JP4006288B2 - Container transfer device - Google Patents
Container transfer device Download PDFInfo
- Publication number
- JP4006288B2 JP4006288B2 JP2002218628A JP2002218628A JP4006288B2 JP 4006288 B2 JP4006288 B2 JP 4006288B2 JP 2002218628 A JP2002218628 A JP 2002218628A JP 2002218628 A JP2002218628 A JP 2002218628A JP 4006288 B2 JP4006288 B2 JP 4006288B2
- Authority
- JP
- Japan
- Prior art keywords
- conveyor
- container
- transport
- guide
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Attitude Control For Articles On Conveyors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、容器を搬送する装置に関し、特に軽量のボトルを倒すことなく搬送および移送することのできる容器搬送装置に関する。
【0002】
【従来の技術】
容器(以下、壜とする)に飲料等を充填するプラントにおいて、壜を搬送する形式として複数のチェーンコンベアを利用したコンベア搬送が知られている。このようなプラントで、充填機、検査機、包装機等は高速で運転されるようになってきている。それに伴って、壜を搬送するコンベアの搬送速度も高速化されつつある。また、これらの機器への壜の供給は単列で行われるため、壜は単列化されてコンベア搬送される。
【0003】
単列化された壜のピッチ(間隔)を変更する場合、速度の異なるコンベア間(例えば、速度の遅いコンベアから速度の速いコンベア)での壜の乗り移り(移送)を行う。そのために、各々のコンベア間にまたがるように、ガイドが設けられている。あるコンベア上に載せられて搬送されてきた壜はガイドに衝突し、このガイドに沿って搬送されて他のコンベア上に乗り移る。
【0004】
【発明が解決しようとする課題】
上述したような飲料等を充填する壜としては、ガラス壜、ペットボトルまたは缶等が用いられている。特にペットボトルは、なるべく薄く、少ない材料を用いて、かつ圧力に耐え得るように設計されており、ガラス壜と比べて軽量である。また、これらの壜は、略円筒状または略直方体のものを立てた状態で搬送されるため、搬送中における重心は比較的高い位置にある。つまり、軽量かつ重心位置の高い壜は、不安定な状態で搬送される。
このような壜がガイドに衝突する際に、壜が倒れてしまう(以下、壜が倒れることを倒壜とする)ことがある。そこで、各々のコンベア間に設けられるガイドは、壜が衝突した際に倒壜を起こすことがなく、かつ各々のコンベア間での壜の移送をスムーズに行うことができるように設計される。
【0005】
従来より、比較的質量の大きなガラス壜を、各々のコンベア間で移送するためのガイドの設計が行われていた。このガイドの設計においては、倒壜を起こさないようなガイドの形状等を主に経験的に把握することによって行われていた。また、ペットボトル等の不安定な壜が各々のコンベアを乗り移る際に用いられるガイドについても、上述した設計のガイドが流用されていた。
しかしながら、軽量かつ重心の位置が比較的高い壜を、倒壜を起こすことなく、かつ最も効率良く搬送することのできるガイド設計の基本概念は明確ではなかった。
【0006】
そこで、本発明は、搬送速度が異なるコンベア間において壜の移送を行う場合であっても、倒壜を起こすことなく壜の搬送および移送を行うことができる容器搬送装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
容器搬送装置において、倒壜が起きる可能性がある部分において倒壜が発生する危険性を回避すれば、本発明の目的を達成することができる。それに伴い、最も効率良く容器を搬送することのできる容器搬送装置を提供することができる。そこで、本発明は、以上の課題を解決するために、搬送速度の異なるコンベア間で容器を移送する容器搬送装置であって、容器を搬送する第1の搬送コンベアと、第1の搬送コンベアよりも下流側に設けられる第2の搬送コンベアと、第1の搬送コンベアから第2の搬送コンベアにわたって容器の搬送路を形成するガイドとを有する容器搬送装置を提供する。このガイドは、第1の搬送コンベアによって搬送される容器が衝突する第1の領域と、第1の領域よりも下流側に設けられ、容器が第1の搬送コンベアの搬送方向に対して更に傾斜した方向に移動する第2の領域と、第2の領域よりも下流側に設けられ、第1の搬送コンベアから第2の搬送コンベアへと容器を受け渡す第3の領域とを有する。第1の領域の第1の搬送コンベアに対する傾斜角度は搬送方向に対して鋭角に形成され、容器の倒壜速度をVfall、容器とガイドとの間の摩擦係数をμgd、容器とガイドとの間の反発係数をe、第1の搬送コンベアの速度をv、第1の領域における傾斜角度をθ1とすると、Sinθ1を、
【数4】
の範囲内とする。第1の領域における傾斜角度θ1がこの範囲内であれば、容器が第1の領域に衝突した際の倒壜を抑制することができる。
また、容器と第1の搬送コンベアとの摺動速度をvr、搬送方向に対する第1の搬送コンベア上における容器の摺動方向の角度をβ、容器が第1の領域に沿って搬送される速度をvgd、容器と第1の搬送コンベアとの間の摩擦係数をμcn、重力加速度をg、第1の領域に容器が衝突する位置から倒壜が起こりかねない区間の長さをLgとすると、当該第1の領域の長さL1を、
【数5】
とする。第1の領域の長さL1がLgよりも長ければ、第1の領域内で衝突と反発を繰り返す容器がガイドと摺動するようになり、第1の領域よりも下流側において容器の搬送方向を変えるようにしても倒壜が発生する危険性を回避または低減することができる。
さらに、第2の領域の第1の領域との接続部近傍における第1の搬送コンベアに対する傾斜角度θ2は、第1の領域の第1の搬送コンベアに対する傾斜角度θ1よりも大きく形成され、かつ接続部近傍における曲率半径は、容器の半径よりも大きく形成される。第2の領域の第1の搬送コンベアに対する傾斜角度θ2は、30°〜50°の範囲内とする。例えば、容器とガイドとの摩擦係数が0.15であるものとすると傾斜角度θ2が43°のときに、最も第1の搬送コンベアを横断する効率がよくなる。
またさらに、容器が第3の領域から離れ、第2の搬送コンベアの搬送方向に第2の搬送コンベアの搬送速度と同速度にて搬送されるまでの時間をts、搬送方向をx方向、搬送方向に対して垂直な方向をy方向とすると、第3の領域は、
【数6】
で表される曲面形状をなす。そして第3の領域にて所定の位置まで容器をこの曲面に沿って支持しておけば、搬送速度の異なる第2の搬送コンベアに移送された容器が、第2の搬送コンベアと同速度で搬送される状態になった後にガイドから離れるようにすることができる。
【0008】
本発明における搬送速度の異なるコンベア間で容器を移送する容器搬送装置のガイドは、第1の搬送コンベアによって搬送される容器が衝突する第1の領域と、第1の領域よりも下流側に設けられ、容器が第1の搬送コンベアの搬送方向に対して傾斜した方向に移動する第2の領域と、第2の領域よりも下流側に設けられ、第1の搬送コンベアから第2の搬送コンベアへと容器を受け渡す第3の領域とを有する。そして第1の領域は、容器が第1の領域におけるガイドと摺動状態に至るまでの長さよりも長く形成される。また第3の領域は、容器が第2の領域から放出される際の軌跡に沿った形状をなす。ガイドの形状を以上のようにすれば、容器がガイドに衝突した際、また容器がガイドから離れる際に倒壜が発生する危険性を回避または低減することができる。
【0009】
また、本発明は、容器を搬送する搬送コンベア上に設けられる搬送コンベアのガイドを提供することができる。この搬送コンベアのガイドは、搬送されてきた容器が衝突すると共に、容器が衝突および反発を繰り返した後に摺動状態に至るまで支持する衝突点相当位置と、衝突点相当位置よりも下流側に設けられ、容器が摺動しながら搬送コンベアを横断するまで支持するわたり部と、わたり部よりも下流側に設けられ、容器が搬送コンベアの搬送方向に搬送コンベアの搬送速度と同速度にて搬送されるまで容器を支持する受け渡し部とを備える。以上のように搬送コンベアのガイドは、容器がガイドに衝突してから搬送コンベアの搬送速度と同速度にて搬送されるようになるまで、継続して支持する。そうすることによって倒壜が発生する危険性を回避または低減することができる。
【0010】
【発明の実施の形態】
以下、添付図面に示す本実施の形態に基づいて本発明を詳細に説明する。
図1は、本実施の形態における搬送コンベアの平面図である。図示するように搬送コンベアは、矢印方向に移動して壜50を搬送するコンベア20とコンベア30、およびコンベア20とコンベア30間にまたがるようにして配設されたガイド10とによって構成されている。壜50はガイド10に沿って搬送され、コンベア20からコンベア30へと移送される。つまりガイド10は、壜50が搬送される搬送路を形成している。この例では、コンベア30の搬送速度は、コンベア20の搬送速度よりも速いものとする。コンベア20およびコンベア30は、それぞれ等速で移動するチェーンコンベア21,22,23,24,25、およびチェーンコンベア31,32,33,34,35から構成されている。(図では同一種のチェーンを繋いで幅を取っているが、コンベア20、コンベア30各々が一枚の幅広のチェーンであっても差し支え無い) チェーンコンベア21〜22にかけての領域を壜50が供給される入口供給領域41、チェーンコンベア23〜25にかけての領域を壜50が横方向に高速で移動する高速横移動領域42とする。また、チェーンコンベア25〜33にかけての領域を、コンベア20からコンベア30へと壜50を受け渡す壜受け渡し領域43とする。入口供給領域41から供給された壜50がガイド10に衝突する位置付近を衝突点相当位置11、高速横移動領域42にて壜50がコンベア20を横断する部分をわたり部13、衝突点相当位置11とわたり部13の接続部分を接続部12、また壜受け渡し領域43にて壜50を受け渡す部分を受け渡し部14として以下の説明を行う。
【0011】
図2は、本実施の形態における搬送コンベアの斜視図である。壜50は矢印方向に移動するコンベア20およびコンベア30上をガイド10に沿って搬送され、隣接する壜50との間隔を広げられる。ところでペットボトル等の壜50は弾性体なので、壜50がガイド10と衝突した場合には反発してはね返り、倒壜を起こすおそれがある。そこで本実施の形態では、以下のように設計されたガイド10をコンベア20およびコンベア30上に配設する。
【0012】
コンベア20により搬送された壜50がガイド10に最初に衝突する位置(衝突点相当位置11)における、ガイド10とコンベア20とがなす角度(以下、ガイド10の傾斜角度とする)を所定の角度以下とする。そして衝突点相当位置11と、壜50がコンベア20の搬送方向に対して傾斜した方向に搬送されるわたり部13との接続部12の曲率半径を所定の長さ以上とする。また、わたり部13におけるガイド10の傾斜角度を、壜50がコンベア20を最も効率良く横断することのできる角度に定める。さらにコンベア20からコンベア30への壜50の受け渡し部14では、壜50が搬送方向に真直に進むようになるまで壜50を支持することができる形状に定める。そうすることによって壜50が反発係数の大きい弾性体にて形成されたものであっても、ガイド10に衝突して倒壜を起こすことなく搬送することができる。また、壜50をコンベア20からコンベア30へと移送する際にも、倒壜を起こすことなくガイド10に沿って移送することができる。
【0013】
ここで図3を用いて、倒壜が起こる際の原理について説明する。図3(a)は壜50がガイド10に衝突した状態を、図3(b)は壜50が傾いた状態を示す。
図3(a)に示すように、壜50はコンベア20上に載せられて搬送される。壜50の重心Gは、壜50の底部から高さHの位置にあるものとする。壜50が衝突点相当位置11においてガイド10に衝突すると、反発係数が1の場合は壜50は矢印方向に速度vではね返る。そして壜50の乗るコンベア上に突起がある等の条件があれば、破線で示す(壜50’)ように傾く。
【0014】
壜50の質量をmとすると、このときの運動エネルギーは、
【数7】
である。
壜50が所定の速度以上ではね返って傾き、壜50’の重心G’が、図3(b)に示すように壜50’とコンベア20との接触点上に引かれた垂線上まで達したとする。そして重心G’の、接触点からの高さをSの位置とすると。重心G’は、高さHから高さSの位置まで△Hだけ持ち上げられたことになる。図3(a)に示す状態から図3(b)に示す状態となるまでに、重心Gが持ち上げられた分の高さ△Hは、(S−H)で示される。
【0015】
ここで、重力加速度をgとすると、重心G’を高さSの位置まで持ち上げるのに必要な位置エネルギーは、
【数8】
である。
壜50が有する数7で示した運動エネルギーが、数8で示した位置エネルギーと一致する場合は、
【数9】
と表すことができる。
【0016】
壜50’の重心G’の位置が接触点上に引かれた垂線を超えると、倒壜が起こる。従って、数9の条件を満足する速度vは、倒壜が起こり得る下限の速度(以下、倒壜限界速度とする)となる。これをvfallとすると、vfallは数9より、
【数10】
と表すことができる。壜50がガイド10に衝突した際に、壜50がはね返る速度が倒壜限界速度vfall以下であれば、数9を満たすだけの運動エネルギーは無いので、壜50が倒れかかった状態になったとしても元の姿勢に戻り、倒壜までには至らない。
【0017】
図4は、ガイド10の衝突点相当位置11付近の部分拡大図である。図示するように、壜50がコンベア20へと衝突する衝突点相当位置11におけるガイド10のコンベア20の搬送方向に対する傾斜角度(鋭角部分)はθ1である。そして、ガイド10に衝突した壜50は反発し、ガイド10との間で微小なバウンド(衝突と反発)を繰り返しながらチェーンコンベア21上を摺動する。
【0018】
図5は、ガイド10に衝突した壜50が受ける力を示す図である。実際は壜50が速度(チェーンコンベア21の移動速度)vにて右から左の方向へ搬送されているが、相対的にはガイド10が速度vにて矢印方向に移動し、チェーンコンベア21上に静止している壜50に衝突すると見なすことができる。壜50にガイド10が衝突する衝突速度をv、壜50とガイド10との衝突回数をn、壜50とガイド10との反発係数をe、ガイド10の傾斜角度をθ1、壜50とガイド10との間の摩擦係数をμgdとすると、n回目に衝突した際の摺動速度vrは、
【数11】
と表すことができる。つまり摺動速度vrは、ガイド10の面に対して壜50が衝突する直角方向の速度に、壜50が反発した際の反発速度を加えたものである。また、壜50がチェーンコンベア21上を摺動する方向はガイド10との摩擦力によりガイド10の面の直角方向よりやや右方向寄りとなる。
【0019】
数11に示す摺動速度vrは、n=1(初回の衝突)のときに最大となる。このときの摺動速度をvrmaxとすると、倒壜を起こさないようにするためには、
【数12】
とする必要がある。
【0020】
従って、ガイド10の傾斜角度θ1が予め決められている場合、壜50がガイド10へ衝突する衝突速度vは数10〜数12より、
【数13】
とする必要がある。
【0021】
一方、衝突速度vが予め決められている場合、衝突点相当位置11におけるガイド10の傾斜角度θ1は数10〜数12より、
【数14】
とする必要がある。
【0022】
Sinθ1の値、すなわちガイド10の傾斜角度θ1が数14に示した範囲内であれば、衝突点相当位置11において壜50がガイド10に衝突した際に倒壜を起こすことがなくなる。つまり、搬送速度vを速くする場合には傾斜角度θ1を小さくする必要がある。また、壜50とガイド10との反発係数eが小さければ傾斜角度θ1を大きくとることができる。さらに搬送速度vと比べると傾斜角度θ1の大きさの変化に対する寄与は小さいが、ガイド10の材料として摩擦係数の小さなものを用いれば摩擦係数μgdを小さくできる分、傾斜角度θ1を大きくとることができる。
【0023】
上述したようにガイド10に衝突した壜50は、ガイド10との間で微小なバウンドを繰り返すが、最初に衝突してから時間が経過するにつれて反発が収まり、ガイド10と一定速度で接触摺動する状態(以下、定常摺動状態とする)になる。ここで、数11においてnを∞とすると定常摺動状態における摺動速度vrが求められ、vrは、
【数15】
となる。
ガイド10の摩擦角α、および搬送方向に対するチェーンコンベア21上の壜50摺動方向の角度βは、
【数16】
であるから、ガイド10に対して定常摺動状態にある壜50のガイド10に沿う方向の速度をvgdは、
【数17】
と表すことができる。
また、ガイド10に対して定常摺動状態にある壜50の搬送方向の速度vlは、
【数18】
と表すことができる。
さらに、ガイド10に対して定常摺動状態にある壜50の搬送方向に対して直角な方向の速度vtは、
【数19】
と表すことができる。
【0024】
定常摺動状態では壜50の摺動速度vrが倒壜限界速度vfallを超える場合においても、ガイド10は常に壜50の側面を支えることになる。したがって、定常摺動状態ではガイド10の面に段差がある等の問題が無ければ、倒壜の危険は少ない。しかしながら、壜50がチェーンコンベア21上を摺動しつつ、ガイド10との間で衝突と反発を繰り返す時間および区間は、倒壜が起こりかねない危険な状態と言える。そこで、倒壜が起こりかねない定常摺動状態となるまでの時間および区間がどれだけ続くかを求める。
【0025】
壜50とチェーンコンベア21との摩擦係数をμcnとすると、ガイド10に接触した壜50がn回目の反発に至るまでの時間Tnは、
【数20】
と表すことができる。そして、(e+e2+・・・+en)は反発係数eについての等比級数の和であるから、数20は、
【数21】
とすることができる。
【0026】
定常摺動状態となったとき、すなわち衝突回数nを∞としたときのTnの極値は、
【数22】
となる。
したがって、壜50とガイド10が接触した後に定常摺動状態となるまでのチェーン搬送方向距離Llは、
【数23】
あるいは、
【数24】
と表すことができる。
【0027】
このチェーン搬送方向距離Llに対応するガイド10の長さLgは、
【数25】
となる。
数25より、衝突点相当位置11における壜50のガイド10への接触点から下流側に、ガイド10の長さがLgの位置までは倒壜が起こりかねない区間であることがわかる。そこでLgの位置までは、傾斜角度θ1を数14に示した範囲内としておく。つまり、衝突点相当位置11の長さをL1とすると、L1≧Lgとする(衝突点相当位置11の長さを壜50がガイド10に衝突してから定常摺動状態となるまでの長さよりも長く形成する)ことが望ましい。
【0028】
図6は、ガイド10の接続部12付近の部分拡大図である。
図示するように、ガイド10の衝突点相当位置11とわたり部13は、接続部12にて滑らかに接続されている。ここで壜50の半径をr、接続部12の曲率半径をRとすると、曲率半径Rは半径rよりも大きく形成する。ガイド10の接続部12におけるコンベア20に対する傾斜角度θ2は、衝突点相当位置11における傾斜角度θ1よりも大きく形成されるが、接続部12の曲率半径Rを以上のようにすれば、壜50が接続部12を摺動する際に、その重心はガイドに沿って滑らかに方向を変え、わたり部13の傾斜角度θ3の方向に向かわせる事ができる。曲率半径Rが壜50の半径rより小さければ、壜50はガイド10の衝突点相当位置11から、傾斜角の大きいわたり部13へ直接衝突する事になり、衝突点相当位置11における傾斜角度θ1を小さく取る意味が失われる結果となる。
【0029】
図7は、ガイド10のわたり部13での傾斜角度θ3と横断速度v2を示す図である。図7(a)に示すように壜50は、速度v1で動くコンベア20上をガイド10のわたり部13に沿って横断速度v2にて横断する。以下、わたり部13における傾斜角度がθ3であるものとして説明する。
【0030】
ガイド10と壜50との間の摩擦を無視して考えると、壜50の横断速度v2とコンベア20の速度v1の比と、ガイド10の傾斜角度θ3との関係は、図7(b)に実線で示すようになる。図示するように摩擦を無視した場合は、傾斜角度θ3が45°のときに横断速度v2が最も速くなり、速度比(v2/v1)の値が最大となる。傾斜角度θ3を45°よりも大きくした場合には、壜50がガイド10に沿って移動する速度が下がるので、横断速度v2が低下する。一方、傾斜角度θ3を45°よりも小さくした場合には、壜50がガイド10に沿って移動する速度は速くなるものの、単位時間あたりの搬送方向に対する横方向への移動距離が短くなるため、横断速度v2は低下する。摩擦がない場合の速度比(v2/v1)の最大値は0.5である。
【0031】
ここでガイド10と壜50との間の、摩擦係数μが0.15である場合は、速度比(v2/v1)と傾斜角度θ3との関係は、図7(b)に破線で示すようになる。この場合は、傾斜角度θ3が約43°のときに横断速度v2が最も速くなり、(v2/v1)の最大値は約0.425である。
横断速度v2が最速となり、わたり部13における横方向への移動を効率良く行うことができるようにするためには、傾斜角度θ3を30°〜50°の範囲内とすることが望ましい。
【0032】
以上の結果は、数19から導く事ができる。わたり部13においては、できるだけ短い距離で横移動させるのが効率的であり、ガイド10の傾斜角度θ3を横断速度vtが極値を取るように定める。
数19においてθ1=θ3とし、角度θについて偏微分すると、
【数26】
となる。摩擦係数μgdが0の場合は傾斜角度θ3がπ/4(45°)となる。すなわち、図7に示した結果を得ることができる。摩擦がある場合も図7に示したのと同様に、傾斜角度θ3はπ/4よりも小さくなる。
【0033】
図8は、ガイド10の受け渡し部14付近の部分拡大図である。
通常は、コンベア20からコンベア30へ壜50を受け渡す場合、ガイド10の終端部をコンベア30上に突き出すだけの形状となっている。このような形状だとガイド10に沿って搬送されてきた壜50は、チェーンコンベアの搬送方向に対して斜めに放出される。そうすると、ガイド10の終端部付近で倒壜を起こす可能性がある。そこで倒壜を防止するためには、壜50の移送が完了するまで、ガイド10が壜50の側面を支持することのできる形状とすることが望ましい。ガイド10の形状を壜50の運動軌跡に沿った曲面形状とすれば、壜50の移送が完了するまで支持することができる。
【0034】
チェーンコンベア21〜25(以下、チェーンコンベアとする)から相対的に見ると壜50は、図5および数19に示すように、速度vrで角度βの方向に放出される。そして壜50はチェーンコンベアとの摺動摩擦により、放出された際の運動エネルギーを徐々に失って減速し、いずれチェーンコンベア上で停止する。壜50がガイド10から離れてからチェーンコンベア上で停止するまでの時間をts、壜50がガイド10から離れてチェーンコンベア上で停止するまでにチェーンコンベア上を移動する距離をLsとすると、速度vrは、
【数27】
と表すことができる。
【0035】
この間の壜50の運動をガイド10に固定されたxy座標系から見ると、壜50のチェーンコンベア搬送方向(x方向)およびチェーンコンベア幅方向(y方向)における位置は、時間の関数として表すことができる。チェーンコンベア搬送方向の位置Lx(t)は、
【数28】
となり、チェーンコンベア幅方向の位置Ly(t)は、
【数29】
となる。
【0036】
わたり部13の終端部から、Lx(t),Ly(t)にて示される曲面の軌跡に沿った形状の受け渡し部14を形成することができる。受け渡し部14の形状を以上のようにすれば、壜50がチェーンコンベア上で停止してチェーンコンベアと一体となって搬送される状態となるまで壜50がガイド10に接触し、支持された状態とすることができる。壜50がガイド10から離れるときには、チェーンコンベア上で停止した状態となっているので、倒壜が起きることはなくなる。
【0037】
以上のように本実施の形態では、壜50が衝突する衝突点相当位置11におけるガイド10の傾斜角度θを、数14に示した範囲内としているので、倒壜を起こすことがなくなる。また、衝突点相当位置11におけるガイド10の長さを数25に示した長さ以上とすることで、傾斜角度θが小さい範囲内のうちに定常摺動状態とすることができ、傾斜角度がθ1〜θ3へと変化する際の倒壜の危険性を回避することができる。さらに、接続部12の曲率半径Rを壜50の半径rよりも大きく形成することで接続部12からわたり部13に向けて壜50を滑らかに搬送する事ができる。またさらに、わたり部13の傾斜角度θ3を43°〜45°の範囲内とすることで、搬送方向に対して横方向に最も効率良く移動することができる。そして、受け渡し部14の形状を数28,29で示した壜50の運動軌跡に合わせた曲面形状とすることによって、壜50がチェーンコンベア上で停止しつつ搬送される状態となるまで支持することができる。そうすることによって、壜50がガイド10に沿って搬送される場合において、また壜50がガイド10を離れたときにも倒壜を起こすことがなくなる。
【0038】
【発明の効果】
以上説明したように、本発明によれば、搬送速度が異なるコンベア間において壜の移送を行う場合であっても、倒壜を起こすことなく壜の搬送および移送を行うことのできる容器搬送装置を提供することができる。
【0039】
また、本発明によれば、倒壜を起こすことのない搬送路を形成することのできる搬送コンベアのガイドを提供することができる。
【0040】
さらに、本発明の容器搬送装置および搬送コンベアのガイドによれば、容器がガイドに衝突した際、容器がガイドと接触摺動しながら搬送される際、および容器がガイドから離れる際においても倒壜を起こすことなく搬送することができる。
【図面の簡単な説明】
【図1】 本実施の形態における搬送コンベアの平面図である。
【図2】 本実施の形態における搬送コンベアの斜視図である。
【図3】 倒壜が起こる際の原理を示す図である。
【図4】 ガイド10の衝突点相当位置11付近の部分拡大図である。
【図5】 ガイド10に衝突した壜50が受ける力を示す図である。
【図6】 ガイド10の接続部12付近の部分拡大図である。
【図7】 ガイド10のわたり部13での傾斜角度θ3と横断速度v2を示す図である。
【図8】 ガイド10の受け渡し部14付近の部分拡大図である。
【符号の説明】
10…ガイド、11…衝突点相当位置、12…接続部、13…わたり部、14…受け渡し部、20…コンベア、21,22,23,24,25…チェーンコンベア、30…コンベア、31,32,33,34,35…チェーンコンベア、41…入口供給領域、42…高速横移動領域、43…壜受け渡し領域、50…壜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for transporting containers, and in particular, can transport and transport lightweight bottles without falling down.Container transfer deviceAbout.
[0002]
[Prior art]
2. Description of the Related Art Conveyor conveyance using a plurality of chain conveyors is known as a form for conveying bottles in a plant that fills containers (hereinafter referred to as bottles) with beverages and the like. In such a plant, filling machines, inspection machines, packaging machines, etc. are operating at high speed. In connection with it, the conveyance speed of the conveyor which conveys soot is also increasing. Moreover, since the supply of the kite to these devices is performed in a single row, the kite is made into a single row and conveyed by a conveyor.
[0003]
When changing the pitch (interval) of the single row of kites, the kite is transferred (transferred) between conveyors having different speeds (for example, a conveyor having a low speed to a conveyor having a high speed). For this purpose, a guide is provided so as to span between the conveyors. The soot that has been carried on a certain conveyor collides with a guide, is conveyed along this guide, and is transferred onto another conveyor.
[0004]
[Problems to be solved by the invention]
Glass bottles, plastic bottles, cans, and the like are used as the bottles for filling the beverages and the like as described above. In particular, PET bottles are designed to be as thin as possible, use as little material as possible and withstand pressure, and are lighter than glass bottles. In addition, since these ridges are transported in a state of being substantially cylindrical or substantially rectangular parallelepiped, the center of gravity during transportation is at a relatively high position. In other words, the bag having a light weight and a high center of gravity is conveyed in an unstable state.
When such a kite collides with the guide, the kite may fall (hereinafter, the kite falls as a fall). Therefore, the guides provided between the conveyors are designed so that they do not fall over when the kites collide, and the kites can be smoothly transferred between the conveyors.
[0005]
Conventionally, a guide has been designed for transferring a relatively large glass bottle between the conveyors. In the design of this guide, it has been carried out mainly by empirically grasping the shape and the like of the guide that does not cause a fall. Moreover, the guide of the design mentioned above was also diverted also about the guide used when unstable bag, such as a PET bottle, changes over each conveyor.
However, the basic concept of a guide design that can transport a kite that is light and has a relatively high center of gravity position without causing tipping is not clear.
[0006]
Therefore, the present invention provides a container transport device that can transport and transfer a bag without causing overturning even when the bag is transferred between conveyors having different transfer speeds.Objective.
[0007]
[Means for Solving the Problems]
In the container transport apparatus, the object of the present invention can be achieved by avoiding the risk of the occurrence of a fall in a portion where the fall might occur. Accordingly, it is possible to provide a container transport device that can transport a container most efficiently. Accordingly, in order to solve the above-described problems, the present invention is a container transport device that transports containers between conveyors having different transport speeds, and includes a first transport conveyor that transports containers and a first transport conveyor. Also provided is a container transport device having a second transport conveyor provided on the downstream side, and a guide that forms a transport path for the containers from the first transport conveyor to the second transport conveyor. The guide is provided on the downstream side of the first region where the containers conveyed by the first conveying conveyor collide, and the containers are further inclined with respect to the conveying direction of the first conveying conveyor. And a third region that is provided downstream of the second region and delivers containers from the first transport conveyor to the second transport conveyor. The inclination angle of the first region with respect to the first conveyor is an acute angle with respect to the conveyance direction, and the container overturning speed is set to VfallThe coefficient of friction between the container and the guide μgd, E is the coefficient of restitution between the container and the guide, v is the speed of the first conveyor, and θ is the angle of inclination in the first area.1Then, Sinθ1The
[Expression 4]
Within the range of Inclination angle θ in the first region1Is within this range, it is possible to suppress the overturn when the container collides with the first region.
Also, the sliding speed between the container and the first conveyor is vr, The angle of the sliding direction of the container on the first transport conveyor with respect to the transport direction is β, and the speed at which the container is transported along the first region is vgd, The coefficient of friction between the container and the first conveyor is μcn, G acceleration of gravity, L of the length of the section where the fall may occur from the position where the container collides with the first areagThen, the length L of the first region1The
[Equation 5]
And Length L of the first area1Is LgIf it is longer, the container that repeatedly collides and repels in the first area slides with the guide, and even if the container transport direction is changed downstream from the first area, the container is overturned. The risk of doing so can be avoided or reduced.
Further, an inclination angle θ with respect to the first transport conveyor in the vicinity of the connection portion between the second region and the first region.2Is an inclination angle θ with respect to the first transport conveyor in the first region.1And the radius of curvature in the vicinity of the connecting portion is larger than the radius of the container. Inclination angle θ with respect to the first conveyor in the second region2Is in the range of 30 ° to 50 °. For example, assuming that the friction coefficient between the container and the guide is 0.15, the inclination angle θ2When the angle is 43 °, the efficiency of crossing the first conveyor is the highest.
Furthermore, the time until the container leaves the third region and is transported at the same speed as the transport speed of the second transport conveyor in the transport direction of the second transport conveyor is t.sWhen the transport direction is the x direction and the direction perpendicular to the transport direction is the y direction, the third region is
[Formula 6]
A curved surface shape represented by If the container is supported along the curved surface up to a predetermined position in the third region, the container transferred to the second transport conveyor having a different transport speed is transported at the same speed as the second transport conveyor. It is possible to move away from the guide after it has been turned on.
[0008]
In the present invention, a guide for a container transport apparatus that transports containers between conveyors having different transport speeds is provided on the downstream side of the first region and the first region where the containers transported by the first transport conveyor collide with each other. A second region in which the containers move in a direction inclined with respect to the conveyance direction of the first conveyance conveyor, and a second conveyance region provided downstream of the second region, from the first conveyance conveyor to the second conveyance conveyor And a third region for delivering the container to the The first region is formed longer than the length until the container reaches the sliding state with the guide in the first region. Further, the third region has a shape along a locus when the container is discharged from the second region. If the shape of the guide is as described above, it is possible to avoid or reduce the risk of tipping when the container collides with the guide or when the container leaves the guide.
[0009]
Moreover, this invention can provide the guide of the conveyance conveyor provided on the conveyance conveyor which conveys a container. The guide of this conveyor is provided on the downstream side of the collision point equivalent position where the container being conveyed collides, and the container is supported until the container is slid after the collision and repulsion are repeated. A sliding section that supports the container until it crosses the transport conveyor while sliding, and is provided downstream of the cross section, and the container is transported in the transport direction of the transport conveyor at the same speed as the transport speed of the transport conveyor. And a delivery part that supports the container until it is removed. As described above, the guide of the transport conveyor is continuously supported until the container collides with the guide until it is transported at the same speed as the transport speed of the transport conveyor. By doing so, the risk of falling down can be avoided or reduced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the embodiments shown in the accompanying drawings.
FIG. 1 is a plan view of a conveyor according to the present embodiment. As shown in the figure, the conveyor is composed of a
[0011]
FIG. 2 is a perspective view of the conveyor according to the present embodiment. The
[0012]
An angle formed by the
[0013]
Here, with reference to FIG. 3, the principle when a fall occurs will be described. FIG. 3A shows a state in which the
As shown in FIG. 3A, the
[0014]
If the mass of 壜 50 is m, the kinetic energy at this time is
[Expression 7]
It is.
The
[0015]
Here, if the gravitational acceleration is g, the potential energy required to lift the center of gravity G ′ to the position of height S is
[Equation 8]
It is.
When the kinetic energy shown in Equation 7 of the
[Equation 9]
It can be expressed as.
[0016]
When the position of the center of gravity G 'of the heel 50' exceeds the perpendicular drawn on the contact point, a fall occurs. Therefore, the speed v satisfying the condition of Equation 9 is a lower limit speed at which a fall can occur (hereinafter referred to as a fall limit speed). VfallThen vfallFrom Equation 9,
[Expression 10]
It can be expressed as. When the
[0017]
FIG. 4 is a partially enlarged view of the vicinity of the collision point
[0018]
FIG. 5 is a diagram illustrating the force received by the
## EQU11 ##
It can be expressed as. That is, sliding speed vrIs obtained by adding the repulsion speed when the
[0019]
Sliding speed v shown in
[Expression 12]
It is necessary to.
[0020]
Therefore, the inclination angle θ of the
[Formula 13]
It is necessary to.
[0021]
On the other hand, when the collision speed v is determined in advance, the inclination angle θ of the
[Expression 14]
It is necessary to.
[0022]
Sinθ1That is, the inclination angle θ of the
[0023]
As described above, the
[Expression 15]
It becomes.
The friction angle α of the
[Expression 16]
Therefore, the speed in the direction along the
[Expression 17]
It can be expressed as.
Further, the speed v in the conveyance direction of the
[Expression 18]
It can be expressed as.
Furthermore, the speed v in the direction perpendicular to the conveying direction of the
[Equation 19]
It can be expressed as.
[0024]
In the steady sliding state, the sliding speed v of the
[0025]
The coefficient of friction between the
[Expression 20]
It can be expressed as. And (e + e2+ ... + en) Is the sum of the geometric series for the coefficient of restitution e.
[Expression 21]
It can be.
[0026]
T when a steady sliding state is reached, that is, when the number of collisions n is ∞nThe extreme value of
[Expression 22]
It becomes.
Accordingly, the distance L in the chain conveyance direction until the
[Expression 23]
Or
[Expression 24]
It can be expressed as.
[0027]
This chain conveyance direction distance LlThe length L of the
[Expression 25]
It becomes.
From
[0028]
FIG. 6 is a partial enlarged view of the vicinity of the connecting
As shown in the figure, the collision point
[0029]
FIG. 7 shows an inclination angle θ at the crossing
[0030]
If the friction between the
[0031]
Here, when the friction coefficient μ between the
Crossing speed v2Is the fastest and the crossing
[0032]
The above result can be derived from Equation 19. In the crossing
In Equation 19, θ1= ΘThreeAnd the partial differentiation with respect to the angle θ,
[Equation 26]
It becomes. Friction coefficient μgdIf the angle is 0, the tilt angle θThreeBecomes π / 4 (45 °). That is, the result shown in FIG. 7 can be obtained. When there is friction, the inclination angle θ is similar to that shown in FIG.ThreeBecomes smaller than π / 4.
[0033]
FIG. 8 is a partially enlarged view of the vicinity of the
Normally, when the
[0034]
When viewed relatively from the
[Expression 27]
It can be expressed as.
[0035]
When the movement of the
[Expression 28]
The position L in the width direction of the chain conveyory(T)
[Expression 29]
It becomes.
[0036]
From the terminal part of the crossing
[0037]
As described above, in the present embodiment, the inclination angle θ of the
[0038]
【The invention's effect】
As described above, according to the present invention, there is provided a container transport device capable of transporting and transferring soot without causing overturn even when transporting soot between conveyors having different transport speeds. Can be provided.
[0039]
Moreover, according to this invention, the guide of the conveyance conveyor which can form the conveyance path which does not raise | fall over can be provided.
[0040]
Further, according to the container transport device and the guide of the transport conveyor of the present invention, when the container collides with the guide, the container is transported while being in sliding contact with the guide, and also when the container is separated from the guide. Can be transported without causing any problems.
[Brief description of the drawings]
FIG. 1 is a plan view of a conveyor according to the present embodiment.
FIG. 2 is a perspective view of a conveyor according to the present embodiment.
FIG. 3 is a diagram showing the principle when a fall occurs.
4 is a partially enlarged view of the vicinity of the collision point
FIG. 5 is a diagram showing the force received by the
FIG. 6 is a partially enlarged view of the vicinity of the connecting
FIG. 7 shows an inclination angle θ at the crossing
FIG. 8 is a partially enlarged view of the
[Explanation of symbols]
DESCRIPTION OF
Claims (5)
前記容器を搬送する第1の搬送コンベアと、
前記第1の搬送コンベアよりも下流側に設けられる第2の搬送コンベアと、
前記第1の搬送コンベアから前記第2の搬送コンベアにわたって前記容器の搬送路を形成するガイドと、を有し、
前記ガイドは、
前記第1の搬送コンベアによって搬送される前記容器が衝突する第1の領域と、
前記第1の領域よりも下流側に設けられ、前記容器が前記第1の搬送コンベアの搬送方向に対して傾斜した方向に移動する第2の領域と、
前記第2の領域よりも下流側に設けられ、前記第1の搬送コンベアから前記第2の搬送コンベアへと前記容器を受け渡す第3の領域とを有し、
前記第1の領域の前記第1の搬送コンベアに対する傾斜角度は前記搬送方向に対して鋭角に形成され、
前記容器の倒壜速度をVfall、当該容器と前記ガイドとの間の摩擦係数をμgd、当該容器と前記ガイドとの間の反発係数をe、前記第1の搬送コンベアの速度をv、前記第1の領域における傾斜角度をθ1とすると、Sinθ1を、
A first transport conveyor for transporting the containers;
A second transport conveyor provided downstream of the first transport conveyor;
Anda guide forming a conveying path of the vessel over the second conveyor from said first conveyor,
The guide is
A first region where the containers conveyed by the first conveying conveyor collide;
A second region provided downstream of the first region, wherein the container moves in a direction inclined with respect to the transport direction of the first transport conveyor;
A third region that is provided downstream of the second region and delivers the container from the first transport conveyor to the second transport conveyor;
An inclination angle of the first region with respect to the first transport conveyor is formed at an acute angle with respect to the transport direction,
The fall speed of the container is V fall , the coefficient of friction between the container and the guide is μ gd , the coefficient of restitution between the container and the guide is e, the speed of the first conveyor is v, When the inclination angle in the first region is θ 1 , Sinθ 1 is
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002218628A JP4006288B2 (en) | 2002-07-26 | 2002-07-26 | Container transfer device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002218628A JP4006288B2 (en) | 2002-07-26 | 2002-07-26 | Container transfer device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004059212A JP2004059212A (en) | 2004-02-26 |
JP4006288B2 true JP4006288B2 (en) | 2007-11-14 |
Family
ID=31939760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002218628A Expired - Lifetime JP4006288B2 (en) | 2002-07-26 | 2002-07-26 | Container transfer device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4006288B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019184152A (en) * | 2018-04-09 | 2019-10-24 | 株式会社アルバック | Holder, and freeze drying system |
JP7368267B2 (en) * | 2020-02-20 | 2023-10-24 | 三菱重工機械システム株式会社 | Conveying device and method |
-
2002
- 2002-07-26 JP JP2002218628A patent/JP4006288B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004059212A (en) | 2004-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5186307A (en) | Transport device for removing interlocked preforms | |
US6499582B1 (en) | Chute | |
US6488449B1 (en) | Conveyor for transporting articles having a collar and including a fitted stop to reduce the risk of the articles jamming | |
KR20070006706A (en) | Preform feeder system, particularly a receptacle blowing machine comprising means for ejecting badly positioned preforms | |
US7032737B2 (en) | Conveying apparatus for open containers | |
CN105102354A (en) | Singulator conveyor | |
US6050390A (en) | Chute for a tilt tray sorter | |
JPH03166117A (en) | Method and device to change stream of containers with a plurality of moving loci to stream of containers with single moving locus | |
JP2008531347A (en) | Device for orienting tubular preforms fed in bulk | |
KR19990083122A (en) | Method and Apparatus For High Speed Article Processing | |
JPS5939620A (en) | Article separator | |
JP4006288B2 (en) | Container transfer device | |
CN1054825C (en) | Damperless controlled speed air conveyor | |
US10793358B1 (en) | Spiral entry chute | |
EP0317253A1 (en) | Bottle orientation apparatus and method | |
US3945682A (en) | Method and apparatus for transferring articles | |
JP2015096449A (en) | Article conveyance apparatus | |
US5404991A (en) | Article orienting device | |
US20120228090A1 (en) | Mat for the transport of at least one object, a transfer device and a method for the transfer | |
JP4006285B2 (en) | Container transfer device | |
US7007791B2 (en) | Container storage and delivery system | |
JP6315438B2 (en) | Container transfer device | |
US6279723B1 (en) | Container uprighting device | |
US6415903B1 (en) | Container tipping device and associated method | |
EP0178028B1 (en) | In-line apparatus for containers, such as bottles and the like |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050720 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060313 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20060406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070827 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4006288 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |