0.005%, the toughness deteriorates, so the upper limit of the addition amount is made 0.005%.
[0018]
Cr, Ni, Mo, and Cu are all elements that increase strength without impairing toughness when added in appropriate amounts. Cr, Ni, and Mo all have no effect if less than 0.05%, and if 3% is exceeded, the toughness is greatly deteriorated. Therefore, the lower limit of the addition amount is 0.05%, and the upper limit is 3%. . Further, if Cu is less than 0.01%, there is no effect, and if it exceeds 2%, the toughness is greatly deteriorated. Therefore, the lower limit of the addition amount is 0.01% and the upper limit is 2%.
[0019]
Ti produces nitrides and carbides. Since nitride remains without dissolving at high temperatures, it is effective in preventing austenite coarsening during heating. In addition, carbides are finely dispersed and effective for precipitation strengthening. If the content is less than 0.003%, these effects do not appear. If the content exceeds 0.05%, the toughness deteriorates, so the lower limit of the amount added is 0.003% and the upper limit is 0.05%.
[0020]
B is an element that increases the hardenability. It is an element effective in increasing the hardenability and increasing the strength, and further preventing the formation of coarse pro-eutectoid ferrite and promoting the refinement of the structure. If the content is less than 0.0005%, these effects do not appear. If the content exceeds 0.005%, the toughness deteriorates. Therefore, the lower limit of the amount added is 0.0005% and the upper limit is 0.005%.
[0021]
S, Pb, Ca, and Bi are all elements that improve machinability. In any case, too small addition has no effect, and excessive addition deteriorates toughness, so that S is 0.01% or more and 0.3% or less, Pb is 0.03% or more and 0.3% or less, Ca Limits the addition amount to 0.001% or more and 0.05% or less, and Bi limits 0.03% to 0.3%.
[0022]
Next, the form of the tissue of the present invention will be described.
[0023]
Usually, in recrystallization γ, dislocations in grains are arranged by recrystallization and the dislocation density is low. For this reason, most transformations start from the γ grain boundary and grow into the grains. Further, as long as the recrystallization γ, the number of transformation nuclei generated per grain boundary unit area takes a substantially constant value. For this reason, the number of grains in the structure after transformation is almost proportional to the area of the γ grain boundary per unit volume, and the smaller the γ grain size after recrystallization, the finer the structure after transformation. On the other hand, in the case of unrecrystallized γ, dislocation rearrangement by recrystallization has not yet been performed, so that the dislocation density in the grains is high. Thereby, the transformation starts not only from the grain boundaries but also from within the grains. Further, the effect of processing remains at the grain boundaries, and the number of transformation nuclei generated per grain boundary unit area is larger than that of recrystallized γ. Therefore, a fine transformation structure can be obtained even from coarse γ. Transformation structures obtained by transformation from unrecrystallized γ can be broadly classified into ferrite + pearlite, bainite, and martensite depending on the cold speed after processing. However, depending on the cooling speed, it becomes a mixed structure of these structures, and the toughness is remarkably deteriorated. Therefore, martensitic steel is obtained by the cooling speed control described later. The average crystal grain size described here is a crystal grain size serving as a unit of fracture. In the case of ferrite + pearlite, it indicates the average grain size of ferrite, and in the case of bainite and martensite, it indicates the average packet size. The reason for selecting martensite is that it is easy to obtain strength by strengthening the structure and is effective in reducing alloy costs. On the other hand, it is known that the strength, toughness, yield ratio, and elongation are improved when the particle size becomes fine. However, when the average particle size is 10 μm or less, these effects are remarkably exhibited. In order to further obtain the effect, it is desirable that the average particle diameter is 5 μm or less. On the other hand, the lower limit of the average particle diameter is not particularly defined, but is preferably 2 μm or more from the viewpoint of forging cost.
[0024]
In the present invention, the average particle diameter is defined as a value obtained by observing 3 to 5 fields of view at a cross-sectional thickness of 1/4 t at 200 to 1000 times with an optical microscope, and cutting.
[0025]
The lower limit of tensile strength was limited to 1300 MPa in terms of weight reduction of the forged product. On the other hand, if it exceeds 1800 MPa, the toughness is remarkably reduced, and the cutting life and die life are also remarkably reduced. Therefore, the upper limit was made 1800 MPa or less.
[0026]
Moreover, the lower limit of the yield ratio was limited to 0.65 in order to improve fatigue strength. On the other hand, even if the yield ratio is increased to 0.95 or more, the improvement in fatigue strength is saturated, so the upper limit was limited to 0.95.
[0027]
Next, a manufacturing method will be described.
[0028]
The heating temperature is set to Ac3 point or higher from the necessity of being a γ single phase during forging. Moreover, the upper limit was made into the highest heating temperature of the present furnace 1350 degreeC. As described above, in order to facilitate non-recrystallization rolling, it is desirable to dissolve V or Nb to some extent, so that heating at 1050 ° C. or higher is desirable.
The Ac 3 point is defined as the value obtained from the equation (2).
[0029]
Ac 3 = 910-203 (C) 1/2 -15.2 (Ni) +44.7 (Si) +104 (V) +31.5 (Mo) +13.1 (W) (2)
The unrecrystallized upper limit temperature is defined as a value obtained by the equation (3). Equation (3) is a regression equation obtained as a result of performing a work hardening test on a steel containing V and Nb components using a processing for master and observing the structure. In addition, (3) Formula is a simple formula except the term showing the influence of a processing degree.
[0030]
Non-recrystallization upper limit temperature (° C.) = 819 + 61 ((V) +10 (Nb)) 0.2 (3)
The effect of refining the structure by transformation from unrecrystallized γ depends on the strain applied in the non-recrystallized temperature range. When the strain is less than 0.3 in logarithmic strain, the structure cannot be sufficiently refined, so the lower limit is set to logarithmic strain 0.3. If possible, a strain of 0.8 or higher is desirable. On the other hand, since an increase in strain causes an increase in forging reaction force and costs increase, the logarithmic strain is set to 3 or less. When forming by multiple forgings, it may be combined with forging in the recrystallization temperature range. Further, forging in the non-recrystallization temperature range specified this time, especially forging below 800 ° C. is remarkably refined and contributes to strength increase and toughness improvement, so forging below 800 ° C. is desirable. Further, at a forging temperature of less than 700 ° C., ferrite is generated before forging and becomes a processed ferrite during forging to deteriorate toughness. Therefore, the forging lower limit temperature is set to 700 ° C.
[0031]
The logarithmic distortion described here is a distortion defined by the equation (4). The original thickness height average is an average value when the forging direction of the material before forging is the height, and the finished thickness height average is an average value of the height after forging. However, in the case of processing such as extrusion, the equation (5) is followed. The original cross-sectional area average is the average cross-sectional area of the surface perpendicular to the forging direction of the material before forging, and the finished cross-sectional area average is the cross-sectional area average after forging.
[0032]
Logarithmic strain = ln (original thickness height average / finished thickness height average) (4)
Logarithmic strain = ln (original cross-sectional area average / finished cross-sectional area average) (5)
As described above, the structure morphology varies depending on the cooling speed after forging. The cooling speed will be described below.
In the transformation from non-recrystallized γ, the nucleation rate is increased, so that the TT-T nose is shifted to the short time side, and ferrite is easily generated. For this reason, in order to produce martensite, the temperature range of 300 ° C. or higher and Ar 3 or lower may be cooled at the cold speed shown in the equation (1). Equation (1) is an equation obtained from the straight line in FIG. The lower limit of the cooling rate is set to (6ε + 12) ° C./sec because a bainite transformation occurs at a slower cooling rate. On the other hand, the upper limit is set to 60 ° C./sec because it is difficult to cool at a faster cooling rate. The reason why the cooling control temperature range is set to the Ar3 point or less is that the transformation starts. On the other hand, the lower limit is set to 300 ° C. because the martensitic transformation has already been completed at this temperature. The cooling method in the cooling control temperature range of the cold speed shown in the equation (1) can be water cooling, oil cooling, forced air cooling, etc., but is not particularly limited. Moreover, since the yield ratio and toughness are improved by performing tempering after cooling, tempering treatment may be performed.
[0033]
(6ε + 12) ° C./sec≦CR≦60° C./sec (1)
(Ε: logarithmic strain given in the non-recrystallization temperature range)
Note that the Ar 3 point is defined as a value obtained by the equation (6).
[0034]
Ar 3 = 868-396 (C) +24.6 (Si) -58.7 (Mn) -50 (Ni) -35 (Cu) +190 (V) (6)
[0035]
【Example】
A forging test piece of φ50 × h60 is cut out from the steel of the components shown in Table 1 and heated at high frequency, and the flat plate compression forging in the height direction is applied by applying the method of the present invention and the comparative method shown in Table 2. went. The strain in Table 2 was obtained by applying the formula (4). Further, when the method of the present invention was applied and cooled, the particle size, strength, yield ratio, and toughness as shown in Table 2 were obtained. The temperature control during cooling was performed by blast or water spray cooling. The structure was optically photographed at a 1/4
[0036]
[Table 1]
[0037]
[Table 2]
[0038]
[Table 3]
[0039]
【The invention's effect】
According to the present invention, the strength, yield ratio, and toughness are clearly improved, and the present invention is effective.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of logarithmic strain applied in an unrecrystallized region and the cooling rate in a temperature range of 500 ° C. to Ar 3 on texture formation.
Claims (9)
C 0.1〜0.6%
Si 0.05〜2.5%
Mn 0.2〜3%
Al 0.005〜0.1%
N 0.001〜0.02%
を含有し、更に
V 0.05〜0.5%
Nb 0.005〜0.1%
の1種または2種を含有し、残部がFeおよび不可避的不純物からなり、平均パケット・サイズが10μm以下のマルテンサイトからなることを特徴とする非調質高強度・高靭性鍛造品。C 0.1 to 0.6% by mass
Si 0.05-2.5%
Mn 0.2-3%
Al 0.005-0.1%
N 0.001-0.02%
And V 0.05-0.5%
Nb 0.005-0.1%
A non-tempered high-strength and high-toughness forged product comprising one or two of the above, the balance being composed of Fe and inevitable impurities, and an average packet size of martensite of 10 μm or less.
Mg 0.0001〜0.005%
Zr 0.0001〜0.005%
の1種または2種を含有することを特徴とする請求項1記載の非調質高強度・高靭性鍛造品。Mg 0.0001 to 0.005% by mass%
Zr 0.0001-0.005%
The non-tempered high-strength and high-toughness forged product according to claim 1, comprising one or two of the following.
Cr 0.05〜3%
Ni 0.05〜3%
Mo 0.05〜3%
Cu 0.01〜2%
Ti 0.003〜0.05%
B 0.0005〜0.005%
の1種または2種以上を含有することを特徴とする請求項1又は2記載の非調質高強度・高靭性鍛造品。0.05 to 3% Cr by mass%
Ni 0.05-3%
Mo 0.05-3%
Cu 0.01-2%
Ti 0.003-0.05%
B 0.0005-0.005%
The non-tempered high-strength and high-toughness forged product according to claim 1, comprising one or more of the following.
S 0.01〜0.3%
Pb 0.03〜0.3%
Ca 0.001〜0.05%
Bi 0.03〜0.3%
の1種または2種以上を含有することを特徴とする請求項1〜3の何れか1項に記載の非調質高強度・高靭性鍛造品。S 0.01 to 0.3% by mass%
Pb 0.03-0.3%
Ca 0.001-0.05%
Bi 0.03-0.3%
The non-tempered high-strength and high-toughness forged product according to any one of claims 1 to 3, characterized by containing one or more of the following.
(6ε+12)℃/sec≦CR≦60℃/sec …(1)
(ε:未再結晶温度域で与えた対数歪み)8. A non-tempered high strength and high toughness forged product according to claim 7, wherein after forging, a temperature range of 300 ° C. or more and Ar 3 points or less is cooled at a cooling rate (CR) represented by the following formula (1): Manufacturing method.
(6ε + 12) ° C./sec≦CR≦60° C./sec (1)
(Ε: logarithmic strain given in the non-recrystallization temperature range)
対数歪み=ln(元厚高さ平均/仕上げ厚高さ平均)Logarithmic strain = ln (original thickness average / finish thickness average) …(4)(4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001349096A JP4038361B2 (en) | 2001-11-14 | 2001-11-14 | Non-tempered high strength and high toughness forged product and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001349096A JP4038361B2 (en) | 2001-11-14 | 2001-11-14 | Non-tempered high strength and high toughness forged product and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003147480A JP2003147480A (en) | 2003-05-21 |
JP4038361B2 true JP4038361B2 (en) | 2008-01-23 |
Family
ID=19161818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001349096A Expired - Fee Related JP4038361B2 (en) | 2001-11-14 | 2001-11-14 | Non-tempered high strength and high toughness forged product and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4038361B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4757744B2 (en) * | 2006-08-29 | 2011-08-24 | 新日本製鐵株式会社 | Surface fine-grained steel parts and manufacturing method thereof |
WO2010038470A1 (en) * | 2008-10-01 | 2010-04-08 | 新日本製鐵株式会社 | Steel plate which exhibits excellent low-tempreature toughness both in base metal and in weld-heat affected zone and has small strength anisotropy and process for manufacturing same |
US20140283960A1 (en) * | 2013-03-22 | 2014-09-25 | Caterpillar Inc. | Air-hardenable bainitic steel with enhanced material characteristics |
JP7200627B2 (en) * | 2018-11-27 | 2023-01-10 | 大同特殊鋼株式会社 | High-strength bolt steel and its manufacturing method |
CN115074634B (en) * | 2022-07-08 | 2023-01-06 | 北京高创智信冶金科技有限公司 | High-strength non-quenched and tempered steel front shaft for heavy-duty automobile and production process thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61147849A (en) * | 1984-12-20 | 1986-07-05 | Nissan Motor Co Ltd | Unnormalized tough hardening steel |
JPH07188875A (en) * | 1993-12-27 | 1995-07-25 | Nippon Steel Corp | High-toughness non-heattreated steel for hot forging |
JPH08277437A (en) * | 1995-04-07 | 1996-10-22 | Kobe Steel Ltd | Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof |
JP3514018B2 (en) * | 1995-12-16 | 2004-03-31 | 大同特殊鋼株式会社 | Method for producing high-strength and high-toughness martensitic non-heat treated steel |
-
2001
- 2001-11-14 JP JP2001349096A patent/JP4038361B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003147480A (en) | 2003-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1075118C (en) | Dual-phase high strength steel sheet with good toughness and weldability | |
JP3901994B2 (en) | Non-tempered high-strength and high-toughness forged product and its manufacturing method | |
JP3851147B2 (en) | Non-tempered high strength and high toughness forged product and its manufacturing method | |
JP4311049B2 (en) | Cold-rolled steel sheet having an ultrafine grain structure and excellent shock absorption characteristics and method for producing the same | |
JP3738004B2 (en) | Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method | |
JPH0892687A (en) | High strength and high toughness non-heattreated steel for hot forging and its production | |
JPH10265846A (en) | Production of thermally refined high tensile strength steel plate by continuous casting excellent in toughness | |
JP3738003B2 (en) | Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same | |
JP3327635B2 (en) | Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel | |
JP3851146B2 (en) | Non-tempered high strength and high toughness forging steel, method for producing the same, and method for producing forged products | |
JP5266804B2 (en) | Method for producing rolled non-heat treated steel | |
JP2662409B2 (en) | Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness | |
JP2004346415A (en) | Ultrahigh-temperature hot-forged non-heat-treated parts and manufacturing method therefor | |
JP4038361B2 (en) | Non-tempered high strength and high toughness forged product and its manufacturing method | |
JP3750737B2 (en) | Manufacturing method of non-tempered high strength and high toughness forgings | |
JP4757744B2 (en) | Surface fine-grained steel parts and manufacturing method thereof | |
JP3774697B2 (en) | Steel material for high strength induction hardening and method for manufacturing the same | |
JP3228986B2 (en) | Manufacturing method of high strength steel sheet | |
JP3747365B2 (en) | Manufacturing method of non-tempered high strength and high toughness forgings | |
JP3214731B2 (en) | Method for producing non-heat treated steel bar with excellent low temperature toughness | |
JP4556770B2 (en) | Carburizing steel and method for producing the same | |
JPH09125143A (en) | Production of reinforcing steel product having high strength and low yield ratio | |
JPH08283838A (en) | Production of low yield ratio, high ductility steel excellent in strength, toughness and ductility | |
JP3274028B2 (en) | Manufacturing method of non-heat treated high strength high toughness hot forged parts | |
JPH1171633A (en) | Induction hardened parts excellent in strength and fatigue resistance and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060418 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071016 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071105 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101109 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101109 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121109 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131109 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131109 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |