[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4035893B2 - Leakage detection device for battery pack drive circuit - Google Patents

Leakage detection device for battery pack drive circuit Download PDF

Info

Publication number
JP4035893B2
JP4035893B2 JP17432298A JP17432298A JP4035893B2 JP 4035893 B2 JP4035893 B2 JP 4035893B2 JP 17432298 A JP17432298 A JP 17432298A JP 17432298 A JP17432298 A JP 17432298A JP 4035893 B2 JP4035893 B2 JP 4035893B2
Authority
JP
Japan
Prior art keywords
assembled battery
circuit
leakage detection
power supply
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17432298A
Other languages
Japanese (ja)
Other versions
JP2000009784A (en
Inventor
雅也 伊藤
智也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP17432298A priority Critical patent/JP4035893B2/en
Publication of JP2000009784A publication Critical patent/JP2000009784A/en
Application granted granted Critical
Publication of JP4035893B2 publication Critical patent/JP4035893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、組み電池駆動回路の漏電検出装置に関する。
【0002】
【従来の技術】
電気自動車用組み電池駆動回路に適用される漏電検出装置を図2を参照して説明する。
漏電検出回路8は、高圧の組み電池4、組み電池4により駆動される負荷回路5、及び、組み電池4の正負端子を負荷回路5の正負電源電圧入力端に個別に接続する高圧側電源ライン6及び低圧側(接地側)電源ライン7を有する組み電池駆動回路1の漏電を検出するものであって、接地側電源ライン(以下、単に被検出側ラインともいう)7に第一の接続ライン21を通じて接続されて組み電池駆動回路1の漏電を検出する。
【0003】
9は強制通電回路であって、漏電検出回路8とともに前記組み電池駆動回路とは別の配線基板(ここでは組み電池制御回路が実装される配線基板)2に実装されて、第一の接続ライン21を通じて外部低圧電源3の一端から組み電池駆動回路1の接地側電源ライン7に所定の試験用漏電電流を断続可能に強制通電する。更に具体的に説明すると、強制通電回路9は電流制限抵抗91とフォトカプラ92とを直列接続してなり、フォトカプラ92に導通信号を与えると、フォトカプラ92内のトランジスタが導通して外部低圧電源3の低位端から漏電検出回路8の出力端に所定の漏電電流を給電して(言い換えれば漏電検出回路8の出力端を強制通電回路9のインピーダンスを通じて外部低圧電源3の低位端に接続して)、漏電検出回路8の出力端電位を変化させ、これにより、漏電検出回路8の動作状態の確認を行っている。
【0004】
漏電検出回路8の内部回路構成及び動作は周知であり、典型的には、検出側接地ラインに所定の出力抵抗及び出力コンデンサを介して交流結合されて外部電源から形成された交流信号電圧を印加し、組み電池駆動回路に漏電が生じた場合に上記出力抵抗により漏電電流の分だけ電圧降下が増大することを検出する。
たとえば、特開平8−70503号公報は、高圧の組み電池、組み電池により駆動される負荷回路、及び、組み電池の正負端子をこの負荷回路の正負電源電圧入力端に個別に接続する正負の電源ラインを有する組み電池駆動回路の電源ラインに所定の出力抵抗及び出力コンデンサを介して交流結合されて外部電源から形成されたPWM信号を印加し、組み電池駆動回路に漏電が生じた場合に上記出力抵抗により漏電電流の分だけ電圧降下が増大することを検出する漏電検出回路を開示している。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した組み電池駆動回路の漏電検出装置では、強制通電回路9を作動させて漏電検出回路8の動作確認を行ったとしても、もし第一の接続ライン21が接続不良となったり、断線したりした場合には漏電検出回路8により検出側接地ライン7を通じた組み電池駆動回路の組み電池駆動回路1の漏電検出は実際にはできず、強制通電回路9による漏電検出動作確認が不十分な確認となるという問題があった。
【0006】
本発明は上記問題点に鑑みなされたものであり、回路構成の複雑化を回避しつつ、漏電検出すべき組み電池駆動回路と漏電検出回路及び強制通電回路との接続状態も含めて漏電検出動作を確認可能な組み電池駆動回路の漏電検出装置を提供することを、その第一の目的としている。
また、図2に示す従来の強制通電回路9のフォトカプラ92には、なんらかの理由により外部低圧電源3の低位端の電位が組み電池駆動回路1の高圧側の電源ライン(以下、単に検出側電源ラインともいう)6の電位またはそれに近い電位となることを想定して組み電池4の端子電圧に対して十分大きい耐圧を確保する必要がある。
【0007】
しかし、このような高耐圧のフォトカプラ92またはスイッチング素子は高価となるので、経済性の点で実用性が劣るという問題があった。
本発明は上記問題点に鑑みなされたものであり、回路構成の信頼性低下を回避しつつ、経済性に優れた漏電検出動作確認可能な組み電池駆動回路の漏電検出装置を提供することを、その第二の目的としている。
【0008】
【課題を解決するための手段】
請求項1に記載した第1発明の組み電池駆動回路の漏電検出装置によれば、高圧の組み電池、前記組み電池により駆動される負荷回路、及び、前記組み電池の正負端子を前記負荷回路の正負電源電圧入力端に個別に接続する正負の電源ラインを有する組み電池駆動回路の前記電源ラインに第一の接続ラインを通じて接続されて前記組み電池駆動回路の漏電を検出する漏電検出回路と、前記漏電検出回路とともに前記組み電池駆動回路とは別の配線基板に実装されるとともに、前記第一の接続ラインとは異なる第二の接続ラインを通じて外部低圧電源の一端から前記組み電池駆動回路の所定部位へ所定の試験用漏電電流を断続可能に強制通電する強制通電回路とを備え、前記強制通電回路は、前記第一の接続ラインとは異なる第二の接続ラインを通じて外部低圧電源の一端から前記組み電池駆動回路の中間電位端へ所定の試験用漏電電流を断続可能に強制通電することをその特徴としている。
すなわち、本構成では、漏電検出回路は図2に示す従来と同様に、組み電池駆動回路の電源ラインに第一の接続ラインを通じて接続されてその漏電を検出する。また、強制通電回路も図2に示す従来と同様に、漏電検出時に漏電検出回路の出力端の電位を変更することにより漏電検出回路の漏電検出動作の確認を行う。
【0009】
本構成では特に、強制通電回路は、漏電検出回路と組み電池駆動回路とを接続する第一の接続ラインとは別の第二の接続ラインを通じて組み電池駆動回路に外部低圧電源の一端から検査用の漏電電流を給電する。これにより、検査用の漏電電流は、外部低圧電源の一端から第二の接続ライン、組み電池駆動回路内の組み電池、第一の接続ラインを順次経由して漏電検出回路の出力端に通電されてその電位を変更することになり、もし第一又は第二の接続ラインが接続不良となれば、強制通電回路のオン動作にもかかわらず漏電検出回路はそれを検出できないので、漏電検出回路のテストと同時に極めて簡単に第一又は第二の接続ラインの接続不良をチェックすることができる。
【0010】
すなわち、本構成によれば回路構成の複雑化を回避しつつ、漏電検出すべき組み電池駆動回路と漏電検出回路及び強制通電回路との接続状態も含めて漏電検出動作を確認可能な組み電池駆動回路の漏電検出装置を実現することができる。
本構成では更に、第二の接続ラインは組み電池駆動回路の中間電位端に接続されるので、もしなんらかの理由により外部低圧電源の低位端の電位が組み電池駆動回路のどちらかの電源ラインの電位またはそれに近い電位となっても、強制通電回路内のスイッチング素子の耐圧は従来の半分とすることができ、低耐圧のスイッチング素子を採用することができ、大幅なコストダウンを図ることができる。したがって、本構成によれば回路構成の信頼性低下を回避しつつ、経済性に優れた漏電検出動作確認可能な組み電池駆動回路の漏電検出装置を実現することができる。
請求項2に記載した第2発明の組み電池駆動回路の漏電検出装置によれば、高圧の組み電池、前記組み電池により駆動される負荷回路、及び、前記組み電池の正負端子を前記負荷回路の正負電源電圧入力端に個別に接続する正負の電源ラインを有する組み電池駆動回路の前記電源ラインに接続されて前記組み電池駆動回路の漏電を検出する漏電検出回路と、前記漏電検出回路とともに前記組み電池駆動回路とは別の配線基板に実装されるとともに、外部低圧電源の一端から前記組み電池駆動回路の中間電位端へ所定の試験用漏電電流を断続可能に強制通電する強制通電回路とを備えることを特徴としている。
すなわち、本構成によれば、第二の接続ラインは組み電池駆動回路の中間電位端に接続されるので、もしなんらかの理由により外部低圧電源の低位端の電位が組み電池駆動回路のどちらかの電源ラインの電位またはそれに近い電位となっても、強制通電回路内のスイッチング素子の耐圧は従来の半分とすることができ、低耐圧のスイッチング素子を採用することができ、大幅なコストダウンを図ることができる。したがって、本構成によれば回路構成の信頼性低下を回避しつつ、経済性に優れた漏電検出動作確認可能な組み電池駆動回路の漏電検出装置を実現することができる。
【0011】
したがって、本構成によれば回路構成の信頼性低下を回避しつつ、経済性に優れた漏電検出動作確認可能な組み電池駆動回路の漏電検出装置を実現することができる。
【0012】
【発明の実施の形態】
以下、本発明の好適な態様を以下の実施例により詳細に説明する。ただし、本発明は下記の実施例の構成に限定されるものではなく、置換可能な公知回路を用いて構成できることは当然である。
【0013】
【実施例】
この実施例の漏電検出装置を電気自動車用組み電池駆動回路に適用した実施例を図1に示す回路図を参照して説明する。
この漏電検出装置は、漏電検出回路8及び強制通電回路9からなり、漏電検出回路8とともに組み電池駆動回路1とは別の配線基板(ここでは組み電池制御回路が実装される配線基板)2に実装されている。
【0014】
1は、組み電池駆動回路であって、約400Vの組み電池4、組み電池4により駆動される負荷回路5、及び、組み電池4の正負端子を負荷回路5の正負電源電圧入力端に個別に接続する正負の電源ライン6、7を有し、負荷回路5は走行用モータ及びこの走行用モータ駆動用のインバータ回路などを含んでいる。
3は、外部低圧電源であって、ここでは組み電池4とは全く別の12Vの電池からなり、走行制御コントローラ(図示せず)や、配線基板2に実装された電池制御コントローラに給電している。漏電検出回路8は図示しない定電圧回路を通じてこの外部低圧電源から給電されている。
【0015】
組み電池4は、修理動作などにおける安全性向上のために高圧ブロック41及び低圧ブロック42に二分されていおり、高圧ブロック41の低位端(本発明でいう中間電位端)44及び低圧ブロック42の高位端(本発明でいう中間電位端)に二分されていおり、両中間電位端44、45はメンテナンス用プラグの装着により導通する構成となっている。
【0016】
漏電検出回路8は、組み電池駆動回路1の漏電を検出するものであって、その出力端は、図示しない内蔵の出力抵抗及び出力コンデンサを通じて接地側電源ライン7に第一の接続ライン21を通じて接続されている。漏電検出回路8は、検出側接地側電源ライン7に上記出力抵抗及び出力コンデンサを介して交流結合されて外部電源3から形成されたPWM電圧を印加し、組み電池駆動回路1に漏電が生じた場合に上記出力抵抗により漏電電流の分だけ電圧降下が増大することを図示しない内蔵のコンパレータなどで検出する。漏電検出回路8の回路構成及び動作は周知であるのでその詳細な説明は省略する。
【0017】
強制通電回路9は、電流制限抵抗91とフォトカプラ92とを直列接続してなり、第二の接続ライン22を通じて外部低圧電源3の一端から組み電池駆動回路1の中間電位端45に接続されている。
以下、この漏電検出装置における漏電検出動作試験動作を以下に説明する。
配線基板2に設けられた電池制御コントローラ(図示せず)を通じてフォトカプラ92の入力端子間にに試験用の漏電電流通電を指令する信号電圧を与えると、フォトカプラ92の出力端子間に設けられる内蔵のMOSトランジスタが導通し、これにより、漏電検出回路8の出力端は図示しない出力抵抗及び出力コンデンサを通じ、第一の接続ライン21、組み電池駆動回路1、第二の接続ライン22、電流制限抵抗91、フォトカプラ92を通じて外部低圧電源3の低位端に接続され、漏電検出回路8内部の発振回路から出力されるPWM電圧の交流成分による交流電流が外部低圧電源3へ流れる。
【0018】
これにより、もし漏電検出回路8が正常で、かつ両接続ライン21、22が接続不良でなければ、この交流電流による電流制限抵抗91などの電圧降下分だけ漏電検出回路8の出力端電位が変化し、それを漏電検出回路8内蔵のコンパレータなどで検出することにより漏電検出回路8は漏電検出を行う。
すなわち、強制通電回路9による試験漏電電流の強制通電を漏電検出回路8は検出する。もしこの時、接続ライン21又は22が接続不良であれば、漏電検出回路8の出力電位は強制通電回路9のオンにかかわらず変化せず、それも同時に検出することができる。
【0019】
また、強制通電回路9が組み電池4の中間電位端45に接続されているので、フォトカプラ92の耐圧は低くすることもできる。
【図面の簡単な説明】
【図1】本発明の組み電池駆動回路の漏電検出装置の一実施例を示す回路図である。
【図2】従来の組み電池駆動回路の漏電検出装置の一実施例を示す回路図である。
【符号の説明】
1は組み電池駆動回路、2は電池制御コントローラ用の配線基板、3は外部低圧電源、4は組み電池、5は負荷回路、6、7は電源ライン、8は漏電検出回路、9は強制通電回路、91は電流制限抵抗、92はフォトカプラ(スイッチング素子)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a leakage detection device for an assembled battery drive circuit.
[0002]
[Prior art]
A leakage detection device applied to an assembled battery drive circuit for an electric vehicle will be described with reference to FIG.
The leakage detection circuit 8 includes a high-voltage assembled battery 4, a load circuit 5 driven by the assembled battery 4, and a high-voltage power supply line that individually connects the positive and negative terminals of the assembled battery 4 to the positive and negative power supply voltage input terminals of the load circuit 5. 6 and a low voltage side (ground side) power supply line 7 for detecting leakage of the assembled battery driving circuit 1, and the first connection line to the ground side power supply line (hereinafter also simply referred to as the detected side line) 7. 21 is connected to detect the leakage of the assembled battery drive circuit 1.
[0003]
Reference numeral 9 denotes a forced energization circuit, which is mounted on a wiring board (here, a wiring board on which the assembled battery control circuit is mounted) 2 different from the assembled battery drive circuit together with the leakage detection circuit 8 and is connected to the first connection line. A predetermined test leakage current is forcibly energized from one end of the external low-voltage power supply 3 to the ground-side power supply line 7 of the assembled battery drive circuit 1 through 21. More specifically, the forced energizing circuit 9 is formed by connecting a current limiting resistor 91 and a photocoupler 92 in series. When a conduction signal is given to the photocoupler 92, the transistor in the photocoupler 92 is turned on and the external low voltage is applied. A predetermined leakage current is supplied from the lower end of the power supply 3 to the output end of the leakage detection circuit 8 (in other words, the output end of the leakage detection circuit 8 is connected to the lower end of the external low-voltage power supply 3 through the impedance of the forced energization circuit 9. The output terminal potential of the leakage detection circuit 8 is changed, thereby confirming the operation state of the leakage detection circuit 8.
[0004]
Internal circuit configuration and operation of the electric leakage detection circuit 8 is well known, typically an AC signal voltage is formed by an AC coupled through a predetermined output resistor and an output capacitor to be detected side ground line from the external power source When an electric leakage occurs in the assembled battery drive circuit, it is detected by the output resistance that the voltage drop increases by the amount of the leakage current.
For example, Japanese Patent Application Laid-Open No. 8-70503 discloses a high-voltage assembled battery, a load circuit driven by the assembled battery, and a positive / negative power source for individually connecting the positive / negative terminals of the assembled battery to the positive / negative power supply voltage input terminal of the load circuit. When a leakage current occurs in the assembled battery drive circuit by applying a PWM signal formed from an external power supply to the power supply line of the assembled battery drive circuit having a line by AC coupling via a predetermined output resistor and output capacitor A leakage detection circuit is disclosed that detects an increase in voltage drop by the amount of leakage current due to resistance.
[0005]
[Problems to be solved by the invention]
However, in the leakage detection device for the assembled battery driving circuit described above, even if the operation of the leakage detection circuit 8 is confirmed by operating the forced energization circuit 9, the first connection line 21 may be poorly connected or disconnected. the leakage detection circuit 8 when or leakage detection of the assembled battery driving circuit 1 of the assembled battery driving circuit through the detected side ground line 7 can not actually, leakage detection operation check by forced energizing circuit 9 is not There was a problem of sufficient confirmation.
[0006]
The present invention has been made in view of the above-described problems, and prevents leakage of the circuit configuration while including a connection state between the assembled battery drive circuit to be detected for leakage, the leakage detection circuit, and the forced energization circuit. The first object of the present invention is to provide a leakage detection device for an assembled battery drive circuit capable of confirming the above.
Also, the photocoupler 92 of a conventional forced energizing circuit 9 shown in FIG. 2, for some reason, the potential of the lower end of the outer low-voltage power source 3 is assembled battery driving circuit 1 on the high voltage side of the power supply line (hereinafter, simply the detection side It is necessary to ensure a sufficiently large withstand voltage with respect to the terminal voltage of the assembled battery 4 on the assumption that the potential is 6 or a potential close thereto.
[0007]
However, since such a high withstand voltage photocoupler 92 or switching element is expensive, there is a problem that its practicality is inferior in terms of economy.
The present invention has been made in view of the above problems, and provides a leakage detection device for an assembled battery drive circuit capable of confirming a leakage detection operation excellent in economy while avoiding a decrease in reliability of the circuit configuration. Its second purpose.
[0008]
[Means for Solving the Problems]
According to the leakage detection device for the assembled battery driving circuit of the first invention described in claim 1, the high-voltage assembled battery, the load circuit driven by the assembled battery, and the positive and negative terminals of the assembled battery are connected to the load circuit. A leakage detection circuit connected through the first connection line to the power supply line of the assembled battery drive circuit having positive and negative power supply lines individually connected to the positive and negative power supply voltage input terminals, and the leakage detection circuit of the assembled battery drive circuit; A predetermined part of the assembled battery driving circuit is mounted on a wiring board different from the assembled battery driving circuit together with a leakage detection circuit and from one end of an external low-voltage power supply through a second connection line different from the first connecting line And a forced energization circuit for forcibly energizing a predetermined test leakage current to be intermittent, wherein the forced energization circuit is a second connection line different from the first connection line. It is set to its features to intermittently allow to force energizing a predetermined leakage current test from one end of the external low-voltage power supply to the intermediate potential terminal of the assembled battery driving circuit through.
That is, in the present configuration, the leakage detection circuit is connected to the power supply line of the assembled battery driving circuit through the first connection line as in the conventional case shown in FIG. 2, and detects the leakage. As in the conventional case shown in FIG. 2, the forced energization circuit also checks the leakage detection operation of the leakage detection circuit by changing the potential at the output terminal of the leakage detection circuit when leakage is detected.
[0009]
Particularly in this configuration, the forced energization circuit is used for inspection from one end of the external low-voltage power source to the assembled battery drive circuit through a second connection line different from the first connection line connecting the leakage detection circuit and the assembled battery drive circuit. To supply the leakage current. As a result, the leakage current for inspection is energized from one end of the external low-voltage power supply to the output terminal of the leakage detection circuit via the second connection line, the assembled battery in the assembled battery drive circuit, and the first connection line in order. If the first or second connection line becomes poorly connected, the leakage detection circuit cannot detect it even though the forced energization circuit is turned on. At the same time as the test, it is very easy to check the connection failure of the first or second connection line.
[0010]
That is, according to this configuration, the assembled battery drive capable of confirming the leakage detection operation including the connection state between the assembled battery drive circuit to be detected and the leakage detection circuit and the forced energization circuit while avoiding the complexity of the circuit configuration. A circuit leakage detection device can be realized.
Further, in this configuration, since the second connection line is connected to the intermediate potential end of the assembled battery driving circuit, for some reason, the potential at the lower end of the external low-voltage power supply is the potential of either power supply line of the assembled battery driving circuit. Even if the potential is close to that, the withstand voltage of the switching element in the forced energization circuit can be halved compared to the conventional one, and a low withstand voltage switching element can be employed, thereby significantly reducing the cost. Therefore, according to the present configuration, it is possible to realize a leakage detection device for an assembled battery driving circuit capable of confirming a leakage detection operation excellent in economy while avoiding a decrease in reliability of the circuit configuration.
According to the leakage detection device of the assembled battery driving circuit of the second invention described in claim 2, the high voltage assembled battery, the load circuit driven by the assembled battery, and the positive and negative terminals of the assembled battery are connected to the load circuit. A leakage detection circuit connected to the power supply line of the assembled battery drive circuit having positive and negative power supply lines individually connected to the positive and negative power supply voltage input terminals, and detecting the leakage of the assembled battery drive circuit, and the assembly together with the leakage detection circuit A forced energization circuit that is mounted on a wiring board different from the battery drive circuit and forcibly energizes a predetermined test leakage current from one end of the external low-voltage power source to the intermediate potential end of the assembled battery drive circuit. It is characterized by that.
In other words, according to this configuration, since the second connection line is connected to the intermediate potential end of the assembled battery driving circuit, the potential at the lower end of the external low-voltage power source is one of the power sources of the assembled battery driving circuit for some reason. Even when the potential of the line is at or close to the potential, the withstand voltage of the switching element in the forced energization circuit can be reduced to half that of the conventional one, and a low withstand voltage switching element can be adopted, thereby greatly reducing the cost. Can do. Therefore, according to the present configuration, it is possible to realize a leakage detection device for an assembled battery driving circuit capable of confirming a leakage detection operation excellent in economy while avoiding a decrease in reliability of the circuit configuration.
[0011]
Therefore, according to the present configuration, it is possible to realize a leakage detection device for an assembled battery driving circuit capable of confirming a leakage detection operation excellent in economy while avoiding a decrease in reliability of the circuit configuration.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the following examples. However, the present invention is not limited to the configurations of the following embodiments, and can naturally be configured using a replaceable known circuit.
[0013]
【Example】
An embodiment in which the leakage detection device of this embodiment is applied to an assembled battery drive circuit for an electric vehicle will be described with reference to the circuit diagram shown in FIG.
This leakage detection device includes a leakage detection circuit 8 and a forced energization circuit 9, and is connected to a wiring board 2 (here, a wiring board on which the assembled battery control circuit is mounted) 2 together with the leakage detection circuit 8 and the assembled battery drive circuit 1. Has been implemented.
[0014]
Reference numeral 1 denotes an assembled battery drive circuit, which includes an assembled battery 4 of about 400 V, a load circuit 5 driven by the assembled battery 4, and the positive and negative terminals of the assembled battery 4 individually connected to the positive and negative power supply voltage input terminals of the load circuit 5. The load circuit 5 includes a traveling motor, an inverter circuit for driving the traveling motor, and the like.
Reference numeral 3 denotes an external low-voltage power supply, which is a 12 V battery that is completely different from the assembled battery 4 and supplies power to a travel controller (not shown) or a battery controller mounted on the wiring board 2. Yes. The leakage detection circuit 8 is supplied with power from the external low voltage power source through a constant voltage circuit (not shown).
[0015]
The assembled battery 4 is divided into a high voltage block 41 and a low voltage block 42 in order to improve safety in repair operations and the like. The low voltage end (intermediate potential terminal in the present invention) 44 of the high voltage block 41 and the high voltage block 42 are high. It is divided into two ends (intermediate potential ends as referred to in the present invention), and both intermediate potential ends 44 and 45 are made conductive when a maintenance plug is attached.
[0016]
The leakage detection circuit 8 detects leakage of the assembled battery drive circuit 1 and its output terminal is connected to the ground side power supply line 7 through the first connection line 21 through a built-in output resistor and output capacitor (not shown). Has been. Leakage detection circuit 8 applies a PWM voltage formed from the external power source 3 is AC coupled through the output resistor and an output capacitor to be detected side ground side power source line 7, the electric leakage is generated in the assembled battery driving circuit 1 In this case, it is detected by a built-in comparator (not shown) that the voltage drop is increased by the leakage current due to the output resistance. Since the circuit configuration and operation of the leakage detection circuit 8 are well known, a detailed description thereof will be omitted.
[0017]
The forced energizing circuit 9 is formed by connecting a current limiting resistor 91 and a photocoupler 92 in series, and is connected from one end of the external low voltage power source 3 to the intermediate potential end 45 of the assembled battery driving circuit 1 through the second connection line 22. Yes.
Hereinafter, the leakage detection operation test operation in this leakage detection apparatus will be described below.
When a signal voltage for commanding a leakage current for testing is applied between the input terminals of the photocoupler 92 through a battery controller (not shown) provided on the wiring board 2, it is provided between the output terminals of the photocoupler 92. The built-in MOS transistor is turned on, so that the output terminal of the leakage detection circuit 8 is connected to the first connection line 21, the assembled battery drive circuit 1, the second connection line 22, and the current limit through an output resistor and an output capacitor (not shown). An AC current, which is connected to the lower end of the external low-voltage power supply 3 through the resistor 91 and the photocoupler 92 and is output from the oscillation circuit inside the leakage detection circuit 8, is supplied to the external low-voltage power supply 3.
[0018]
As a result, if the leakage detection circuit 8 is normal and the connection lines 21 and 22 are not poorly connected, the output terminal potential of the leakage detection circuit 8 changes by the voltage drop of the current limiting resistor 91 and the like due to this alternating current. Then, the leakage detection circuit 8 detects the leakage by detecting it with a built-in comparator or the like.
That is, the leakage detection circuit 8 detects the forced supply of the test leakage current by the forced supply circuit 9. If the connection line 21 or 22 is poorly connected at this time, the output potential of the leakage detection circuit 8 does not change regardless of whether the forced energization circuit 9 is on, and can also be detected simultaneously.
[0019]
Further, since the forced energization circuit 9 is connected to the intermediate potential terminal 45 of the assembled battery 4, the withstand voltage of the photocoupler 92 can be lowered.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of a leakage detection device for an assembled battery driving circuit according to the present invention.
FIG. 2 is a circuit diagram showing an embodiment of a leakage detection device of a conventional assembled battery driving circuit.
[Explanation of symbols]
1 is an assembled battery drive circuit, 2 is a wiring board for a battery controller, 3 is an external low voltage power source, 4 is an assembled battery, 5 is a load circuit, 6 and 7 are power supply lines, 8 is a leakage detection circuit, and 9 is forcibly energized. Circuit 91, current limiting resistor 92, photocoupler (switching element)

Claims (2)

高圧の組み電池、前記組み電池により駆動される負荷回路、及び、前記組み電池の正負端子を前記負荷回路の正負電源電圧入力端に個別に接続する正負の電源ラインを有する組み電池駆動回路の前記電源ラインに第一の接続ラインを通じて接続されて前記組み電池駆動回路の漏電を検出する漏電検出回路と、
前記漏電検出回路とともに前記組み電池駆動回路とは別の配線基板に実装されるとともに、前記第一の接続ラインとは異なる第二の接続ラインを通じて外部低圧電源の一端から前記組み電池駆動回路の所定部位へ所定の試験用漏電電流を断続可能に強制通電する強制通電回路と、
を備え
前記強制通電回路は、前記第一の接続ラインとは異なる第二の接続ラインを通じて外部低圧電源の一端から前記組み電池駆動回路の中間電位端へ所定の試験用漏電電流を断続可能に強制通電することを特徴とする組み電池駆動回路の漏電検出装置。
The assembled battery driving circuit having a high-voltage assembled battery, a load circuit driven by the assembled battery, and a positive / negative power supply line that individually connects positive / negative terminals of the assembled battery to positive / negative power supply voltage input terminals of the load circuit. A leakage detection circuit connected to a power supply line through a first connection line for detecting leakage of the assembled battery drive circuit;
The assembled battery driving circuit is mounted on a wiring board different from the assembled battery driving circuit together with the leakage detection circuit, and the predetermined voltage of the assembled battery driving circuit from one end of an external low-voltage power source through a second connection line different from the first connection line. A forced energization circuit that forcibly energizes a predetermined test leakage current to the site in an intermittent manner;
Equipped with a,
The forced energization circuit forcibly energizes a predetermined test leakage current from one end of an external low-voltage power source to an intermediate potential end of the assembled battery driving circuit through a second connection line different from the first connection line. A leakage detection device for a battery pack driving circuit, characterized in that:
高圧の組み電池、前記組み電池により駆動される負荷回路、及び、前記組み電池の正負端子を前記負荷回路の正負電源電圧入力端に個別に接続する正負の電源ラインを有する組み電池駆動回路の前記電源ラインに接続されて前記組み電池駆動回路の漏電を検出する漏電検出回路と、
前記漏電検出回路とともに前記組み電池駆動回路とは別の配線基板に実装されるとともに、外部低圧電源の一端から前記組み電池駆動回路の中間電位端へ所定の試験用漏電電流を断続可能に強制通電する強制通電回路と、
を備えることを特徴とする組み電池駆動回路の漏電検出装置。
The assembled battery driving circuit having a high-voltage assembled battery, a load circuit driven by the assembled battery, and a positive / negative power supply line that individually connects positive / negative terminals of the assembled battery to positive / negative power supply voltage input terminals of the load circuit. A leakage detection circuit connected to a power supply line to detect leakage of the assembled battery drive circuit;
Mounted on the wiring board different from the assembled battery driving circuit together with the leakage detection circuit, and forcibly energizing a predetermined test leakage current from one end of the external low voltage power source to the intermediate potential end of the assembled battery driving circuit A forced energization circuit to
A leakage detecting device for an assembled battery driving circuit, comprising:
JP17432298A 1998-06-22 1998-06-22 Leakage detection device for battery pack drive circuit Expired - Fee Related JP4035893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17432298A JP4035893B2 (en) 1998-06-22 1998-06-22 Leakage detection device for battery pack drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17432298A JP4035893B2 (en) 1998-06-22 1998-06-22 Leakage detection device for battery pack drive circuit

Publications (2)

Publication Number Publication Date
JP2000009784A JP2000009784A (en) 2000-01-14
JP4035893B2 true JP4035893B2 (en) 2008-01-23

Family

ID=15976625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17432298A Expired - Fee Related JP4035893B2 (en) 1998-06-22 1998-06-22 Leakage detection device for battery pack drive circuit

Country Status (1)

Country Link
JP (1) JP4035893B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10033196A1 (en) * 2000-07-07 2002-01-17 Bosch Gmbh Robert Leakage current detection for piezoelectric actuator involves reporting error when fluctuating voltage at either or both switches and piezoelectric actuator exceeds predetermined threshold
JP3986823B2 (en) * 2001-12-27 2007-10-03 パナソニック・イーブイ・エナジー株式会社 Earth leakage detector
JP4564338B2 (en) * 2004-11-17 2010-10-20 ダイハツ工業株式会社 Earth leakage detector
JP4705495B2 (en) * 2006-03-23 2011-06-22 株式会社ケーヒン Leakage detection circuit and battery electronic control device
JP5200598B2 (en) * 2007-03-16 2013-06-05 パナソニック株式会社 Secondary battery abnormality detection device
JP4523656B2 (en) * 2008-05-29 2010-08-11 レノボ・シンガポール・プライベート・リミテッド Computer testing method and computer system
JP5234282B2 (en) * 2009-02-09 2013-07-10 三菱自動車工業株式会社 Battery pack inspection device
JP5658440B2 (en) * 2009-05-21 2015-01-28 株式会社東芝 Electric vehicle control device
CN103674454B (en) * 2012-09-24 2017-03-29 微宏动力系统(湖州)有限公司 Battery-pack leakage-liquid detection system
US9297860B2 (en) * 2012-12-03 2016-03-29 Lg Chem, Ltd. High voltage service disconnect assembly and method for determining an isolation resistance fault of a battery pack
JP5971118B2 (en) * 2012-12-27 2016-08-17 三菱自動車工業株式会社 Leakage detection device with power supply container
JP6460307B2 (en) * 2014-08-29 2019-01-30 三菱自動車工業株式会社 Earth leakage detector
US11056724B2 (en) * 2016-08-26 2021-07-06 Panasonic Intellectual Property Management Co., Ltd. Power storage system
KR101879954B1 (en) * 2016-11-24 2018-07-19 한국과학기술원 Method for processing secure image through visual cryptography based on temporal domain and apparatus therefor

Also Published As

Publication number Publication date
JP2000009784A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JP4035893B2 (en) Leakage detection device for battery pack drive circuit
JP3915219B2 (en) Electric vehicle charger
KR101592780B1 (en) Method for detecting connector interlock in eco-friendly vehicle
US8929113B2 (en) Capacitor discharger for power conversion system
US8067859B2 (en) Reverse polarity protection for MOSFETs
CN104953906A (en) Load driving device
JPH11122702A (en) Leak prevention control device in air conditioner of electric vehicle
CN110231560B (en) Inductive load control device
JP2013068479A (en) Leak detection device
JPH10221395A (en) System for detecting ground fault of electric vehicle
JP3168191B2 (en) Charging device
KR20160134206A (en) Active capacitor discharge system of electric power system for eco-friendly vehicle
JP3610950B2 (en) Power supply
JP4388573B2 (en) Rotating electrical machine for vehicle
JP2008118812A (en) Controller of vehicle alternator
JP4035942B2 (en) Insulation degradation sensor and insulation degradation detection device using this sensor
CN113363113A (en) Power relay assembly, control method thereof and vehicle comprising same
JPH10290529A (en) Power unit for electric automobile
JP7234965B2 (en) Automotive inverter controller
KR20020076162A (en) Control apparatus for dc/dc converter
JP4123441B2 (en) Inrush current limiting power switch circuit for vehicles
JP2004064803A (en) Control method for drive of hybrid car
KR20170115647A (en) Duplicated Power System for Magnetic Levitation Train
JP3389675B2 (en) Power supply
JP3167792B2 (en) Motor driver self-diagnosis method and motor driver with self-diagnosis function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees