JP4009819B2 - Concrete material measurement method - Google Patents
Concrete material measurement method Download PDFInfo
- Publication number
- JP4009819B2 JP4009819B2 JP2001343003A JP2001343003A JP4009819B2 JP 4009819 B2 JP4009819 B2 JP 4009819B2 JP 2001343003 A JP2001343003 A JP 2001343003A JP 2001343003 A JP2001343003 A JP 2001343003A JP 4009819 B2 JP4009819 B2 JP 4009819B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- aggregate
- mass
- fine
- coarse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、表面水の状態が異なる骨材及び水を計量するコンクリート材料の計量方法に関する。
【0002】
【従来の技術】
コンクリートを現場配合する際、水量がコンクリート強度等に大きな影響を及ぼすため、練混ぜ時に十分管理する必要があるが、配合材料である骨材は、その貯蔵状況や気候条件等によって含水状態が異なり、湿潤状態の骨材を用いるとコンクリート中の水量が骨材の表面水の量だけ増加し、乾燥状態の骨材を用いるとコンクリート中の水量は有効吸水量だけ減少する。
【0003】
そのため、骨材の乾湿程度に応じて練混ぜ時の水量を補正し示方配合通りのコンクリートを製造することが、コンクリートの品質を維持する上できわめて重要な事項となる。
【0004】
ここで、湿潤状態における表面水の水量(骨材の表面に付着している水量)を表乾状態(表面乾燥飽水状態)の骨材の質量で除した比率を表面水率と呼んでいるが、貯蔵されている骨材は一般に濡れていることが多いため、かかる表面水率を骨材の乾湿程度の指標として予め測定し、その測定値に基づいて練混ぜ水量を調整するのが一般的である。
【0005】
そして、このような表面水率の測定は、従来、骨材が貯蔵されたストックビンと呼ばれる貯蔵容器から少量の試料を採取してその質量及び絶乾状態での質量を計測し、次いで、これらの計測値と予め測定された表乾状態の吸水率とを用いて算出していた。
【0006】
【発明が解決しようとする課題】
しかしながら、このような測定方法では、絶乾状態の質量を計測するのにバーナー等による加熱作業が必要となるため、経済性や時間の面で非現実的であるという問題を生じていた。
【0007】
また、このような問題を補うべく、練混ぜ状況をオペレータが目視で確認したり、ミキサの負荷電流を参考にすることによって練混ぜ水量の調整を行うといった方法を採用することがあるが、かかる方法自体が精度の低いものであり、結局、強度面で20%近い大きな安全率を見込まざるを得なくなり、不経済な配合となるという問題も生じていた。
【0008】
本発明は、上述した事情を考慮してなされたもので、骨材及び水の質量を効率よくしかも所定の精度で計測することが可能なコンクリート材料の計量方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るコンクリート材料の計量方法は請求項1に記載したように、第1の計量槽に水を投入して該水の質量Mwsiを計測し、計量すべき細骨材のうち、一部の細骨材を該一部の細骨材が水面から出ない水浸細骨材となるように前記第1の計量槽に投入して該水浸細骨材の全質量Mfs及び全容積Vfsを計測し、ρsを前記細骨材の表乾状態における密度、ρwを水の密度として、以下の2式、すなわち、
Ms+Mws=Mfs (1)
Ms/ρs+Mws/ρw=Vfs (2)
を解くことによって、前記一部の細骨材の表乾状態の質量Ms及び前記第1の計量槽内の水の質量Mwsを求め、次いで前記Mws及び前記Mwsiを、次式、
(Mws―Mwsi)/Ms (3)
に代入して前記一部の細骨材の表面水率を算出し、次いで、計量すべき細骨材のうちの残りの細骨材を前記一部の細骨材の表面水率で補正して計量するとともに、前記細骨材のうちの残りの細骨材に付着する表面水の質量Mwssを前記一部の細骨材の表面水率を用いて算出する細骨材計量工程と、
第2の計量槽に水を投入して該水の質量Mwgiを計測し、計量すべき粗骨材のうち、一部の粗骨材を該一部の粗骨材が水面から出ない水浸粗骨材となるように前記第2の計量槽に投入して該水浸粗骨材の全質量Mfg及び全容積Vfgを計測し、ρgを前記粗骨材の表乾状態における密度、ρwを水の密度として、以下の2式、すなわち、
Mg+Mwg=Mfg (4)
Mg/ρg+Mwg/ρw=Vfg (5)
を解くことによって、前記一部の粗骨材の表乾状態の質量Mg及び前記第2の計量槽内の水の質量Mwgを求め、次いで前記Mwg及び前記Mwgiを、次式、
(Mwg―Mwgi)/Mg (6)
に代入して前記一部の粗骨材の表面水率を算出し、次いで、計量すべき粗骨材のうちの残りの粗骨材を前記一部の粗骨材の表面水率で補正して計量するとともに、前記粗骨材のうちの残りの粗骨材に付着する表面水の質量Mwgsを前記一部の粗骨材の表面水率を用いて算出する粗骨材計量工程と、
前記細骨材計量工程及び前記粗骨材計量工程で得られたMws、Mwg、Mwss及びMwgsを用いて、計量すべき水のうちの残りの水Mwrを、示方配合で示されている水量Mwtとして、次式、
Mwr=Mwt―(Mws+Mwg+Mwss+Mwgs) (7)
から求める水計量工程とからなるものである。
【0010】
また、本発明に係るコンクリート材料の計量方法は、前記水浸細骨材又は前記水浸粗骨材内の空気量をa(%)とし、前記Vfs又は前記Vfgに代えて、Vfs・(1―a/100)又はVfg・(1―a/100)を用いるものである。
【0011】
本発明に係るコンクリート材料の計量方法においては、まず、第1の計量槽に水を投入して該水の質量Mwsiを計測する。
【0012】
次に、計量すべき細骨材のうち、一部の細骨材を該一部の細骨材が水面から出ない水浸細骨材となるように前記第1の計量槽に投入して該水浸細骨材の全質量Mfs及び全容積Vfsを計測する。
【0013】
水浸細骨材の全質量Mfsを計測するには、例えばロードセルを使用することが可能であり、水浸細骨材で満たされたときの第1の計量槽の質量から第1の計量槽のみの質量を差し引けばよい。また、水浸細骨材の全容積Vfsについては、例えば水浸細骨材の液位を計測する液位計測手段、具体的には電極式変位センサを用いることができる。
【0014】
なお、計量すべき細骨材のうち、どの程度の割合を水浸細骨材として計量するかは任意であり、その割合が高いほど、表面水に関する計測精度は向上するが、計量槽やロードセルあるいは電極式変位センサーといった装置関係を大型化する必要があるため、上述した割合は、それらの兼ね合いで適宜決定すればよい。
【0015】
次に、ρsを前記細骨材の表乾状態における密度、ρwを水の密度として、以下の2式、すなわち、
Ms+Mws=Mfs (1)
Ms/ρs+Mws/ρw=Vfs (2)
を解くことによって、前記一部の細骨材の表乾状態の質量Ms及び前記第1の計量槽内の水の質量Mwsを求める。
【0016】
次に、前記Mws及び前記Mwsiを、次式、
(Mws―Mwsi)/Ms (3)
に代入して前記一部の細骨材の表面水率を算出する。
【0017】
次に、計量すべき細骨材のうちの残りの細骨材を前記一部の細骨材の表面水率で補正して計量するとともに、前記細骨材のうちの残りの細骨材に付着する表面水の質量Mwssを前記一部の細骨材の表面水率を用いて算出する。
【0018】
以上述べた手順を粗骨材についても同様に行う。
【0019】
すなわち、まず、第2の計量槽に水を投入して該水の質量Mwgiを計測する。
【0020】
次に、計量すべき粗骨材のうち、一部の粗骨材を該一部の粗骨材が水面から出ない水浸粗骨材となるように前記第2の計量槽に投入して該水浸粗骨材の全質量Mfg及び全容積Vfgを計測する。
【0021】
次に、ρgを前記粗骨材の表乾状態における密度、ρwを水の密度として、以下の2式、すなわち、
Mg+Mwg=Mfg (4)
Mg/ρg+Mwg/ρw=Vfg (5)
を解くことによって、前記一部の粗骨材の表乾状態の質量Mg及び前記第2の計量槽内の水の質量Mwgを求める。
【0022】
次に、前記Mwg及び前記Mwgiを、次式、
(Mwg―Mwgi)/Mg (6)
に代入して前記一部の粗骨材の表面水率を算出する。
【0023】
次に、計量すべき粗骨材のうちの残りの粗骨材を前記一部の粗骨材の表面水率で補正して計量するとともに、前記粗骨材のうちの残りの粗骨材に付着する表面水の質量Mwgsを前記一部の粗骨材の表面水率を用いて算出する。
【0024】
このような細骨材計量工程及び粗骨材計量工程でMws、Mwg、Mwss及びMwgsが得られたならば、これらの値を用いて、計量すべき水のうちの残りの水Mwrを、示方配合で示されている水量Mwtとして、次式、
Mwr=Mwt―(Mws+Mwg+Mwss+Mwgs) (7)
から求める。
【0025】
このように本発明においては、骨材の表面水は、湿潤状態が異なる骨材ごとのばらつきが考慮された状態で水の質量MwsあるいはMwgの一部として間接的に算出されるとともに、骨材の質量は、表乾状態のときの質量MsあるいはMgとして把握される。すなわち、骨材や水の質量が示方配合と同等の条件で把握されることとなるので、湿潤状態が異なる骨材を用いても、示方配合通りの水量でコンクリートを製造することが可能となる。
【0026】
本発明では、細骨材及び粗骨材は、それらの全量を水浸骨材方式で計量するわけではないので、その意味では計測精度に一定の限界があるものの、従来においては、粗骨材の場合、その表面水率に大きな変動はないとして0.5%〜1%程度の一定値で扱われることが多く、これが水量の誤差、ひいてはコンクリートの品質を変動させる要因になっていたので、本発明によってかかる水量誤差を大きく改善することが可能となる。
【0027】
なお、水浸細骨材あるいは水浸粗骨材内の空気量a(%)を考慮するのであれば、前記水浸細骨材又は前記水浸粗骨材内の空気量をa(%)とし、前記Vfs又は前記Vfgに代えて、Vfs・(1―a/100)又はVfg・(1―a/100)を用いることで、空気量を除いた実際の全容量でさらに精度の高い計量が可能となる。
【0028】
【発明の実施の形態】
以下、本発明に係るコンクリート材料の計量方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0029】
図1乃至図3は、本実施形態に係るコンクリート材料の計量方法の手順を示したフローチャートである。同図でわかるように、本実施形態に係るコンクリート材料の計量方法においては、まず、第1の計量槽に水を投入して該水の質量Mwsiを計測する(ステップ101)。
【0030】
計量槽は、例えば、下方に行くほど内径が大きくなるよう、中空円錐台状に形成してあるものを用いることが考えられる。このようにすれば、バイブレータ等の振動器具を使用せずとも、計量が終わった水浸細骨材あるいは後述する水浸粗骨材を該計量槽内で閉塞させることなく、底蓋を開いただけで下方に自然落下させ、これを、別途計量されたセメント等とともに、混練ミキサーに投入することができる。
【0031】
次に、計量すべき細骨材のうち、一部の細骨材を該一部の細骨材が水面から出ない水浸細骨材となるように第1の計量槽に投入して該水浸細骨材の全質量Mfs及び全容積Vfsを計測する(ステップ102)。
【0032】
水浸細骨材の全質量Mfsを計測するには、例えばロードセルを使用することが可能であり、水浸細骨材で満たされたときの第1の計量槽の質量から第1の計量槽のみの質量を差し引けばよい。
【0033】
また、水浸細骨材の全容積Vfsについては、例えば水浸細骨材の液位を計測する液位計測手段、具体的には電極式変位センサを用いることができる。かかる電極式変位センサとしては、例えば検知用電極の下端が計量槽内に収容された水浸細骨材の液面に触れたときの通電状態の変化を監視することによって該水浸細骨材の液位を計測できるように構成したものを用いることができる。
【0034】
なお、計量すべき細骨材のうち、どの程度の割合を水浸細骨材として計量するかは任意であり、その割合が高いほど、表面水に関する計測精度は向上するが、計量槽やロードセルあるいは電極式変位センサーといった装置関係を大型化する必要があるため、上述した割合は、それらの兼ね合いで適宜決定すればよい。
【0035】
次に、ρsを細骨材の表乾状態における密度、ρwを水の密度として、以下の2式、すなわち、
Ms+Mws=Mfs (1)
Ms/ρs+Mws/ρw=Vfs (2)
を解くことによって、上述した一部の細骨材の表乾状態の質量Ms及び第1の計量槽内の水の質量Mwsを求める(ステップ103)。
【0036】
次に、最初に計測した水の質量Mwsi及びMwsを、次式、
(Mws―Mwsi)/Ms (3)
に代入して上述した一部の細骨材の表面水率を算出する(ステップ104)。
【0037】
次に、計量すべき細骨材のうちの残りの細骨材を、ステップ104で求めた表面水率で補正して計量するとともに、残りの細骨材に付着する表面水の質量Mwssを同じ表面水率を用いて算出する(ステップ105)。
【0038】
以上述べた手順を粗骨材についても同様に行う。なお、以下に述べる粗骨材計量工程は、上述した細骨材計量工程とは独立した工程であって同時進行で行うこともできるし、いずれかを先行させることもできる。
【0039】
すなわち、まず、第2の計量槽に水を投入して該水の質量Mwgiを計測する(ステップ106)。第2の計量槽も第1の計量槽と同様であり、ここではその説明を省略する。
【0040】
次に、計量すべき粗骨材のうち、一部の粗骨材を該一部の粗骨材が水面から出ない水浸粗骨材となるように第2の計量槽に投入して該水浸粗骨材の全質量Mfg及び全容積Vfgを計測する(ステップ107)。
【0041】
次に、ρgを粗骨材の表乾状態における密度、ρwを水の密度として、以下の2式、すなわち、
Mg+Mwg=Mfg (4)
Mg/ρg+Mwg/ρw=Vfg (5)
を解くことによって、上述した一部の粗骨材の表乾状態の質量Mg及び第2の計量槽内の水の質量Mwgを求める(ステップ108)。
【0042】
次に、最初に計測したMwgi及びMwgを、次式、
(Mwg―Mwgi)/Mg (6)
に代入して前記一部の粗骨材の表面水率を算出する(ステップ109)。
【0043】
次に、計量すべき粗骨材のうちの残りの粗骨材をステップ109で求めた表面水率で補正して計量するとともに、残りの粗骨材に付着する表面水の質量Mwgsを同じ表面水率を用いて算出する(ステップ110)。
【0044】
このような細骨材計量工程及び粗骨材計量工程でMws、Mwg、Mwss及びMwgsが得られたならば、これらの値を用いて、計量すべき水のうちの残りの水Mwrを、示方配合で示されている水量Mwtとして、次式、
Mwr=Mwt―(Mws+Mwg+Mwss+Mwgs) (7)
から求める(ステップ111)。
【0045】
なお、配合設計の水量に混和剤の希釈分が含まれている場合にはこれを除外するとともに、混練ミキサーの羽根や計量槽の蓋体の洗浄に使う水が混練材料として加わるのであれば、これも除外する。
【0046】
以上説明したように、本実施形態に係るコンクリート材料の計量方法によれば、細骨材及び粗骨材の表面水を、湿潤状態が異なる骨材ごとのばらつきが考慮された状態で水の質量MsあるいはMgの一部として間接的に算出することができるとともに、細骨材及び粗骨材の質量を表乾状態のときの質量として把握することができる。すなわち、骨材や水の質量が示方配合と同等の条件で把握されることとなるので、湿潤状態が異なる骨材を用いても、示方配合通りの水量でコンクリートを製造することが可能となる。
【0047】
本実施形態では、空気量補正に関して特に言及しなかったが、水浸細骨材や水浸粗骨材内の空気量a(%)を考慮するのであれば、既知である水浸細骨材の全容積Vfsや水浸粗骨材の全容積Vfgに(1―a/100)を乗じればよい。
【0048】
例えば、(2)式に代えて、
Ms/ρs+Mws/ρw=Vfs・(1―a/100) (2′)
を用いればよい。
【0049】
かかる構成により、空気量を除いた実際の全容積でさらに精度の高い計量が可能となる。
【0050】
【発明の効果】
以上述べたように、本発明に係るコンクリート材料の計量方法によれば、骨材の表面水を、湿潤状態が異なる骨材ごとのばらつきが考慮された状態で水の質量の一部として間接的に算出することができるとともに、骨材の質量を表乾状態のときの質量として把握することができる。すなわち、骨材や水の質量が示方配合と同等の条件で把握されることとなるので、湿潤状態が異なる骨材を用いても、示方配合通りの水量でコンクリートを製造することが可能となる。
【0051】
【図面の簡単な説明】
【図1】本実施形態に係るコンクリート材料の計量方法を示したフローチャート。
【図2】本実施形態に係るコンクリート材料の計量方法を示したフローチャート。
【図3】本実施形態に係るコンクリート材料の計量方法を示したフローチャート。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aggregate having different surface water states and a concrete material measuring method for measuring water.
[0002]
[Prior art]
When mixing concrete on site, the amount of water has a large effect on the concrete strength, so it is necessary to manage it thoroughly during mixing. However, the moisture content of the aggregate, which is a mixing material, varies depending on its storage conditions and climatic conditions. When the wet aggregate is used, the amount of water in the concrete increases by the amount of surface water of the aggregate, and when the aggregate in the dry state is used, the amount of water in the concrete decreases by the effective water absorption.
[0003]
For this reason, it is extremely important to maintain the quality of concrete by correcting the amount of water at the time of mixing according to the degree of dryness and wetness of the aggregate and producing concrete as indicated.
[0004]
Here, the ratio of the amount of surface water in the wet state (the amount of water adhering to the surface of the aggregate) divided by the mass of the aggregate in the surface dry state (surface dry saturated state) is called the surface water ratio. However, since stored aggregates are generally often wet, it is common to measure the surface water ratio in advance as an indicator of the dryness and wetness of the aggregate, and adjust the amount of mixing water based on the measured value. Is.
[0005]
And, the measurement of the surface water ratio is conventionally performed by taking a small amount of sample from a storage container called a stock bottle in which aggregates are stored and measuring the mass and the mass in an absolutely dry state. And the water absorption rate of the surface dry state measured in advance.
[0006]
[Problems to be solved by the invention]
However, in such a measuring method, a heating operation using a burner or the like is required to measure the mass in an absolutely dry state, which causes a problem of being unrealistic in terms of economy and time.
[0007]
In addition, in order to make up for such problems, there are cases where the operator visually confirms the mixing status or adjusts the mixing water amount by referring to the load current of the mixer. The method itself has low accuracy, and eventually, a large safety factor of about 20% in terms of strength has to be expected, resulting in a problem that the composition becomes uneconomical.
[0008]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a concrete material measurement method capable of measuring the mass of aggregate and water efficiently and with a predetermined accuracy.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the concrete material measuring method according to the present invention should measure and measure the mass M wsi of water by introducing water into the first measuring tank as described in
M s + M ws = M fs (1)
M s / ρ s + M ws / ρ w = V fs (2)
To determine the surface mass M s of the fine aggregate and the water mass M ws of the water in the first measuring tank, and then the M ws and M wsi are expressed by the following equation:
(M ws -M wsi ) / M s (3)
Substituting into the fine aggregate to calculate the surface water content of the fine aggregate, and then correct the remaining fine aggregate of the fine aggregate to be weighed with the surface water content of the fine aggregate. A fine aggregate metering step of calculating a surface water mass M wss adhering to the remaining fine aggregate of the fine aggregates using a surface water ratio of the partial fine aggregates;
Water is poured into the second measuring tank and the mass M wgi of the water is measured. Among the coarse aggregates to be weighed, some coarse aggregates are water from which some of the coarse aggregates do not come out of the water surface. The total mass M fg and the total volume V fg of the water-immersed coarse aggregate are measured in the second measuring tank so as to become the coarse aggregate, and ρ g is measured in the dry state of the coarse aggregate. The density, ρ w is the density of water, and the following two formulas:
M g + M wg = M fg (4)
M g / ρ g + M wg / ρ w = V fg (5)
To determine the mass M g of the surface dry state of the part of the coarse aggregate and the mass M wg of the water in the second measuring tank, and then the M wg and the M wgi are expressed by the following equation:
(M wg -M wgi ) / M g (6)
To calculate the surface water ratio of the partial coarse aggregate, and then correct the remaining coarse aggregate of the coarse aggregate to be weighed with the surface water ratio of the partial coarse aggregate. A coarse aggregate measuring step of calculating a surface water mass M wgs attached to the remaining coarse aggregate of the coarse aggregate using a surface water ratio of the partial coarse aggregate;
By using M ws , M wg , M wss and M wgs obtained in the fine aggregate measuring step and the coarse aggregate measuring step, the remaining water M wr of the water to be weighed is shown in a combination formula. As the amount of water M wt , the following formula:
M wr = M wt - (M ws + M wg + M wss + M wgs) (7)
It consists of the water metering process required from
[0010]
Also, weighing of the concrete material according to the present invention, the air quantity of the water immersion fine aggregate or in the water-immersed coarse aggregate as a (%), in place of the V fs or the V fg, V fs -(1-a / 100) or Vfg- (1-a / 100) is used.
[0011]
In the method for measuring a concrete material according to the present invention, first, water is introduced into the first measuring tank, and the mass M wsi of the water is measured.
[0012]
Next, among the fine aggregates to be weighed, a part of the fine aggregates is put into the first measuring tank so that the part of the fine aggregates becomes a water-immersed fine aggregate that does not come out of the water surface. The total mass M fs and the total volume V fs of the water-immersed fine aggregate are measured.
[0013]
In order to measure the total mass M fs of the water-immersed fine aggregate, for example, a load cell can be used. From the mass of the first measuring tank when filled with the water-immersed fine aggregate, the first measurement is performed. Subtract the mass of the tank only. For the total volume V fs of the water-immersed fine aggregate, for example, a liquid level measuring means for measuring the liquid level of the water-immersed fine aggregate, specifically, an electrode type displacement sensor can be used.
[0014]
The proportion of fine aggregate to be weighed is arbitrary depending on the amount of water-immersed fine aggregate. The higher the proportion, the better the measurement accuracy for surface water. Alternatively, since it is necessary to increase the size of the apparatus such as an electrode type displacement sensor, the above-described ratio may be appropriately determined based on the balance between them.
[0015]
Next, ρ s is the density of the fine aggregate in the surface dry state, ρ w is the density of water,
M s + M ws = M fs (1)
M s / ρ s + M ws / ρ w = V fs (2)
Is obtained to obtain a mass M s of the surface of the fine aggregate and a mass M ws of water in the first measuring tank.
[0016]
Next, the M ws and the M wsi are expressed as follows:
(M ws -M wsi ) / M s (3)
And the surface water ratio of the fine aggregate is calculated.
[0017]
Next, the remaining fine aggregate of the fine aggregate to be weighed is corrected by the surface water ratio of the partial fine aggregate and measured, and the remaining fine aggregate of the fine aggregate is The surface water mass M wss that adheres is calculated using the surface water ratio of the fine aggregate.
[0018]
The procedure described above is similarly performed on the coarse aggregate.
[0019]
That is, first, water is poured into the second measuring tank, and the mass M wgi of the water is measured.
[0020]
Next, among the coarse aggregate to be weighed, a part of the coarse aggregate is put into the second measuring tank so that the partial coarse aggregate becomes a submerged coarse aggregate that does not come out of the water surface. The total mass M fg and the total volume V fg of the water-immersed coarse aggregate are measured.
[0021]
Next, ρ g is the density of the coarse aggregate in the surface dry state, ρ w is the density of water,
M g + M wg = M fg (4)
M g / ρ g + M wg / ρ w = V fg (5)
Is obtained to obtain the mass M g of the surface of the part of the coarse aggregate and the mass M wg of the water in the second measuring tank.
[0022]
Next, the M wg and the M wgi are expressed as follows:
(M wg -M wgi ) / M g (6)
And the surface water content of the part of the coarse aggregate is calculated.
[0023]
Next, the remaining coarse aggregate of the coarse aggregate to be weighed is measured by correcting with the surface water ratio of the partial coarse aggregate, and the remaining coarse aggregate of the coarse aggregate is measured. The surface water mass M wgs to be attached is calculated using the surface water ratio of the partial coarse aggregate.
[0024]
If M ws , M wg , M wss, and M wgs are obtained in the fine aggregate measurement process and the coarse aggregate measurement process, the remaining water of the water to be measured is used by using these values. Assuming that M wr is the amount of water M wt shown in the formula,
M wr = M wt - (M ws + M wg + M wss + M wgs) (7)
Ask from.
[0025]
As described above, in the present invention, the surface water of the aggregate is indirectly calculated as a part of the mass M ws or M wg of the water in consideration of the variation for each aggregate having different wet states. mass of the aggregate is understood as the mass M s or M g in the case of Table dry condition. That is, since the mass of aggregate and water will be grasped under the same conditions as the formulation, concrete can be produced with the amount of water as indicated by the formulation even if aggregates with different wet conditions are used. .
[0026]
In the present invention, fine aggregates and coarse aggregates are not necessarily measured by the water-immersed aggregate method, and thus there is a certain limit in measurement accuracy in that sense. In the case of, the surface water ratio is often treated as a constant value of about 0.5% to 1% assuming that there is no significant fluctuation, and this has been a factor that causes fluctuations in water volume, and consequently the quality of concrete. According to the present invention, it is possible to greatly improve the water amount error.
[0027]
If the air amount a (%) in the water-immersed fine aggregate or the water-immersed coarse aggregate is considered, the air amount in the water-immersed fine aggregate or the water-immersed coarse aggregate is a (%). and then, instead of the V fs or the V fg, by using the V fs · (1-a / 100) or V fg · (1-a / 100), further the actual total volume, excluding the air quantity Accurate weighing is possible.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a concrete material measuring method according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0029]
1 to 3 are flowcharts showing the procedure of the concrete material measuring method according to the present embodiment. As can be seen from the drawing, in the concrete material measuring method according to the present embodiment, first, water is introduced into the first measuring tank, and the mass M wsi of the water is measured (step 101).
[0030]
For example, it is conceivable to use a measuring tank that is formed in a hollow truncated cone shape so that its inner diameter increases toward the bottom. In this way, the bottom lid can be opened without clogging the water-immersed fine aggregate or the water-immersed coarse aggregate, which will be described later, within the measurement tank without using a vibrator or other vibrator. Then, it can be naturally dropped downward and put into a kneading mixer together with separately weighed cement and the like.
[0031]
Next, among the fine aggregates to be weighed, a part of the fine aggregates is put into the first measuring tank so that the part of the fine aggregates becomes a submerged fine aggregate that does not come out of the water surface. The total mass M fs and the total volume V fs of the water-immersed fine aggregate are measured (step 102).
[0032]
In order to measure the total mass M fs of the water-immersed fine aggregate, for example, a load cell can be used. From the mass of the first measuring tank when filled with the water-immersed fine aggregate, the first measurement is performed. Subtract the mass of the tank only.
[0033]
For the total volume V fs of the water-immersed fine aggregate, for example, a liquid level measuring means for measuring the liquid level of the water-immersed fine aggregate, specifically, an electrode type displacement sensor can be used. As such an electrode-type displacement sensor, for example, the submerged fine aggregate is monitored by monitoring the change in the energized state when the lower end of the detection electrode touches the liquid level of the submerged fine aggregate accommodated in the measuring tank. What was comprised so that the liquid level of this could be measured can be used.
[0034]
The proportion of fine aggregate to be weighed is arbitrary depending on the amount of water-immersed fine aggregate. The higher the proportion, the better the measurement accuracy for surface water. Alternatively, since it is necessary to increase the size of an apparatus such as an electrode type displacement sensor, the above-described ratio may be determined as appropriate in consideration of these factors.
[0035]
Next, ρ s is the density of the fine aggregate in the surface dry state, ρ w is the density of water,
M s + M ws = M fs (1)
M s / ρ s + M ws / ρ w = V fs (2)
By solving the above, the mass M s of the above-mentioned part of the fine aggregate and the mass M ws of the water in the first measuring tank are obtained (step 103).
[0036]
Next, the first measured water masses M wsi and M ws are expressed as follows:
(M ws -M wsi ) / M s (3)
And the surface water ratio of some of the fine aggregates described above is calculated (step 104).
[0037]
Next, the remaining fine aggregate out of the fine aggregates to be weighed is corrected with the surface water ratio obtained in
[0038]
The procedure described above is similarly performed on the coarse aggregate. In addition, the coarse aggregate measurement process described below is a process independent of the above-described fine aggregate measurement process, and can be performed simultaneously, or can be preceded by either.
[0039]
That is, first, water is poured into the second measuring tank and the mass M wgi of the water is measured (step 106). The second measuring tank is the same as the first measuring tank, and the description thereof is omitted here.
[0040]
Next, among the coarse aggregate to be weighed, a part of the coarse aggregate is put into a second measuring tank so that the coarse aggregate becomes a submerged coarse aggregate that does not come out of the water surface. The total mass M fg and the total volume V fg of the water-immersed coarse aggregate are measured (step 107).
[0041]
Next, ρ g is the density of the coarse aggregate in the surface dry state, ρ w is the density of water, the following two formulas, that is,
M g + M wg = M fg (4)
M g / ρ g + M wg / ρ w = V fg (5)
By solving the above, the mass M g of the above-mentioned part of the coarse aggregate and the mass M wg of the water in the second measuring tank are obtained (step 108).
[0042]
Next, the first measured M wgi and M wg are
(M wg -M wgi ) / M g (6)
And the surface water ratio of the part of coarse aggregate is calculated (step 109).
[0043]
Next, the remaining coarse aggregate of the coarse aggregate to be weighed is measured by correcting with the surface water ratio obtained in
[0044]
If M ws , M wg , M wss, and M wgs are obtained in the fine aggregate measurement process and the coarse aggregate measurement process, the remaining water of the water to be measured is used by using these values. Assuming that M wr is the amount of water M wt shown in the formula,
M wr = M wt - (M ws + M wg + M wss + M wgs) (7)
(Step 111).
[0045]
In addition, when the amount of water of the blending design contains a diluted amount of the admixture, this is excluded, and if water used for washing the blades of the kneading mixer and the lid of the measuring tank is added as a kneading material, This is also excluded.
[0046]
As described above, according to the method for measuring a concrete material according to the present embodiment, the surface water of the fine aggregate and the coarse aggregate is the mass of water in a state in which variation between aggregates having different wet states is considered. it is possible to indirectly calculated as part of the M s or M g, can grasp the mass of fine aggregate and coarse aggregate as a mass when the table dry condition. That is, since the mass of aggregate and water will be grasped under the same conditions as the formulation, concrete can be produced with the amount of water as indicated by the formulation even if aggregates with different wet conditions are used. .
[0047]
In the present embodiment, no particular mention was made regarding the air amount correction. However, if the air amount a (%) in the water-immersed fine aggregate or the water-immersed coarse aggregate is considered, the water-immersed fine aggregate is known. The total volume V fs and the total volume V fg of the water-immersed coarse aggregate may be multiplied by (1-a / 100).
[0048]
For example, instead of equation (2),
M s / ρ s + M ws / ρ w = V fs · (1−a / 100) (2 ′)
May be used.
[0049]
With such a configuration, it is possible to measure with higher accuracy in the actual total volume excluding the air amount.
[0050]
【The invention's effect】
As described above, according to the method for measuring a concrete material according to the present invention, the surface water of the aggregate is indirectly used as a part of the mass of the water in a state where the variation between the aggregates in different wet states is considered. The mass of the aggregate can be grasped as the mass in the surface dry state. That is, since the mass of aggregate and water will be grasped under the same conditions as the formulation, concrete can be produced with the amount of water as indicated by the formulation even if aggregates with different wet conditions are used. .
[0051]
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for measuring a concrete material according to the present embodiment.
FIG. 2 is a flowchart showing a concrete material measuring method according to the embodiment.
FIG. 3 is a flowchart showing a concrete material measuring method according to the embodiment.
Claims (2)
Ms+Mws=Mfs (1)
Ms/ρs+Mws/ρw=Vfs (2)
を解くことによって、前記一部の細骨材の表乾状態の質量Ms及び前記第1の計量槽内の水の質量Mwsを求め、次いで前記Mws及び前記Mwsiを、次式、
(Mws―Mwsi)/Ms (3)
に代入して前記一部の細骨材の表面水率を算出し、次いで、計量すべき細骨材のうちの残りの細骨材を前記一部の細骨材の表面水率で補正して計量するとともに、前記細骨材のうちの残りの細骨材に付着する表面水の質量Mwssを前記一部の細骨材の表面水率を用いて算出する細骨材計量工程と、
第2の計量槽に水を投入して該水の質量Mwgiを計測し、計量すべき粗骨材のうち、一部の粗骨材を該一部の粗骨材が水面から出ない水浸粗骨材となるように前記第2の計量槽に投入して該水浸粗骨材の全質量Mfg及び全容積Vfgを計測し、ρgを前記粗骨材の表乾状態における密度、ρwを水の密度として、以下の2式、すなわち、
Mg+Mwg=Mfg (4)
Mg/ρg+Mwg/ρw=Vfg (5)
を解くことによって、前記一部の粗骨材の表乾状態の質量Mg及び前記第2の計量槽内の水の質量Mwgを求め、次いで前記Mwg及び前記Mwgiを、次式、
(Mwg―Mwgi)/Mg (6)
に代入して前記一部の粗骨材の表面水率を算出し、次いで、計量すべき粗骨材のうちの残りの粗骨材を前記一部の粗骨材の表面水率で補正して計量するとともに、前記粗骨材のうちの残りの粗骨材に付着する表面水の質量Mwgsを前記一部の粗骨材の表面水率を用いて算出する粗骨材計量工程と、
前記細骨材計量工程及び前記粗骨材計量工程で得られたMws、Mwg、Mwss及びMwgsを用いて、計量すべき水のうちの残りの水Mwrを、示方配合で示されている水量Mwtとして、次式、
Mwr=Mwt―(Mws+Mwg+Mwss+Mwgs) (7)
から求める水計量工程とからなることを特徴とするコンクリート材料の計量方法。Water is poured into the first measuring tank, and the mass M wsi of the water is measured. Among the fine aggregates to be weighed, some of the fine aggregates are water from which some of the fine aggregates do not come out of the water surface. The total mass M fs and the total volume V fs of the water-immersed fine aggregate are measured so as to become the fine aggregate, and ρ s is measured in the surface dry state of the fine aggregate. The density, ρ w is the density of water, and the following two formulas:
M s + M ws = M fs (1)
M s / ρ s + M ws / ρ w = V fs (2)
To determine the surface mass M s of the fine aggregate and the water mass M ws of the water in the first measuring tank, and then the M ws and M wsi are expressed by the following equation:
(M ws -M wsi ) / M s (3)
Substituting into the fine aggregate to calculate the surface water content of the fine aggregate, and then correct the remaining fine aggregate of the fine aggregate to be weighed with the surface water content of the fine aggregate. A fine aggregate metering step of calculating a surface water mass M wss adhering to the remaining fine aggregate of the fine aggregates using a surface water ratio of the partial fine aggregates;
Water is poured into the second measuring tank and the mass M wgi of the water is measured. Among the coarse aggregates to be weighed, some coarse aggregates are water from which some of the coarse aggregates do not come out of the water surface. The total mass M fg and the total volume V fg of the water-immersed coarse aggregate are measured in the second measuring tank so as to become the coarse aggregate, and ρ g is measured in the dry state of the coarse aggregate. The density, ρ w is the density of water, and the following two formulas:
M g + M wg = M fg (4)
M g / ρ g + M wg / ρ w = V fg (5)
To determine the mass M g of the surface dry state of the part of the coarse aggregate and the mass M wg of the water in the second measuring tank, and then the M wg and the M wgi are expressed by the following equation:
(M wg -M wgi ) / M g (6)
To calculate the surface water ratio of the partial coarse aggregate, and then correct the remaining coarse aggregate of the coarse aggregate to be weighed with the surface water ratio of the partial coarse aggregate. A coarse aggregate measuring step of calculating a surface water mass M wgs attached to the remaining coarse aggregate of the coarse aggregate using a surface water ratio of the partial coarse aggregate;
By using M ws , M wg , M wss, and M wgs obtained in the fine aggregate measurement step and the coarse aggregate measurement step, the remaining water M wr of the water to be measured is indicated by a combination formula. As the amount of water M wt , the following formula:
M wr = M wt - (M ws + M wg + M wss + M wgs) (7)
A method for measuring a concrete material, characterized by comprising a water measuring step obtained from
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001343003A JP4009819B2 (en) | 2001-11-08 | 2001-11-08 | Concrete material measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001343003A JP4009819B2 (en) | 2001-11-08 | 2001-11-08 | Concrete material measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003145528A JP2003145528A (en) | 2003-05-20 |
JP4009819B2 true JP4009819B2 (en) | 2007-11-21 |
Family
ID=19156766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001343003A Expired - Fee Related JP4009819B2 (en) | 2001-11-08 | 2001-11-08 | Concrete material measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4009819B2 (en) |
-
2001
- 2001-11-08 JP JP2001343003A patent/JP4009819B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003145528A (en) | 2003-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20120004424A (en) | Mixer waveform analysis for monitoring and controlling concrete | |
JP3525803B2 (en) | Concrete material measurement method | |
JP4009819B2 (en) | Concrete material measurement method | |
JP3525802B2 (en) | Method for measuring surface water ratio of fine aggregate and measuring method of concrete material using the same | |
JP4932679B2 (en) | Method for calculating specifications of fine aggregate | |
JP4096220B2 (en) | Concrete material measurement method | |
JP2002257817A (en) | Method for measuring surface moisture of aggregate and method using the same for metering concrete material | |
JP2709041B2 (en) | Method and apparatus for measuring specific gravity of surface dry sand | |
JP7535872B2 (en) | How to use concrete sludge water | |
JP2005283363A (en) | Method to measure the amount of water except for water absorption of aggregate of ready-mixed concrete | |
JP4844782B2 (en) | Unit water measuring device for fresh concrete | |
JP4771030B2 (en) | Concrete material measurement method | |
US6557397B2 (en) | Process and device for evaluating the quality of a printing ink | |
JP4793611B2 (en) | Method and program for measuring concrete material and recording medium | |
JP2002234025A (en) | Measuring method for concrete material | |
JP2005308679A (en) | Salinity concentration measuring method, unit water amount measuring method, and measuring instrument therefor | |
JP2002225024A (en) | Metering device and metering method for concrete material | |
JP2579821B2 (en) | Surface water rate set value correction method for ready-mixed concrete production plant | |
JP2010066173A (en) | Method of estimating unit water quantity in concrete using air meter | |
US1495510A (en) | Process of making concrete | |
JP4666125B2 (en) | Concrete material measuring device | |
JP3591779B2 (en) | Sand surface water measuring method and measuring device | |
JP4844781B2 (en) | Unit water measurement method for fresh concrete | |
JP2001289840A (en) | Method for evaluating fresh concrete | |
JPS6336454B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070821 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4009819 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140914 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |