[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4016645B2 - Method for extracting and purifying perfluoroalkanoic acid - Google Patents

Method for extracting and purifying perfluoroalkanoic acid Download PDF

Info

Publication number
JP4016645B2
JP4016645B2 JP2001364192A JP2001364192A JP4016645B2 JP 4016645 B2 JP4016645 B2 JP 4016645B2 JP 2001364192 A JP2001364192 A JP 2001364192A JP 2001364192 A JP2001364192 A JP 2001364192A JP 4016645 B2 JP4016645 B2 JP 4016645B2
Authority
JP
Japan
Prior art keywords
cooh
extraction
pfoa
mass
pfaa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364192A
Other languages
Japanese (ja)
Other versions
JP2003160531A (en
Inventor
昌隆 江田
英介 室谷
宙 舟木
浩樹 神谷
康輝 三浦
亙一 簗瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001364192A priority Critical patent/JP4016645B2/en
Publication of JP2003160531A publication Critical patent/JP2003160531A/en
Application granted granted Critical
Publication of JP4016645B2 publication Critical patent/JP4016645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低毒性で、化学的に安定である媒体を用いるペルフルオロアルカン酸の抽出方法及び精製方法に関する。
【0002】
【従来の技術】
ペルフルオロアルカン酸のアンモニウム塩やNa塩等は、水性媒体中で含フッ素モノマーを重合し含フッ素ポリマーを製造する工程で、乳化剤として広く利用されている。近年、含フッ素ポリマーの製造量の増大にともない、使用されたペルフルオロアルカン酸を回収し再使用することが要請されている。含フッ素ポリマーの製造工程で広く使用されているペルフルオロアルカン酸(以下、PFAAという。)は、ペルフルオロオクタン酸(以下、PFOAという。)又はそのアンモニウム塩(以下、APFOという。)であり、含フッ素モノマーを重合し、含フッ素ポリマーを凝集した後の排水にPFOA又はAPFO(以下、まとめてPFOA類という場合がある。)が含有される。APFO類の濃度は、1重量%未満であり、このような低濃度の排水からPFOA又はAPFOを回収する方法が種々提案されている。
【0003】
例えば、アルミナ等の吸着剤又は陰イオン交換樹脂にPFOA類を吸着させた後、溶出液を用いて回収する方法がある。この溶出液としては、アンモニア水、アルキルアミン水溶液、アルカリ金属の水酸化物の水溶液、鉱酸等が用いられる。しかし、アンモニア水やアルキルアミン水溶液では、吸着剤に残留するアンモニアやアルキルアミンの後処理が必要となる。また、アルカリ金属の水酸化物や鉱酸では、溶出されるPFOA類の濃度が数質量%と低く、その後に濃縮が必要である。
【0004】
特開昭55−104651、特開2001−62313には、水と混和しうる有機溶剤を溶出液に添加する方法が開示されている。溶出液中のPFOA類の濃度は10質量%以上にできるが、使用された有機媒体は可燃性で、CODの増加原因にもなる。したがって、有機媒体の後処理が必要で、このPFOA回収方法は経済面や安全面で充分でない。
【0005】
特開昭61−215346、特開昭61−215347、特開昭61−215348、EP0194681には、ジクロロメタンやクロロホルム等の塩素化炭化水素を用いる、希薄な水溶液からPFOA類を抽出・回収方法が開示されている。これらの塩素化炭化水素は不燃性、沸点及び揮発性に優れ、抽出操作及びその後の濃縮操作が容易である。しかし、これらの塩素化炭化水素へのPFOAの溶解度は低く、抽出に際して大量の溶剤を使用する必要がある。また、発ガン性の懸念物質であり、作業従事者の健康や衛生性上に問題がある。
【0006】
特開平1−117840には、クロロホルムを用いて、種々のAPFO構造異性体の混合物から直鎖APFOを分離するために、再結晶する方法が開示されているが、上記同様に作業従事者の健康への影響の点で問題がある。
【0007】
【発明が解決しようとする課題】
本発明の目的は、PFAAを含有する水性媒体と特定の含フッ素炭化水素とを接触させてPFAAを抽出することを特徴とするPFAAの抽出方法、及び抽出されたPFAAを再結晶する精製方法を提供することである。
【0008】
【課題を解決するための手段】
本発明は、PFAAを含有する水性媒体と特定の含フッ素炭化水素とを接触させてPFAAを抽出することを特徴とするPFAAの抽出方法を提供する。
また、本発明は、前記抽出方法で抽出されたPFAAを、特定の含フッ素炭化水素を媒体として再結晶することを特徴とするPFAAの精製方法を提供する。
【0009】
【発明の実施の形態】
本発明におけるPFAAとしては、炭素数3〜18のペルフルオロアルカン酸が好ましい。PFAAは、直鎖状でも、分岐状でもよい。また、炭素鎖内にエーテル性の酸素原子を有してもよい。また、ω位の末端に水素原子を有してもよい。PFAAとしては、炭素数6〜12のペルフルオロアルカン酸がより好ましく、PFOAが最も好ましい。
【0010】
PFAAの具体例としては、CCOOH、CFCFCFCOOH、CFCF(CF)COOH、CF(CFCOOH、CFCF(CF)CFCOOH、CFCFCF(CF)COOH、CF(CFCOOH、(CFCCFCFCOOH、CF(CFCOOH、CF(CFCF(C)COOH、CFCF(CF)CFCFCFCFCOOH、CF(CFCF(CF)COOH、CF(CFCOOH、CFH(CFCOOH、CFCF(CF)(CFCOOH、CFCF(CF)(CFCOOH、CFCF(CF)(CFCOOH、CF(CFCF(CF)COOH、CF(CFCOOH、CFH(CFCOOH、CF(CFCOOH、CFH(CFCOOH、CFCF(CF)(CFCOOH、CF(CFCOOH、CF(CF10COOH、CFCF(CF)(CFCOOH、CF(CF11COOH、CFCF(CF)(CFCOOH、CF(CF12COOH、CF(CF13COOH、CF(CF14COOH、CF(CF15COOH、CF(CF16COOH、CF(CFOCF(CF)COOH、CF(CFOCF(CF)CFOCF(CF)COOH、CF(CFOCF(CF)CFOCF(CF)CFOCF(CF)COOHが挙げられる。また、それらの、アンモニウム塩、Li塩、Na塩、K塩及びCs塩も挙げられる。
【0011】
より好ましくは、CF(CFCOOH、(CFCCFCFCOOH、CF(CFCOOH、CF(CFCF(C)COOH、CFCF(CF)CFCFCFCFCOOH、CF(CFCF(CF)COOH、CF(CFCOOH、HCF(CFCOOH、CFCF(CF)(CFCOOH、CFCF(CF)(CFCOOH、CFCF(CF)(CFCOOH、CF(CFCF(CF)COOH、CF(CFCOOH、HCF(CFCOOH、CF(CFCOOH、HCF(CFCOOH、CFCF(CF)(CFCOOH、CF(CFCOOH、CF(CF10COOH、CFCF(CF)(CFCOOH、CF(CFOCF(CF)COOH、CF(CFOCF(CF)CFOCF(CF)COOH、CF(CFOCF(CF)CFOCF(CF)CFOCF(CF)COOH及びそれらの、アンモニウム塩、Na塩及びK塩である。
【0012】
最も好もしくは、CF(CFCOOH及びそのアンモニウム塩である。
【0015】
本発明における含フッ素炭化水素、CHCl及びCからなる群から選ばれる1種以上であ
【0016】
HClとしては、CFCFCHCl、CClFCFCHClF、CClFCHFCClF,CFCHFCClF、CFCHClCClFが挙げられ、CFCFCHCl、CClFCFCHClFが最も好ましい。
【0017】
としては、CFCHCHF、CFCHFCHF、CHFCHFCHFが挙げられ、CFCHCHFが最も好ましい。
【0018】
すなわち、含フッ素炭化水素としては、CFCFCHCl、CClFCFCHClF及びCFCHCHFからなる群から選ばれる1種以上であることが最も好ましい。
【0019】
HCl及びCに対するPFAAの溶解度はジクロロメタン、クロロホルムよりも大きく、より少量の媒体でPFAAを抽出できる。また、CHCl及びCは不燃性であり、かつ従来の塩素化炭化水素に比べて低毒性であり、その沸点、蒸発潜熱が濃縮や回収操作に適するので好ましい。また、従来の塩素化炭化水素に比べて化学的に安定であり、多数回にわたり反復して濃縮及び回収に使用できる。さらに、PFAAの抽出に従来の塩素化炭化水素を用いた場合水相に溶解する塩素化炭化水素の処理が必要になるのに対し、含フッ素炭化水素の水への溶解度は従来の塩素化炭化水素よりも低いのでこのような処理は不要である。また、抽出操作後に従来の塩素化炭化水素の場合よりも速やかに水相と含フッ素炭化水素相との間に明瞭な液・液界面が形成されるという利点がある。
【0020】
本発明における抽出方法としては、PFAAの塩を含有する水性媒体に無機酸を添加して、遊離させたPFAAを、含フッ素炭化水素と接触させて抽出することが好ましい。無機酸としては、HCl、HSO、HNOが挙げられる。特に、HClが好ましい。HClは沸点が−85℃の酸であり、抽出液に混入するHClは後の濃縮操作により容易に抽出液から除去できる。
【0021】
本発明のPFAAの精製方法において、上記の抽出方法で抽出したPFAAを、前記含フッ素炭化水素を媒体として再結晶する。
【0022】
本発明において、上記のPFAAの抽出又は精製操作には、従来用いられている装置、設備が利用できる。抽出装置としては回分式抽出装置、並流多回抽出装置、向流多段抽出装置、連続向流抽出装置が挙げられる。また、精製装置としてはタンク式晶析器、Swenson−Walker晶析器、Howard晶析装置、蒸発式晶析装置が挙げられる。
【0023】
抽出条件としては、溶剤の沸点未満の温度においてPFAAを含有する水性媒体と抽出溶剤とを混合する。通常水性媒体に対して20〜100質量%、好ましくは30〜50質量%の抽出溶剤を添加する。より大量の抽出溶剤を用いることによりPFAAの抽出率は向上するが濃縮等の工程での溶剤の処理量は増大する。混合に際しては撹拌、流動、震盪などにより水性媒体中に抽出媒体を分散させる。抽出媒体の液滴の直径が0.1mm以下となるように分散を行った場合10分未満の混合時間で抽出が完了する。抽出完了後静置して水相と媒体相を分離させる。両相の界面が明瞭になるまで分離させることが要求されるがこれは通常10分未満の静置時間で達成される。
【0024】
再結晶による精製条件としては、晶析を行う温度において精製に供するPFAAの10〜40%、好ましくは10〜20%を溶解し得る量の媒体を加え、媒体が沸騰するまで加熱してPFAAを溶解させる。PFAAが直鎖体と分岐鎖体の混合物である場合には、より多くの媒体を使用することにより得られるPFAA中の直鎖体の比率は向上するが再結晶の収率は低下する。次いでこの溶液を0〜10℃まで冷却し、析出したPFAAを回収する。
【0025】
本発明の抽出方法は、炭素原子数3〜18のPFAAの抽出に好ましく適用される。されに、炭素原子数3〜18のペルフルオロアルカンスルホン酸及び/又はその塩、炭素原子数2のPFAA及び/又はその塩、炭素原子数2のペルフルオロアルカンスルホン酸及び/又はその塩、にも好ましく適用できる。
【0026】
【実施例】
本発明を以下実施例で詳細に説明するが本発明はこれらに限定されない。
なお、実施例中、APFO類の定量には液体クロマトグラフ−質量スペクトル法を、直鎖体/分岐体比率の測定には誘導体化ガスクロマトグラフ−質量スペクトル法を用いた。
【0027】
[実施例1]
PFOAを0.11質量%含有する、pH3.0の水溶液の180gに、抽出媒体としてCFClCFCHClF/CFCFCHCl混合媒体(モル比55/45、旭硝子社製アサヒクリン225、以下、AK225という。)の80gを加え、10分間激しく振盪した。この液を静置して2相に分離した後の上層の水相には0.02質量%のPFOA、下層のAK225相には0.20質量%のPFOAが含有された。PFOA抽出率は、80.0%と計算された。
【0028】
[実施例2]
抽出媒体としてAK225に代えて、CHFCHCFの80gを用いる以外は実施例1と同様に操作した。上層の水相には0.03質量%、下層のCHFCHCF相には0.17質量%のPFOAが含有された。PFOA抽出率は、68.4%と計算された。
【0029】
[比較例1]
抽出媒体としてAK225に代えて、クロロホルムの80gを用いる以外は実施例1と同様に操作した。上層の水相には0.03質量%、下層のクロロホルム相には0.19質量%のPFOAが含有された。PFOA抽出率は、76.0%と計算された。
【0030】
[比較例2]
抽出媒体としてAK225に代えて、ジクロロメタンの80gを用いる以外は実施例1と同様に操作した。上層の水相には0.03質量%、下層のジクロロメタン相には0.17質量%のPFOAが含有された。PFOA抽出率は、68.2%と計算された。
【0031】
[比較例3]
抽出媒体としてAK225に代えて、ジエチルエーテルの80gを用いる以外は実施例1と同様に操作した。下層の水相には0.06質量%、上層のジエチルエーテル相には0.11質量%のPFOAが含有された。PFOA抽出率は、44.2%と計算された。
【0032】
[実施例3]
APFOを2.0質量%含有する水溶液の200gに35.0質量%の濃塩酸の1.0gを加えた後AK225の80gを加え、10分間激しく振盪した。この液を静置して2相に分離した後の上層の水相には0.41質量%、下層のAK225相には3.85質量%のPFOAが含有された。PFOA抽出率は、80.3%と計算された。
【0033】
[実施例4]
抽出媒体としてAK225に代えて、CHFCHCFを用いる以外は実施例3と同様と同様に操作した。上層の水相には0.63質量%、下層のCHFCHCF相には3.32質量%のPFOAが含有されていた。PFOA抽出率は、68.5%と計算された。
【0034】
[比較例4]
抽出媒体としてAK225に代えて、クロロホルムを用いる以外は実施例3と同様と同様に操作した。上層の水相には0.56質量%、下層のクロロホルム相には1.03質量%のPFOAが含有されていた。二相の界面付近にはPFOAの沈殿が認められ、その質量は2.01gであった。PFOA抽出率は、20.8%と計算された。
【0035】
[実施例5]
直鎖体/分岐体のモル比が84.6/15.4であるAPFOを2.0質量%含有する水溶液の2000gに35.0質量%の濃塩酸の10.0gを加えた後、AK225の800gを加え、10分間激しく振盪した。この液を静置して2相に分離した後の上層の水相には0.40質量%、下層のAK225相には3.86質量%のPFOAが含有された。PFOAの抽出率は77.2%と計算された。
【0036】
このAK225相を分離し、絶対圧0.03MPaの減圧下でAK225を留去し、得られた固体にAK225の100gを加えた。ついで、AK225が沸騰するまで加熱した後、AK225溶液を10℃まで冷却した。23.1gのPFOAが固体として析出した。その直鎖体/分岐体のモル比は99.8/0.2であった。
【0037】
[実施例6]
AK225に代えて、CHFCHCFを用いる以外は実施例5と同様に操作した。上層の水相には0.64質量%、下層のCHFCHCF相には3.31質量%のPFOAが含有された。PFOAの抽出率は66.2%と計算された。
【0038】
このCHFCHCF相を分離し、絶対圧0.08MPaの減圧下でCHFCHCFを留去し、得られた固体にCHFCHCFの110gを加えた。ついで、CHFCHCFが沸騰するまで加熱した後、CHFCHCF溶液を0℃まで冷却した。21.2gのPFOAが固体として析出した。その直鎖体/分岐体のモル比は99.9/0.1であった。
【0039】
[比較例5]
直鎖体/分岐体のモル比が84.6/15.4であるAPFOを2.0質量%含有する水溶液の2000gに35.0質量%の濃塩酸の10.0gを加えた後、AK225の800gを加え、10分間激しく振盪した。この液を静置して2相に分離した後の上層の水相には0.41質量%、下層のAK225相には3.83質量%のPFOAが含有された。PFOAの抽出率は79.8%と計算された。
【0040】
このAK225相を分離し、絶対圧0.03MPaの減圧下でAK225を留去し、得られた固体にクロロホルムの960gを加えた。ついで、クロロホルムが沸騰するまで加熱した後、クロロホルム溶液を10℃まで冷却した。24.7gのPFOAが固体として析出した。その直鎖体/分岐体のモル比は99.8/0.2であった。
【0041】
[実施例7]
APFOを乳化剤として使用して得たPTFEの水性分散液からPTFEを凝集分離した後の凝集排水には、PFOAが0.05質量%含有された。該排水の180gに塩酸を加えpH3.0とした後、抽出媒体としてAK225の80gを加え、10分間激しく振盪した。ついで、分散していた少量のPTFEが析出したので、ろ過で除去した後、ろ液を静置したところ、ろ液が2相に分離した。上層の水相には0.015質量%のPFOAが、下層のAK225相には0.079質量%のPFOAが、含有された。PFOA抽出率は、70.1%と計算された。
【0042】
【発明の効果】
本発明の抽出方法及び精製方法によれば、従来の塩素化炭化水素に比べて低毒性で、化学的に安定である含フッ素炭化水素媒体を用いるので、多数回にわたり反復して濃縮、回収、再結晶操作に使用できる。さらに、含フッ素炭化水素は水相にほとんど溶解しないので水相の後処理が不要である。また、抽出操作後に速やかに水相と含フッ素炭化水素相とが分離する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for extracting and purifying perfluoroalkanoic acid using a low-toxic and chemically stable medium.
[0002]
[Prior art]
Ammonium salts, Na salts, and the like of perfluoroalkanoic acid are widely used as emulsifiers in the step of producing a fluorine-containing polymer by polymerizing a fluorine-containing monomer in an aqueous medium. In recent years, it has been demanded to recover and reuse the used perfluoroalkanoic acid as the production amount of the fluoropolymer increases. Perfluoroalkanoic acid (hereinafter referred to as PFAA) widely used in the production process of a fluorine-containing polymer is perfluorooctanoic acid (hereinafter referred to as PFOA) or an ammonium salt thereof (hereinafter referred to as APFO). PFOA or APFO (hereinafter sometimes collectively referred to as PFOAs) is contained in the waste water after the monomers are polymerized and the fluorine-containing polymer is aggregated. The concentration of APFOs is less than 1% by weight, and various methods for recovering PFOA or APFO from such low-concentration wastewater have been proposed.
[0003]
For example, there is a method in which PFOAs are adsorbed on an adsorbent such as alumina or an anion exchange resin and then recovered using an eluate. As the eluent, ammonia water, an aqueous alkylamine solution, an aqueous solution of an alkali metal hydroxide, a mineral acid, or the like is used. However, ammonia water or an alkylamine aqueous solution requires post-treatment of ammonia or alkylamine remaining in the adsorbent. Further, in the case of alkali metal hydroxides and mineral acids, the concentration of eluted PFOAs is as low as several mass%, and it is necessary to concentrate thereafter.
[0004]
JP-A-55-104651 and JP-A-2001-62313 disclose a method of adding an organic solvent miscible with water to the eluate. The concentration of PFOAs in the eluate can be increased to 10% by mass or more, but the organic medium used is flammable and causes an increase in COD. Accordingly, post-treatment of the organic medium is necessary, and this PFOA recovery method is not sufficient in terms of economy and safety.
[0005]
JP-A-61-215346, JP-A-61-215347, JP-A-61-215348, and EP0194681 disclose a method for extracting and recovering PFOAs from dilute aqueous solutions using chlorinated hydrocarbons such as dichloromethane and chloroform. Has been. These chlorinated hydrocarbons are excellent in nonflammability, boiling point and volatility, and can be easily extracted and subsequently concentrated. However, the solubility of PFOA in these chlorinated hydrocarbons is low, and it is necessary to use a large amount of solvent for extraction. In addition, it is a carcinogenic substance and has problems in the health and hygiene of workers.
[0006]
Japanese Laid-Open Patent Publication No. 1-1117840 discloses a method of recrystallization in order to separate linear APFO from a mixture of various APFO structural isomers using chloroform. There is a problem in terms of impact.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for extracting PFAA characterized by bringing PFAA into contact with an aqueous medium containing PFAA and a specific fluorinated hydrocarbon, and a purification method for recrystallizing the extracted PFAA. Is to provide.
[0008]
[Means for Solving the Problems]
The present invention provides a method for extracting PFAA, wherein PFAA is extracted by bringing an aqueous medium containing PFAA into contact with a specific fluorine-containing hydrocarbon.
The present invention also provides a method for purifying PFAA, wherein the PFAA extracted by the extraction method is recrystallized using a specific fluorine-containing hydrocarbon as a medium.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As PFAA in this invention, C3-C18 perfluoroalkanoic acid is preferable. PFAA may be linear or branched. Moreover, you may have an etheric oxygen atom in a carbon chain. Moreover, you may have a hydrogen atom in the terminal of omega position. As PFAA, a C6-C12 perfluoroalkanoic acid is more preferable, and PFOA is the most preferable.
[0010]
Specific examples of PFAA include C 2 F 5 COOH, CF 3 CF 2 CF 2 COOH, CF 3 CF (CF 3 ) COOH, CF 3 (CF 2 ) 3 COOH, CF 3 CF (CF 3 ) CF 2 COOH, CF 3 CF 2 CF (CF 3 ) COOH, CF 3 (CF 2 ) 4 COOH, (CF 3 ) 3 CCF 2 CF 2 COOH, CF 3 (CF 2 ) 5 COOH, CF 3 (CF 2 ) 3 CF (C 2 F 5) COOH, CF 3 CF (CF 3) CF 2 CF 2 CF 2 CF 2 COOH, CF 3 (CF 2) 4 CF (CF 3) COOH, CF 3 (CF 2) 6 COOH, CF 2 H ( CF 2 ) 6 COOH, CF 3 CF (CF 3 ) (CF 2 ) 4 COOH, CF 3 CF (CF 3 ) (CF 2 ) 5 COOH, CF 3 CF (CF 3) (CF 2) 6 COOH , CF 3 (CF 2) 6 CF (CF 3) COOH, CF 3 (CF 2) 7 COOH, CF 2 H (CF 2) 7 COOH, CF 3 (CF 2) 8 COOH , CF 2 H (CF 2 ) 8 COOH, CF 3 CF (CF 3 ) (CF 2 ) 7 COOH, CF 3 (CF 2 ) 9 COOH, CF 3 (CF 2 ) 10 COOH, CF 3 CF (CF 3 ) (CF 2 ) 8 COOH, CF 3 (CF 2 ) 11 COOH, CF 3 CF (CF 3 ) (CF 2 ) 9 COOH, CF 3 (CF 2 ) 12 COOH, CF 3 (CF 2 ) 13 COOH, CF 3 (CF 2 ) 14 COOH, CF 3 (CF 2 ) 15 COOH, CF 3 (CF 2 ) 16 COOH, CF 3 (CF 2 ) 2 OCF (CF 3 ) COO H, CF 3 (CF 2) 2 OCF (CF 3) CF 2 OCF (CF 3) COOH, CF 3 (CF 2) 2 OCF (CF 3) CF 2 OCF (CF 3) CF 2 OCF (CF 3) COOH Is mentioned. Moreover, those ammonium salt, Li salt, Na salt, K salt, and Cs salt are also mentioned.
[0011]
More preferably, CF 3 (CF 2 ) 4 COOH, (CF 3 ) 3 CCF 2 CF 2 COOH, CF 3 (CF 2 ) 5 COOH, CF 3 (CF 2 ) 3 CF (C 2 F 5 ) COOH, CF 3 CF (CF 3 ) CF 2 CF 2 CF 2 CF 2 COOH, CF 3 (CF 2 ) 4 CF (CF 3 ) COOH, CF 3 (CF 2 ) 6 COOH, HCF 2 (CF 2 ) 6 COOH, CF 3 CF (CF 3 ) (CF 2 ) 4 COOH, CF 3 CF (CF 3 ) (CF 2 ) 5 COOH, CF 3 CF (CF 3 ) (CF 2 ) 6 COOH, CF 3 (CF 2 ) 6 CF (CF 3) COOH, CF 3 (CF 2) 7 COOH, HCF 2 (CF 2) 7 COOH, CF 3 (CF 2) 8 COOH, HCF 2 (CF 2) 8 COOH , CF 3 CF (CF 3 ) (CF 2 ) 7 COOH, CF 3 (CF 2 ) 9 COOH, CF 3 (CF 2 ) 10 COOH, CF 3 CF (CF 3 ) (CF 2 ) 8 COOH, CF 3 ( CF 2 ) 2 OCF (CF 3 ) COOH, CF 3 (CF 2 ) 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOH, CF 3 (CF 2 ) 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOH and their ammonium, Na and K salts.
[0012]
Most preferred is CF 3 (CF 2 ) 6 COOH and its ammonium salt.
[0015]
Fluorinated hydrocarbon in the present invention, Ru der least one member selected from the group consisting of C 3 HCl 2 F 5 and C 3 H 3 F 5.
[0016]
C 3 The HCl 2 F 5, CF 3 CF 2 CHCl 2, CClF 2 CF 2 CHClF, CClF 2 CHFCClF 2, CF 3 CHFCCl 2 F, CF 3 CHClCClF 2 can be mentioned, CF 3 CF 2 CHCl 2, CClF 2 Most preferred is CF 2 CHClF.
[0017]
Examples of C 3 H 3 F 5 include CF 3 CH 2 CHF 2 , CF 3 CHFCH 2 F, and CHF 2 CHFCHF 2 , and CF 3 CH 2 CHF 2 is most preferable.
[0018]
That is, the fluorine-containing hydrocarbon is most preferably at least one selected from the group consisting of CF 3 CF 2 CHCl 2 , CClF 2 CF 2 CHClF, and CF 3 CH 2 CHF 2 .
[0019]
The solubility of PFAA in C 3 HCl 2 F 5 and C 3 H 3 F 5 is greater than that in dichloromethane and chloroform, and PFAA can be extracted with a smaller amount of medium. C 3 HCl 2 F 5 and C 3 H 3 F 5 are nonflammable and are less toxic than conventional chlorinated hydrocarbons, and their boiling point and latent heat of vaporization are suitable for concentration and recovery operations. . In addition, it is chemically stable compared to conventional chlorinated hydrocarbons, and can be used repeatedly for concentration and recovery many times. Furthermore, when conventional chlorinated hydrocarbons are used for extraction of PFAA, treatment of chlorinated hydrocarbons dissolved in the aqueous phase is required, whereas the solubility of fluorine-containing hydrocarbons in water is the same as conventional chlorinated carbonization. Such treatment is unnecessary because it is lower than hydrogen. Further, there is an advantage that a clear liquid / liquid interface is formed between the aqueous phase and the fluorinated hydrocarbon phase more rapidly than in the case of the conventional chlorinated hydrocarbon after the extraction operation.
[0020]
As the extraction method in the present invention, it is preferable to extract the PFAA released by adding an inorganic acid to an aqueous medium containing a salt of PFAA and then contacting with the fluorinated hydrocarbon. Examples of inorganic acids include HCl, H 2 SO 4 , and HNO 3 . In particular, HCl is preferred. HCl is an acid having a boiling point of −85 ° C., and HCl mixed in the extract can be easily removed from the extract by a subsequent concentration operation.
[0021]
In the method for purifying PFAA of the present invention, PFAA extracted by the above extraction method is recrystallized using the fluorinated hydrocarbon as a medium.
[0022]
In the present invention, conventionally used apparatus and equipment can be used for the above-described extraction or purification operation of PFAA. Examples of the extraction device include a batch type extraction device, a cocurrent multiple extraction device, a countercurrent multistage extraction device, and a continuous countercurrent extraction device. Examples of the refining device include a tank crystallizer, a Swenson-Walker crystallizer, a Howard crystallizer, and an evaporation crystallizer.
[0023]
As extraction conditions, an aqueous medium containing PFAA and the extraction solvent are mixed at a temperature lower than the boiling point of the solvent. Usually, 20 to 100% by mass, preferably 30 to 50% by mass of an extraction solvent is added to the aqueous medium. By using a larger amount of extraction solvent, the extraction rate of PFAA is improved, but the amount of solvent treated in the steps such as concentration is increased. During mixing, the extraction medium is dispersed in the aqueous medium by stirring, fluidization, shaking, or the like. When the dispersion is performed so that the diameter of the droplet of the extraction medium is 0.1 mm or less, the extraction is completed in a mixing time of less than 10 minutes. Allow to stand after extraction to separate the aqueous and media phases. Separation is required until the interface between the two phases is clear, which is usually achieved with a standing time of less than 10 minutes.
[0024]
As the purification conditions by recrystallization, an amount of a medium capable of dissolving 10 to 40%, preferably 10 to 20%, of PFAA used for purification is added at a temperature at which crystallization is performed, and the PFAA is heated until the medium boils. Dissolve. When PFAA is a mixture of a linear chain and a branched chain, the ratio of the linear chain in PFAA obtained by using more media improves, but the recrystallization yield decreases. The solution is then cooled to 0-10 ° C. and the precipitated PFAA is recovered.
[0025]
The extraction method of the present invention is preferably applied to the extraction of PFAA having 3 to 18 carbon atoms. In addition, it is also preferable for C 3-18 perfluoroalkanesulfonic acid and / or salt thereof, PFAA of carbon number 2 and / or salt thereof, C 2 perfluoroalkanesulfonic acid and / or salt thereof. Applicable.
[0026]
【Example】
The present invention will be described in detail in the following examples, but the present invention is not limited thereto.
In Examples, liquid chromatography-mass spectrometry was used for quantification of APFOs, and derivatization gas chromatography-mass spectrometry was used for measurement of the linear / branched body ratio.
[0027]
[Example 1]
180 g of an aqueous solution containing 0.11% by mass of PFOA and having a pH of 3.0 is mixed with a CF 2 ClCF 2 CHClF / CF 3 CF 2 CHCl 2 mixed medium (molar ratio 55/45, Asahi Clin 225 manufactured by Asahi Glass Co., Ltd.). Hereinafter, 80 g of AK225) was added and shaken vigorously for 10 minutes. After the liquid was allowed to stand and separated into two phases, the upper aqueous phase contained 0.02% by mass of PFOA, and the lower AK225 phase contained 0.20% by mass of PFOA. The PFOA extraction rate was calculated as 80.0%.
[0028]
[Example 2]
The same operation as in Example 1 was performed except that 80 g of CHF 2 CH 2 CF 3 was used instead of AK225 as the extraction medium. The upper aqueous phase contained 0.03% by mass, and the lower CHF 2 CH 2 CF 3 phase contained 0.17% by mass of PFOA. The PFOA extraction rate was calculated to be 68.4%.
[0029]
[Comparative Example 1]
The same operation as in Example 1 was performed except that 80 g of chloroform was used instead of AK225 as the extraction medium. The upper aqueous phase contained 0.03% by mass, and the lower chloroform phase contained 0.19% by mass of PFOA. The PFOA extraction rate was calculated to be 76.0%.
[0030]
[Comparative Example 2]
The same operation as in Example 1 was performed except that 80 g of dichloromethane was used instead of AK225 as the extraction medium. The upper aqueous phase contained 0.03% by mass, and the lower dichloromethane phase contained 0.17% by mass of PFOA. The PFOA extraction rate was calculated as 68.2%.
[0031]
[Comparative Example 3]
The same operation as in Example 1 was performed except that 80 g of diethyl ether was used instead of AK225 as the extraction medium. The lower aqueous phase contained 0.06% by mass, and the upper diethyl ether phase contained 0.11% by mass of PFOA. The PFOA extraction rate was calculated to be 44.2%.
[0032]
[Example 3]
To 200 g of an aqueous solution containing 2.0% by mass of APFO, 1.0 g of 35.0% by mass concentrated hydrochloric acid was added, and then 80 g of AK225 was added and shaken vigorously for 10 minutes. This liquid was allowed to stand and separated into two phases. The upper aqueous phase contained 0.41% by mass, and the lower AK225 phase contained 3.85% by mass of PFOA. The PFOA extraction rate was calculated as 80.3%.
[0033]
[Example 4]
The same operation as in Example 3 was performed except that CHF 2 CH 2 CF 3 was used instead of AK225 as the extraction medium. The upper aqueous phase contained 0.63% by mass, and the lower CHF 2 CH 2 CF 3 phase contained 3.32% by mass of PFOA. The PFOA extraction rate was calculated to be 68.5%.
[0034]
[Comparative Example 4]
The same operation as in Example 3 was performed except that chloroform was used instead of AK225 as the extraction medium. The upper aqueous phase contained 0.56% by mass and the lower chloroform phase contained 1.03% by mass of PFOA. Precipitation of PFOA was observed near the two-phase interface, and its mass was 2.01 g. The PFOA extraction rate was calculated as 20.8%.
[0035]
[Example 5]
After adding 10.0 g of 35.0 mass% concentrated hydrochloric acid to 2000 g of an aqueous solution containing 2.0 mass% of APFO having a linear / branched molar ratio of 84.6 / 15.4, AK225 Was added and shaken vigorously for 10 minutes. This liquid was allowed to stand and separated into two phases. The upper aqueous phase contained 0.40% by mass, and the lower AK225 phase contained 3.86% by mass of PFOA. The extraction rate of PFOA was calculated as 77.2%.
[0036]
This AK225 phase was separated, AK225 was distilled off under a reduced pressure of 0.03 MPa in absolute pressure, and 100 g of AK225 was added to the obtained solid. Subsequently, after heating until AK225 boiled, the AK225 solution was cooled to 10 degreeC. 23.1 g of PFOA precipitated as a solid. The linear / branched molar ratio was 99.8 / 0.2.
[0037]
[Example 6]
The same operation as in Example 5 was performed except that CHF 2 CH 2 CF 3 was used instead of AK225. The upper aqueous phase contained 0.64% by mass, and the lower CHF 2 CH 2 CF 3 phase contained 3.31% by mass of PFOA. The extraction rate of PFOA was calculated to be 66.2%.
[0038]
This CHF 2 CH 2 CF 3 phase was separated, CHF 2 CH 2 CF 3 was distilled off under a reduced pressure of 0.08 MPa in absolute pressure, and 110 g of CHF 2 CH 2 CF 3 was added to the obtained solid. Then, after heating to CHF 2 CH 2 CF 3 boils was cooled CHF 2 CH 2 CF 3 solution until 0 ° C.. 21.2 g of PFOA precipitated as a solid. The linear / branched molar ratio was 99.9 / 0.1.
[0039]
[Comparative Example 5]
After adding 10.0 g of 35.0 mass% concentrated hydrochloric acid to 2000 g of an aqueous solution containing 2.0 mass% of APFO having a linear / branched molar ratio of 84.6 / 15.4, AK225 Was added and shaken vigorously for 10 minutes. This liquid was allowed to stand and separated into two phases. The upper aqueous phase contained 0.41% by mass, and the lower AK225 phase contained 3.83% by mass of PFOA. The extraction rate of PFOA was calculated to be 79.8%.
[0040]
This AK225 phase was separated, AK225 was distilled off under a reduced pressure of 0.03 MPa in absolute pressure, and 960 g of chloroform was added to the obtained solid. Subsequently, after heating until chloroform boiled, the chloroform solution was cooled to 10 degreeC. 24.7 g of PFOA precipitated as a solid. The linear / branched molar ratio was 99.8 / 0.2.
[0041]
[Example 7]
The aggregated effluent after coagulating and separating PTFE from the aqueous PTFE dispersion obtained by using APFO as an emulsifier contained 0.05 mass% of PFOA. After adding hydrochloric acid to 180 g of the waste water to adjust the pH to 3.0, 80 g of AK225 was added as an extraction medium and shaken vigorously for 10 minutes. Subsequently, since a small amount of PTFE that had been dispersed was deposited, the filtrate was allowed to stand after removing by filtration, and the filtrate separated into two phases. The upper aqueous phase contained 0.015% by mass of PFOA, and the lower AK225 phase contained 0.079% by mass of PFOA. The PFOA extraction rate was calculated to be 70.1%.
[0042]
【The invention's effect】
According to the extraction method and the purification method of the present invention, since a fluorine-containing hydrocarbon medium that is less toxic and chemically stable than conventional chlorinated hydrocarbons is used, it is repeatedly concentrated and recovered many times. Can be used for recrystallization operations. Furthermore, since the fluorine-containing hydrocarbon hardly dissolves in the aqueous phase, no post-treatment of the aqueous phase is necessary. Further, the aqueous phase and the fluorinated hydrocarbon phase are separated immediately after the extraction operation.

Claims (4)

ペルフルオロアルカン酸を含有する水性媒体と、 HCl 及びC からなる群から選ばれる1種以上である含フッ素炭化水素とを接触させてペルフルオロアルカン酸を抽出することを特徴とするペルフルオロアルカン酸の抽出方法。Extracting perfluoroalkanoic acid by contacting an aqueous medium containing perfluoroalkanoic acid with one or more fluorine-containing hydrocarbons selected from the group consisting of C 3 HCl 2 F 5 and C 3 H 3 F 5 And a method for extracting perfluoroalkanoic acid. 前記ペルフルオロアルカン酸の塩を含有する水性媒体に無機酸を添加して、遊離したペルフルオロアルカン酸を HCl 及びC からなる群から選ばれる1種以上である含フッ素炭化水素と接触させて抽出する請求項1に記載の抽出方法。An inorganic acid is added to the aqueous medium containing the perfluoroalkanoic acid salt, and the liberated perfluoroalkanoic acid is one or more selected from the group consisting of C 3 HCl 2 F 5 and C 3 H 3 F 5. The extraction method according to claim 1, wherein the extraction is carried out in contact with a fluorohydrocarbon. 請求項1又は2に記載の抽出方法で抽出されたペルフルオロアルカン酸を、 HCl 及びC からなる群から選ばれる1種以上である含フッ素炭化水素を媒体として再結晶することを特徴とするペルフルオロアルカン酸の精製方法。The perfluoroalkanoic acid extracted by the extraction method according to claim 1 or 2 is a fluorine-containing hydrocarbon which is at least one selected from the group consisting of C 3 HCl 2 F 5 and C 3 H 3 F 5 as a medium. A method for purifying perfluoroalkanoic acid, which comprises recrystallization. ペルフルオロアルカン酸がペルフルオロクタン酸である請求項1〜3のいずれかに記載の方法。The method according to claim 1 perfluoroalkanes acid is perfluoro Oh octane acid.
JP2001364192A 2001-11-29 2001-11-29 Method for extracting and purifying perfluoroalkanoic acid Expired - Fee Related JP4016645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364192A JP4016645B2 (en) 2001-11-29 2001-11-29 Method for extracting and purifying perfluoroalkanoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364192A JP4016645B2 (en) 2001-11-29 2001-11-29 Method for extracting and purifying perfluoroalkanoic acid

Publications (2)

Publication Number Publication Date
JP2003160531A JP2003160531A (en) 2003-06-03
JP4016645B2 true JP4016645B2 (en) 2007-12-05

Family

ID=19174420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364192A Expired - Fee Related JP4016645B2 (en) 2001-11-29 2001-11-29 Method for extracting and purifying perfluoroalkanoic acid

Country Status (1)

Country Link
JP (1) JP4016645B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4455327B2 (en) * 2002-06-19 2010-04-21 株式会社ササクラ Method for recovering fluorine-containing emulsifier
JP5163125B2 (en) * 2005-10-14 2013-03-13 旭硝子株式会社 Method for regenerating basic anion exchange resin
CN101792383B (en) * 2010-03-12 2012-08-29 浙江大学 Method for extracting low concentration perfluorooctanoic acid from fatty substances
CN112028765B (en) * 2020-08-31 2022-12-13 上海沃凯生物技术有限公司 Separation method of mixture of linear perfluorooctanoic acid and branched perfluorooctanoic acid

Also Published As

Publication number Publication date
JP2003160531A (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP3517429B2 (en) Purification method of fluorinated carboxylic acid
JP2002059160A (en) Separation method of fluorine-containg anionic surfactant
US7807726B2 (en) Recovery of fluorinated surfactants from a basic anion exchange resin having quaternary ammonium groups
JP4599162B2 (en) Method for producing fluorocarboxylic acid
KR20190035778A (en) Method for extracting salts and temperature-regenerating composition
JP4016645B2 (en) Method for extracting and purifying perfluoroalkanoic acid
KR102202180B1 (en) Apparatus and method for thermal deionization and desalting of water by liquid-phase ion extraction liquid
JP2020514350A (en) Method for purification of caprolactam from solution of crude caprolactam without organic solvent extraction
US7754914B2 (en) Method of recovering fluorinated acid surfactants from adsorbent particles loaded therewith
JP2007520552A5 (en)
CN108211423B (en) Method for adsorbing and separating phenolic compounds in oil by using biodegradable compound as adsorbent
JP2003285076A (en) Recovery method for fluorine-containing emulsifier
JPS6037059B2 (en) Method for purifying gallium solutions by liquid-liquid extraction with quaternary ammonium salts
JPH03277731A (en) Method for refining rhodium
JPH0529649B2 (en)
JPH08176078A (en) Adsorptive method of recovering amine or amine salt from brine aqueous solution
JP2004043434A (en) Method for refining high-purity dimethyl sulfoxide and mixture of dimethyl sulfoxide with amines
JP2007210980A (en) Method for recovering ethyl acetate from ethyl acetate/methyl ethyl ketone mixture system
JPWO2018216427A1 (en) Method for producing aqueous zinc halide solution
WO2022026865A1 (en) Process for removal of fluoroorganic compounds from aqueous media
JP4407484B2 (en) Method for removing aluminum compound
JPS621618B2 (en)
JPS63310840A (en) Separation of halogenated hydroxyaromatic compound from aqueous solution
JP2002145863A (en) METHOD FOR PURIFYING epsi-CAPROLACTAM
JP2013519517A (en) Treatment of wastewater containing fluorinated acids or their salts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees