JP4032620B2 - Solar power generation equipment - Google Patents
Solar power generation equipment Download PDFInfo
- Publication number
- JP4032620B2 JP4032620B2 JP2000260852A JP2000260852A JP4032620B2 JP 4032620 B2 JP4032620 B2 JP 4032620B2 JP 2000260852 A JP2000260852 A JP 2000260852A JP 2000260852 A JP2000260852 A JP 2000260852A JP 4032620 B2 JP4032620 B2 JP 4032620B2
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- cell module
- pole
- fence
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
- F24S25/10—Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Photovoltaic Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、太陽光発電設備に係わる。
【0002】
【従来の技術】
従来の一般的な太陽光発電設備は、太陽電池モジュールが、片面受光型であり、その受光面を南向きにし、年間の受光日射量を最大にする為、設置地点での緯度を考慮して、適切な傾斜角を持って設置される。
【0003】
ポール状構造物に太陽電池モジュールを設置する場合は、ポールの先端等に南向き傾斜角付設置を行うが、ポール及び太陽電池モジュールの構造上、風圧強度等の問題で、設置する太陽電池モジュールの面積は制限される為、発生電力量も制限され、ポール状工作物に電気負荷を搭載する場合は、その負荷も制限され、その応用に限界がある。
【0004】
また、ビルの屋上または平屋根構造の個人住宅や集合住宅の平屋根上に設置される場合は、太陽電池モジュールは片面受光型であり、専用の架台上に南向き傾斜設置することが一般的である。
【0005】
【発明が解決しようとする課題】
従来技術においては、ポールに取付けられる太陽電池モジュールは、風圧等に対する機械的強度の点から、構造上の制約がある為、数Wから数10W程度の小容量の発電に制限されている。当該ポールに、工業用テレビカメラ,遠隔情報を表示するディスプレイ装置等の負荷機器を設置する場合、その機器は、太陽電池発電容量に制限され、ポール状ステーションの応用範囲が制限される。
【0006】
ビル屋上または、住宅・集合住宅用の平屋根上に設置する場合、ビルまたは住宅は必ずしも南向きとは限らず、かつ比較的小規模の設置面積の場合は、南向き傾斜付設置は、その設置容量が大幅に制限される。更に、設置架台は重量的にも大きな建屋荷重となるばかりでなく、コストも大きくなる。
【0007】
【課題を解決するための手段】
本発明による太陽光発電設備においては、両面受光型モジュールを使用することを第1の手段とし、当該モジュールを垂直設置することを第2の手段とする。この第1の手段及び第2の手段により、太陽電池システムの発電電力量は、当該太陽電池モジュールの設置方位角に依存することなく、ほぼ一定となる。更に、発電システムの出力特性を平坦化する為、複数の垂直設置の両面受光型太陽電池モジュールを方位角を分散させて設置するということを第3の手段とする。
【0008】
ポール設置型の太陽光発電設備において、上記の第2の手段を適用すると、従来技術に比較してより大きな風圧を受ける可能性が出てくる。本発明による太陽光発電設備においては、風圧対策として、一つのポールに、複数対の太陽電池モジュールを、それぞれ、方位角を変えて配置し、風圧の影響を分散するということを第4の手段とする。
【0009】
本発明による太陽光発電設備においては、他の風圧対策として、当該モジュールの取付け構造物をポールの軸方向に旋回できる構造とするということを第5の手段とする。更に、旋回可能な当該モジュールが受けた風圧とバランスして静止するように、ポール構造物と旋回可能モジュール及びその取付け構造物をスプリング機能付き連結材で連結するということを第6の手段とする。
【0010】
【発明の実施の形態】
以下、本発明の実施例を説明するが、複数の実施例を説明する為、まず、本発明の手段となる共通的な事項につき説明する。
【0011】
図6は、両面受光型太陽電池モジュールをその受光面を東西方向とした場合の年間日射量の日分布をシミュレーションした1例である。本図から分かるように、▲1▼南面傾斜角30°設置の場合は、正午付近をピークとしたコサイン状の分布となる。一方、▲4▼東西垂直面合計では、▲1▼に比較して、より早朝から夕方遅くまで、より多くの日射を受光し、午前10時頃と午後3時頃に2つのピークを有する分布となり、かつ、日射量積分値は、ほぼ同等となっている。なお、本シミュレーションは、茨城県水戸市を地点としたものであり、海の近く,積雪の多い地点等では、地上反射,散乱光が多くなり、垂直設置面の受光日射量は、より多くなる。
【0012】
図7は、垂直設置の両面受光型太陽電池モジュールの設置方位角依存性をシミュレーションした例を示すものである。図において、出力比率は、方位角−90°から+90°に振ったときの最大出力で正規化した値を示している。本図から分かるように、垂直設置された片面受光型モジュールは、方位角0°(真南)からずれるとその電気出力は著しく低下してゆく特性を有する。一方、垂直設置の両面受光型モジュールは、方位角依存性が殆ど無視できる程度であるという優れた特性を有する。
【0013】
図1及び図2は、本発明の実施例の一つを示すものである。図1において、両面受光型太陽電池モジュール4は、ポール1に水平方向に固定された1対の支持構造物、即ち、上部支持構造物2と下部支持構造物3に、複数の取付け金具5によって垂直に取付けられている。ポール1の最上部の当該モジュール対は、その受光面が東西方向を向くように取付けられ、下方に向かって、2段目には東南・北西方向、3段目には南北方向、4段目には北東・南西方向に取付けられている。図2は、前述の4対の太陽電池モジュールの設置方位角を説明する図で、ポール1を中心として、4対の両面受光型太陽電池モジュール4の設置角度を示している。
【0014】
なお、本実施例は、4対の太陽電池モジュールとし、各対の設置角度は、上方より、順次に45°ずらした例を説明したが、太陽電池モジュールの数、設置方位角度及びその順番は種々のものがある。
【0015】
本発明の他の実施例を図3,図4を参照して説明する。1対の両面受光型太陽電池モジュール4は、ポール1を軸にして旋回できる回転支持構造物6に複数の取付け金具5で固定されており、回転支持構造物6は、ポール1に固定された上下2個の軸受け機構7により支えられ、旋回可能な構造となっている。両面受光型太陽電池モジュール4の取付けられた支持回転構造物6は、その構成要素の一つである上部水平支持構造材8及び下部水平支持構造材9に、フック10を有し、ポール側フック11とスプリング機構14(連結棒12とスプリング・ダッシュポット機能要素13より構成)で連結されている。当該太陽電池モジュールが風圧を受けると、上記説明の機構により、太陽電池モジュールは、風圧とスプリング伸びによる応力がバランスする角度まで回転し、風圧が開放されたときは、初期の角度に復元することになる。図4は、この太陽電池モジュールの回転角バランスを説明する図で、ポール上方からみた平面図である。本実施例では、両面受光型太陽電池モジュール4は、その受光面を東西方向としている。風圧により、太陽電池モジュール4及び支持回転構造物6は、初期の位置から応力がバランスする位置まで回転する。この回転限界として、メカニカルストッパー15がポール1または軸受け機構7に取付けられている。
【0016】
次に、本発明の他の実施例を図5にて説明する。図5は、本発明をビル屋上に適用した例を示すものである。フェンス一体型太陽電池モジュール17は、フェンス用ポール19とフェンス用上部水平支持材20及びフェンス用下部水平支持材21に両面受光型太陽電池モジュール4を組込んだものである。このフェンス一体型太陽電池モジュール17を、ビル16の屋上22の周辺部全体に亘って垂直に設置する。この設置に当たって、屋上の角近辺では、生じる影の影響を避ける為、太陽電池モジュールを組込まないフェンス構造物18を組み合わせる。なお、本発明の適用は、平地に設置する場合も含む。
【0017】
【発明の効果】
本発明によれば、従来技術に比較して大容量の太陽光発電設備を設置できるポール状構造物設置型発電設備をより低コストで提供できる効果がある。更に、平坦な日間発電出力分布を実現し、独立型電源として、蓄電池,コンバータ,負荷を含めた最適かつ合理的なシステム設計を提供することができる。
【0018】
本発明によれば、ビルの屋上または平屋根住宅の屋根に、従来技術適用時と同等以上の発電電力量を供給できる太陽光発電設備を低コストで実現できるという効果がある。更に、建屋の方位が南からずれている場合においては、従来技術である南向き傾斜付きの架台設置の方式では、設置可能容量が大幅に縮小されるか、建屋方位に合わせて、太陽電池モジュールを設置することになり、発電電力量の低下を招くが、本発明によれば、方位角依存性が殆どなく、屋上周辺部に沿って垂直設置できる為、建屋周辺部合計長さえあれば、その形状,向きに無関係に大きな発電量が得られる太陽光発電が可能となる。
【0019】
また、本発明によれば、太陽電池モジュールは、フェンスと一体型になり、垂直設置されるので、従来技術で必要な重量のある架台及びその基礎を割愛でき、かつ、フェンス一体型モジュールは、屋上周辺部即ち、建屋の柱,壁等の位置となるので、その荷重負荷は建屋構造上も有利となり、軽量化が実現でき、低コスト化ができるという効果がある。更に、フェンス一体型の両面受光型モジュールは、一方向ではなく、少なくとも、その受光面は、南北/東西等の4方向からの受光となるので、出力分布は平坦になり、良好な発電特性が得られるという効果がある。
【図面の簡単な説明】
【図1】本発明をポール状構造物に適用し、太陽電池モジュールは固定とした場合の実施例。
【図2】図1の実施例を補足説明する図。
【図3】本発明をポール状構造物に適用し、太陽電池モジュールは回転可能とした場合の実施例。
【図4】図3の実施例を補足説明する図。
【図5】本発明をビル屋上設置の太陽光発電に適用した実施例を説明する図。
【図6】垂直設置両面受光型太陽電池モジュールをその受光面を東西面とした場合のシミュレーション結果例を示す図。
【図7】垂直設置両面受光型太陽電池モジュールの方位角依存性のシミュレーション結果の例を示す図。
【図8】太陽光発電設備の発電出力の平坦化の原理を示すシミュレーション結果の例を示す図。
【符号の説明】
1…ポール状構造物、2…上部支持構造物、3…下部支持構造物、4…両面受光型太陽電池モジュール、5…取付け金具、6…支持回転構造物、7…軸受機構、8…上部水平支持構造材、9…下部水平支持構造材、10…フック、11…ポール側フック、12…連結棒、13…スプリング・ダッシュポット機能要素、
14…スプリング機構、15…メカニカルストッパー、16…ビル、17…フェンス一体型太陽電池モジュール、18…フェンス構造物、19…フェンス用ポール、20…フェンス用上部支持材、21…フェンス用下部支持材、22…ビル屋上。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photovoltaic power generation facility.
[0002]
[Prior art]
In conventional general photovoltaic power generation facilities, the solar cell module is a single-sided light receiving type, and the light receiving surface is facing south, and the amount of solar radiation received is maximized, so the latitude at the installation point is considered. Installed with an appropriate tilt angle.
[0003]
When installing a solar cell module on a pole-shaped structure, install it at a tip of the pole with a south-facing angle. However, due to problems such as wind pressure strength due to the structure of the pole and the solar cell module, install the solar cell module. Therefore, when the electric load is mounted on the pole-shaped workpiece, the load is also limited and its application is limited.
[0004]
In addition, when installed on the roof of a building or on the flat roof of an individual or apartment house with a flat roof structure, the solar cell module is a single-sided light receiving type, and it is common to install it on a dedicated stand with a south-facing inclination. It is.
[0005]
[Problems to be solved by the invention]
In the prior art, a solar cell module attached to a pole is limited to power generation with a small capacity of about several watts to several tens of watts because of structural limitations in terms of mechanical strength against wind pressure and the like. When a load device such as an industrial television camera or a display device for displaying remote information is installed on the pole, the device is limited to the solar cell power generation capacity, and the application range of the pole-shaped station is limited.
[0006]
When installed on the rooftop of a building or on a flat roof for a residential or collective housing, the building or house is not necessarily facing south, and if the installation area is relatively small, Installation capacity is greatly limited. Further, the installation base not only has a heavy building load in terms of weight, but also increases the cost.
[0007]
[Means for Solving the Problems]
In the photovoltaic power generation facility according to the present invention, the first means is to use a double-sided light-receiving module, and the second means is to vertically install the module. By the first and second means, the amount of power generated by the solar cell system becomes substantially constant without depending on the installation azimuth angle of the solar cell module. Furthermore, in order to flatten the output characteristics of the power generation system, a third means is to install a plurality of vertically installed double-sided light-receiving solar cell modules with azimuth angles dispersed.
[0008]
When the above-mentioned second means is applied to a pole installation type solar power generation facility, there is a possibility of receiving a larger wind pressure as compared with the prior art. In the photovoltaic power generation facility according to the present invention, as a measure against wind pressure, a fourth means is to disperse the influence of wind pressure by arranging a plurality of pairs of solar cell modules at different azimuth angles on one pole. And
[0009]
In the photovoltaic power generation facility according to the present invention, as another measure against wind pressure, a fifth means is to make the mounting structure of the module turnable in the axial direction of the pole. Further, the sixth means is to connect the pole structure, the swivel module, and the mounting structure thereof with a connecting member having a spring function so that the swirlable module balances with the wind pressure received. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described. However, in order to describe a plurality of embodiments, first, common items which are means of the present invention will be described.
[0011]
FIG. 6 is an example of simulating the daily distribution of the amount of solar radiation when the light-receiving surface of the double-sided light-receiving solar cell module is in the east-west direction. As can be seen from this figure, (1) when the south surface is inclined at 30 °, the distribution is cosine-shaped with a peak around noon. On the other hand, in (4) east-west vertical plane total, compared to (1), more solar radiation is received from early morning to late evening, and there are two peaks around 10 am and 3 pm In addition, the integrated values of solar radiation are almost equal. This simulation is based in Mito City, Ibaraki Prefecture. Near the sea and in areas with a lot of snow, the ground reflection and scattered light increases, and the amount of solar radiation received on the vertical installation surface increases. .
[0012]
FIG. 7 shows an example in which the installation azimuth angle dependence of a vertically installed double-sided light-receiving solar cell module is simulated. In the figure, the output ratio indicates a value normalized with the maximum output when the azimuth angle is -90 ° to + 90 °. As can be seen from this figure, the vertically installed single-sided light receiving module has a characteristic that its electrical output is remarkably lowered when it deviates from an azimuth angle of 0 ° (true south). On the other hand, the double-sided light receiving module installed vertically has an excellent characteristic that the azimuth angle dependency is almost negligible.
[0013]
1 and 2 show one embodiment of the present invention. In FIG. 1, a double-sided light receiving
[0014]
In addition, although the present Example demonstrated the example which set it as 4 pairs of solar cell modules, and the installation angle of each pair shifted 45 degrees sequentially from the upper direction, the number of solar cell modules, installation azimuth angles, and the order are as follows. There are various things.
[0015]
Another embodiment of the present invention will be described with reference to FIGS. The pair of double-sided light-receiving
[0016]
Next, another embodiment of the present invention will be described with reference to FIG. FIG. 5 shows an example in which the present invention is applied to a building roof. The fence-integrated
[0017]
【The invention's effect】
According to the present invention, there is an effect that it is possible to provide a pole-structure-installed power generation facility that can install a large-capacity solar power generation facility as compared with the prior art at a lower cost. Furthermore, a flat daily power generation output distribution can be realized, and an optimum and rational system design including a storage battery, a converter, and a load can be provided as an independent power source.
[0018]
Advantageous Effects of Invention According to the present invention, there is an effect that it is possible to realize a solar power generation facility that can supply a generated power amount equal to or higher than that when applying the prior art to a rooftop of a building or a roof of a flat roof house at low cost. Furthermore, when the orientation of the building is deviated from the south, in the conventional method of installing the gantry with the slope facing south, the installable capacity is greatly reduced or the solar cell module is adapted to the building orientation. However, according to the present invention, there is almost no azimuth dependency, and it can be installed vertically along the roof periphery. Photovoltaic power generation that can produce a large amount of power generation regardless of its shape and orientation becomes possible.
[0019]
Further, according to the present invention, the solar cell module is integrated with the fence, and is vertically installed. Therefore, the heavy frame necessary for the prior art and its foundation can be omitted, and the fence integrated module is Since the position is on the periphery of the roof, that is, the pillars, walls, etc. of the building, the load is advantageous also on the building structure, and there is an effect that the weight can be reduced and the cost can be reduced. Furthermore, the fence-integrated double-sided light receiving module is not unidirectional, and at least its light receiving surface receives light from four directions such as north / south / east / west, so the output distribution is flat and good power generation characteristics are obtained. There is an effect that it is obtained.
[Brief description of the drawings]
FIG. 1 shows an embodiment in which the present invention is applied to a pole-shaped structure and a solar cell module is fixed.
FIG. 2 is a diagram for supplementarily explaining the embodiment of FIG. 1;
FIG. 3 shows an embodiment in which the present invention is applied to a pole-shaped structure and the solar cell module is rotatable.
4 is a diagram for supplementarily explaining the embodiment of FIG. 3; FIG.
FIG. 5 is a diagram for explaining an embodiment in which the present invention is applied to solar power generation installed on a building rooftop.
FIG. 6 is a diagram showing an example of a simulation result when a light-receiving surface of a vertically installed double-sided light-receiving solar cell module is an east-west surface.
FIG. 7 is a diagram showing an example of a simulation result of azimuth angle dependency of a vertically installed double-sided light-receiving solar cell module.
FIG. 8 is a diagram showing an example of a simulation result showing the principle of flattening the power generation output of the solar power generation facility.
[Explanation of symbols]
DESCRIPTION OF
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000260852A JP4032620B2 (en) | 2000-08-25 | 2000-08-25 | Solar power generation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000260852A JP4032620B2 (en) | 2000-08-25 | 2000-08-25 | Solar power generation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002076415A JP2002076415A (en) | 2002-03-15 |
JP4032620B2 true JP4032620B2 (en) | 2008-01-16 |
Family
ID=18748795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000260852A Expired - Lifetime JP4032620B2 (en) | 2000-08-25 | 2000-08-25 | Solar power generation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4032620B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004259928A (en) * | 2003-02-26 | 2004-09-16 | Hitachi Ltd | Solar cell module |
KR200453557Y1 (en) | 2008-11-14 | 2011-05-13 | 선일전력주식회사 | solar module system |
JP2013004591A (en) * | 2011-06-14 | 2013-01-07 | Hayashi Bussan Hatsumei Kenkyusho:Kk | Solar cell disposed along linear object extended in air |
CN106597126A (en) * | 2016-11-21 | 2017-04-26 | 天津七六四通信导航技术有限公司 | Solar-based receiver powering and location monitoring system and installation method |
CN106953591B (en) * | 2017-03-21 | 2023-11-21 | 华电电力科学研究院有限公司 | Photovoltaic power station power generation increasing structure and power generation increasing method thereof |
-
2000
- 2000-08-25 JP JP2000260852A patent/JP4032620B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002076415A (en) | 2002-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6563040B2 (en) | Structure for supporting a photovoltaic module in a solar energy collection system | |
Kelly et al. | Improved photovoltaic energy output for cloudy conditions with a solar tracking system | |
AU2008231262B2 (en) | Tracking solar collector assembly | |
US8541679B2 (en) | Photo-voltaic power generation equipment that can automatically track the sun | |
US20130118099A1 (en) | High efficiency conterbalanced dual axis solar tracking array frame system | |
US20220060142A1 (en) | Three-Dimensional Photovoltaic Charging System | |
US20220149774A1 (en) | Rocking solar panel sun tracking mounting system | |
JP3955958B2 (en) | Orientable pyramid solar collector device | |
JP4032620B2 (en) | Solar power generation equipment | |
US11165384B1 (en) | Method for hanging PV modules | |
US20210126465A1 (en) | Electric vehicle (ev) charging system with down-sun wind turbine | |
CN201398160Y (en) | Optimal elevation angle locating device of solar panels | |
Baumgartner et al. | Solar ski lift PV carport and other solar wings cable based solutions | |
JP3985837B2 (en) | Photovoltaic power generation apparatus and installation method thereof | |
CN211830637U (en) | Solar power generation equipment with rotatable spherical surface | |
JP3794245B2 (en) | Solar power plant | |
EP4226038A1 (en) | Electric vehicle (ev) charging system with down-sun wind turbine | |
WO2011043757A1 (en) | Two axis ground based solar tracking system for large-scale solar collectors | |
CN206283463U (en) | A kind of photovoltaic module erecting device and photovoltaic system | |
US12003211B2 (en) | Tracking solar panel stand | |
CN214959408U (en) | Photovoltaic module panel with adjustable installation angle | |
JPH0536286Y2 (en) | ||
CN219041454U (en) | Charging device for solar panel converter | |
CN211183867U (en) | Connecting structure of photovoltaic module and photovoltaic support | |
JP3911622B2 (en) | How to use solar power generation equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050729 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060418 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060829 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061025 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071015 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4032620 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |