[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4013123B2 - Operating method of aerobic treatment tank, aerobic treatment tank and sewage septic tank - Google Patents

Operating method of aerobic treatment tank, aerobic treatment tank and sewage septic tank Download PDF

Info

Publication number
JP4013123B2
JP4013123B2 JP2002140265A JP2002140265A JP4013123B2 JP 4013123 B2 JP4013123 B2 JP 4013123B2 JP 2002140265 A JP2002140265 A JP 2002140265A JP 2002140265 A JP2002140265 A JP 2002140265A JP 4013123 B2 JP4013123 B2 JP 4013123B2
Authority
JP
Japan
Prior art keywords
filtration
chamber
tank
treatment tank
aerobic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002140265A
Other languages
Japanese (ja)
Other versions
JP2003334581A (en
Inventor
宏 山下
信義 片貝
淳 日比野
裕二 小泉
Original Assignee
株式会社日立ハウステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハウステック filed Critical 株式会社日立ハウステック
Priority to JP2002140265A priority Critical patent/JP4013123B2/en
Publication of JP2003334581A publication Critical patent/JP2003334581A/en
Application granted granted Critical
Publication of JP4013123B2 publication Critical patent/JP4013123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、し尿、その他の生活排水、これらの合併汚水(単に、汚水ともいう)等を生物化学的に浄化処理するため好適に用いられる好気処理槽の運転方法、好気処理槽及び汚水浄化槽に関するものである。
【0002】
【従来の技術】
汚水浄化槽は、従来から種々知られている。そのうちの一つは、特開平9−248584号公報で開示されるように、上流側から順に、嫌気濾床槽第1室、嫌気濾床槽第2室、好気濾床槽、処理水槽及び消毒槽を備える汚水浄化槽である。ここで、好気濾床槽は、粒状担体を充填した上区画(生物反応部)と、同じく粒状担体を充填した下区画(濾過部)とに分けられ、通常運転時は瀑気用散気部材から空気を吐出させて上区画に流動床を形成させ、下区画(濾過部)に固定床(濾過部)を形成させている。
【0003】
【発明が解決しようとする課題】
本発明は、上記した好気処理槽又は汚水浄化槽を更に改良するものであり、濾過部(固定床)におけるSS(浮遊性固形分;浮遊物質)濾過性能を高める「好気処理槽の運転方法」、これを利用した好気処理槽及び汚水浄化槽を提供することを目的とする。
【0004】
【課題を解決するための手段】
濾材充填高さ(H)は高いほど、また、線速度(LV)や空塔速度(SV)は小さいほど、一般的に濾過性能は良くなる。しかし、濾材充填高さが高いほど、また、線速度や空塔速度が小さいほどに、濾過室の濾過部は大型化する。本発明者らは、濾材を所定量充填した試験濾過装置を用いて種々検討した結果、最適の濾過流量(流速)を明らかにすることができ、本発明を完成するに至った。
【0005】
すなわち、本発明は、生物反応室2と濾過室3とがこの順に配されている好気処理槽1を運転する際に、前記濾過室3における濾過流量(速度)を、空塔速度(SV)を指標として、これを2.0以上10h −1 以下となるように制御する好気処理槽1の運転方法である。
【0006】
ここで、濾過室における濾過流量は、更に、線速度(LV)としては、3.0m/h以下の範囲に制御する。
【0007】
また、本発明は、生物反応室2と濾過室3とがこの順に配されている好気処理槽1であって、前記濾過室3における濾過流量は、空塔速度(SV)で高くとも10h-1となるように制御されている好気処理槽1でもある。
【0008】
また、本発明は、上記好気処理槽1(生物反応室2+濾過室3)を備えている汚水浄化槽にも関する。
ここで、上記好気処理槽1の上流には、好ましくは、流量調整機能をもつ嫌気処理槽を設ける。
【0009】
なお、濾過室3における空塔速度SV(h−1)とは、濾過室3における濾過流量Q(m/h)を濾材込みの濾過部(濾過層)の容積V(m)で除した値で定義する。また、線速度LV(m/h)とは、上記濾過流量Q(m /h)÷濾過部断面積(m)の値で定義する。
【0010】
【作用】
本発明者らが集積した別途のデータ(図6)から、普及型家庭用浄化槽のBOD許容濃度20mg/L(以下)をクリアするには、SS濃度は約8mg/L以下でなければならないことが分かっている。そして、本発明は、後述するように試験濾過装置を用いた実験で、処理済み液のSS濃度8mg/L以下を達成する濾過部の限界濾過流量は、空塔速度(SV)として10h-1であることを見出したことに基づいている。すなわち、本発明に係る運転方法や好気処理槽もしくは汚水浄化槽では、濾過室での空塔速度(SV)を高くとも10h-1に制御するので、処理済み液のSS濃度は8mg/L以下となり、したがって、BOD許容濃度20mg/L(以下)をクリアできる。但し、空塔速度(SV)をあまりに小さくすると濾過室における濾過部の容量が大きくなって装置全体がコンパクトとはならないので、空塔速度(SV)は少なくとも2.0h-1以上、好ましくは5.0h-1以上、更に好ましくは7.0h-1以上とする。線速度(LV)としては少なくとも0.6m/h以上、好ましくは1.5m/h以上、更に好ましくは2.0m/h以上とする。
【0011】
【発明の実施の形態】
以下、本発明を更に具体的に説明する。はじめに、試験例を説明する。
(試験例)
用いた試験濾過装置(概略断面図)を図1に示した。装置の大きさは内径100mm、有効容量5Lの円筒型である。充填した濾材は、ポリプロピレンを基材とする連通気泡部及び独立気泡部を有する多孔質の中空円筒状濾材(外径10mm、内径7mm、長さ10mm、関西化工株式会社製)で、外面及び内面に凹凸があり、比重は1.01である。
濾材の充填高さHは、200、350及び500mmの3通りとし、各々について、LVを0.5、2.0、3.0及び5.0m/h(SVとしては0.8、3.2、4.7及び7.9h-1)に変化させ、試験した。装置への流入液(原水)は、下水処理場の活性汚泥の希釈液(SS濃度として50mg/Lになるように水道水で希釈)を用い、装置容量の3倍量(すなわち、装置内の液が原水でほぼ完全に置換される液量)を通液後に処理済み液をサンプリングした。
【0012】
図2(a)は濾材充填高さを横軸とし、縦軸を処理済み液のSS濃度としてプロットしたものであり、同(b)はSVを横軸とし、縦軸を処理済み液のSS濃度として再プロットしたものである。図2(b)から、処理済み液のSS濃度はSVに依存した曲線であることが分かるとともに、処理済み液のSS濃度を8mg/L以下(普及型家庭用浄化槽のBOD濃度20mg/Lに相当)をクリアするためには、SVの上限は10h-1であることが分かる。また、そのときのLVの上限は約3.0m/hであることも分かる。
【0013】
次に、本発明の好気処理槽について説明する。
図3は、本発明の一例の好気処理槽である。好気処理槽1は生物反応室2と濾過室3とが並置され構成されている。生物反応室2は、一辺の側壁上部(図3では左側)に汚水の流入口4が設けられると共に、その流入口4を囲むようにして立設した移流室5が槽内壁側に設けられ、流入した汚水を槽底部に移流させる。また、流入口4と反対側の側壁上部(図3では右側)には、流出口6が設けられている。また、移流室5には、流入した汚水を通過させるが生物担体7を通過させない通水部(スリット、メッシュ等からなるもの)8を槽底部付近に設けている。
【0014】
生物担体7と槽内液とを流動・撹拌させ、併せて酸素を供給するために、ブロワ10から供給される空気を、槽底部に配置した平面視四角形のループ状の(生物反応用)散気部材9から吐出させる。また、生物反応室2の水位面より下側に、液は通過させるが生物担体7を通過させない通水部材(スリット、メッシュ等からなるもの)11を配置して流動床を形成させている。
【0015】
なお、生物反応室2は平面視で円形にすることもできる。但し、汚水浄化槽に組み込むことを考慮すると、好ましくは略四角形である。
移流室5は平面視で半円形や三角形等にすることもできる。
流出口6は、流入した汚水の短絡を防止することから、流入口4から遠い反対側の壁側に配置させることが好ましい。
散気部材9は、平面視四角形のループ状に代えて、円形又は三角形のループ状、目の字状、あるいは一の字状等にすることもできる(散気部材16も同様である)。
通水部材11は、生物担体7が流出口6から流出しない手段を講じれば、水位面より上に設けてもよく、場合によっては取り除くこともできる。この通水部材11には、生物担体7の出し入れ口または点検口を設けることもできる。
また、移流室5を流出口6側に配置させることもできる。この場合、その底部付近には通水部を設ける。
【0016】
生物担体7は、生物反応室2の有効容積(水位面以下の容積から水位面以下の移流室5の容積を差し引いた容積)に対して、嵩容積で30〜60%、好ましくは35〜55%をその生物反応室2に充填する。槽内液と生物担体7とが散気部材9からのばっ気によって、良好に流動若しくは撹拌されて接触し、さらには溶存酸素の均一拡散によって、有機物の分解を良好に行わせるためである。
【0017】
また、生物担体7は、少しの撹拌力で液中で浮遊して流動するものがよい。比重では0.9〜1.1のものが好ましく、よく流動させることができる。比重が0.9未満であると、生物担体7の流動が全域に行き渡りにくくなる。比重が1.1を超えると、生物担体7の一部が生物反応室2の底部や底部コーナー部に溜りやすい。このような状態になると、有機物分解の能力が低下気味となる。比重は、その濾材の重量を予め空気中で測定したのち(その重量をW1とする)、これを95℃の蒸留水中で30分加熱してその充填材中に水を十分しみ込ませ、20℃に冷却後、浮力の影響下にその重量を測定し(その重量をW2とする)、W1/(W1−W2)で計算する値とする。
【0018】
生物担体7の基材は、成形加工性の点から、好ましくはポリプロピレンであり、更に好ましくは表面積の大きな多孔質体である。その他に、ポリエチレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルフォルマール等の合成樹脂から成形することもできる。また、活性炭、セラミックス、アンスラサイト(石炭に一種)、炭酸カルシウム、タルク又は珪砂等の無機物を基材に添加してもよい。
【0019】
生物担体7の形状は、好ましくは中空円筒状であり、その大きさは塊として見た場合の径及び長さで5〜20mm程度が好ましい。他に、球状、円柱状、立方体状、網様円筒状、ヘチマ状、骨格球状等とすることもできる。生物担体7は、比表面積が大きいものほど好ましい。
【0020】
濾過室3には、生物反応室2側の側壁上部の流出口6から汚水が流入する。また、流出口6と反対側または直角方向の側壁には、移流室12及び流出口13を設けている。また、濾過室3内には、濾材14を保持する濾過部(濾過層)を形成させるために、液は通すが濾材14は通さない通水部材(スリット、メッシュ等)15(15a、15b)を濾過部の上方及び下方に設けている。
【0021】
濾過部の下方又は下部には、洗浄時に濾過部をバブリングするために、散気部材16を配置させている。また、濾過部の洗浄時に、濾過部の下方から洗浄排水を引き抜く洗浄排水引き抜きポンプ17も配置させている。液の流れ方向は下向流である。洗浄排水引き抜きポンプ17には、ブロワ10から空気を供給する。
【0022】
通水部材15aには、濾材14の出し入れ口または点検口を設けることもできる。
【0023】
濾過室3に充填する濾材14について説明する。濾材14は、通常時は沈降し、洗浄時は少しの撹拌力で流動させるために、比重が1.0〜1.1のものが好ましい。比重が1.0未満であると、汚水流入時に濾過部が流動してしまうため、濾過性能が悪化する。また、比重が1.1を超えると、濾過部洗浄時にバブリングしても濾材が流動しにくくなり、捕捉したSSが剥離せず、濾過部が閉塞しやすくなる。
【0024】
また、濾材14の充填率は、濾過部の有効容積に対して嵩容積で60〜90%が好ましい。充填率が90%以上になると、濾過部の洗浄時に濾材14が動きにくく、捕捉したSSは剥離しにくい。また、60%以下とすると、濾過室の容量が大きくなるとともに、濾過部の洗浄に要する時間も余計にかかることになる。
【0025】
濾材14の基材は、成形加工性の点から、好ましくはポリプロピレンであり、更に好ましくは表面に凹凸があるものである。その他に、ポリエチレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルフォルマール等の合成樹脂から成形することもできる。また、活性炭、セラミックス、アンスラサイト(石炭に一種)、炭酸カルシウム、タルク又は珪砂等の無機物を基材に添加してもよい。
【0026】
濾材14の形状は、好ましくは中空円筒状であり、その大きさは塊として見た場合の径及び長さで各々5〜20mm程度が好ましい。他に、球状、円柱状、立方体状、網様円筒状、ヘチマ状、骨格球状等とすることもできる。
【0027】
また、濾過室3の移流室12を生物反応室2の流出口6側に設けて、濾過部の液の流れを上向きにすることもできる。この場合、濾材の比重は0.9以上1.0未満とすることが好ましい。
【0028】
次に、上記好気処理槽1の上流側に流量調整部27を設けた汚水浄化槽の例を図4で説明する。汚水浄化槽20は、上流側から、第一の嫌気処理槽となる第一固液分離室21、第二の嫌気処理槽となる第二固液分離室22、好気処理槽1及び消毒槽24で構成されている。
【0029】
第一固液分離室21には汚水流入口25があり、第一固液分離室21と第二固液分離室22とは、第二固液分離室22底部の開口部26で繋がっている。また、第一固液分離室21及び第二固液分離室22には、汚水の流入変動を平均化して後段の好気処理槽1以降へ定量移送するための流量調整部27(低水位L.W.L〜高水位H.W.Lの間)を設けている。第二固液分離室22には、槽内液を好気処理槽1へ定量移送する移送用ポンプ28を設けてあり、その吸込み口29は低水位L.W.Lに設けている。
【0030】
移送用ポンプ28は、低水位L.W.L〜高水位H.W.Lのいずれの水位においても、濾過室における濾過流量は、SVで10h-1以下、LVで3.0m/h以下となるような揚水能力を持つものを用いる。内径13mmの管を用いたエアリフトポンプの場合のポンプ特性を図5に示す。図5に示すように、低水位L.W.L〜高水位H.W.Lのいずれの水位においても、濾過室における濾過流量はSVで10h-1以下、LVで3.0m/h以下となっている。なお、移送用ポンプ28には、同様の揚水能力を持つ電動ポンプ等を用いることもできる。
また、第一固液分離室21及び第二固液分離室22は、生物付着材(生物担体、濾材、接触材ともいう)が充填された濾床をもつ嫌気濾床槽でもよく、嫌気処理槽は1槽のみであってもよい。
【0031】
汚水浄化槽20における好気処理槽1の説明は、前記図3での説明と重複するので省略する。但し、移流室18の中には、生物反応室2からの移流液の一部を第一固液分離室21へ循環させる循環用エアリフトポンプ30と、濾過室3の洗浄排水を引き抜き第一固液分離室21へ移送させる洗浄排水引き抜きポンプ17とを配置させている。なお、循環用エアリフトポンプ30及び洗浄排水引き抜きポンプ17は、電動ポンプ等の移送ポンプを用いることもできる。また、循環用エアリフトポンプ30は、取り除くこともできる。
【0032】
汚水浄化槽20(図4)での汚水処理を説明する。流入汚水は、実線矢印で示すとおり、汚水流入口25から第一固液分離室21に入り、固液分離及び嫌気的生物処理が行われる。ここを通過した移流液は、第二固液分離室22に入り、さらに固液分離及び嫌気的生物処理が行われる。第一固液分離室21及び第二固液分離室22で流入汚水の流量変動を緩和しつつ、移送用エアリフトポンプ28により液を好気処理槽1へ定量移送する。
【0033】
好気処理槽1へ流入した液は、散気部材9から吐出される空気及び流動する生物担体7と充分に接触して、好気的生物分解が進行する。分解された有機物の一部は微生物に転換され、その微生物の一部は生物担体7に付着し、あるいは液中に浮遊(SSとして)する。通水部8から移流室18に流入した液は、循環用エアリフトポンプ30によって一部が連続又は間欠的に第一固液分離室21に返送され、SSが分離される。また残りの液は流出口6から濾過室3へ入る。入った液は、濾材14によってSSが捕捉除去されるとともに、引き続き生物的処理も行われる。有機物及びSSが除去された液は、消毒槽24を経て放流口31から処理済み液として放流される。
【0034】
濾過室3における洗浄は次のようにして行われる。先ず、(洗浄用)散気部材16から空気を吐出させ、濾過部をバブリングしてSSを剥離させる。このとき、洗浄排水引き抜きポンプ17を稼動し、濾過室3の底部から洗浄排水を引き抜いて第一固液分離室21に返送する。この際、できる限り洗浄排水の全量を引き抜きことが好ましい。洗浄排水の引き抜きの完了によって、洗浄は終了する。この洗浄は、第一固液分離室21の水位が低水位(L.W.L)付近にあるとき(即ち、汚水の流入のないとき)に行うのが好ましい。
【0035】
【発明の効果】
本発明の運転方法又は本発明の好気処理槽もしくは汚水浄化槽によれば、特開平9−248584号公報で開示したような汚水浄化槽は更に改良され、濾過室におけるSS濾過性能は高まり、安定して汚水処理ができる。
また、本発明の好気処理槽もしくは汚水浄化槽によれば、濾過室での濾過流量が最適化されているので、従来よりも少量の濾材で済み、したがって、好気処理槽もしくは汚水浄化槽の小型化に寄与する。
また、流量調整機能がある嫌気処理槽を好気処理槽の上流に配置した汚水浄化槽では、流入汚水の流量変動が大きくても、濾過室での濾過流量(線速度と空搭速度)を容易に制御できる。
【図面の簡単な説明】
【図1】使用した試験濾過装置の概略断面図。
【図2】試験結果のグラフで、(a)は濾材充填高さを横軸としたもの、(b)はSVを横軸としたもの。
【図3】本発明の一例の好気処理槽の概略断面図。
【図4】本発明の一例の汚水浄化槽の概略断面図。
【図5】本発明の一例のエアリフトポンプの特性を示すグラフ。
【図6】普及型家庭用浄化槽におけるSS濃度とBOD濃度との相関を示すグラフ。
【符号の説明】
1:好気処理槽 2:生物反応室 3:濾過室
4:流入口 5:移流室 6:流出口
7:生物担体 8:通水部 9:(生物反応用)散気部材
10:ブロワ 11:通水部材 12:移流室
13:流出口 14:濾材
15a,15b:通水部材 16:(濾過室洗浄用)散気部材
17:洗浄用エアリフトポンプ 18:移流室
20:汚水浄化槽 21:嫌気処理槽第一室(第一固液分離室)
22:嫌気処理槽第二室(第二固液分離室) 24:消毒槽
25:汚水流入口 26:開口部 27:流量調整部
28:移送用エアリフトポンプ 29:吸込み口
30:循環用エアリフトポンプ 31:放流口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating an aerobic treatment tank, an aerobic treatment tank, and sewage that are preferably used for biochemically purifying human waste, other domestic wastewater, and combined sewage (also simply referred to as sewage). It relates to septic tanks.
[0002]
[Prior art]
Various sewage septic tanks are conventionally known. One of them is, as disclosed in JP-A-9-248484, in order from the upstream side, the first anaerobic filter bed tank, the second anaerobic filter bed tank, the aerobic filter bed tank, the treated water tank, and It is a sewage purification tank provided with a disinfection tank. Here, the aerobic filter bed tank is divided into an upper compartment (biological reaction part) filled with a particulate carrier and a lower compartment (filtration part) also filled with a particulate carrier. Air is discharged from the member to form a fluidized bed in the upper section, and a fixed bed (filtering section) is formed in the lower section (filtering section).
[0003]
[Problems to be solved by the invention]
The present invention further improves the above-described aerobic treatment tank or sewage purification tank, and improves the SS (floating solid content; suspended solids) filtration performance in the filtration unit (fixed bed). ”, An object is to provide an aerobic treatment tank and a sewage purification tank using the same.
[0004]
[Means for Solving the Problems]
In general, the filtering performance is improved as the filter medium filling height (H) is higher, and as the linear velocity (LV) and superficial velocity (SV) are smaller. However, the higher the filter medium filling height is, and the smaller the linear velocity and superficial velocity are, the larger the filtration section of the filtration chamber becomes. As a result of various studies using a test filtration apparatus filled with a predetermined amount of filter medium, the present inventors have been able to clarify the optimum filtration flow rate (flow velocity), and have completed the present invention.
[0005]
That is, in the present invention, when operating the aerobic treatment tank 1 in which the biological reaction chamber 2 and the filtration chamber 3 are arranged in this order, the filtration flow rate (speed) in the filtration chamber 3 is set to the superficial velocity (SV). ) As an index, this is an operation method of the aerobic treatment tank 1 which is controlled to be 2.0 or more and 10 h −1 or less .
[0006]
Here, the filtration rate in the filtration chamber, further, the linear velocity (LV), that controls the following range 3.0 m / h.
[0007]
Further, the present invention is an aerobic treatment tank 1 in which a biological reaction chamber 2 and a filtration chamber 3 are arranged in this order, and the filtration flow rate in the filtration chamber 3 is at most 10 hours at the superficial velocity (SV). It is also an aerobic treatment tank 1 that is controlled to be -1 .
[0008]
The present invention also relates to a sewage purification tank provided with the aerobic treatment tank 1 (biological reaction chamber 2 + filtration chamber 3).
Here, an anaerobic treatment tank having a flow rate adjusting function is preferably provided upstream of the aerobic treatment tank 1.
[0009]
Note that the superficial velocity SV (h −1 ) in the filtration chamber 3 is obtained by dividing the filtration flow rate Q (m 3 / h) in the filtration chamber 3 by the volume V (m 3 ) of the filtration part (filtration layer) including the filter medium. Define the value with The linear velocity LV (m / h) is defined by the value of the filtration flow rate Q (m 3 / h) ÷ filtration section sectional area (m 2 ).
[0010]
[Action]
In order to clear the BOD allowable concentration of 20 mg / L (or less) in the popular household septic tank from the separate data (FIG. 6) accumulated by the present inventors, the SS concentration must be approximately 8 mg / L or less. I know. And this invention is the experiment which used the test filtration apparatus so that it may mention later, and the limit filtration flow rate of the filtration part which achieves SS concentration 8mg / L or less of a processed liquid is 10h < -1 > as superficial velocity (SV). It is based on finding out that. That is, in the operation method, the aerobic treatment tank or the sewage purification tank according to the present invention, the superficial velocity (SV) in the filtration chamber is controlled to 10 h -1 at the highest, so the SS concentration of the treated liquid is 8 mg / L or less. Therefore, the BOD allowable concentration of 20 mg / L (below) can be cleared. However, if the superficial velocity (SV) is too small, the capacity of the filtration section in the filtration chamber becomes large and the entire apparatus does not become compact. Therefore, the superficial velocity (SV) is at least 2.0 h −1 or more, preferably 5 0.0h -1 or more, more preferably 7.0 h -1 or more. The linear velocity (LV) is at least 0.6 m / h or more, preferably 1.5 m / h or more, more preferably 2.0 m / h or more.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically. First, test examples will be described.
(Test example)
The test filtration apparatus (schematic cross-sectional view) used is shown in FIG. The size of the apparatus is a cylindrical shape having an inner diameter of 100 mm and an effective capacity of 5 L. The filled filter medium is a porous hollow cylindrical filter medium (outer diameter: 10 mm, inner diameter: 7 mm, length: 10 mm, manufactured by Kansai Kako Co., Ltd.) having an open cell part and a closed cell part based on polypropylene. There are irregularities, and the specific gravity is 1.01.
The filter medium has a filling height H of 200, 350, and 500 mm, and LV is 0.5, 2.0, 3.0, and 5.0 m / h (SV is 0.8, 3. 2, 4.7 and 7.9 h −1 ) and tested. The influent (raw water) to the equipment is a diluted sludge of activated sludge from the sewage treatment plant (diluted with tap water so that the SS concentration becomes 50 mg / L), and is 3 times the capacity of the equipment (that is, in the equipment) The processed liquid was sampled after passing through (the amount of liquid in which the liquid was almost completely replaced with raw water).
[0012]
FIG. 2 (a) plots the filter medium filling height as the horizontal axis and the vertical axis as the SS concentration of the treated liquid, and FIG. 2 (b) shows SV as the horizontal axis and the vertical axis as the SS of the treated liquid. Re-plotted as concentration. From FIG. 2 (b), it can be seen that the SS concentration of the treated liquid is a curve depending on SV, and the SS concentration of the treated liquid is 8 mg / L or less (the BOD concentration of the popular household septic tank is 20 mg / L). It can be seen that the upper limit of SV is 10h −1 to clear (equivalent). Moreover, it turns out that the upper limit of LV at that time is about 3.0 m / h.
[0013]
Next, the aerobic treatment tank of the present invention will be described.
FIG. 3 shows an aerobic treatment tank according to an example of the present invention. The aerobic treatment tank 1 includes a biological reaction chamber 2 and a filtration chamber 3 juxtaposed. The biological reaction chamber 2 is provided with a sewage inlet 4 at the upper side wall (on the left side in FIG. 3), and an advection chamber 5 erected so as to surround the inlet 4 on the inner wall side of the tank. The sewage is transferred to the bottom of the tank. In addition, an outlet 6 is provided at the upper part of the side wall opposite to the inlet 4 (right side in FIG. 3). Further, the advection chamber 5 is provided with a water passage portion (made of a slit, a mesh or the like) 8 that allows the inflowing sewage to pass but does not allow the biological carrier 7 to pass, in the vicinity of the bottom of the tank.
[0014]
In order to flow and agitate the biological carrier 7 and the liquid in the tank, and to supply oxygen together, the air supplied from the blower 10 is a loop-like (biological reaction) powder having a square shape in plan view arranged at the bottom of the tank. The gas member 9 is discharged. Further, below the water level surface of the biological reaction chamber 2, a fluid passage member is formed by disposing a water passage member (including a slit, a mesh, etc.) 11 that allows liquid to pass but does not allow the biological carrier 7 to pass.
[0015]
The biological reaction chamber 2 can also be made circular in plan view. However, considering that it is incorporated into the sewage septic tank, it is preferably a substantially rectangular shape.
The advection chamber 5 can be semicircular or triangular in plan view.
The outlet 6 is preferably disposed on the opposite wall side far from the inlet 4 in order to prevent a short circuit of the sewage that has flowed in.
The air diffusing member 9 may be formed in a circular or triangular loop shape, an eye shape, a single character shape, or the like instead of the quadrangular loop shape in plan view (the same applies to the air diffusing member 16).
The water flow member 11 may be provided above the water level surface and may be removed depending on the case as long as the biological carrier 7 does not flow out from the outlet 6. The water passage member 11 may be provided with an inlet / outlet port or an inspection port for the biological carrier 7.
Moreover, the advection chamber 5 can also be arrange | positioned at the outflow port 6 side. In this case, a water passage is provided near the bottom.
[0016]
The biological carrier 7 has a bulk volume of 30 to 60%, preferably 35 to 55% with respect to the effective volume of the biological reaction chamber 2 (the volume obtained by subtracting the volume of the advection chamber 5 below the water level from the volume below the water level). % Is charged into the biological reaction chamber 2. This is because the liquid in the tank and the biological carrier 7 are brought into contact with each other by being aerated or agitated well by aeration from the air diffusing member 9, and further the organic matter is decomposed satisfactorily by the uniform diffusion of dissolved oxygen.
[0017]
Further, the biological carrier 7 is preferably one that floats and flows in the liquid with a little stirring force. The specific gravity is preferably 0.9 to 1.1, and can be flowed well. When the specific gravity is less than 0.9, the flow of the biological carrier 7 is difficult to spread over the entire area. When the specific gravity exceeds 1.1, a part of the biological carrier 7 tends to be collected at the bottom or bottom corner of the biological reaction chamber 2. In such a state, the ability of decomposing organic matter tends to decrease. The specific gravity is determined by measuring the weight of the filter medium in the air in advance (the weight is W 1 ) and heating it in distilled water at 95 ° C. for 30 minutes so that the filler is sufficiently impregnated with water. ℃ after cooling, and the weight was measured under the influence of buoyancy (for the weight and W 2), a value calculated by W 1 / (W 1 -W 2 ).
[0018]
The base material of the biological carrier 7 is preferably polypropylene from the viewpoint of moldability, and more preferably a porous body having a large surface area. In addition, it can be molded from a synthetic resin such as polyethylene, polyvinyl chloride, polyvinyl alcohol, and polyvinyl formal. Further, an inorganic substance such as activated carbon, ceramics, anthracite (a kind of coal), calcium carbonate, talc, or silica sand may be added to the base material.
[0019]
The shape of the biological carrier 7 is preferably a hollow cylindrical shape, and the size is preferably about 5 to 20 mm in diameter and length when viewed as a lump. In addition, a spherical shape, a cylindrical shape, a cubic shape, a net-like cylindrical shape, a loofah shape, a skeleton sphere shape, and the like can be used. The biological carrier 7 has a larger specific surface area.
[0020]
Sewage flows into the filtration chamber 3 from the outlet 6 at the upper side wall on the biological reaction chamber 2 side. Further, an advection chamber 12 and an outlet 13 are provided on the side wall opposite to the outlet 6 or at a right angle. Moreover, in order to form the filtration part (filtration layer) which hold | maintains the filter medium 14 in the filtration chamber 3, the water-permeable member (slit, mesh, etc.) 15 (15a, 15b) which lets a liquid pass but does not let the filter medium 14 pass. Are provided above and below the filtration section.
[0021]
A diffuser member 16 is disposed below or below the filtration unit in order to bubble the filtration unit during cleaning. Further, a cleaning drainage pump 17 for extracting the cleaning drainage from the lower side of the filtering unit is also disposed when the filtering unit is cleaned. The flow direction of the liquid is a downward flow. Air is supplied from the blower 10 to the cleaning drainage pump 17.
[0022]
The water passage member 15a can be provided with an inlet / outlet or an inspection port for the filter medium 14.
[0023]
The filter medium 14 filled in the filtration chamber 3 will be described. The filter medium 14 is preferably set to have a specific gravity of 1.0 to 1.1 in order to settle during normal times and flow with a little stirring force during washing. If the specific gravity is less than 1.0, the filtration part will flow when sewage flows in, and the filtration performance will deteriorate. On the other hand, if the specific gravity exceeds 1.1, the filter medium is difficult to flow even when bubbling at the time of washing the filtration unit, the captured SS does not peel off, and the filtration unit is easily blocked.
[0024]
Further, the filling rate of the filter medium 14 is preferably 60 to 90% in terms of the bulk volume with respect to the effective volume of the filtration part. When the filling rate is 90% or more, the filter medium 14 hardly moves during the cleaning of the filtration part, and the captured SS is difficult to peel off. On the other hand, if it is 60% or less, the capacity of the filtration chamber is increased, and the time required for cleaning the filtration part is also increased.
[0025]
The base material of the filter medium 14 is preferably polypropylene from the viewpoint of moldability, and more preferably has irregularities on the surface. In addition, it can be molded from a synthetic resin such as polyethylene, polyvinyl chloride, polyvinyl alcohol, and polyvinyl formal. Further, an inorganic substance such as activated carbon, ceramics, anthracite (a kind of coal), calcium carbonate, talc, or silica sand may be added to the base material.
[0026]
The shape of the filter medium 14 is preferably a hollow cylindrical shape, and the size is preferably about 5 to 20 mm in diameter and length when viewed as a lump. In addition, a spherical shape, a cylindrical shape, a cubic shape, a net-like cylindrical shape, a loofah shape, a skeleton sphere shape, and the like can be used.
[0027]
In addition, the advection chamber 12 of the filtration chamber 3 can be provided on the outlet 6 side of the biological reaction chamber 2 so that the liquid flow in the filtration section is directed upward. In this case, the specific gravity of the filter medium is preferably 0.9 or more and less than 1.0.
[0028]
Next, an example of a sewage purification tank provided with a flow rate adjusting unit 27 on the upstream side of the aerobic treatment tank 1 will be described with reference to FIG. From the upstream side, the sewage purification tank 20 includes a first solid-liquid separation chamber 21 serving as a first anaerobic treatment tank, a second solid-liquid separation chamber 22 serving as a second anaerobic treatment tank, the aerobic treatment tank 1, and a disinfection tank 24. It consists of
[0029]
The first solid-liquid separation chamber 21 has a sewage inlet 25, and the first solid-liquid separation chamber 21 and the second solid-liquid separation chamber 22 are connected by an opening 26 at the bottom of the second solid-liquid separation chamber 22. . Further, in the first solid-liquid separation chamber 21 and the second solid-liquid separation chamber 22, a flow rate adjusting unit 27 (low water level L) for averaging the sewage inflow fluctuation and transferring it to the subsequent aerobic treatment tank 1 and later. .. between W.L and high water level H.W.L). The second solid-liquid separation chamber 22 is provided with a transfer pump 28 for quantitatively transferring the liquid in the tank to the aerobic treatment tank 1, and the suction port 29 has a low water level L.P. W. L is provided.
[0030]
The transfer pump 28 has a low water level L.P. W. L to high water level W. At any water level of L, the filtration flow rate in the filtration chamber is such that the pumping capacity is such that the SV is 10 h −1 or less and the LV is 3.0 m / h or less. FIG. 5 shows pump characteristics in the case of an air lift pump using a tube having an inner diameter of 13 mm. As shown in FIG. W. L to high water level W. At any water level of L, the filtration flow rate in the filtration chamber is 10 h −1 or less for SV and 3.0 m / h or less for LV. The transfer pump 28 may be an electric pump having the same pumping capacity.
The first solid-liquid separation chamber 21 and the second solid-liquid separation chamber 22 may be an anaerobic filter bed tank having a filter bed filled with a bioadhesive material (also referred to as a biological carrier, a filter material, or a contact material). There may be only one tank.
[0031]
The description of the aerobic treatment tank 1 in the sewage purification tank 20 is omitted because it overlaps with the description in FIG. However, in the advection chamber 18, a circulation air lift pump 30 that circulates a part of the advection liquid from the biological reaction chamber 2 to the first solid-liquid separation chamber 21 and the washing waste water from the filtration chamber 3 are drawn out to the first solid liquid. A cleaning drainage pump 17 that is transferred to the liquid separation chamber 21 is disposed. The circulation air lift pump 30 and the cleaning drainage pump 17 may be a transfer pump such as an electric pump. Further, the circulating air lift pump 30 can be removed.
[0032]
The sewage treatment in the sewage septic tank 20 (FIG. 4) will be described. The inflowing sewage enters the first solid-liquid separation chamber 21 from the sewage inlet 25 as indicated by solid arrows, and solid-liquid separation and anaerobic biological treatment are performed. The advection liquid that has passed through here enters the second solid-liquid separation chamber 22, and further undergoes solid-liquid separation and anaerobic biological treatment. The liquid is quantitatively transferred to the aerobic treatment tank 1 by the transfer air lift pump 28 while the flow rate fluctuation of the incoming sewage is reduced in the first solid-liquid separation chamber 21 and the second solid-liquid separation chamber 22.
[0033]
The liquid that has flowed into the aerobic treatment tank 1 is sufficiently brought into contact with the air discharged from the diffuser member 9 and the flowing biological carrier 7, and aerobic biodegradation proceeds. A part of the decomposed organic matter is converted into a microorganism, and a part of the microorganism adheres to the biological carrier 7 or floats (as SS) in the liquid. A part of the liquid flowing into the advection chamber 18 from the water flow section 8 is continuously or intermittently returned to the first solid-liquid separation chamber 21 by the circulation air lift pump 30, and SS is separated. The remaining liquid enters the filtration chamber 3 from the outlet 6. In the liquid that has entered, SS is captured and removed by the filter medium 14, and the biological treatment is subsequently performed. The liquid from which the organic matter and SS have been removed is discharged as a processed liquid from the discharge port 31 through the disinfection tank 24.
[0034]
Cleaning in the filtration chamber 3 is performed as follows. First, air is discharged from the air diffuser 16 (for cleaning), and the filtration part is bubbled to separate the SS. At this time, the cleaning drainage pump 17 is operated, and the cleaning drainage is extracted from the bottom of the filtration chamber 3 and returned to the first solid-liquid separation chamber 21. At this time, it is preferable to draw out the entire amount of washing waste water as much as possible. Washing is completed when the drainage of the washing drain is completed. This washing is preferably performed when the water level in the first solid-liquid separation chamber 21 is in the vicinity of a low water level (LWL) (that is, when there is no inflow of sewage).
[0035]
【The invention's effect】
According to the operation method of the present invention or the aerobic treatment tank or sewage septic tank of the present invention, the sewage septic tank as disclosed in JP-A-9-248484 is further improved, and the SS filtration performance in the filtration chamber is increased and stabilized. Can treat sewage.
In addition, according to the aerobic treatment tank or the sewage septic tank of the present invention, the filtration flow rate in the filtration chamber is optimized, so that a smaller amount of filter medium is required than in the prior art. Contributes to
In addition, the sewage septic tank with an anaerobic treatment tank with a flow adjustment function located upstream of the aerobic treatment tank makes it easy to filter the filtration flow rate (linear speed and flight speed) in the filtration chamber even when the flow rate of incoming sewage is large. Can be controlled.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a test filtration device used.
FIG. 2 is a graph of test results, where (a) shows the height of the filter medium packed on the horizontal axis, and (b) shows SV on the horizontal axis.
FIG. 3 is a schematic sectional view of an aerobic treatment tank according to an example of the present invention.
FIG. 4 is a schematic sectional view of an example of the sewage septic tank of the present invention.
FIG. 5 is a graph showing characteristics of an air lift pump according to an example of the present invention.
FIG. 6 is a graph showing the correlation between SS concentration and BOD concentration in a popular household septic tank.
[Explanation of symbols]
1: Aerobic treatment tank 2: Biological reaction chamber 3: Filtration chamber 4: Inlet 5: Advection chamber 6: Outlet 7: Biological carrier 8: Water passage 9: (For biological reaction) Aeration member 10: Blower 11 : Water flow member 12: Advection chamber 13: Outlet 14: Filter medium 15a, 15b: Water flow member 16: (For filtration chamber washing) Aeration member 17: Cleaning air lift pump 18: Advection chamber 20: Sewage septic tank 21: Anaerobic Processing chamber first chamber (first solid-liquid separation chamber)
22: Anaerobic treatment tank second chamber (second solid-liquid separation chamber) 24: Disinfection tank 25: Sewage inlet 26: Opening 27: Flow rate adjusting unit 28: Transfer air lift pump 29: Suction port 30: Circulation air lift pump 31: Outlet

Claims (1)

有効容積に対し嵩容積で30〜60%の生物担体を充填した生物反応室と、有効容積に対し嵩容積で60〜90%の濾材を充填し、下方に洗浄排水引き抜きポンプを配置させた濾過室とをこの順で配し、濾過室における空塔速度SV(濾過室における濾過流量Qを濾材込みの濾過部の容積Vで除した値)を2.0以上10h −1 以下とし、濾過室の線速度LV(濾過流量Qを濾過部断面積で除した値)を3.0m/h以下として制御する、好気処理槽の運転方法。 Filtration in which a biological reaction chamber filled with 30 to 60% of the biological carrier with a bulk volume with respect to the effective volume, and a filter medium with a bulk volume of 60 to 90% with respect to the effective volume is filled, and a washing drainage pump is disposed below. The chambers are arranged in this order, and the superficial velocity SV in the filtration chamber (the value obtained by dividing the filtration flow rate Q in the filtration chamber by the volume V of the filtration part including the filter medium) is 2.0 or more and 10 h −1 or less. The operating method of the aerobic treatment tank is controlled so that the linear velocity LV (value obtained by dividing the filtration flow rate Q by the sectional area of the filtration portion) is 3.0 m / h or less .
JP2002140265A 2002-05-15 2002-05-15 Operating method of aerobic treatment tank, aerobic treatment tank and sewage septic tank Expired - Lifetime JP4013123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140265A JP4013123B2 (en) 2002-05-15 2002-05-15 Operating method of aerobic treatment tank, aerobic treatment tank and sewage septic tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140265A JP4013123B2 (en) 2002-05-15 2002-05-15 Operating method of aerobic treatment tank, aerobic treatment tank and sewage septic tank

Publications (2)

Publication Number Publication Date
JP2003334581A JP2003334581A (en) 2003-11-25
JP4013123B2 true JP4013123B2 (en) 2007-11-28

Family

ID=29701183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140265A Expired - Lifetime JP4013123B2 (en) 2002-05-15 2002-05-15 Operating method of aerobic treatment tank, aerobic treatment tank and sewage septic tank

Country Status (1)

Country Link
JP (1) JP4013123B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5128357B2 (en) * 2008-04-22 2013-01-23 シャープ株式会社 Water treatment apparatus and water treatment method
JP5062572B2 (en) * 2008-07-01 2012-10-31 新日本フエザーコア株式会社 Contact oxidation combination system
CN102869619B (en) * 2010-04-30 2016-03-02 栗田工业株式会社 Water treatment method and ultrapure water manufacture method

Also Published As

Publication number Publication date
JP2003334581A (en) 2003-11-25

Similar Documents

Publication Publication Date Title
JPH10504997A (en) Gas treatment / floating reactor with device for separating solids from liquids
JP4013123B2 (en) Operating method of aerobic treatment tank, aerobic treatment tank and sewage septic tank
JP3469797B2 (en) Sewage treatment method and apparatus
JP4119997B2 (en) Wastewater septic tank
KR101037888B1 (en) Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor
CN209668921U (en) A kind of biology desilting basin
JP2000354858A (en) Sewage treatment method and device therefor
JP3779634B2 (en) Long fiber filtration device
KR100414688B1 (en) Foul drain processing unit and method using settling chamber and biofilm filteration aquarium
JP2544712B2 (en) Wastewater treatment facility
JP2004122080A (en) Septic tank with chambers having prescribed volume ratio
JP4022815B2 (en) Solid-liquid separation tank and sewage septic tank having a filter medium layer in the second chamber
JP4454825B2 (en) Wastewater purification tank and wastewater purification method
RU2344998C1 (en) Device for biological purification of sewage waters
JP3479632B2 (en) Wastewater treatment equipment
RU2344091C1 (en) Biological sewage treatment system
JPH0975994A (en) Biological waste water treating device
JP4117361B2 (en) Anaerobic treatment tank equipped with ozone aeration chamber and sewage septic tank
JP4781510B2 (en) Upflow filter, aerobic treatment tank with filter and sewage septic tank
RU2137720C1 (en) Plant for biological cleaning of domestic waste water
JP4055048B2 (en) Wastewater septic tank
RU2344089C1 (en) Biological sewage treatment system
JP2005169288A (en) Automatic water cleaning device and water cleaning method
JPH08281285A (en) Purifying device
JP2002357200A (en) Air lift pump, flow regulating tank and septic tank provided with the same, and method for operating air lift pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4013123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term