[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4015126B2 - DC power supply system - Google Patents

DC power supply system Download PDF

Info

Publication number
JP4015126B2
JP4015126B2 JP2004064532A JP2004064532A JP4015126B2 JP 4015126 B2 JP4015126 B2 JP 4015126B2 JP 2004064532 A JP2004064532 A JP 2004064532A JP 2004064532 A JP2004064532 A JP 2004064532A JP 4015126 B2 JP4015126 B2 JP 4015126B2
Authority
JP
Japan
Prior art keywords
secondary batteries
power supply
voltage
supply system
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004064532A
Other languages
Japanese (ja)
Other versions
JP2005253273A (en
Inventor
晋也 高木
敏雄 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2004064532A priority Critical patent/JP4015126B2/en
Publication of JP2005253273A publication Critical patent/JP2005253273A/en
Application granted granted Critical
Publication of JP4015126B2 publication Critical patent/JP4015126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、通信機器等の直流負荷に無瞬断で安定した電力を供給するリチウムイオン二次電池をバックアップ用に使用した電力供給システムに係り、特に、リチウムイオン二次電池の短絡、開放、過放電、過充電が生じた場合、これらを早期に検出し、組電池を保護する機能を有する直流電力供給システムに開する。   The present invention relates to a power supply system that uses a lithium ion secondary battery for supplying a stable power to a DC load such as a communication device without instantaneous interruption, and in particular, short-circuiting and opening a lithium ion secondary battery, When overdischarge and overcharge occur, these are detected at an early stage, and the DC power supply system having a function of protecting the assembled battery is opened.

図7に、リチウムイオン二次電池を使用した従来の直流電力供給システムの構成を示す(特許文献1を参照)。図7に示すように、従来の電力供給システムは、商用電源101を直流電力に変換し,出力する直流電源102と、複数のリチウムイオン二次電池1a〜1nが直列接続されてなる組電池103と、組電池を構成する各リチウムイオン二次電池に、それぞれ対応して設けられ、各リチウムイオン二次電池の電圧調整を行う電圧調整回路104−1〜104−nと、電池切離しスイッチ105と、電圧プローブ106と、制御部107とを有している。   FIG. 7 shows a configuration of a conventional DC power supply system using a lithium ion secondary battery (see Patent Document 1). As shown in FIG. 7, a conventional power supply system includes a battery pack 103 in which a DC power supply 102 that converts commercial power supply 101 into DC power and outputs it, and a plurality of lithium ion secondary batteries 1a to 1n are connected in series. A voltage adjusting circuit 104-1 to 104-n that is provided corresponding to each lithium ion secondary battery constituting the assembled battery and performs voltage adjustment of each lithium ion secondary battery, and a battery disconnecting switch 105, The voltage probe 106 and the control unit 107 are included.

制御部107と電池切離しスイッチ105、電圧調整回路104−1〜104nとの間は制御線108により接続されている。110は、直流負荷である。
直流負荷には、直流電源102または組電池103より直流電力が供給されるようになっている。
A control line 108 is connected between the control unit 107, the battery disconnect switch 105, and the voltage adjustment circuits 104-1 to 104n. 110 is a DC load.
The direct current power is supplied from the direct current power source 102 or the assembled battery 103 to the direct current load.

このように構成された直流電力供給システムにおいて、直列接続された複数個のリチウムイオン二次電池を充電する場合、全ての電池の容量あるいは内部抵抗が常に同じであればバランス良く充電できる。
しかしながら、実際には、電池の容量あるいは内部抵抗には若干のばらつきが存在する。
更に、初期において同じ内部抵抗であったとしても長期の充電により、時間が経過していくと電池の内部特性が変化し、電池の容量および内部抵抗も変化する。
In the DC power supply system configured as described above, when charging a plurality of lithium ion secondary batteries connected in series, if the capacity or internal resistance of all the batteries is always the same, the batteries can be charged with good balance.
In practice, however, there is some variation in battery capacity or internal resistance.
Furthermore, even if the internal resistance is the same at the initial stage, the internal characteristics of the battery change as time passes due to long-term charging, and the capacity and internal resistance of the battery also change.

その結果、各リチウムイオン二次電池のバランスが崩れ、組電池内のセル電圧にバラツキが発生する。
そこで、直列接続された複数個のリチウムイオン二次電池1a〜1nを充電する場合、各リチウムイオン二次電池1a〜1nに、電圧調整回路104−1〜104−nと、各電池の端子電圧の監視と電圧調整回路104−1〜104−nの制御を行う制御部102とを設け、任意の電池が充電完了電圧に達した場合、その充電完了したリチウムイオン二次電池に対応して設けられた電圧調整回路を動作させ、充電電流をバイパスさせ、全てのリチウムイオン二次電池が充電電圧に到達するまで一セル(電池)づつ充電することで、各リチウムイオン二次電池の充電電圧を均一にしている。
As a result, the balance of each lithium ion secondary battery is lost, and the cell voltage in the assembled battery varies.
Therefore, when charging a plurality of lithium ion secondary batteries 1a to 1n connected in series, each of the lithium ion secondary batteries 1a to 1n is connected to a voltage adjusting circuit 104-1 to 104-n and a terminal voltage of each battery. And a control unit 102 for controlling the voltage adjustment circuits 104-1 to 104-n. When any battery reaches the charge completion voltage, it is provided corresponding to the lithium ion secondary battery that has been charged. The voltage regulation circuit is operated, the charging current is bypassed, and the charging voltage of each lithium ion secondary battery is charged by charging one cell (battery) until all lithium ion secondary batteries reach the charging voltage. It is uniform.

また、過充電、過放電の保護として、電池切離しスイッチ105を組電池103の充放電経路に直列に接続している。このスイッチは、組電池103を構成するリチウムイオン二次電池の保護のための回路切離しが主目的であり、任意のリチウムイオン二次電池の電圧が電池の安全上問題となる電圧(例.4.2V)まで上昇した際(過充電)、及び、電池の特性が回復不能なまでに劣化する電圧(例.3.0V)まで低下した際(過放電)に開放される。
特開2003−217675号公報
Further, as protection against overcharge and overdischarge, a battery disconnect switch 105 is connected in series with the charge / discharge path of the assembled battery 103. The main purpose of this switch is to disconnect the circuit for protection of the lithium ion secondary battery constituting the assembled battery 103, and the voltage at which the voltage of any lithium ion secondary battery becomes a problem in terms of battery safety (example 4.2) It is released when the voltage rises to V) (overcharge) and when the voltage drops to a voltage that deteriorates before the battery characteristics cannot be recovered (eg 3.0V) (overdischarge).
JP 2003-217675 A

しかしながら、上述した従来の電力供給システムは、組電池103における任意のリチウムイオン二次電池が異常な電圧に到達した時点で電池切離しスイッチ105を開放するため、万が一、電池切離しスイッチ105が開放後に停電が発生しても放電経路が切離されているので、直流負荷110に電力を供給することができない。
一方、リチウムイオン二次電池は、電池容量を増加させるには、並列接続する必要がある。図7に示す従来の直流電力供給システムでは、電圧調整回路が各リチウムイオン二次電池について必要になる。
However, the above-described conventional power supply system opens the battery disconnection switch 105 when an arbitrary lithium ion secondary battery in the assembled battery 103 reaches an abnormal voltage, so that a power failure occurs after the battery disconnection switch 105 is opened. Even if this occurs, since the discharge path is disconnected, power cannot be supplied to the DC load 110.
On the other hand, lithium ion secondary batteries need to be connected in parallel to increase battery capacity. In the conventional DC power supply system shown in FIG. 7, a voltage adjustment circuit is required for each lithium ion secondary battery.

そこで、この電圧調整回路の数量を減らすために、並列接続した組電池毎に電圧調整回路を設けることが有効である。
しかし、このようにリチウムイオン二次電池(セルと記す。)を直並列に接続した場合、任意のセルが短絡すると、並列接続した組電池が全て完全放電し、異常な電圧に到達した時点で電池切離しスイッチを開放するため、万が一、スイッチ開放後に停電が発生しても放電経路が切離されているので、直流負荷に電力を供給することができないという問題が有った。
Therefore, in order to reduce the number of voltage adjustment circuits, it is effective to provide a voltage adjustment circuit for each assembled battery connected in parallel.
However, when lithium ion secondary batteries (referred to as cells) are connected in series and parallel as described above, when any cell is short-circuited, all the connected batteries connected in parallel are completely discharged and reach an abnormal voltage. Since the battery disconnection switch is opened, there is a problem that power cannot be supplied to the DC load because the discharge path is disconnected even if a power failure occurs after the switch is opened.

本発明は、このような事情に鑑みてなされたものであり、直流電源の出力端に並列接続された、複数の二次電池の直列回路、もしくは複数の二次電池の直並列回路の任意のセルが短絡、開放、過充電、過放電等の異常状態になった場合にも障害を防止し得る直流電力供給システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and an arbitrary circuit of a series circuit of a plurality of secondary batteries or a series / parallel circuit of a plurality of secondary batteries connected in parallel to the output terminal of a DC power supply. It is an object of the present invention to provide a DC power supply system that can prevent a failure even when a cell is in an abnormal state such as short circuit, open, overcharge, overdischarge, or the like.

上記目的を達成するために、請求項1記載の発明は、直流電源と、該直流電源の出力端に並列接続されてなる複数の二次電池の直列回路とを有し、前記直流電源の出力端より直流負荷に直流電力を供給する直流電力供給システムであって、前記直流電源の出力端と前記複数の二次電池の直列回路との間に接続される第1のスイッチ手段と、前記複数の二次電池に対し放電のみ許容する極性で前記第1のスイッチ手段に並列接続されるダイオードと、前記複数の二次電池の各々に、直列に接続される第2のスイッチ手段と、前記二次電池と第2のスイッチ手段との直列回路の各々に対して並列接続される第3のスイッチ手段と、前記複数の二次電池の各々の端子電圧を検出する電圧検出手段と、前記複数の二次電池の各々の端子電圧を調整する電圧調整手段と、前記電圧検出手段の検出出力に基づいて複数の二次電池のうち任意の二次電池に異常状態が発生したと判定した場合には、その異常状態の種別に応じて該異常状態の影響を除去するように前記第1、第2及び第3のスイッチ手段のオン、オフ状態を切換えるように制御する制御手段と、前記複数の二次電池の各々における充電時のバイパス電流を検出する電流検出手段を有し、前記制御手段は、前記複数の二次電池の各々のバイパス電流の電流値を検出して比較し、もっとも小さいバイパス電流に対する、他のバイパス電流の比が、予め決められた値以上の場合に異常と判定し、外部に異常状態を示す信号を出力することを特徴とする。 In order to achieve the above object, the invention described in claim 1 includes a DC power supply and a series circuit of a plurality of secondary batteries connected in parallel to an output terminal of the DC power supply. A DC power supply system for supplying DC power to a DC load from an end, wherein the first switch means connected between an output end of the DC power supply and a series circuit of the plurality of secondary batteries, and the plurality A diode that is connected in parallel to the first switch means with a polarity that allows only discharge to the secondary battery, a second switch means that is connected in series to each of the plurality of secondary batteries, and the second battery A third switch means connected in parallel to each of the series circuit of the secondary battery and the second switch means, a voltage detection means for detecting a terminal voltage of each of the plurality of secondary batteries, Adjust the terminal voltage of each secondary battery If it is determined that an abnormal state has occurred in any secondary battery among the plurality of secondary batteries based on the detection output of the pressure adjusting unit and the voltage detecting unit, the abnormality is determined according to the type of the abnormal state. Control means for controlling the on / off states of the first, second and third switch means to remove the influence of the state, and a bypass current during charging in each of the plurality of secondary batteries. Current detecting means for detecting, and the control means detects and compares the current values of the bypass currents of the plurality of secondary batteries, and the ratio of the other bypass current to the smallest bypass current is determined in advance. When the value is equal to or greater than a predetermined value, it is determined that there is an abnormality, and a signal indicating an abnormal state is output to the outside .

また、請求項2に記載の発明は、請求項1に記載の直流電力供給システムにおいて、前記複数の二次電池の直列回路の各々の単一の二次電池の代わりに、均圧線で並列に接続した複数の二次電池に置換したことを特徴とする。   Further, according to a second aspect of the present invention, in the DC power supply system according to the first aspect, instead of each single secondary battery in the series circuit of the plurality of secondary batteries, a voltage equalizing line is used in parallel. It is characterized by replacing with a plurality of secondary batteries connected to.

また、請求項3に記載の発明は、請求項1または2のいずれかに記載の直流電力供給システムにおいて、前記制御手段は、前記複数の二次電池の直列回路を前記直流電源で充電し、前記複数の二次電池のうち任意の二次電池が所定の充電電圧に到達した場合には、前記第1のスイッチ手段をオフ状態とすることを特徴とする。   Further, the invention according to claim 3 is the DC power supply system according to claim 1 or 2, wherein the control means charges the series circuit of the plurality of secondary batteries with the DC power supply. When any secondary battery among the plurality of secondary batteries reaches a predetermined charging voltage, the first switch means is turned off.

また、請求項4に記載の発明は、請求項1乃至3のいずれかに記載の直流電力供給システムにおいて、前記制御手段は、前記複数の二次電池の直列回路から直流負荷への電力給電時に、前記複数の二次電池のうち任意の電池が所定の端子電圧まで低下した場合には、第2のスイッチ手段をオフ状態にし、かつ前記第3のスイッチ手段をオン状態とすることを特徴とする。   According to a fourth aspect of the present invention, in the DC power supply system according to any one of the first to third aspects, the control means is configured to supply power from a series circuit of the plurality of secondary batteries to a DC load. The second switch means is turned off and the third switch means is turned on when an arbitrary battery among the plurality of secondary batteries drops to a predetermined terminal voltage. To do.

また、請求項5に記載の発明は、請求項1乃至4のいずれかに記載の直流電力供給システムにおいて、前記制御手段は、前記複数の二次電池の直列回路を前記直流電源で充電中、前記複数の二次電池のうち任意の電池が短絡状態または開放状態となった場合、前記第1のスイッチ手段をオフ状態とすることを特徴とする。   Further, the invention according to claim 5 is the DC power supply system according to any one of claims 1 to 4, wherein the control means is charging the series circuit of the plurality of secondary batteries with the DC power supply. When any of the plurality of secondary batteries is short-circuited or opened, the first switch unit is turned off.

また、請求項6に記載の発明は、請求項1乃至5のいずれかに記載の直流電力供給システムにおいて、前記制御手段は、前記複数の二次電池の直列回路から前記直流負荷への電力供給時に、前記複数の二次電池のうち任意の電池が短絡状態または開放状態となった場合、前記第1のスイッチ手段をオフ状態とすることを特徴とする。   The invention according to claim 6 is the DC power supply system according to any one of claims 1 to 5, wherein the control means supplies power from the series circuit of the plurality of secondary batteries to the DC load. In some cases, when any one of the plurality of secondary batteries is short-circuited or opened, the first switch unit is turned off.

以上説明したように、本発明によれば、直流電源と、該直流電源の出力端に並列接続されてなる、複数の二次電池の直列回路、もしくは複数の二次電池の直並列回路とを有し、前記直流電源の出力端より直流負荷に直流電力を供給する直流電力供給システムであって、前記直流電源の出力端と前記複数の二次電池の直列回路もしくは直並列回路との間に接続される第1のスイッチ手段と、前記複数の二次電池に対し放電のみ許容する極性で前記第1のスイッチ手段に並列接続されるダイオードと、前記複数の二次電池の各々に、直列に接続される第2のスイッチ手段と、前記二次電池と第2のスイッチ手段との直列回路の各々に対して並列接続される第3のスイッチ手段と、前記複数の二次電池の各々の端子電圧を検出する電圧検出手段と、前記複数の二次電池の各々の端子電圧を調整する電圧調整手段と、前記電圧検出手段の検出出力に基づいて複数の二次電池のうち任意の二次電池に異常状態が発生したと判定した場合には、その異常状態の種別に応じて該異常状態の影響を除去するように前記第1、第2及び第3のスイッチ手段のオン、オフ状態を切換えるように制御する制御手段とを有するので、二次電池が短絡、開放、過充電、過放電状態になった際の直流電力供給システムの障害を未然に防止することができる。   As described above, according to the present invention, a DC power supply and a series circuit of a plurality of secondary batteries or a series / parallel circuit of a plurality of secondary batteries connected in parallel to the output terminal of the DC power supply are provided. A DC power supply system for supplying DC power to a DC load from an output terminal of the DC power supply, between the output terminal of the DC power supply and a series circuit or a series-parallel circuit of the plurality of secondary batteries. A first switch means connected, a diode connected in parallel to the first switch means with a polarity that allows only discharge to the plurality of secondary batteries, and each of the plurality of secondary batteries in series Second switch means to be connected, third switch means connected in parallel to each of the series circuit of the secondary battery and the second switch means, and each terminal of the plurality of secondary batteries Voltage detection means for detecting the voltage; It is determined that an abnormal state has occurred in any secondary battery among the plurality of secondary batteries based on the voltage adjustment means for adjusting the terminal voltage of each of the secondary batteries and the detection output of the voltage detection means. In this case, control means for controlling the on / off states of the first, second and third switch means to remove the influence of the abnormal state according to the type of the abnormal state is included. Therefore, it is possible to prevent a failure of the DC power supply system when the secondary battery is short-circuited, opened, overcharged, or overdischarged.

以下、本発明の実施形態を、図面を参照して詳細に説明する。本発明の第1実施形態に係る直流電力供給システムの構成を図1に示す。同図において、本発明の第1実施形態に係る直流電力供給システムは、直流電源2と、該直流電源2の出力端に並列接続されてなる、複数のリチウムイオン二次電池1a〜1nの直列回路とを有し、直流電源2の出力端より直流負荷3に直流電力を供給するようになっている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The configuration of the DC power supply system according to the first embodiment of the present invention is shown in FIG. In the figure, the DC power supply system according to the first embodiment of the present invention includes a DC power supply 2 and a series of a plurality of lithium ion secondary batteries 1 a to 1 n connected in parallel to the output terminal of the DC power supply 2. And a DC power is supplied to the DC load 3 from the output terminal of the DC power source 2.

また、直流電源2の出力端と複数のリチウムイオン二次電池1a〜1nの直列回路との間に接続される第1のスイッチ手段としてのIGBT5と、複数のリチウムイオン二次電池1a〜1nに対し放電のみ許容する極性でIGBT5に並列接続されるダイオード4と、複数のリチウムイオン二次電池1a〜1nの各々に、直列に接続される第2のスイッチ手段としてのIGBT6と、単一のリチウムイオン二次電池とIGBT6との直列回路の各々に対して並列接続される第3のスイッチ手段としてのIGBT7と、複数のリチウムイオン二次電池1a〜1nの各々の端子電圧を検出する電圧検出手段としての電圧プローブ10と、複数のリチウムイオン二次電池1a〜1nの各々の端子電圧を調整する電圧調整手段としての電圧調整回路8と、制御手段としての制御部9とを有している。   Further, the IGBT 5 as the first switch means connected between the output terminal of the DC power supply 2 and the series circuit of the plurality of lithium ion secondary batteries 1a to 1n, and the plurality of lithium ion secondary batteries 1a to 1n A diode 4 connected in parallel to the IGBT 5 with a polarity allowing only discharge, a IGBT 6 as a second switch means connected in series to each of the plurality of lithium ion secondary batteries 1a to 1n, and a single lithium IGBT 7 as third switch means connected in parallel to each of the series circuit of the ion secondary battery and IGBT 6, and voltage detection means for detecting the terminal voltage of each of the plurality of lithium ion secondary batteries 1 a to 1 n And a voltage adjustment circuit 8 as voltage adjustment means for adjusting the terminal voltage of each of the plurality of lithium ion secondary batteries 1a to 1n. And a control unit 9 as a control means.

制御部9は、電圧プローブ10の検出出力に基づいて複数のリチウムイオン二次電池1a〜1nのうち任意のリチウムイオン二次電池に異常状態が発生したと判定した場合には、その異常状態の種別、すなわち、リチウムイオン二次電池の短絡、開放、過充電、過放電に応じてこれらの異常状態の影響を除去するようにIGBT5、6、7のオン、オフ状態を切換えるように制御する機能を有している。   When the control unit 9 determines that an abnormal state has occurred in any lithium ion secondary battery among the plurality of lithium ion secondary batteries 1a to 1n based on the detection output of the voltage probe 10, the control unit 9 Function to switch on / off states of IGBTs 5, 6, and 7 so as to eliminate the influence of these abnormal states according to the type, that is, short circuit, open, overcharge, and overdischarge of the lithium ion secondary battery have.

制御部9は、複数のリチウムイオン二次電池1a〜1nの直列回路を直流電源2で充電し、複数のリチウムイオン二次電池のうち任意のリチウムイオン二次電池が所定の充電電圧(例えば、充電完了とする規定電圧)に到達した場合には、IGBT5をオフ状態とするように制御する。   The control unit 9 charges a series circuit of the plurality of lithium ion secondary batteries 1a to 1n with the DC power supply 2, and any lithium ion secondary battery among the plurality of lithium ion secondary batteries is charged with a predetermined charging voltage (for example, When the voltage reaches the specified voltage for completion of charging, control is performed so that the IGBT 5 is turned off.

また、制御部9は、複数のリチウムイオン二次電池1a〜1nの直列回路から直流負荷3への電力給電時に、複数のリチウムイオン二次電池1a〜1nのうち任意のリチウムイオン二次電池が所定の端子電圧(例えば、過放電となる規定電圧)まで低下した場合には、該二次電池と直列接続されているIGBT6をオフ状態にし、かつ所定の端子電圧まで低下した前記リチウムイオン二次電池とIGBT6の直列回路に並列接続されているIGBT7をオン状態とする。   In addition, the control unit 9 is configured so that an arbitrary lithium ion secondary battery among the plurality of lithium ion secondary batteries 1a to 1n is supplied from the series circuit of the plurality of lithium ion secondary batteries 1a to 1n to the DC load 3. When the voltage decreases to a predetermined terminal voltage (for example, a specified voltage that causes overdischarge), the lithium ion secondary that has been reduced to a predetermined terminal voltage by turning off the IGBT 6 connected in series with the secondary battery. The IGBT 7 connected in parallel to the series circuit of the battery and the IGBT 6 is turned on.

さらに、制御部9は、複数のリチウムイオン二次電池1a〜1nの直列回路を直流電源2で充電中、または、複数のリチウムイオン二次電池1a〜1nの直列回路から直流負荷3への電力供給時に、複数のリチウムイオン二次電池1a〜1nのうち任意の電池が短絡状態または開放状態となった場合、IGBT5をオフ状態とする。   Further, the control unit 9 is charging the series circuit of the plurality of lithium ion secondary batteries 1a to 1n with the DC power source 2, or the power from the series circuit of the plurality of lithium ion secondary batteries 1a to 1n to the DC load 3. When any of the plurality of lithium ion secondary batteries 1a to 1n is short-circuited or opened, the IGBT 5 is turned off.

図1において、直流電源2は、交流の商用電力を直流に変換して直流負荷3に電力を供給している。
一方、停電時に無瞬断で直流負荷3に電力を供給できるように直列接続された複数個のリチウムイオン二次電池1a〜1nがあり、これらのリチウムイオン二次電池1a〜1nは、リチウムイオン二次電池1a〜1nを充電するための充電手段である直流電源2の出力端に接続されている。
In FIG. 1, a DC power source 2 converts AC commercial power into DC and supplies power to the DC load 3.
On the other hand, there are a plurality of lithium ion secondary batteries 1a to 1n connected in series so that electric power can be supplied to the DC load 3 without interruption in the event of a power failure. These lithium ion secondary batteries 1a to 1n are lithium ions. It is connected to the output terminal of the DC power source 2 which is a charging means for charging the secondary batteries 1a to 1n.

また、リチウムイオン二次電池1a〜1nは、電圧プローブ10で各セル(リチウムイオン二次電池)の端子電圧をモニターする制御部9に接続され、充電完了電圧(例.4.1V)に到達したセルから順番に、制御部9は制御線12を介して信号を送出し、電圧調整回路8を動作させ各セルの端子電圧のバラツキを防止している。   Moreover, the lithium ion secondary batteries 1a to 1n are connected to the control unit 9 that monitors the terminal voltage of each cell (lithium ion secondary battery) with the voltage probe 10, and have reached the charging completion voltage (example .4.1V). In order from the cell, the control unit 9 sends a signal through the control line 12 to operate the voltage adjustment circuit 8 to prevent the terminal voltage of each cell from varying.

この電圧調整回路8の具体的構成を図2に示す。同図において、電圧調整回路8は、リチウムイオン二次電池、例えば、1aに電流プローブ11を介して並列に接続された半導体スイッチ80と電流制限素子(例えば、抵抗)との直列回路と、コンパレータ82とを有している。
コンパレータ82は、リチウムイオン二次電池1aの端子間電圧と、リチウムイオン二次電池の満充電時の基準電圧とを比較し、リチウムイオン二次電池1aの端子間電圧が上記基準電圧に達したときに半導体スイッチをオン状態にする信号を出力する。
A specific configuration of the voltage adjusting circuit 8 is shown in FIG. In the figure, a voltage adjustment circuit 8 includes a lithium ion secondary battery, for example, a series circuit of a semiconductor switch 80 and a current limiting element (for example, a resistor) connected in parallel to a 1a via a current probe 11, a comparator 82.
The comparator 82 compares the voltage between the terminals of the lithium ion secondary battery 1a with the reference voltage when the lithium ion secondary battery is fully charged, and the voltage between the terminals of the lithium ion secondary battery 1a has reached the reference voltage. Sometimes a signal to turn on the semiconductor switch is output.

次に、上記構成からなる直流電力供給システムの動作を、図3を参照して説明する。リチウムイオン二次電池1a〜1nが直列に接続された組電池内の各セル(リチウムイオン二次電池)の端子電圧を監視し、電圧調整回路8の故障などで、充電中に任意のセル、例えば1nセルの電圧プローブ10でモニターしている端子電圧が規定値(例. 4.2V)になった際、即ち1nセル過充電検出時には、リチウムイオン二次電池1a〜1nと直列に接続されているIGBT5をオフ状態とし、組電池への充電電流の流入を防止する。   Next, the operation of the DC power supply system configured as described above will be described with reference to FIG. The terminal voltage of each cell (lithium ion secondary battery) in the assembled battery in which the lithium ion secondary batteries 1a to 1n are connected in series is monitored, and any cell during charging due to a failure of the voltage adjustment circuit 8 or the like, For example, when the terminal voltage monitored by the voltage probe 10 of the 1n cell reaches a specified value (eg, 4.2V), that is, when 1n cell overcharge is detected, the lithium ion secondary batteries 1a to 1n are connected in series. The IGBT 5 is turned off to prevent the charging current from flowing into the assembled battery.

このように第1のスイッチ手段としてのIGBT5を非導通状態にし、万が一、停電が発生してもリチウムイオン二次電池1a〜1nと直列に接続したダイオード4を介して、直流負荷3に電力を供給することができる。
また、任意のセル、例えば1nセルが充電中及び放電中に短絡もしくは開放検出した際には、電圧プローブ10でモニターしている端子電圧が0Vになることから、リチウムイオン二次電池1a〜1nと直列に接続されているIGBT5をオフ状態とし、かつ1nセルに並列に接続されているIGBT7をオン状態とするとともに、1nセルに直列に接続されているIGBT7をオフ状態にすることで、上記同様、停電時の直流負荷3への電力供給を行うことができる。
In this way, the IGBT 5 as the first switch means is turned off, and even if a power failure occurs, power is supplied to the DC load 3 through the diode 4 connected in series with the lithium ion secondary batteries 1a to 1n. Can be supplied.
Further, when any cell, for example, a 1n cell, detects a short circuit or an open state during charging and discharging, the terminal voltage monitored by the voltage probe 10 becomes 0 V, so the lithium ion secondary batteries 1a to 1n. The IGBT 5 connected in series with the 1n cell is turned off, the IGBT 7 connected in parallel with the 1n cell is turned on, and the IGBT 7 connected in series with the 1n cell is turned off. Similarly, power can be supplied to the DC load 3 during a power failure.

ただし、この場合、短絡または開放した1nセルは、放電できないため、リチウムイオン二次電池1a〜1nから直流負荷3に電力供給できるバックアップ時間は減少するが、従来の直流電力供給システムのように電力供給の停止という事態は防ぐことができる。
ところで、第1のスイッチ手段としてのIGBT5を設けず、任意のセルが短絡もしくは開放した状態で組電池を充電すると、それまでV/n(V:組電池充電電圧、n:直列接続した電池の個数)で単セルあたり充電していたものが、V/(n−1)となり、単セルあたりの充電電圧が上昇し、電池の特性が大きく低下したり、安全弁が作動して使用不能となったりする恐れがある。
However, in this case, since the 1n cell that is short-circuited or opened cannot be discharged, the backup time during which power can be supplied from the lithium ion secondary batteries 1a to 1n to the DC load 3 is reduced, but the power is different from the conventional DC power supply system. Suspension of supply can be prevented.
By the way, if the assembled battery is charged without providing the IGBT 5 as the first switch means and any cell is short-circuited or opened, V / n (V: assembled battery charging voltage, n: battery connected in series until then) The number of cells charged per unit cell becomes V / (n-1), the charging voltage per unit cell rises, the characteristics of the battery deteriorates significantly, and the safety valve operates and becomes unusable. There is a risk that.

したがって、第1のスイッチ手段としてのIGBT5を設けて充電回路としての直流電源2を切離すことは、直流電力供給システムの安全を確保する上で重要な機能であることが分かる。
一方、停電などにより、リチウムイオン二次電池1a〜1nから直流負荷3に電力を供給する場合、リチウムイオン二次電池1a〜1nの電圧は低下していき、いずれは順番に全セルが規定値(例.3.0V)の電圧、即ち、過放電電圧に到達する。規定値(例.3.0V)の電圧に到達したセルについては、電池放電を停止しないと、電池の特性が回復不能なまでに劣化する恐れがある。
Therefore, it can be seen that providing the IGBT 5 as the first switch means and disconnecting the DC power supply 2 as the charging circuit is an important function in securing the safety of the DC power supply system.
On the other hand, when power is supplied from the lithium ion secondary batteries 1a to 1n to the DC load 3 due to a power failure or the like, the voltage of the lithium ion secondary batteries 1a to 1n decreases, and all the cells are sequentially set to the specified value. A voltage of (eg 3.0V), that is, an overdischarge voltage is reached. For cells that have reached a specified value (eg, 3.0V), battery characteristics may deteriorate until the battery cannot be recovered unless battery discharge is stopped.

そこで、本電力供給システムでは、任意のセル、例えば1nセルが過放電電圧に到達した際には、電圧プローブ10でモニターしている端子電圧が3.0Vになったことを制御部9で検出次第、1nセルに並列に接続した第3のスイッチ手段としてのIGBT7をオン状態にし、かつ第2のスイッチ手段としてのIGBT6をオフ状態とし、その他のセルについても、規定値(例.3.0V)の電圧に到達次第、IGBT6をオフ状態、IGBT7をオン状態とするように制御し、各セル電圧が3.0V以下になるのを防止している。   Therefore, in this power supply system, when any cell, for example, 1n cell, reaches the overdischarge voltage, the control unit 9 detects that the terminal voltage monitored by the voltage probe 10 has become 3.0V. The IGBT 7 as the third switch means connected in parallel to the 1n cell is turned on, and the IGBT 6 as the second switch means is turned off, and the other cells have the specified value (eg, 3.0 V). As soon as the voltage is reached, the IGBT 6 is controlled to be turned off and the IGBT 7 is turned on to prevent each cell voltage from becoming 3.0 V or less.

この場合に、直流電源2、及びリチウムイオン二次電池1a〜1nは故障していないので、第1のスイッチ手段であるIGBT5はオン状態を維持し、商用電源1が回復次第、リチウムイオン二次電池1a〜1nを充電できるようにスタンバイしている。   In this case, since the DC power source 2 and the lithium ion secondary batteries 1a to 1n are not out of order, the IGBT 5, which is the first switch means, is kept on, and the commercial power source 1 recovers, and then the lithium ion secondary The batteries 1a to 1n are on standby so that they can be charged.

これまでは、任意のセルが短絡、開放、過充電、過放電状態になった際の直流電力供給システムの動作について述べたが、上記の状態とは異なるモードでリチウムイオン二次電池1a〜1nが不具合を発生した場合の検出方法を以下に示す。
リチウムイオン二次電池1a〜1nは、特性にバラツキがなければ、電圧調整回路8の動作により、設定した充電電圧に各セルの端子電圧は均一化されるが、何らかの電池の不具合により、維持充電中、もしくは、回復充電中に電流プローブ11で計測した任意のセルのバイパス電流が、他のセルのバイパス電流と比べ非常に小さくなることが起こり得る。この状況を、図4を参照して説明する。
So far, the operation of the DC power supply system when any cell is short-circuited, opened, overcharged or overdischarged has been described, but the lithium ion secondary batteries 1a to 1n are in a mode different from the above state. The detection method when a problem occurs is shown below.
If there is no variation in the characteristics of the lithium ion secondary batteries 1a to 1n, the terminal voltage of each cell is equalized to the set charging voltage by the operation of the voltage adjustment circuit 8, but it is maintained and charged due to some battery malfunction. It is possible that the bypass current of an arbitrary cell measured by the current probe 11 during recovery charging is very small compared to the bypass current of other cells. This situation will be described with reference to FIG.

例えば、各セルのバイパス電流値が、リチウムイオン二次電池1aが6I、1bが5I、1cが7I、1nがIの電流値だとすると、1nセルの電圧調整回路8の半導体スイッチ80及び電流制限素子81の直列回路を含むバイパス路(図2参照。)に流れるバイパス電流値は他のセルの1/5以下と小さく、1nセルに充電電流が大きく流れていることになる。   For example, assuming that the bypass current value of each cell is 6I for the lithium ion secondary battery 1a, 5I for 1b, 1I for 1c, 7I, and 1n for I, the semiconductor switch 80 and the current limiting element of the voltage regulator circuit 8 for the 1n cell The bypass current value flowing in the bypass path (see FIG. 2) including the 81 series circuit is as small as 1/5 or less of the other cells, and a large charge current flows in the 1n cell.

これは、任意の1nセルの電圧低下により、各バイパス電流の大きさに差が生じたものである。従って、組電池を構成するすべてのリチウムイオン二次電池1a〜1bが正常であれば、バイパス電流値にこれ程の差は出ないので、1nセルの異常とみなし、外部に異常信号を送出する。なお、その際の制御部9における異常判定の閾値は、例えば、組電池の中で最もバイパス電流が小さいセルとその他のセルのバイパス電流の差を制御部9で比較し、最もバイパス電流が小さいセルが他のセルの1/5以下になった場合とするが、これに限らないことは勿論である。   This is a difference in the magnitude of each bypass current due to the voltage drop of any 1n cell. Therefore, if all the lithium ion secondary batteries 1a to 1b constituting the assembled battery are normal, the difference in the bypass current value does not appear so much, so that it is regarded as an abnormality of the 1n cell and an abnormal signal is transmitted to the outside. In addition, the threshold value of the abnormality determination in the control unit 9 at that time is, for example, the difference between the bypass current of the cell having the smallest bypass current and the other cells in the assembled battery is compared by the control unit 9, and the smallest bypass current is obtained. Although it is assumed that the cell becomes 1/5 or less of other cells, it is needless to say that the present invention is not limited to this.

次に、本発明の第2実施形態に係る直流電力供給システムの構成を図5に示す。
図5に示す第2実施形態に係る直流電力供給システムが図1に示した第1実施形態に係る直流電力供給システムと構成上、異なるのは、複数のリチウムイオン二次電池1a〜1nの直列回路の各々の単一のリチウムイオン二次電池の代わりに、均圧線で並列に接続した複数のリチウムイオン二次電池に置換したことであり、他の構成は同一であるので、同一の機能を有する要素には同一の符号を付し、重複する説明は省略する。
Next, FIG. 5 shows a configuration of a DC power supply system according to the second embodiment of the present invention.
The direct current power supply system according to the second embodiment shown in FIG. 5 differs from the direct current power supply system according to the first embodiment shown in FIG. 1 in terms of the configuration in series of a plurality of lithium ion secondary batteries 1a to 1n. Instead of each single lithium ion secondary battery in the circuit, it is replaced with a plurality of lithium ion secondary batteries connected in parallel with equalizing wires, and the other functions are the same, so the same function Elements having the same reference numerals are given the same reference numerals, and redundant description is omitted.

図1に示した第1実施形態に係る直流電力供給システムの場合、複数個のリチウムイオン二次電池1a〜1nを直列に接続しているが、図5に示す第2実施形態に係る直流電力供給システムでは、例えば、1aの代わりに、電池容量を増加させるために、リチウムイオン二次電池1a、2a、3aを均圧線でつないで、並列に接続している。第1実施の形態における他のリチウムイオン二次電池1b〜1nについても同様である。   In the case of the DC power supply system according to the first embodiment shown in FIG. 1, a plurality of lithium ion secondary batteries 1a to 1n are connected in series, but the DC power according to the second embodiment shown in FIG. In the supply system, for example, instead of 1a, the lithium ion secondary batteries 1a, 2a, and 3a are connected in parallel by connecting pressure equalizing lines in order to increase the battery capacity. The same applies to the other lithium ion secondary batteries 1b to 1n in the first embodiment.

並列に接続されたリチウムイオン二次電池1a、2a、3aは均圧線により、各セルの電圧を均一化しているので、a組の電池は容量が3倍となった1個の電池と考えることができる。そのため、図5に示すように構成された直流電力供給システムの動作も図6に示すように、第1実施形態に係る直流電力供給システムの動作を示す図3と同様な動作になる。ただし、短絡時と開放時の制御部9の動作が図1に示した第1実施形態に係る直流電力供給システムと異なるので、以下に説明する。   Since the lithium ion secondary batteries 1a, 2a, and 3a connected in parallel equalize the voltage of each cell by means of a pressure equalizing line, the battery of a set is considered as one battery whose capacity is tripled. be able to. Therefore, the operation of the DC power supply system configured as shown in FIG. 5 is the same as that of FIG. 3 showing the operation of the DC power supply system according to the first embodiment, as shown in FIG. However, the operation of the control unit 9 at the time of short-circuiting and opening is different from that of the DC power supply system according to the first embodiment shown in FIG.

図5に示す直流電力供給システムにおいて、任意のセル、例えば1nセルが短絡した際には、2nセル及び3nセルも1nセルを通して完全放電してしまうため、電圧プローブ10でモニターしているn組目の1nセル、2nセル、3nセルの並列回路の端子電圧は0Vになる。
従って、IGBT5をオフ状態とし、に並列に接続されているIGBT7をオン状態にするとともに、n組目の1nセル、2nセル、3nセルの並列回路にっ直列に接続されているIGBT6をオフ状態にすることで、停電時の直流負荷3への電力供給を行える状態を保つようにする。
In the DC power supply system shown in FIG. 5, when any cell, for example, 1n cell is short-circuited, 2n cell and 3n cell are also completely discharged through 1n cell, so n sets monitored by voltage probe 10 The terminal voltage of the parallel circuit of the 1n cell, 2n cell, and 3n cell is 0V.
Accordingly, the IGBT 5 is turned off, the IGBT 7 connected in parallel to the IGBT 7 is turned on, and the IGBT 6 connected in series by the n-th 1n cell, 2n cell, and 3n cell parallel circuit is turned off. By doing so, the power supply to the DC load 3 at the time of a power failure is maintained.

一方、任意のセル、例えば1nセルが開放した際には、図1に示す第1実施形態に係る直流電力供給システムでは、電圧プローブ10でモニターしている1nセルの端子電圧が0Vになるが、図5に示す第2実施形態に係る直流電力供給システムでは、リチウムイオン二次電池2n、3nが並列接続されているため、セル1nが開放してもn組目の1nセル、2nセル、3nセルの並列回路の端子電圧は0Vにはならず、2nセル、3nセルの端子電圧になる。   On the other hand, when an arbitrary cell, for example, a 1n cell is opened, in the DC power supply system according to the first embodiment shown in FIG. 1, the terminal voltage of the 1n cell monitored by the voltage probe 10 becomes 0V. In the DC power supply system according to the second embodiment shown in FIG. 5, since the lithium ion secondary batteries 2n and 3n are connected in parallel, the n-th 1n cell, 2n cell, The terminal voltage of the parallel circuit of 3n cells does not become 0V, but becomes the terminal voltage of 2n cells and 3n cells.

そのため、制御部9は、図5に示すように直並列に接続されたリチウムイオン二次電池群1a〜1n、2a〜2n,3a〜3nと直列に接続されているIGBT5をオフ状態にし、かつ1nセルに並列に接続されているIGBT7をオフ状態にするとともに、1nセルに直列に接続されているIGBT6をオン状態にすることにより、停電時の直流負荷3への電力供給を行える状態を保つようにしている。   Therefore, the control unit 9 turns off the IGBT 5 connected in series with the lithium ion secondary battery groups 1a to 1n, 2a to 2n, and 3a to 3n connected in series and parallel as shown in FIG. The IGBT 7 connected in parallel to the 1n cell is turned off, and the IGBT 6 connected in series to the 1n cell is turned on to maintain a state where power can be supplied to the DC load 3 at the time of power failure. Like that.

本発明の第1実施形態に係る直流電力供給システムの構成を示すブロック図。The block diagram which shows the structure of the direct-current power supply system which concerns on 1st Embodiment of this invention. 図1に示した本発明の第1実施形態に係る直流電力供給システムにおける電圧調整回路の具体的構成を示すブロック図。The block diagram which shows the specific structure of the voltage adjustment circuit in the direct-current power supply system which concerns on 1st Embodiment of this invention shown in FIG. 図1に示した本発明の第1実施形態に係る直流電力供給システムの動作状態を示す説明図。Explanatory drawing which shows the operation state of the direct-current power supply system which concerns on 1st Embodiment of this invention shown in FIG. 本発明の実施形態に係る直流電力供給システムにおける各セルのバイパス電流の大きさを示す説明図。Explanatory drawing which shows the magnitude | size of the bypass current of each cell in the direct-current power supply system which concerns on embodiment of this invention. 本発明の第2実施形態に係る直流電力供給システムの構成を示すブロック図。The block diagram which shows the structure of the direct-current power supply system which concerns on 2nd Embodiment of this invention. 図5に示した本発明の第1実施形態に係る直流電力供給システムの動作状態を示す説明図。Explanatory drawing which shows the operation state of the DC power supply system which concerns on 1st Embodiment of this invention shown in FIG. 従来の直流電力供給システムの構成を示すブロック図。The block diagram which shows the structure of the conventional DC power supply system.

符号の説明Explanation of symbols

1a〜1n…リチウムイオン電池(セル)
2…直流電源
3…直流負荷
4…ダイオード
5、6、7…IGBT
8…電圧調整回路
9…制御部
10…電圧プローブ
11…電流プローブ
12…制御線
80…半導体スイッチ
81…電流制限素子
82…コンパレータ


1a to 1n: Lithium ion battery (cell)
2 ... DC power supply 3 ... DC load 4 ... Diode 5, 6, 7 ... IGBT
DESCRIPTION OF SYMBOLS 8 ... Voltage adjustment circuit 9 ... Control part 10 ... Voltage probe 11 ... Current probe 12 ... Control line 80 ... Semiconductor switch 81 ... Current limiting element 82 ... Comparator


Claims (6)

直流電源と、該直流電源の出力端に並列接続されてなる複数の二次電池の直列回路とを有し、前記直流電源の出力端より直流負荷に直流電力を供給する直流電力供給システムであって、
前記直流電源の出力端と前記複数の二次電池の直列回路との間に接続される第1のスイッチ手段と、
前記複数の二次電池に対し放電のみ許容する極性で前記第1のスイッチ手段に並列接続されるダイオードと、
前記複数の二次電池の各々に、直列に接続される第2のスイッチ手段と、
前記二次電池と第2のスイッチ手段との直列回路の各々に対して並列接続される第3のスイッチ手段と、
前記複数の二次電池の各々の端子電圧を検出する電圧検出手段と、
前記複数の二次電池の各々の端子電圧を調整する電圧調整手段と、
前記電圧検出手段の検出出力に基づいて複数の二次電池のうち任意の二次電池に異常状態が発生したと判定した場合には、その異常状態の種別に応じて該異常状態の影響を除去するように前記第1、第2及び第3のスイッチ手段のオン、オフ状態を切換えるように制御する制御手段と、
前記複数の二次電池の各々における充電時のバイパス電流を検出する電流検出手段を有し、
前記制御手段は、前記複数の二次電池の各々のバイパス電流の電流値を検出して比較し、もっとも小さいバイパス電流に対する、他のバイパス電流の比が、予め決められた値以上の場合に異常と判定し、外部に異常状態を示す信号を出力する
ことを特徴とする直流電力供給システム。
A DC power supply system having a DC power supply and a series circuit of a plurality of secondary batteries connected in parallel to the output end of the DC power supply, and supplying DC power from the output end of the DC power supply to a DC load. And
First switch means connected between an output terminal of the DC power supply and a series circuit of the plurality of secondary batteries;
A diode connected in parallel to the first switch means with a polarity that allows only discharge to the plurality of secondary batteries;
A second switch means connected in series to each of the plurality of secondary batteries;
Third switch means connected in parallel to each of the series circuits of the secondary battery and the second switch means;
Voltage detection means for detecting a terminal voltage of each of the plurality of secondary batteries;
Voltage adjusting means for adjusting the terminal voltage of each of the plurality of secondary batteries;
If it is determined that an abnormal state has occurred in any secondary battery among the plurality of secondary batteries based on the detection output of the voltage detection means, the influence of the abnormal state is removed according to the type of the abnormal state Control means for controlling the on / off states of the first, second and third switch means to be switched,
Current detection means for detecting a bypass current during charging in each of the plurality of secondary batteries,
The control means detects and compares the current values of the bypass currents of the plurality of secondary batteries, and abnormal when the ratio of other bypass currents to the smallest bypass current is equal to or greater than a predetermined value. Output a signal indicating an abnormal condition to the outside.
DC power supply system characterized by that .
前記複数の二次電池の直列回路の各々の単一の二次電池の代わりに、均圧線で並列に接続した複数の二次電池に置換したことを特徴とする請求項1に記載の直流電力供給システム。   2. The direct current according to claim 1, wherein each of the series circuits of the plurality of secondary batteries is replaced with a plurality of secondary batteries connected in parallel with a voltage equalizing line instead of a single secondary battery. Power supply system. 前記制御手段は、前記複数の二次電池の直列回路を前記直流電源で充電し、前記複数の二次電池のうち任意の二次電池が所定の充電電圧に到達した場合には、前記第1のスイッチ手段をオフ状態とすることを特徴とする請求項1または2のいずれかに記載の直流電力供給システム。   The control means charges the series circuit of the plurality of secondary batteries with the DC power source, and when any secondary battery among the plurality of secondary batteries reaches a predetermined charging voltage, the first means The DC power supply system according to claim 1, wherein the switch means is turned off. 前記制御手段は、前記複数の二次電池の直列回路から直流負荷への電力給電時に、前記複数の二次電池のうち任意の電池が所定の端子電圧まで低下した場合には、第2のスイッチ手段をオフ状態にし、かつ前記第3のスイッチ手段をオン状態とすることを特徴とする請求項1乃至3のいずれかに記載の直流電力供給システム。   The control means includes a second switch when any battery among the plurality of secondary batteries drops to a predetermined terminal voltage during power feeding from a series circuit of the plurality of secondary batteries to a DC load. The DC power supply system according to any one of claims 1 to 3, wherein a means is turned off and the third switch means is turned on. 前記制御手段は、前記複数の二次電池の直列回路を前記直流電源で充電中、前記複数の二次電池のうち任意の電池が短絡状態または開放状態となった場合、前記第1のスイッチ手段をオフ状態とすることを特徴とする請求項1乃至4のいずれかに記載の直流電力供給システム。   When the control means is charging the series circuit of the plurality of secondary batteries with the DC power source, and any of the plurality of secondary batteries is short-circuited or opened, the first switch means The DC power supply system according to claim 1, wherein the DC power supply system is turned off. 前記制御手段は、前記複数の二次電池の直列回路から前記直流負荷への電力供給時に、前記複数の二次電池のうち任意の電池が短絡状態または開放状態となった場合、前記第1のスイッチ手段をオフ状態とすることを特徴とする請求項1乃至5のいずれかに記載の直流電力供給システム。   The control means may be configured such that when any battery among the plurality of secondary batteries is in a short circuit state or an open state during power supply from the series circuit of the plurality of secondary batteries to the DC load, 6. The DC power supply system according to claim 1, wherein the switch means is turned off.
JP2004064532A 2004-03-08 2004-03-08 DC power supply system Expired - Fee Related JP4015126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064532A JP4015126B2 (en) 2004-03-08 2004-03-08 DC power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064532A JP4015126B2 (en) 2004-03-08 2004-03-08 DC power supply system

Publications (2)

Publication Number Publication Date
JP2005253273A JP2005253273A (en) 2005-09-15
JP4015126B2 true JP4015126B2 (en) 2007-11-28

Family

ID=35033220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064532A Expired - Fee Related JP4015126B2 (en) 2004-03-08 2004-03-08 DC power supply system

Country Status (1)

Country Link
JP (1) JP4015126B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779620A (en) * 2012-10-24 2014-05-07 丰田自动车株式会社 Electrical storage system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008011095A2 (en) * 2006-07-19 2008-01-24 A123 Systems, Inc. Method and system for monitoring and balancing cells in battery packs
JP5326436B2 (en) * 2008-08-29 2013-10-30 三菱電機株式会社 Power supply
WO2010081746A2 (en) 2009-01-19 2010-07-22 Hubert Berger Power control of serially connected cells
DE102009000676A1 (en) * 2009-02-06 2010-08-12 Robert Bosch Gmbh Traction battery with increased reliability
JP5422810B2 (en) * 2009-03-26 2014-02-19 株式会社Nttファシリティーズ Standby power system and protection power system protection method
FR2951320B1 (en) * 2009-10-08 2011-12-30 Vehicules Electr Soc D ELECTRIC BATTERY COMPRISING A PLURALITY OF ELECTRIC POWER GENERATING ELEMENTS
JP5672782B2 (en) * 2010-06-09 2015-02-18 富士電機株式会社 Storage device abnormality detection device
DE102011075421A1 (en) * 2011-05-06 2012-11-08 Sb Limotive Company Ltd. Battery with at least one battery module string
CN108306279A (en) * 2017-01-12 2018-07-20 中兴通讯股份有限公司 Power supply output control circuit and method
KR102258826B1 (en) * 2017-04-25 2021-06-07 주식회사 엘지에너지솔루션 Apparatus and method for preventing overcharge
KR102268681B1 (en) * 2017-06-13 2021-06-22 주식회사 엘지에너지솔루션 Apparatus and method for preventing over-voltage
KR102268682B1 (en) * 2017-06-13 2021-06-22 주식회사 엘지에너지솔루션 Apparatus and method for preventing over-voltage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779620A (en) * 2012-10-24 2014-05-07 丰田自动车株式会社 Electrical storage system
CN103779620B (en) * 2012-10-24 2016-02-10 丰田自动车株式会社 Accumulating system

Also Published As

Publication number Publication date
JP2005253273A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
US5886503A (en) Back-up battery management apparatus for charging and testing individual battery cells in a string of battery cells
US10958083B2 (en) Battery pack with reduced voltage variance
KR100885291B1 (en) Electric charger
US20090267565A1 (en) Method and system for cell equalization with charging sources and shunt regulators
US20060097696A1 (en) Method and system for cell equalization with isolated charging sources
JP2007129898A (en) Power supply system
JP4015126B2 (en) DC power supply system
EP2419959A2 (en) Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods
KR20120012439A (en) Power supply apparatus
US8816639B2 (en) Charge balancing topology
KR20150085383A (en) Battery system, energy storage system including the battery system
JP5422810B2 (en) Standby power system and protection power system protection method
JP5916429B2 (en) Battery pack control system and battery pack control method
JP2013162597A (en) Assembled battery discharge control system and assembled battery discharge control method
KR20150119905A (en) Detection and prevention of short formation in battery packs
JP6811019B2 (en) Rechargeable battery system
JP5361594B2 (en) Lithium ion secondary battery system and power supply method to management device
AU2008241371B2 (en) Battery management system
JP5409163B2 (en) Lithium-ion battery management device, management method, and lithium-ion battery system
US20180205239A1 (en) Power supply module with lithium ion capacitor
JP3988797B2 (en) Secondary battery protection device
JP5489779B2 (en) Lithium-ion battery charging system and charging method
JP2009071922A (en) Dc backup power supply device and method of controlling the same
JP2009044923A (en) Power supply system
CN111095719A (en) Accumulator device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees