JP4036933B2 - Resistance / temperature fuse and manufacturing method thereof - Google Patents
Resistance / temperature fuse and manufacturing method thereof Download PDFInfo
- Publication number
- JP4036933B2 JP4036933B2 JP27509197A JP27509197A JP4036933B2 JP 4036933 B2 JP4036933 B2 JP 4036933B2 JP 27509197 A JP27509197 A JP 27509197A JP 27509197 A JP27509197 A JP 27509197A JP 4036933 B2 JP4036933 B2 JP 4036933B2
- Authority
- JP
- Japan
- Prior art keywords
- resistance
- ceramic substrate
- fuse
- film electrodes
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Fuses (AREA)
Description
【0001】
【発明の属する技術分野】
回路保護素子の一つとして、温度ヒュ−ズエレメントと抵抗エレメントとを近接配置でユニット化した抵抗・温度ヒュ−ズが使用されており、回路に異常検出器と共に組み込み、回路の異常発生時、異常検出器による回路の異常検出で抵抗エレメントを通電発熱させ、その発生熱で温度ヒュ−ズエレメントを溶断させて回路を電源から遮断している。
かかる抵抗・温度ヒュ−ズとして、セラミックス基板の片面に膜抵抗と低融点可溶合金片とを併設し、その片面をエポキシ樹脂等の封止材で封止した、基板型が公知である。
【0002】
【発明が解決しようとする課題】
しかしながら、この基板型抵抗・温度ヒュ−ズでは、セラミックス基板の片面に膜抵抗を設けてあり、膜抵抗の通電発熱時、セラミックス基板が不均一に加熱されるため、セラミックス基板に熱曲げモ−メントが作用し、膜抵抗の通電電力が大きい場合は、セラミックス基板に反りによる亀裂が発生し破片が周囲に飛散して危険である。
【0003】
抵抗・温度ヒュ−ズとして、図3の(イ)に示すように未焼成セラミックス基板11’上に膜抵抗パタ−ン20’と膜電極パタ−ン21’,22’とを印刷して第1構体1a’を成形し、図3の(ロ)に示すように上記膜電極パタ−ン21’,22’を露出させるように切り欠いた未焼成セラミックス基板12’上にヒュ−ズ取付用膜電極31’,32’を印刷して第2構体1b’を成形し、図3の(ハ)に示すように第1構体1a’に第2構体1b’を加圧積層し焼成して両構体を焼結一体化し、而るのち、図3の(ニ)に示すように、ヒュ−ズ取付用膜電極間に低融点可溶合金片30’を接続し、各膜電極にリ−ド線eを接続し、低融点可溶合金片30’にフラックス4’を塗布し、その上に封止材層(図示せず)を設けたものが提案されている(特開平9−63442号)。
しかしながら、このようにして製作された抵抗・温度ヒュ−ズでも、第2構体の切り欠け部の部分が第1構体のセラミックス板のみの一枚部分となっており、この一枚部分における膜抵抗近傍箇所が膜抵抗の通電発熱で亀裂し易い。
【0004】
本発明の目的は、基板型抵抗・温度ヒュ−ズにおいて、抵抗の通電発熱電力が大であっても、薄い基板厚さのもとで、基板の熱亀裂を良好に防止できる抵抗・温度ヒュ−ズ及びその製作方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明に係る抵抗・温度ヒュ−ズは、下側セラミックス基板と上側セラミックス基板とが焼成により積層一体化され、下側セラミックス基板の上面に配設された一対の抵抗取付用膜電極と膜抵抗とが前記の両セラミックス基板に焼結一体化され、前記の各抵抗取付用膜電極が下側セラミックス基板の下面に各スルーホ−ルにより電気的に導出され、上側セラミックス基板の上面に一対のヒューズ取付用膜電極が設けられ、これらのヒューズ取付用膜電極の一方と前記両スルーホ−ルの一方のスルーホ−ルの導出下端との間を導通したはんだ付着用電極、他方のスルーホ−ルの導出下端に導通したはんだ付着用電極、前記両ヒューズ取付用膜電極の他方に導通したはんだ付着用電極が積層体に設けられ、前記一対のヒューズ取付用膜電極間に温度ヒューズエレメントが接続されていることを特徴とする。
請求項2に係る抵抗・温度ヒューズの製作方法は、未焼成の下側セラミックス基板aに上面から下面に至る一対のスルーホ−ルを形成し、その基板の上面に導電ペーストにより一対の抵抗取付用膜電極を印刷すると共に前記の各スルーホ−ルに導電ペーストを充填し、前記一対の抵抗取付用膜電極間に抵抗ペーストにより膜抵抗を印刷し、該未焼成の下側セラミックス基板a上に該基板と同一寸法の未焼成の上側セラミックス基板bを積層し、該上側セラミックス基板bの上面に一対のヒューズ取付用膜電極を導電ペーストにより印刷し、而るのち、基板a,bを焼成して焼結すると共に前記の各膜電極及びスルーホ−ルの導電ペースト並びに抵抗ヘーストを焼成し、次で、前記ヒューズ取付用膜電極の一方と前記両スルーホ−ルの一方のスルーホ−ルの導出下端との間を導通するはんだ付着用電極、他方のスルーホ−ルの導出下端に導通するたはんだ付着用電極、前記両ヒューズ取付用膜電極に導通したはんだ付着用電極を設け、次で、前記一対のヒューズ取付用膜電極間に温度ヒューズエレメントを接続することを特徴とする。
【0006】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1の(イ)は本発明に係る抵抗・温度ヒュ−ズの一例を示す平面図、図1の(ロ)は図1の(イ)におけるロ−ロ断面を示す図面、図1の(ハ)は図1の(ロ)におけるハ−ハ断面を示す図面である。
図1において、1は同一平面寸法の二枚のセラミックス基板11,12の積層体であり、焼成により積層界面が焼結一体化されている。21,22は積層界面に設けた抵抗取付用膜電極、20はこれらの膜電極21,22間に橋設した膜抵抗である。211,221は各膜電極21,22を積層体1の裏面に電気的に導出するために設けたスルーホ−ルであり、導電材が充填されている。このスルーホ−ル充填導電材は膜電極21,22と同一材質、別材質の何れであってもよい。
31,32は上側セラミックス基板12の上面に設けたヒュ−ズ取付用膜電極である。30はヒュ−ズ取付用膜電極31,32間に橋設した温度ヒュ−ズエレメントとしての低融点可溶合金片、4は低融点可溶合金片30上に塗布したフラックスである。33は上側セラミックス基板12に設けた補助膜電極である。310,320及び330は実装はんだ付着用電極、例えば銀電極である。
5は積層体の上面に温度ヒュ−ズエレメント30を覆って被覆したエポキシ樹脂等の封止材であり、この封止材に代え、キャップ、例えばセラミックスキャップで封止することもでき、キャップ内を封止材で充填することもできる。
【0007】
図2は図1に示した抵抗・温度ヒュ−ズの使用形態を示している。
図2において、Aは本発明に係る温度ヒュ−ズ・抵抗体を、30は温度ヒュ−ズエレメントとしての低融点可溶合金片を、20は抵抗エレメントとしての膜抵抗を、310〜330は実装用電極をそれぞれ示し、回路zと電源sとの間に上記温度ヒュ−ズ・抵抗体Aと過電圧検出通電器F(トランジスタ−Trのベ−ス側にツエナダイオ−ドDを接続)とを挿入し、回路zにツエナダイオ−ドDの降伏電圧以上の逆電圧が作用すると、ベ−ス電流が流れ、このベ−ス電流に応じてコレクタ電流が流れて抵抗エレメント20が通電発熱され、この発生熱が温度ヒュ−ズエレメント30に伝達されて温度ヒュ−ズエレメントとしての低融点可溶合金片30が溶断され、回路zが電源sから遮断されるに至る。
【0008】
この場合、温度ヒュ−ズ・抵抗体Aのセラミックス積層体1が加熱されるが、発熱源である膜抵抗20が積層体1の厚さのほぼ中央に存在しているので、セラミックス積層体1がその中央位置を基準として上下対称的に加熱され、熱曲げモ−メントの作用が充分に抑えられること、セラミックス基板11,12の積層体の積層界面が焼結一体化されかつ全体が二枚板構造とされて全体の曲げ剛性が充分に大きくされていること等のために、反りによる亀裂の発生をよく防止できる。
【0009】
本発明に係る温度ヒュ−ズ・抵抗体おいて、電極やスルーホ−ル、温度ヒュ−ズエレメントや抵抗エレメントの個数や配置は、使用形態に応じて設定される。
また、本発明に係る抵抗・温度ヒュ−ズの上記の例は、実装面に実装はんだ付用電極において直接はんだ付けする構成とされているが、リ−ド線を取付けてラジアルまたはアクシャルタイプで使用することもできる。
【0010】
本発明に係る上記抵抗・温度ヒュ−ズは次ぎのようにして製作できる。
(1)積層下側用の未焼成セラミックス基板にスルーホ−ルを形成し、上面に抵抗取付用膜電極パタ−ンを導電ペ−ストでスクリ−ン印刷すると共にそのスルーホ−ルを導電ペ−ストで充填し、更に上面に膜抵抗パタ−ンを抵抗ペ−ストでスクリ−ン印刷する。(2)更に、(1)の各種パタ−ン印刷の積層下側用の未焼成セラミックス基板に積層上側用の未焼成セラミックス基板を積層加圧し、この上側用未焼成セラミックス基板にヒュ−ズ取付用膜電極及び補助膜電極パタ−ンを導電ペ−ストで印刷する。(3)而るのち、積層体を焼成する。この焼成により各基板が焼結されると共に積層界面が焼結一体化され、各電極パタ−ンや膜抵抗ペ−ストと各基板との間が焼結一体化される。(4)更に、実装用のはんだ付け用電極を形成する。(5)更に、ヒュ−ズ取付用膜電極間に温度ヒュ−ズエレメントとしての低融点可溶合金片を橋設し、この低融点可溶合金片上にフラックスを塗布し、封止材を塗着するかキャップを装着し、これにて、抵抗・温度ヒュ−ズの製作を終了する。
上記において、積層上側用の未焼成セラミックス基板にスルーホ−ルを形成し、上面にヒュ−ズ取付用膜電極及び補助膜電極パタ−ンを導電ペ−ストで印刷すると共にスルーホ−ルを導電ペ−ストで充填したのち、この上側用未焼成セラミックス基板を上記(1)の未焼成セラミックス基板上に積層加圧し、而るのち、焼成することもできる。
【0011】
上記の未焼成セラミックス基板にはアルミナ粉末にバインダ−、例えばブチラ−ルやアクリル樹脂を加えてテ−プ状に成形した、いわゆるグリ−ンシ−トを使用でき、抵抗ペ−ストには酸化ルテニウム等のペ−ストを使用でき、導電ぺ−ストにはAgペ−スト、Ag−Pdペ−スト、Auペ−スト、Cuペ−スト等を使用できる。
【0012】
【発明の効果】
本発明に係る抵抗・温度ヒュ−ズにおいては、積層セラミックス基板の厚さのほぼ中央に膜抵抗を設けてあるから、膜抵抗の通電発熱による積層セラミックス基板の加熱を厚さ中央を基準として上下対称に行なわせ得て熱曲げ応力を充分に抑制でき、更に、積層セラミックス基板の積層界面とその界面の膜抵抗及び膜電極との焼結一体化により全体の曲げ剛性が充分に高くされているから、熱曲げモ−メントによるセラミックス基板の亀裂発生をよく防止できる。
従って、本発明によれば、充分に薄い基板厚さの大電力用の抵抗・温度ヒュ−ズを提供できる。
【図面の簡単な説明】
【図1】 本発明に係る抵抗・温度ヒュ−ズを示す図面である。
【図2】 本発明に係る抵抗・温度ヒュ−ズの使用状態を示す図面である。
【図3】 従来の抵抗・温度ヒュ−ズを示す図面である。
【符号の説明】
1 セラミックス基板積層体
11 セラミックス基板
12 セラミックス基板
20 膜抵抗
21 抵抗取付用膜電極
22 抵抗取付用膜電極
211 スルーホ−ル
221 スルーホ−ル
30 温度ヒュ−ズエレメント
31 ヒュ−ズ取付用膜電極
32 ヒュ−ズ取付用膜電極
321 スルーホ−ル
4 フラックス
5 封止材層[0001]
BACKGROUND OF THE INVENTION
As one of the circuit protection elements, a resistance / temperature fuse in which a temperature fuse element and a resistance element are unitized in a close arrangement is used, and it is incorporated in the circuit together with an abnormality detector. When the abnormality of the circuit is detected by the abnormality detector, the resistance element is energized to generate heat, and the generated heat is used to blow the temperature fuse element to cut off the circuit from the power source.
As such a resistance / temperature fuse, a substrate type in which a film resistance and a low-melting-point soluble alloy piece are provided on one side of a ceramic substrate and the one side is sealed with a sealing material such as an epoxy resin is known.
[0002]
[Problems to be solved by the invention]
However, in this substrate type resistance / temperature fuse, a film resistance is provided on one surface of the ceramic substrate, and the ceramic substrate is heated non-uniformly during energization heat generation of the film resistance. When the membrane action is applied and the energization power of the membrane resistance is large, the ceramic substrate is cracked due to warpage, and fragments are scattered around and dangerous.
[0003]
As a resistance / temperature fuse, a film resistance pattern 20 'and film electrode patterns 21' and 22 'are printed on an unfired ceramic substrate 11' as shown in FIG. A single structure 1a ′ is formed, and a fuse is mounted on an unfired
However, even in the resistance / temperature fuse manufactured in this way, the notch portion of the second structure is only one piece of the ceramic plate of the first structure, and the film resistance in this one piece portion Nearby parts are easily cracked by energization heat generation of film resistance.
[0004]
The object of the present invention is to provide a resistance / temperature fuse that can prevent thermal cracking of the substrate satisfactorily even under a thin substrate thickness even when the resistance heating power of the resistor is large. -To provide a manufacturing method thereof.
[0005]
[Means for Solving the Problems]
The resistance / temperature fuse according to the present invention includes a pair of resistance-attaching film electrodes and a film resistance, in which a lower ceramic substrate and an upper ceramic substrate are laminated and integrated by firing, and are arranged on the upper surface of the lower ceramic substrate. Are sintered and integrated with the two ceramic substrates, and each of the resistance mounting film electrodes is electrically led to the lower surface of the lower ceramic substrate by each through hole, and a pair of fuses are formed on the upper surface of the upper ceramic substrate. Mounting film electrodes are provided, and a solder adhesion electrode that is electrically connected between one of these fuse mounting film electrodes and a leading lower end of one of the through holes, and the other through hole is led out. An electrode for solder attachment conducted to the lower end and an electrode for solder attachment conducted to the other of the fuse attachment film electrodes are provided in the laminate, and a temperature is provided between the pair of fuse attachment film electrodes. Wherein the fuse element is connected.
According to a second aspect of the present invention, a pair of through-holes are formed on an unfired lower ceramic substrate a from the upper surface to the lower surface, and a pair of resistors is attached to the upper surface of the substrate by a conductive paste. A film electrode is printed and each through hole is filled with a conductive paste, a film resistance is printed with a resistance paste between the pair of resistance mounting film electrodes, and the unfired lower ceramic substrate a An unfired upper ceramic substrate b having the same dimensions as the substrate is laminated, and a pair of fuse-attaching film electrodes are printed on the upper surface of the upper ceramic substrate b with a conductive paste, and then the substrates a and b are fired. Sintering and firing the conductive paste of each of the above-mentioned film electrodes and through holes and the resistance hust, and then, one of the above-mentioned film electrodes for mounting the fuse and one of the through-holes of each of the through holes. An electrode for solder attachment that conducts between the lead-out lower end of the hole, a solder attachment electrode that conducts to the lead-out lower end of the other through hole, and a solder attachment electrode that conducts to both the fuse mounting film electrodes. Next, a thermal fuse element is connected between the pair of fuse mounting film electrodes.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A is a plan view showing an example of a resistance / temperature fuse according to the present invention, FIG. 1B is a drawing showing a cross section of FIG. (C) is a cross-sectional view taken along line (b) of FIG.
In FIG. 1, 1 is a laminated body of two
31 and 32 fuse provided on the upper surface of the upper ceramic substrate 12 - Ru's mounting membrane electrode der.
5 is a sealing material, such as an epoxy resin, which covers the
[0007]
FIG. 2 shows how the resistance / temperature fuse shown in FIG. 1 is used.
In FIG. 2, A is a temperature fuse / resistor according to the present invention, 30 is a low melting point soluble alloy piece as a temperature fuse element, 20 is a membrane resistance as a resistance element, and 310 to 330 are The mounting electrodes are respectively shown, and the temperature fuse / resistor A and the overvoltage detection energizer F (the Zener diode D is connected to the base side of the transistor Tr) between the circuit z and the power source s. When a reverse voltage higher than the breakdown voltage of the Zener diode D is applied to the circuit z, a base current flows, and a collector current flows according to the base current, and the
[0008]
In this case, the
[0009]
In the temperature fuse / resistor according to the present invention, the number and arrangement of electrodes, through-holes, temperature fuse elements and resistance elements are set in accordance with the usage pattern.
Further, the above-described example of the resistance / temperature fuse according to the present invention is configured to be directly soldered to the mounting surface with the mounting soldering electrode. However, the lead wire is attached to the radial or axial type. Can also be used.
[0010]
The resistance / temperature fuse according to the present invention can be manufactured as follows.
(1) A through hole is formed on an unfired ceramic substrate for the lower layer of the laminate, and a film electrode pattern for resistance attachment is screen-printed with a conductive paste on the upper surface, and the through hole is applied to the conductive pattern. The film resistance pattern is screen-printed with a resistance paste on the upper surface. (2) Further, the unfired ceramic substrate for the upper side of the laminate is pressed on the unfired ceramic substrate for the lower side of the various pattern printing in (1), and the fuse is attached to the unfired ceramic substrate for the upper side. The membrane electrode pattern and the auxiliary membrane electrode pattern are printed with a conductive paste. (3) After that, the laminate is fired. This firing sinters each substrate and sinters and integrates the laminated interface, and sinters and integrates each electrode pattern and film resistance paste with each substrate. (4) Further, a soldering electrode for mounting is formed. (5) Further, a low melting point soluble alloy piece as a temperature fuse element is bridged between the fuse mounting membrane electrodes, a flux is applied onto the low melting point soluble alloy piece, and a sealing material is applied. Wear or put on a cap, and the production of the resistance / temperature fuse is completed.
In the above, a through hole is formed on the unfired ceramic substrate for the upper side of the laminate, the fuse mounting film electrode and the auxiliary film electrode pattern are printed on the upper surface with the conductive paste, and the through hole is formed on the conductive pattern. After filling with the strike, this unfired ceramic substrate for the upper side can be laminated and pressed on the unfired ceramic substrate of (1) above, and then fired.
[0011]
The green ceramic substrate may be a so-called green sheet formed by adding a binder such as butyral or acrylic resin to alumina powder to form a tape, and the resistance paste includes ruthenium oxide. A paste such as Ag paste, Ag-Pd paste, Au paste, and Cu paste can be used as the conductive paste.
[0012]
【The invention's effect】
In the resistance / temperature fuse according to the present invention, the film resistance is provided at the center of the thickness of the multilayer ceramic substrate. The thermal bending stress can be sufficiently suppressed by making it symmetrical, and the overall bending rigidity is sufficiently increased by the laminated interface of the laminated ceramic substrate, the film resistance of the interface, and the sintering integration with the membrane electrode. Therefore, the generation of cracks in the ceramic substrate due to the thermal bending moment can be well prevented.
Therefore, according to the present invention, a resistance / temperature fuse for high power with a sufficiently thin substrate thickness can be provided.
[Brief description of the drawings]
FIG. 1 is a view showing a resistance / temperature fuse according to the present invention.
FIG. 2 is a view showing a usage state of a resistance / temperature fuse according to the present invention.
FIG. 3 is a diagram showing a conventional resistance / temperature fuse.
[Explanation of symbols]
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27509197A JP4036933B2 (en) | 1997-09-22 | 1997-09-22 | Resistance / temperature fuse and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27509197A JP4036933B2 (en) | 1997-09-22 | 1997-09-22 | Resistance / temperature fuse and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1196871A JPH1196871A (en) | 1999-04-09 |
JP4036933B2 true JP4036933B2 (en) | 2008-01-23 |
Family
ID=17550676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27509197A Expired - Fee Related JP4036933B2 (en) | 1997-09-22 | 1997-09-22 | Resistance / temperature fuse and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4036933B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9129769B2 (en) | 2009-09-04 | 2015-09-08 | Cyntec Co., Ltd. | Protective device |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007305512A (en) * | 2006-05-15 | 2007-11-22 | Yamatake Corp | Led lighting system |
JP4943360B2 (en) * | 2008-03-05 | 2012-05-30 | 内橋エステック株式会社 | Protective element |
JP5586380B2 (en) * | 2009-11-28 | 2014-09-10 | 京セラ株式会社 | Resistance thermal fuse package and resistance thermal fuse |
JP5489684B2 (en) * | 2009-12-10 | 2014-05-14 | 京セラ株式会社 | Resistance thermal fuse package and resistance thermal fuse |
JP5489750B2 (en) * | 2009-12-17 | 2014-05-14 | 京セラ株式会社 | Resistance thermal fuse package and resistance thermal fuse |
JP5489749B2 (en) * | 2010-01-27 | 2014-05-14 | 京セラ株式会社 | Resistance thermal fuse |
JP5489777B2 (en) * | 2010-02-25 | 2014-05-14 | 京セラ株式会社 | Resistance thermal fuse package and resistance thermal fuse |
JP5590966B2 (en) * | 2010-05-28 | 2014-09-17 | 京セラ株式会社 | Fuse device and circuit board |
JP5550471B2 (en) * | 2010-07-01 | 2014-07-16 | 京セラ株式会社 | Ceramic fuse and ceramic fuse package |
JP5586370B2 (en) * | 2010-08-10 | 2014-09-10 | 京セラ株式会社 | Ceramic fuse and ceramic fuse package |
JP5630461B2 (en) * | 2012-06-12 | 2014-11-26 | 株式会社村田製作所 | fuse |
JP6266355B2 (en) * | 2014-01-20 | 2018-01-24 | デクセリアルズ株式会社 | Switch element, switch circuit, and alarm circuit |
JP6480742B2 (en) * | 2015-02-05 | 2019-03-13 | 内橋エステック株式会社 | Protective element |
-
1997
- 1997-09-22 JP JP27509197A patent/JP4036933B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9129769B2 (en) | 2009-09-04 | 2015-09-08 | Cyntec Co., Ltd. | Protective device |
US9336978B2 (en) | 2009-09-04 | 2016-05-10 | Cyntec Co., Ltd. | Protective device |
Also Published As
Publication number | Publication date |
---|---|
JPH1196871A (en) | 1999-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4036933B2 (en) | Resistance / temperature fuse and manufacturing method thereof | |
US5897724A (en) | Method of producing a hybrid integrated circuit | |
WO2007034759A1 (en) | Chip resistor | |
CN105765671B (en) | Resistive element and its manufacture method | |
JP7107478B2 (en) | Resistive elements and resistive element assemblies | |
JP3665385B2 (en) | Electronic components | |
JP3363295B2 (en) | Chip electronic components | |
KR20180001144A (en) | Resistor element and board having the same mounted thereon | |
JP4036932B2 (en) | Composite circuit element | |
JPS60211345A (en) | Terminal structure of ceramic substrate | |
EP1615239B1 (en) | power resistor having a heat generating resistive element | |
JP3228581B2 (en) | Ceramic heater | |
JP4183385B2 (en) | Chip-type fuse and manufacturing method thereof | |
JP4080038B2 (en) | Manufacturing method of temperature fuse and resistor | |
JPH08148260A (en) | Ceramic heater | |
JP3078534B1 (en) | Electronic equipment | |
JP4403661B2 (en) | Mounting structure of component using heat sink and manufacturing method thereof | |
JP3872401B2 (en) | Wiring board | |
WO2023053594A1 (en) | Chip resistor | |
JP3850341B2 (en) | Wiring board | |
JP2002321399A (en) | Thermal head and its production method | |
JPH05275608A (en) | Semiconductor element housing package | |
JPH0963442A (en) | Resistance thermal fuse | |
JP4346183B2 (en) | Fuse manufacturing method and chip-type fuse manufacturing method | |
JPH0432297A (en) | Multilayer interconnection board and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070320 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071030 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071031 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101109 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131109 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |