JP4004535B2 - Thickness measuring device for container steel plate - Google Patents
Thickness measuring device for container steel plate Download PDFInfo
- Publication number
- JP4004535B2 JP4004535B2 JP2007018103A JP2007018103A JP4004535B2 JP 4004535 B2 JP4004535 B2 JP 4004535B2 JP 2007018103 A JP2007018103 A JP 2007018103A JP 2007018103 A JP2007018103 A JP 2007018103A JP 4004535 B2 JP4004535 B2 JP 4004535B2
- Authority
- JP
- Japan
- Prior art keywords
- container
- steel plate
- thickness
- traveling
- echo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Description
本発明は、容器鋼板の板厚を測定する装置に係り、特にリアクター(反応容器)等のように容器鏡部(容器底部)が球面状或いは円錐状の曲面で構成され、容器胴部にバッフルや攪拌部材等の障害物がある場合でも容器鋼板の板厚を容易に測定することが出来る容器鋼板の板厚測定装置に関するものである。 The present invention relates to an apparatus for measuring the thickness of a container steel plate, and in particular, a container mirror (container bottom) such as a reactor (reaction container) has a spherical or conical curved surface, and a baffle is formed on the container body. The present invention relates to a thickness measuring apparatus for a container steel plate that can easily measure the thickness of the container steel plate even when there is an obstacle such as a stirring member.
従来から、塔状タンク、球状タンク、槽、容器等の溶接鋼構造物(以下、単に「容器」という)では、外面腐食による経年劣化が発生するため定期的な板厚測定による検査と補修が必要となっている。 Conventionally, welded steel structures such as tower tanks, spherical tanks, tanks, containers, etc. (hereinafter simply referred to as “containers”) have deteriorated over time due to external corrosion. It is necessary.
容器鋼板の板厚を測定する手段としては、超音波探触子により鋼板の板厚を測定することが行われており、例えば、円筒タンクの平面底板の板厚を測定するために超音波探触子と渦流センサとを千鳥状(互い違い)に配列して走行台車に搭載し、円筒タンクの底板表面に被覆されたコーティング上で走行台車を走行させてタンク底板平面の鋼板厚さを連続的に測定するものが提案されている(特許文献1参照。)。 As a means for measuring the thickness of the container steel plate, the thickness of the steel plate is measured by an ultrasonic probe. For example, an ultrasonic probe is used to measure the thickness of the flat bottom plate of a cylindrical tank. The tactile sensors and eddy current sensors are arranged in a staggered pattern (alternately) and mounted on a traveling cart, and the traveling cart is run on the coating coated on the bottom plate surface of the cylindrical tank, and the steel plate thickness on the tank bottom plate plane is continuously increased. The one to measure is proposed (refer to Patent Document 1).
その他、超音波探触子を千鳥状に配置したもの(特許文献2参照)、超音波探触子が幅方向に並べて配置され、自在式継手機構を介してタンク底板の板厚計測を行うもの(特許文献3参照)、超音波探触子がジンバル式継手を介して昇降機構に支持されたもの(特許文献4参照)が提案されている。 In addition, ultrasonic probes arranged in a staggered pattern (see Patent Document 2), ultrasonic probes arranged side by side in the width direction, and measuring the thickness of the tank bottom plate via a universal joint mechanism (See Patent Document 3), an ultrasonic probe supported by an elevating mechanism through a gimbal joint (see Patent Document 4) has been proposed.
また、浮き屋根式タンクの側板曲面の板厚を測定するためにタンク側面の頂部と底部付近に水平方向に走行するガイドを設け、超音波探触子と吸着用の永久磁石を搭載した測定台車をマグネットワイヤロープに連結し、ケーブル巻取り装置で昇降させるものもある(特許文献5参照)。 In addition, in order to measure the thickness of the curved surface plate of the floating roof tank, a horizontal traveling guide is provided near the top and bottom of the side of the tank, and a measuring carriage equipped with an ultrasonic probe and a permanent magnet for adsorption. Are connected to a magnet wire rope and moved up and down by a cable winding device (see Patent Document 5).
また、超音波探触子を搭載した走査台車が縦横に移動可能に構成されたもの(特許文献6参照)や、超音波探触子がX−Y方向に移動可能に構成されたもの(特許文献7参照)等の各種技術が提案されている。 In addition, a scanning carriage equipped with an ultrasonic probe is configured to be movable in the vertical and horizontal directions (see Patent Document 6), and an ultrasonic probe is configured to be movable in the X and Y directions (patent). Various techniques such as Document 7) have been proposed.
しかしながら、単に内容物の収容を目的とした大型タンクの平面底板や何ら障害物が無い容器胴部であれば、前述の各種従来例でも効果的な板厚測定が可能であるが、リアクター(反応容器)等の圧力容器では、単に内容物の収容を目的とした大型タンクと比較して小型であり、更にその内部に攪拌機、攪拌翼、攪拌促進を兼ねた注入管としてのバッフル、ガス吸い込み配管、温度計等の障害物が多く、容器鏡部が球面状或いは円錐状の曲面で構成されるため超音波探傷器を用いた自動全面板厚測定は困難とされ、リアクター外表面側からの視認検査が一般であった。 However, if the flat bottom plate of a large tank for the purpose of simply containing the contents or a container body without any obstacles, it is possible to measure the plate thickness effectively with the various conventional examples described above. Pressure vessels such as containers) are smaller than large tanks simply for the purpose of containing their contents, and are further equipped with a stirrer, a stirring blade, a baffle as an injection pipe that also serves as an agitation, and a gas suction pipe. Because there are many obstacles such as thermometers, and the container mirror part is composed of a spherical or conical curved surface, it is difficult to measure the entire surface thickness automatically using an ultrasonic flaw detector. Inspection was common.
また、リアクターによっては、シェル本体の外周部に反応温度の保温或いは温度調節を目的として温水や水を流通させるためのジャケット鋼材が溶接等により設けられる場合があり、ジャケット鋼材とシェル本体との間は水環境により腐食環境に晒される一方でジャケット鋼材が設けられた部位のシェル本体外表面はジャケット鋼材により被覆されるためシェル本体外表面側からの視認検査が困難であり、ジャケット鋼材を一旦撤去してシェル本体外表面側から視認検査を行い、再度ジャケット鋼材を復帰するには膨大な経費がかかるという問題がある。 Also, depending on the reactor, jacket steel for circulating hot water or water for the purpose of keeping the reaction temperature or adjusting the temperature may be provided on the outer periphery of the shell body by welding or the like, and between the jacket steel material and the shell body. Is exposed to a corrosive environment due to the water environment, but the outer surface of the shell body where the jacket steel material is provided is covered with the jacket steel material, so visual inspection from the outer surface side of the shell body is difficult, and the jacket steel material is temporarily removed. Then, there is a problem that enormous costs are required to perform visual inspection from the outer surface side of the shell body and restore the jacket steel material again.
このような場合、必要に応じてリアクター内部の障害物を一旦撤去すると共に、リアクターの内部に足場を仮設し、人手により超音波探傷器を用いて容器鋼板の板厚を測定することも考えられるが、リアクター内部の障害物を一旦撤去した後、再度復帰する作業が煩雑であり、足場の仮設及び撤去作業も面倒である。 In such a case, if necessary, the obstacle inside the reactor may be temporarily removed, and a scaffold may be temporarily installed inside the reactor, and the thickness of the container steel plate may be measured manually using an ultrasonic flaw detector. However, once the obstacle inside the reactor is removed, the work of returning again is complicated, and the temporary and removal work of the scaffold is also troublesome.
また、リアクター内部の障害物を残したままで人手により超音波探傷器を用いて部分的な範囲で容器鋼板の板厚を測定する場合、検査員は狭い空間の中で不安定な姿勢で板厚測定を実施しなければならず作業環境が悪く、容器鋼板全面の板厚を漏れなく測定するには多大な時間がかかるため容器運用上、実用的ではない。そのため容器の代表部位で板厚を測定している。 In addition, when the thickness of a container steel plate is measured by hand using an ultrasonic flaw detector while leaving the obstacle inside the reactor, the inspector must be in an unstable posture in a narrow space. Measurement must be carried out, the working environment is poor, and it takes much time to measure the thickness of the entire surface of the container steel plate without omission, so it is not practical in terms of container operation. Therefore, the plate thickness is measured at the representative part of the container.
しかしながら、容器の代表部位で板厚を測定するだけでは容器全体の減肉状態を把握する上で信頼性に乏しいため前述のようにジャケット鋼材を一旦撤去してシェル本体外表面側から視認検査を行う場合がある。 However, just measuring the plate thickness at the representative part of the container is not reliable in grasping the thinning state of the entire container, so as described above, the jacket steel material is once removed and a visual inspection is performed from the outer surface side of the shell body. May do.
一方、複数の超音波探触子を用いる多チャンネル型の板厚測定装置においては、図23に示すように、予め目的とした反射エコーがかえる範囲を想定して境界面エコー監視ゲート41、底面エコー監視ゲート42を固定し、該底面エコー監視ゲート42のスレッシュレベルが反射エコー波形を切る位置において算出された板厚値を測定結果としていた。 On the other hand, in a multi-channel type plate thickness measuring apparatus using a plurality of ultrasonic probes, as shown in FIG. The echo monitoring gate 42 was fixed, and the plate thickness value calculated at the position where the threshold level of the bottom echo monitoring gate 42 cuts the reflected echo waveform was used as the measurement result.
しかしながら、このような板厚測定方法では、超音波探触子を用いる多チャンネル型の板厚測定装置においては、チャンネル個々の測定面と被検体の損傷状態の変化に柔軟に対応することが出来ず、正確な板厚値を見逃したり、余計なノイズを誤って検出する等の問題が生じ、それらが板厚測定の大きな誤差要因となっていた。 However, with such a plate thickness measurement method, a multi-channel type plate thickness measurement apparatus using an ultrasonic probe can flexibly cope with changes in the measurement state of each channel and the damage state of the subject. In other words, problems such as overlooking the accurate thickness value and erroneous detection of extra noise have occurred, and these have become a major error factor in thickness measurement.
例えば、図23の1ch(チャンネル)〜4chは底面エコー監視ゲート42の開始時点と底面エコー波形43bの立ち上がり時点とが略一致して板厚値が正確に検出出来ているが、それ以外のチャンネルでは底面エコー監視ゲート42が底面エコー波形43bの立ち下がり部位で切った位置において板厚を算出するため実際よりも厚い板厚値を検出してしまう。従って、薄い板厚は計測出来ず、見逃している例である。 For example, in channel 1 to channel 4 in FIG. 23, the start time of the bottom surface echo monitoring gate 42 and the rising time point of the bottom surface echo waveform 43b are substantially the same, and the plate thickness value can be accurately detected. In this case, since the thickness of the bottom echo monitoring gate 42 is calculated at the position where the bottom echo waveform 43b is cut off, a thickness value that is thicker than the actual thickness is detected. Accordingly, this is an example in which a thin plate thickness cannot be measured and is overlooked.
多くのチャンネル間の測定上のばらつきに対応するためには、従来の固定ゲート方式でも図24に示すように、底面エコー監視ゲート42の監視範囲を広げて対応することも可能であるが、この場合においても、余計なノイズを拾いやすくなるというデメリットがある。例えば、図24は監視範囲を広げて対応した底面エコー監視ゲート42が境界面エコー波形43aの多重エコー波形43cを底面エコー波形43bと間違えて切った位置において板厚を算出するため実際よりも薄い板厚値を検出してしまう。 In order to cope with variations in measurement between many channels, the conventional fixed gate method can be handled by expanding the monitoring range of the bottom echo monitoring gate 42 as shown in FIG. Even in this case, there is a demerit that it becomes easy to pick up extra noise. For example, in FIG. 24, since the bottom echo monitoring gate 42 corresponding to the widened monitoring range calculates the plate thickness at the position where the multiple echo waveform 43c of the boundary echo waveform 43a is mistaken for the bottom echo waveform 43b, it is thinner than the actual thickness. The plate thickness value is detected.
また、容器鋼板がクラッド鋼(例えばSUS+SS材)やガラスライニングをコーティングした鋼材(GL+SS材)の様に異なる材質を張り合わせて構成される場合、それぞれの界面に剥離(空気層)が生じていれば、対象物の全体厚さを正確に得るのが困難となり、大きな測定誤差要因となる。 Also, if the container steel plate is composed of different materials such as clad steel (for example, SUS + SS material) or steel material coated with glass lining (GL + SS material), if peeling (air layer) occurs at each interface Therefore, it is difficult to accurately obtain the entire thickness of the object, which causes a large measurement error.
図28(a)は異なる材質からなる表面層を張り合わせて構成される容器鋼板の表面層と容器鋼板との境界面に剥離がある場合の境界面エコー波形43aを示す。超音波の経路に剥離が存在する場合、剥離面から複数回にわたり反射して帰る多重エコー波形43cが底面エコー監視ゲート42のゲート範囲に飛び込み、底面エコー監視ゲート42が多重エコー波形43cを切った位置において板厚を算出するため実際よりも薄い板厚値を検出してしまう。 FIG. 28 (a) shows a boundary surface echo waveform 43a in the case where there is separation at the boundary surface between the surface layer of the container steel plate formed by bonding surface layers made of different materials and the container steel plate. When there is separation in the ultrasonic path, the multiple echo waveform 43c reflected and returned from the separation surface multiple times jumps into the gate range of the bottom echo monitoring gate 42, and the bottom echo monitoring gate 42 cuts the multiple echo waveform 43c. Since the plate thickness is calculated at the position, a plate thickness value thinner than the actual thickness is detected.
また、容器鋼板の鋼材中に介在物やラミネーション等が存在する場合においては、図28(c)に示すように、鋼材の底面エコー波形43bが現れるよりも前にそれらの傷エコー波形43dが出現するため、図31の8ch(チャンネル)に示すように底面エコー監視ゲート42が底面エコー波形43bの代わりに傷エコー波形43dを検出して、実際の鋼材厚さよりも大幅に薄い厚さが検出されるのが一般的であり、図31に示すように腐食されていない鋼材であってもあたかも腐食したような厚さの薄い板厚値44を算出して表示してしまい、容器鋼板の腐食減肉と介在物等の存在との識別が出来ないという問題がある。 Further, when inclusions, laminations, and the like are present in the steel plate of the container steel plate, as shown in FIG. 28 (c), the scratch echo waveform 43d appears before the bottom echo waveform 43b of the steel material appears. Therefore, as shown in 8ch (channel) of FIG. 31, the bottom echo monitoring gate 42 detects the scratch echo waveform 43d instead of the bottom echo waveform 43b, and a thickness significantly smaller than the actual steel thickness is detected. As shown in Fig. 31, even if the steel material is not corroded, a thin plate thickness value 44 as if it was corroded is calculated and displayed, reducing the corrosion of the container steel plate. There is a problem that it is impossible to distinguish between the presence of meat and inclusions.
また、外周部にジャケット鋼材が設けられた容器では、内部側から超音波探触子を用いて鋼板厚さを測定しても外部側からその位置を容易に特定することが出来ず、内部側で測定した板厚情報から補修が必要な位置を外部側から大まかに特定し、その特定した位置を中心に広い範囲で補修する必要があった。これによりジャケット鋼材を大幅に除去して容器の強度が低下したり、広い範囲で補修するために時間やコストがかかるという問題があった。 In addition, in the case where the jacket steel material is provided on the outer peripheral portion, even if the steel plate thickness is measured from the inner side using an ultrasonic probe, the position cannot be easily specified from the outer side. It was necessary to roughly identify from the outside the position that needs repair from the plate thickness information measured in, and to repair in a wide range centered on the identified position. As a result, there is a problem that the jacket steel material is largely removed and the strength of the container is lowered, and it takes time and cost to repair in a wide range.
本発明は前記課題を解決するものであり、その目的とするところは、リアクター(反応容器)等のように容器鏡部が球面状或いは円錐状の曲面で構成され、容器胴部に各種の障害物がある場合でも容器鋼板の板厚を容易に測定することが出来る容器鋼板の板厚測定装置を提供せんとするものである。 The present invention solves the above-mentioned problems, and the object of the present invention is to form a container mirror part with a spherical or conical curved surface, such as a reactor (reaction vessel), and various obstacles to the container body. It is an object of the present invention to provide a container steel plate thickness measuring device that can easily measure the thickness of a container steel plate even when there is an object.
前記目的を達成するための本発明に係る容器鋼板の板厚測定装置は、左右の前輪と左右の後輪で走行する走行台車であって、該前輪または後輪に走行軌跡の曲率半径を変更可能なステアリング機構を有し、且つ所定の曲率を有する曲面からなり投影形状が円形で形成された容器鏡部の鋼板上を走行し得る走行台車と、前記走行台車に搭載され、複数の超音波探触子が搭載された超音波探触子ユニットと、前記容器鏡部の軸中心に設定される支点に対して着脱可能な支点部材と、一端部に回転ガイドジョイントを介して回転自在に前記走行台車が連結されると共に、他端部が前記支点部材に対して該支点部材を中心に回転自在に設けられ、前記容器鏡部の軸中心に設定される支点と、前記走行台車との離間距離を規定する回転半径規定部材とを有し、前記回転半径規定部材の固定長さを調整することで前記走行台車の走行半径を規定しつつ、所定の曲率半径の円周一周における前記容器鏡部の鋼板板厚を測定することを特徴とする。 In order to achieve the above object, a container steel plate thickness measuring apparatus according to the present invention is a traveling cart that travels with left and right front wheels and left and right rear wheels, and changes the radius of curvature of the travel locus to the front wheels or rear wheels. A traveling carriage having a steering mechanism capable of traveling on a steel plate of a container mirror portion formed of a curved surface having a predetermined curvature and formed in a circular shape, and a plurality of ultrasonic waves mounted on the traveling carriage An ultrasonic probe unit on which a probe is mounted; a fulcrum member that can be attached to and detached from a fulcrum set at the axial center of the container mirror; and a rotatable guide joint at one end of the ultrasonic probe unit. A traveling carriage is connected, and the other end portion is provided to be rotatable about the fulcrum member with respect to the fulcrum member, and the fulcrum set at the center of the axis of the container mirror is separated from the traveling carriage. A turning radius regulating member for regulating the distance And, wherein while defining the running radius of the rotational radius defining the traveling carriage by adjusting the fixed length of the member, to measure the steel plate thickness of the container mirror portion in a circumferential around the predetermined radius of curvature And
本発明は、上述の如く構成したので、所定の曲率を有する球面状或いは円錐状等の曲面からなり投影形状が円形で形成された容器鏡部の鋼板板厚を測定する場合に、その容器鏡部の軸中心に設定される支点に対して支点部材を装着し、回転半径規定部材により複数の超音波探触子が搭載された走行台車の走行半径を規定しつつ所定の曲率半径の円周上を連続的に走行させて、その曲率半径の円周一周分の容器鏡部の鋼板板厚を連続測定することが出来、回転半径規定部材により走行台車と容器鏡部の軸中心に設定される支点との離間距離を一周毎に連続的に増減すれば容器鏡部の略全面に亘って鋼板板厚を測定することが出来る。支点部材は永久磁石や電磁石等の磁性体による吸着力、或いは吸盤等の吸着力により容器鏡部に対して容易に着脱可能に構成することが出来る。 Since the present invention is configured as described above, when measuring the steel plate thickness of a container mirror portion formed of a curved surface such as a spherical shape or a conical shape having a predetermined curvature and having a circular projection shape, the container mirror is measured. A fulcrum member is attached to a fulcrum set at the center of the axis of the part, and the circumference of a predetermined radius of curvature is defined while defining the traveling radius of the traveling carriage on which a plurality of ultrasonic probes are mounted by the turning radius defining member It is possible to continuously measure the steel plate thickness of the container mirror part for the circumference of the circumference of the radius of curvature by setting the center of the axis of the traveling carriage and the container mirror part by the turning radius defining member. If the distance from the fulcrum is continuously increased or decreased every round, the steel plate thickness can be measured over substantially the entire surface of the container mirror. The fulcrum member can be configured to be easily attachable to and detachable from the container mirror by an attractive force of a magnetic material such as a permanent magnet or an electromagnet, or an attractive force of a suction cup or the like.
走行台車は走行軌跡の曲率半径を変更可能なステアリング機構を有しており、所定の曲率半径の円周上を走行させて、その曲率半径の円周一周分の容器鏡部の鋼板板厚を連続的に測定することが出来る。ステアリング機構により走行軌跡の曲率半径を一周毎に連続的に増減させることで、容器鏡部の略全面に亘って鋼板板厚を測定することが出来る。 The traveling cart has a steering mechanism that can change the radius of curvature of the travel locus, and travels on the circumference of a predetermined radius of curvature, and the steel plate thickness of the container mirror part for one circumference of the radius of curvature is measured. It can be measured continuously. The steel plate thickness can be measured over substantially the entire surface of the container mirror by continuously increasing or decreasing the radius of curvature of the travel locus for each turn by the steering mechanism.
図により本発明に係る容器鋼板の板厚測定装置の一例として、容器鏡部(容器底部)が球面状の曲面からなり投影形状が円形で構成され、その容器鏡部と略直交する方向に連続する略円筒形状の容器胴部を有し、その容器胴部にバッフル等の障害物が設けられたリアクター(反応容器)に適用した場合の容器鋼板の板厚測定装置の一実施形態を具体的に説明する。 As an example of a plate thickness measuring apparatus for a container steel sheet according to the present invention, the container mirror part (container bottom part) is formed of a spherical curved surface, the projection shape is circular, and is continuous in a direction substantially perpendicular to the container mirror part. Specific embodiment of a plate thickness measuring apparatus for a container steel plate when applied to a reactor (reaction vessel) having a substantially cylindrical container body and an obstacle such as a baffle provided on the container body Explained.
図1及び図2において、1はリアクター(反応容器)であり、所定の曲率を有する曲面からなり投影形状が円形で形成された容器鏡部1aと、その容器鏡部1aに高さ方向に連続する略円筒形状の容器胴部1bとを有して構成されている。 1 and 2, reference numeral 1 denotes a reactor (reaction vessel), which is a container mirror portion 1a formed of a curved surface having a predetermined curvature and whose projection shape is circular, and is continuous with the container mirror portion 1a in the height direction. And a substantially cylindrical container body 1b.
本実施形態の容器鏡部1aは球面状の曲面で構成された場合の一例について説明するが、円錐状の曲面で構成された容器鏡部にも同様に適用可能である。また、本実施形態のリアクター1の軸中心部には図示しないモータにより回転駆動される攪拌機2が設けられ、容器胴部1bには攪拌促進を兼ねた注入管としてのバッフル3が支持されている。 An example of the case where the container mirror part 1a of the present embodiment is configured by a spherical curved surface will be described, but the container mirror part 1a can be similarly applied to a container mirror part configured by a conical curved surface. In addition, a stirrer 2 that is rotationally driven by a motor (not shown) is provided at the central portion of the reactor 1 of the present embodiment, and a baffle 3 as an injection tube that also serves to promote stirring is supported on the container body 1b. .
本実施形態において、攪拌機2やバッフル3は板厚測定における障害物となる。尚、図示しないが、他の障害物として、攪拌翼、ガス吸い込み配管、温度計等がリアクター1の内部に配置される場合もある。 In this embodiment, the stirrer 2 and the baffle 3 become obstacles in the plate thickness measurement. Although not shown, as other obstacles, a stirring blade, a gas suction pipe, a thermometer, and the like may be disposed inside the reactor 1.
リアクター1の容器鏡部1aから容器胴部1bに亘る外周部には、反応温度の保温或いは温度調節を目的として温水や水を流通させるためのジャケット鋼材4が溶接等により設けられている。 A jacket steel material 4 for circulating hot water or water for the purpose of keeping the reaction temperature or adjusting the temperature is provided by welding or the like on the outer periphery of the reactor 1 from the container mirror 1a to the container body 1b.
図1に示す走行台車5は複数の超音波探触子7を搭載し、容器胴部1bの鋼板上を鉛直方向(高さ方向)或いは水平方向(円周方向)に走行する走行台車であり、図2に示す走行台車6は同じく複数の超音波探触子7を搭載し、容器鏡部1aの鋼板上を所定の曲率半径で円周方向に走行する走行台車である。 A traveling carriage 5 shown in FIG. 1 has a plurality of ultrasonic probes 7 and travels in the vertical direction (height direction) or the horizontal direction (circumferential direction) on the steel plate of the container body 1b. The traveling carriage 6 shown in FIG. 2 is also a traveling carriage that is equipped with a plurality of ultrasonic probes 7 and travels on the steel plate of the container mirror portion 1a in the circumferential direction with a predetermined radius of curvature.
超音波探触子7は、プローブユニットを兼ねる小台車7aにより支持されており、該小台車7aはジンバル機構を介して超音波探触子ユニット13の支持フレームに支持されている。本実施形態の超音波探触子ユニット13には12個の超音波探触子7が千鳥状(互い違い)に配列されて一体的に装備されている。 The ultrasonic probe 7 is supported by a small cart 7a that also serves as a probe unit, and the small cart 7a is supported by a support frame of the ultrasonic probe unit 13 through a gimbal mechanism. In the ultrasonic probe unit 13 of the present embodiment, twelve ultrasonic probes 7 are arranged in a zigzag manner (alternately) and integrally provided.
図3〜図5に示すように、容器鏡部1aの鋼板上を走行する走行台車6は、その前輪10に走行軌跡の曲率半径を変更可能なステアリング機構8が設けられており、ステアリング機構8のリンク機構に連結されたステアリング角度調整ノブ8aを図3の上下方向にスライドすることで前輪10のステアリング角度が調節出来るようになっている。 As shown in FIGS. 3 to 5, the traveling carriage 6 traveling on the steel plate of the container mirror portion 1 a is provided with a steering mechanism 8 capable of changing the curvature radius of the traveling locus on the front wheel 10. The steering angle of the front wheel 10 can be adjusted by sliding the steering angle adjustment knob 8a connected to the link mechanism in the vertical direction of FIG.
一方、左右の後輪11には、該左右の後輪11を夫々独立して回転駆動することが出来る走行駆動機構となる走行モータ12が設けられている。 On the other hand, the left and right rear wheels 11 are provided with a traveling motor 12 serving as a traveling drive mechanism capable of independently rotating the left and right rear wheels 11.
9は容器鋼板に対して磁力による吸着力を発揮する磁性体となる磁石である。尚、磁性体としては永久磁石や電磁石を採用することが出来る。また、前後輪10,11の4つの車輪を夫々磁石で構成しても良い。 Reference numeral 9 denotes a magnet that is a magnetic body that exerts an attractive force by magnetic force on the container steel plate. As the magnetic material, a permanent magnet or an electromagnet can be used. Further, the four wheels of the front and rear wheels 10 and 11 may be configured by magnets.
13は複数の超音波探触子7を一体的に搭載した超音波探触子ユニットであり、該超音波探触子ユニット13は走行台車6の本体フレーム14に対して着脱可能に構成されている。尚、超音波探触子ユニット13は図7〜図12に示して後述する走行台車5のキャリッジ部材15に対しても着脱可能に構成されており、これにより、共通の超音波探触子ユニット13が、容器鏡部1aを走行する走行台車6と、容器胴部1bを走行する走行台車5とに選択的に着脱可能になっている。 Reference numeral 13 denotes an ultrasonic probe unit on which a plurality of ultrasonic probes 7 are integrally mounted. The ultrasonic probe unit 13 is configured to be detachable from the main body frame 14 of the traveling carriage 6. Yes. The ultrasonic probe unit 13 is configured to be detachable from a carriage member 15 of the traveling carriage 5 which will be described later with reference to FIGS. 7 to 12, so that a common ultrasonic probe unit can be obtained. 13 is selectively attachable to and detachable from the traveling cart 6 that travels through the container mirror 1a and the traveling cart 5 that travels through the container body 1b.
超音波探触子ユニット13を走行台車5,6に対して着脱する着脱手段としては、ボルト止めやネジ止めでも良いが、本実施形態ではバックル28を用いてワンタッチで着脱可能に構成している。尚、この他にも各種の着脱手段が適用出来る。 As an attaching / detaching means for attaching / detaching the ultrasonic probe unit 13 to / from the traveling carriages 5 and 6, bolting or screwing may be used, but in this embodiment, it is configured to be attachable / detachable with a single touch using a buckle 28. . In addition, various attachment / detachment means can be applied.
16は距離測定機構となるエンコーダであり、17は電源ケーブルや信号ケーブル17aが接続される制御ケーブルコネクタである。走行台車6の制御ケーブルコネクタ17は走行モータ12の電源ケーブルや制御信号を伝達する信号ケーブル、更には超音波探触子7の制御信号及び該超音波探触子7による板厚測定データを伝達する信号ケーブル、エンコーダ16により測定された走行距離データを伝達する信号ケーブル等を接続する。 Reference numeral 16 denotes an encoder serving as a distance measuring mechanism, and reference numeral 17 denotes a control cable connector to which a power cable and a signal cable 17a are connected. The control cable connector 17 of the traveling carriage 6 transmits a power cable for the traveling motor 12 and a signal cable for transmitting a control signal, and further transmits a control signal for the ultrasonic probe 7 and a plate thickness measurement data by the ultrasonic probe 7. A signal cable for transmitting mileage data measured by the encoder 16, and the like are connected.
走行台車6の本体フレーム14の側部には回転ガイドジョイント18が設けられており、該回転ガイドジョイント18には図6に示す回転半径規定部材19の一端部が連結される。 A rotation guide joint 18 is provided on the side of the main body frame 14 of the traveling carriage 6, and one end of a rotation radius defining member 19 shown in FIG. 6 is connected to the rotation guide joint 18.
図6において、20は容器鏡部1aの軸中心に設定される支点に対して着脱可能な支点部材であり、永久磁石や電磁石等の磁性体による吸着力、或いは吸盤等の吸着力により容器鏡部1aに対して容易に着脱可能に構成されている。 In FIG. 6, reference numeral 20 denotes a fulcrum member that can be attached to and detached from a fulcrum set at the axial center of the container mirror 1a. It is configured to be easily detachable from the part 1a.
回転半径規定部材19の他端部は支点部材20に回転自在に設けられたホルダ部材21に支持されており、長さ調整ノブ21aにより回転半径規定部材19の固定長さを調節することで、容器鏡部1aの軸中心に設定される支点と、走行台車6との離間距離を規定することが出来るようになっている。 The other end of the turning radius defining member 19 is supported by a holder member 21 that is rotatably provided on the fulcrum member 20, and by adjusting the fixed length of the turning radius defining member 19 by the length adjustment knob 21a, The separation distance between the fulcrum set at the axial center of the container mirror portion 1a and the traveling carriage 6 can be defined.
上記構成により、所定の曲率を有する球面状或いは円錐状等の曲面からなり投影形状が円形で形成された容器鏡部1aの鋼板板厚を測定する場合に、その容器鏡部1aの軸中心に設定される支点に対して支点部材20を装着し、回転半径規定部材19により複数の超音波探触子7が搭載された走行台車6の走行半径を規定しつつ所定の曲率半径の円周上を走行させて、その曲率半径の円周一周分の容器鏡部1aの鋼板板厚を測定することが出来、回転半径規定部材19により走行台車6と容器鏡部1aの軸中心に設定される支点との離間距離を連続的に増減すれば容器鏡部1aの略全面に亘って鋼板板厚を測定することが出来る。 With the above configuration, when measuring the steel plate thickness of the container mirror part 1a formed of a curved surface having a predetermined curvature, such as a spherical surface or a conical shape, and having a circular projection shape, the axial center of the container mirror part 1a is measured. A fulcrum member 20 is attached to the set fulcrum, and the turning radius defining member 19 defines a traveling radius of the traveling carriage 6 on which a plurality of ultrasonic probes 7 are mounted, and has a predetermined radius of curvature. Can be measured and the steel plate thickness of the container mirror part 1a for the circumference of the radius of curvature can be measured, and the rotational radius defining member 19 is set to the axial center of the traveling carriage 6 and the container mirror part 1a. If the distance from the fulcrum is increased or decreased continuously, the steel plate thickness can be measured over substantially the entire surface of the container mirror 1a.
図7〜図12において、容器胴部1bの鋼板上を走行する走行台車5は、前述の走行台車6と同様に容器鋼板に対して磁力による吸着力が作用する磁性体となる磁石9を搭載している。尚、磁性体としては永久磁石や電磁石を採用することが出来る。また、前後輪10,11の4つの車輪を夫々磁石で構成しても良い。 7-12, the traveling cart 5 that travels on the steel plate of the container body 1b is equipped with a magnet 9 that is a magnetic body that acts on the container steel plate to attract the magnetic force to the container steel plate, similar to the traveling cart 6 described above. is doing. As the magnetic material, a permanent magnet or an electromagnet can be used. Further, the four wheels of the front and rear wheels 10 and 11 may be configured by magnets.
前後輪10,11の4つの車輪には、該4つの車輪を夫々独立して回転駆動することが出来る走行駆動機構となる走行モータ12が設けられており、この4つの走行モータ12を正転/逆転制御することで左右独立して前進/後退が可能な走行駆動機構を構成している。 The four wheels of the front and rear wheels 10 and 11 are provided with a traveling motor 12 that serves as a traveling drive mechanism that can independently rotate and drive the four wheels. A traveling drive mechanism is configured that can be moved forward / backward independently by controlling the reverse rotation.
図10及び図11に示すように、走行台車5の本体フレーム14には移動手段であって回動手段を構成する回動アーム22が回動軸22aを中心にして回動可能に設けられており該回動アーム22の先端部には該回動アーム22に対して揺動自在に構成されたキャリッジ部材15が設けられている。 As shown in FIGS. 10 and 11, the main body frame 14 of the traveling carriage 5 is provided with a turning arm 22 which is a moving means and constitutes a turning means so as to be rotatable about a turning shaft 22a. A carriage member 15 configured to be swingable with respect to the rotary arm 22 is provided at the tip of the rotary arm 22.
複数の超音波探触子7を搭載した超音波探触子ユニット13はキャリッジ部材15に対して着脱可能に構成されており、その着脱手段は前述した超音波探触子ユニット13と本体フレーム14との着脱手段と同様にバックル28を用いてワンタッチで着脱可能に構成されている。尚、前述したと同様に他の各種の着脱手段を採用することも出来る。 The ultrasonic probe unit 13 on which a plurality of ultrasonic probes 7 are mounted is configured to be detachable with respect to the carriage member 15, and the attaching / detaching means includes the ultrasonic probe unit 13 and the main body frame 14 described above. Like the attaching / detaching means, the buckle 28 is used to attach and detach with one touch. It should be noted that various other attachment / detachment means can be employed as described above.
そして、回動アーム22を回動させて超音波探触子ユニット13を搭載したキャリッジ部材15を走行台車5の進行方向と交差する方向(本実施形態では直交する方向)に移動して走行台車5の幅方向に突出させることが出来るようになっている。 Then, the traveling arm 22 is rotated to move the carriage member 15 on which the ultrasonic probe unit 13 is mounted in a direction intersecting with the traveling direction of the traveling carriage 5 (a direction orthogonal in the present embodiment). 5 can be projected in the width direction.
また、本体フレーム14の前端部には走行台車5の進行方向の障害物を検知する障害物検知手段となるバンパー形状の衝突センサ24が設けられており、該衝突センサ24による障害物検知情報に基づいて図16に示す制御部31が走行台車5の走行モータ12を駆動制御して走行台車5の暴走や落下を防止すると共に、報知手段の一例として図15に示すコントローラ27のスピーカ27eからアラーム等の警報を鳴らしたりLED(発光ダイオード)27a等を発光させて障害物の存在を報知する。 Further, a bumper-shaped collision sensor 24 serving as an obstacle detection means for detecting an obstacle in the traveling direction of the traveling carriage 5 is provided at the front end of the main body frame 14, and the obstacle detection information by the collision sensor 24 is included in the obstacle detection information. Based on this, the control unit 31 shown in FIG. 16 controls the drive of the running motor 12 of the running carriage 5 to prevent the running carriage 5 from running away and falling, and as an example of a notification means, an alarm is output from the speaker 27e of the controller 27 shown in FIG. Or the like, or an LED (light emitting diode) 27a or the like emits light to notify the presence of an obstacle.
尚、走行台車5が障害物に当たると走行モータ12の過負荷電流を検出して該走行モータ12を駆動制御することも出来る。また、走行台車5の進行方向の障害物を検知する障害物検知手段の他の構成としては、超音波センサや赤外線センサ等を採用することでも良い。 When the traveling carriage 5 hits an obstacle, the traveling motor 12 can be driven and controlled by detecting an overload current of the traveling motor 12. Further, as another configuration of the obstacle detection means for detecting the obstacle in the traveling direction of the traveling carriage 5, an ultrasonic sensor, an infrared sensor, or the like may be employed.
走行台車5の制御ケーブルコネクタ17は走行モータ12の電源ケーブルや制御信号を伝達する信号ケーブル、衝突センサ24が検知した障害物検知情報を伝達する信号ケーブル、更には超音波探触子7の制御信号及び該超音波探触子7による板厚測定データを伝達する信号ケーブル、エンコーダ16により測定された走行距離データを伝達する信号ケーブル等を接続する。 The control cable connector 17 of the traveling carriage 5 is a power cable for the traveling motor 12, a signal cable for transmitting control signals, a signal cable for transmitting obstacle detection information detected by the collision sensor 24, and the control of the ultrasonic probe 7. A signal cable for transmitting signals and plate thickness measurement data by the ultrasonic probe 7, a signal cable for transmitting travel distance data measured by the encoder 16, and the like are connected.
キャリッジ部材15の支持フレームには容器鋼板に対して磁力による吸着力が作用する磁性体となる補助磁石25を搭載している。尚、磁性体としては永久磁石や電磁石を採用することが出来る。また、キャリッジ部材15の支持フレームには補助車輪26が設けられている。尚、補助車輪26を磁石で構成しても良い。 The support frame of the carriage member 15 is equipped with an auxiliary magnet 25 that is a magnetic body that exerts an attracting force by a magnetic force on the container steel plate. As the magnetic material, a permanent magnet or an electromagnet can be used. An auxiliary wheel 26 is provided on the support frame of the carriage member 15. The auxiliary wheel 26 may be composed of a magnet.
図8、図9及び図11は走行台車5が容器胴部1bの鋼板上を鉛直方向(高さ方向)に走行する様子を示す図であり、図12は走行台車5が容器胴部1bの鋼板上を水平方向(円周方向)に走行する様子を示す図である。 8, 9 and 11 are views showing the traveling cart 5 traveling in the vertical direction (height direction) on the steel plate of the container body 1b. FIG. 12 is a diagram showing the traveling cart 5 of the container body 1b. It is a figure which shows a mode that it runs on a steel plate in a horizontal direction (circumferential direction).
図13及び図14は容器胴部1bの鋼板上を走行する走行台車5が容器胴部1bに設けられた障害物となるバッフル3を支持する支持部材3aを回避しつつ超音波探触子ユニット13を走行台車5の幅方向に突出して障害物となる支持部材3aのラインの板厚を測定する様子を示す。 13 and 14 show an ultrasonic probe unit in which the traveling carriage 5 traveling on the steel plate of the container body 1b avoids the support member 3a that supports the baffle 3 serving as an obstacle provided on the container body 1b. 13 shows a state in which the plate thickness of the line of the support member 3a that protrudes in the width direction of the traveling carriage 5 and becomes an obstacle is measured.
走行台車5の前面にはバンパー形の衝突センサ24が設けてあり、図13(a)に示すように、超音波探触子ユニット13をホームポジションに搭載した状態で障害物となるバッフル3の支持部材3aのラインの板厚を測定しつつ走行して来た走行台車5は図13(b)に示すように、前面の衝突センサ24が支持部材3aに衝突して障害物を検知する。このとき、走行台車5と障害物となる支持部材3aとの間に残される図13(e)に示す未測定部30をパーソナルコンピュータ(以下、「パソコン」という)34に記録する。 A bumper-type collision sensor 24 is provided on the front surface of the traveling carriage 5, and as shown in FIG. 13 (a), the baffle 3 serving as an obstacle when the ultrasonic probe unit 13 is mounted at the home position. As shown in FIG. 13 (b), the traveling carriage 5 that has traveled while measuring the plate thickness of the line of the support member 3a collides with the support member 3a to detect an obstacle. At this time, the unmeasured portion 30 shown in FIG. 13 (e) remaining between the traveling carriage 5 and the supporting member 3a serving as an obstacle is recorded in a personal computer (hereinafter referred to as “personal computer”) 34.
このようにパソコン34に記録した未測定部30については、回動アーム22を回動軸22aを中心に図11の時計回り方向に回動させ、超音波探触子ユニット13が搭載されたキャリッジ部材15を走行台車5の幅方向に突出させ、車線をずらして再測定が可能である。 The unmeasured portion 30 recorded in the personal computer 34 as described above is a carriage on which the ultrasonic probe unit 13 is mounted by rotating the rotating arm 22 about the rotating shaft 22a in the clockwise direction of FIG. The member 15 is projected in the width direction of the traveling carriage 5 and the lane can be shifted to perform remeasurement.
また、未測定部30の位置関係により走行台車5による測定方向を90°変えることが出来る。この場合、図15に示すコントローラ27の左右輪操作スティック27b,27cを操作して走行台車5を左右独立して前進/後退させる。先ず、図15のコントローラ27の左輪操作スティック27bを前進方向(図15の上方向)に倒すと共に、右輪操作スティック27cを後退方向(図15の下方向)に倒すことで、走行台車5の左前後両輪を前進方向に回転駆動すると共に右前後両輪を後退方向に回転駆動し(図13(c))、極めて小さな転回半径で90°右転回させる(図13(d))。 Further, the measurement direction by the traveling carriage 5 can be changed by 90 ° depending on the positional relationship of the unmeasured part 30. In this case, the left and right wheel operation sticks 27b and 27c of the controller 27 shown in FIG. First, the left wheel operation stick 27b of the controller 27 in FIG. 15 is tilted in the forward direction (upward in FIG. 15), and the right wheel operation stick 27c is tilted in the backward direction (downward in FIG. 15). The left front and rear wheels are rotationally driven in the forward direction and the right front and rear wheels are rotationally driven in the reverse direction (FIG. 13C), and are rotated 90 ° right with an extremely small turning radius (FIG. 13D).
更に左右輪操作スティック27b,27cを後退方向(図15の下方向)に倒して走行台車5の全輪を後退方向に回転駆動して障害物となる支持部材3aを回避して走行台車5が走行しつつ突出した超音波探触子ユニット13により未測定部30の板厚測定が出来る位置に転回可能な所定の距離だけ走行台車5を後退させる(図13(e))。 Further, the left and right wheel operation sticks 27b, 27c are tilted in the backward direction (downward in FIG. 15) to rotate all the wheels of the traveling carriage 5 in the backward direction so as to avoid the support member 3a which becomes an obstacle, and the traveling carriage 5 is The traveling carriage 5 is moved backward by a predetermined distance that can be turned to a position where the thickness measurement of the unmeasured portion 30 can be performed by the ultrasonic probe unit 13 that protrudes while traveling (FIG. 13E).
次に、図15のコントローラ27の左輪操作スティック27bを後退方向(図15の下方向)に倒すと共に、右輪操作スティック27cを前進方向(図15の上方向)に倒すことで、走行台車5の左前後両輪を後退方向に回転駆動すると共に右前後両輪を前進方向に回転駆動し(図13(e))、極めて小さな転回半径で90°左転回させる(図13(f))。 Next, the left wheel operation stick 27b of the controller 27 in FIG. 15 is tilted in the backward direction (downward in FIG. 15), and the right wheel operation stick 27c is tilted in the forward direction (upward in FIG. 15). The left front and rear wheels are rotated in the backward direction and the right front and rear wheels are rotated in the forward direction (FIG. 13 (e)) and rotated 90 ° to the left with an extremely small turning radius (FIG. 13 (f)).
この時、図13(f)に示すように、走行台車5は障害物となる支持部材3aを回避して走行しつつ突出した超音波探触子ユニット13により未測定部30の板厚測定が出来る位置に車線を変更し、更にコントローラ27の左右輪操作スティック27b,27cを前進方向(図15の上方向)に倒して走行台車5の全輪を前進方向に回転駆動して走行台車5を前進させ、突出した超音波探触子ユニット13により障害物となる支持部材3aの手前に残された未測定部30の板厚を測定する。 At this time, as shown in FIG. 13 (f), the traveling carriage 5 measures the plate thickness of the unmeasured portion 30 by the ultrasonic probe unit 13 protruding while traveling while avoiding the support member 3a serving as an obstacle. The lane is changed to a position where it can be moved, and the left and right wheel operation sticks 27b and 27c of the controller 27 are further moved in the forward direction (upward in FIG. 15) to rotate all the wheels of the traveling carriage 5 in the forward direction. The plate thickness of the unmeasured portion 30 left before the support member 3a serving as an obstacle is measured by the ultrasonic probe unit 13 which is advanced and protruded.
未測定部30の板厚測定が終了した時点で、回動アーム22を回動軸22aを中心に図11の反時計回り方向に回動させ、走行台車5の幅方向に突出していた超音波探触子ユニット13が搭載されたキャリッジ部材15を図7に示すようなホームポジションに格納する(図14(a))。 When the measurement of the thickness of the unmeasured portion 30 is completed, the rotating arm 22 is rotated counterclockwise in FIG. 11 about the rotating shaft 22a, and the ultrasonic wave protruding in the width direction of the traveling carriage 5 The carriage member 15 on which the probe unit 13 is mounted is stored in the home position as shown in FIG. 7 (FIG. 14A).
そして、図15に示すコントローラ27の左右輪操作スティック27b,27cを前進方向(図15の上方向)に倒して走行台車5の全輪を前進方向に回転駆動して走行台車5を前進させ、障害物となる支持部材3aを通過した時点で、再度、回動アーム22を回動軸22aを中心に図11の時計回り方向に回動させ、超音波探触子ユニット13が搭載されたキャリッジ部材15を走行台車5の幅方向に突出させる(図14(b))。 Then, the left and right wheel operation sticks 27b and 27c of the controller 27 shown in FIG. 15 are tilted in the forward direction (upward in FIG. 15) and all the wheels of the traveling carriage 5 are rotationally driven in the forward direction to advance the traveling carriage 5. When passing through the support member 3a serving as an obstacle, the rotation arm 22 is again rotated about the rotation shaft 22a in the clockwise direction of FIG. 11, and the carriage on which the ultrasonic probe unit 13 is mounted. The member 15 is protruded in the width direction of the traveling carriage 5 (FIG. 14B).
そして、図15に示すコントローラ27の左右輪操作スティック27b,27cを後退方向(図15の下方向)に倒して走行台車5の全輪を後退方向に回転駆動して走行台車5を超音波探触子ユニット13が障害物となる支持部材3aの近傍に来るまで後退させた後(図14(c))、再度、図15に示すコントローラ27の左右輪操作スティック27b,27cを前進方向(図15の上方向)に倒して走行台車5の全輪を前進方向に回転駆動して走行台車5を前進させて障害物となる支持部材3aの向こう側の未測定部を測定する(図14(d))。 Then, the left and right wheel operation sticks 27b and 27c of the controller 27 shown in FIG. 15 are tilted in the backward direction (downward in FIG. 15), and all the wheels of the traveling carriage 5 are rotationally driven in the backward direction to After the tentacle unit 13 is retracted until it comes close to the supporting member 3a serving as an obstacle (FIG. 14C), the left and right wheel operation sticks 27b and 27c of the controller 27 shown in FIG. 15 (upward direction) and all the wheels of the traveling carriage 5 are rotationally driven in the forward direction to advance the traveling carriage 5 and measure the unmeasured portion on the other side of the support member 3a which becomes an obstacle (FIG. 14 ( d)).
上記構成によれば、障害物検知手段となる衝突センサ24により走行台車5の進行方向の障害物を検知し、その障害物検知情報に基づいて図16に示す制御部31が走行台車5の走行モータ12を駆動制御して走行台車5の暴走や落下を防止すると共に、報知手段の一例として図15に示すコントローラ27のスピーカ27eからアラーム等の警報を鳴らしたりLED(発光ダイオード)27a等を発光させて障害物の存在を報知することが出来る。 According to the above configuration, an obstacle in the traveling direction of the traveling carriage 5 is detected by the collision sensor 24 serving as an obstacle detection means, and the control unit 31 shown in FIG. Driving control of the motor 12 prevents runaway and falling of the traveling carriage 5, and as an example of a notification means, an alarm such as an alarm is emitted from the speaker 27e of the controller 27 shown in FIG. 15, and an LED (light emitting diode) 27a is emitted. It is possible to notify the presence of an obstacle.
このように、容器胴部1bに攪拌機2、攪拌翼、攪拌促進を兼ねた注入管としてのバッフル3、ガス吸い込み配管、温度計等の障害物が存在する場合であっても走行台車5に設けた走行駆動機構となる4輪駆動の各走行モータ12により走行台車5を左右独立して前進/後退させて、その障害物を回避するように走行させながら容器胴部1bの略全面の鋼板板厚を測定することが出来る。尚、走行駆動機構としては左右独立して前進/後退可能なキャタピラ駆動機構により構成しても良いし、歩行ロボットのような走行駆動機構を適用することも出来る。 In this way, even if there are obstacles such as the stirrer 2, the stirring blade, the baffle 3 serving as an injection pipe that also serves as an agitation, a gas suction pipe, a thermometer, etc. in the container body 1 b, the traveling carriage 5 is provided. The four-wheel-drive driving motors 12 serving as the driving mechanisms that have been driven are moved forward and backward independently from each other left and right to avoid the obstacles, and the steel plate on substantially the entire surface of the container body 1b. Thickness can be measured. The travel drive mechanism may be a caterpillar drive mechanism that can be moved forward / backward independently on the left and right sides, or a travel drive mechanism such as a walking robot can be applied.
尚、前記実施形態では、キャリッジ部材15を回動アーム22により回動操作して超音波探触子ユニット13を走行台車5の幅方向に移動させて突出させる構成としたが、走行台車5の本体フレームにスライド機構を設けて超音波探触子ユニット13を搭載したキャリッジ部材15を走行台車5の幅方向に電動等によりスライド移動させて突出させる構成としても良い。 In the above-described embodiment, the carriage member 15 is rotated by the rotation arm 22 so that the ultrasonic probe unit 13 is moved in the width direction of the traveling carriage 5 and protruded. A configuration may be adopted in which a slide mechanism is provided in the main body frame and the carriage member 15 on which the ultrasonic probe unit 13 is mounted is slid and moved in the width direction of the traveling carriage 5 by electric means or the like.
超音波探触子ユニット13を搭載したキャリッジ部材15を走行台車5の幅方向にスライド移動させる場合には、障害物検知手段となる衝突センサ24の障害物検知情報に基づいてモータ等のキャリッジ駆動手段によりスライド機構を駆動するように構成し、超音波探触子7の小台車7aの各車輪を独立して方向転換自在なキャスターにするか、若しくは、超音波探触子ユニット13を搭載したキャリッジ部材15を昇降する昇降機構を設け、キャリッジ部材15を一端上昇させて走行台車5の幅方向にスライド移動した後、下降させる構造とすれば良い。 When the carriage member 15 on which the ultrasonic probe unit 13 is mounted is slid in the width direction of the traveling carriage 5, a carriage drive such as a motor is driven based on the obstacle detection information of the collision sensor 24 serving as an obstacle detection means. The slide mechanism is driven by the means, and each wheel of the small carriage 7a of the ultrasonic probe 7 is made a caster capable of changing its direction independently, or the ultrasonic probe unit 13 is mounted. A lifting mechanism for raising and lowering the carriage member 15 may be provided, and the carriage member 15 may be lifted at one end and slid in the width direction of the traveling carriage 5 and then lowered.
また、着脱手段となるバックル28により複数の超音波探触子7が搭載された共通の超音波探触子ユニット13を容器鏡部1aの鋼板上を走行する走行台車6の本体フレーム14と、容器胴部1bの鋼板上を走行する走行台車5のキャリッジ部材15とに選択的にワンタッチで装着して利用することが出来る。 Further, a main body frame 14 of a traveling carriage 6 that travels on a steel plate of the container mirror section 1a through a common ultrasonic probe unit 13 on which a plurality of ultrasonic probes 7 are mounted by a buckle 28 serving as an attaching / detaching means, It can be selectively mounted on the carriage member 15 of the traveling carriage 5 traveling on the steel plate of the container body 1b with one touch.
図15に示すコントローラ27はリアクター1内部にマンホール等から入った検査員が操作する場合の一例を示したものであり、マイクロホン27d及びスピーカ27eはリアクター1の外部に待機する検査員との連絡用に使用される。27fは走行台車5の速度調整摘みであり、27gは走行台車5の左右の車輪の速度バランスを微調整する速度バランス調整摘みである。 The controller 27 shown in FIG. 15 shows an example in which an inspector who enters the reactor 1 from a manhole or the like operates, and the microphone 27d and the speaker 27e are used for communication with an inspector waiting outside the reactor 1. Used for. 27f is a speed adjustment knob for the traveling carriage 5, and 27g is a speed balance adjustment knob for finely adjusting the speed balance of the left and right wheels of the traveling carriage 5.
また、27hは走行台車5の前進/後退方向を切り換える方向反転ボタンであり、操縦する検査員に対面する走行台車5の前後の向きに応じて方向反転ボタン27hを切り換えることで左右輪操作スティック27b,27cの操作を反転させてリモート操作を容易にすることが出来る。 Reference numeral 27h denotes a direction reversing button for switching between the forward / reverse directions of the traveling cart 5, and the left / right wheel operation stick 27b is switched by switching the direction reversing button 27h according to the front / rear direction of the traveling cart 5 facing the inspector to be operated. , 27c can be reversed to facilitate remote operation.
27iは走行台車5の走行を開始する走行開始ボタン、27jは走行台車5の走行を停止する走行停止ボタンである。尚、図15に示すコントローラ27を利用して容器鏡部1aを走行する走行台車6の走行動作も操作出来るようになっている。 27 i is a travel start button for starting travel of the travel cart 5, and 27 j is a travel stop button for stopping travel of the travel cart 5. In addition, the traveling operation of the traveling carriage 6 traveling on the container mirror 1a can be operated using the controller 27 shown in FIG.
次に図16を用いて、板厚測定中の信号処理について説明する。先ず、図16に示す超音波厚さ計32からパルス電圧を周期的に超音波探触子7に送り、該超音波探触子7の送信振動子Tを発振させ、生じた超音波を被検体となる鋼板中に送り込む。 Next, signal processing during plate thickness measurement will be described with reference to FIG. First, a pulse voltage is periodically sent from the ultrasonic thickness meter 32 shown in FIG. 16 to the ultrasonic probe 7 to oscillate the transmission transducer T of the ultrasonic probe 7, and the generated ultrasonic wave is covered. It feeds into the steel plate that becomes the specimen.
次に被検体底面からの反射波を超音波探触子7の受信振動子Rで受信し、該受信振動子Rが発振することにより得られる電圧を超音波厚さ計32で増幅し、マイクロコンピュータ(以下、「マイコン」という)33の高速アナログ/デジタル変換器(以下、単に「高速A/D」という)33aへ出力する。 Next, the reflected wave from the bottom surface of the subject is received by the receiving transducer R of the ultrasonic probe 7, and the voltage obtained by the oscillation of the receiving transducer R is amplified by the ultrasonic thickness meter 32, The data is output to a high-speed analog / digital converter (hereinafter simply referred to as “high-speed A / D”) 33 a of a computer (hereinafter referred to as “microcomputer”) 33.
マイコン33では、高速A/D33aにより得られた波形のデジタル変換値をカウンタ33bを介して得られたエンコーダ16による走行台車5,6の走行位置情報と共にパソコン34へ送信する。 The microcomputer 33 transmits the digital conversion value of the waveform obtained by the high speed A / D 33a to the personal computer 34 together with the travel position information of the travel carts 5 and 6 by the encoder 16 obtained through the counter 33b.
パソコン34では高速A/D33aにより得られた波形のデジタル変換値に基づいて予め入手してある被検体の音速を利用して被検体の板厚を計算する。 The personal computer 34 calculates the plate thickness of the subject using the sound velocity of the subject obtained in advance based on the digital conversion value of the waveform obtained by the high speed A / D 33a.
以上の処理を12個の超音波探触子7(一対の送信振動子Tと受信振動子Rとの組みが12ch(チャンネル))について順番に行い、連続的に板厚の測定を行う。例えば、超音波厚さ計32から超音波探触子7に送ったパルス電圧の周期を12kHzとした場合、1chあたり1kHzで測定することになる。 The above processing is sequentially performed for 12 ultrasonic probes 7 (a pair of the transmission transducer T and the reception transducer R is 12ch (channel)), and the plate thickness is continuously measured. For example, when the period of the pulse voltage sent from the ultrasonic thickness meter 32 to the ultrasonic probe 7 is 12 kHz, the measurement is performed at 1 kHz per channel.
パソコン34の表示画面には、図20に示すような測定画面35により現在測定中の板厚情報をエンコーダ16による走行台車5,6の走行位置情報と共にリアルタイムに表示し、測定終了時に測定画面35の保存終了ボタン35cをクリックして測定データをファイル保存する。 On the display screen of the personal computer 34, the plate thickness information currently being measured is displayed in real time together with the travel position information of the travel carts 5 and 6 by the encoder 16 on the measurement screen 35 as shown in FIG. Click the save end button 35c to save the measurement data as a file.
次に図17を用いて、板厚測定装置のソフトウェアの構成について説明する。図17に示すマイコンソフト33cは、超音波厚さ計32からの同期信号(1kHz/ch、総合12kHz)によりch識別信号、測長データ(エンコーダカウント)、超音波全波形デジタル値(40MHz×2048点、151mm)等のデータを取得し、パソコン34へ送信する。また、マイコンソフト33cは超音波探傷器のコントロールを行う。 Next, the software configuration of the plate thickness measuring apparatus will be described with reference to FIG. The microcomputer software 33c shown in FIG. 17 uses a synchronization signal (1 kHz / ch, total 12 kHz) from the ultrasonic thickness gauge 32 to detect a channel identification signal, length measurement data (encoder count), and an ultrasonic total waveform digital value (40 MHz × 2048). Data such as dot, 151 mm) is acquired and transmitted to the personal computer 34. The microcomputer software 33c controls the ultrasonic flaw detector.
板厚データを取り込むサンプリングソフト34aは、マイコン33と通信を行い、取り込んだ超音波全波形デジタル値を処理してピークの検出を行う。図20は測定中のサンプリングソフト34aの測定画面35の一例である。そして、超音波厚さ計32のコントロール、サンプリング条件の設定及び取得、測定データの取り込み等をデータ処理ソフト34bからの指示により実行する。 The sampling software 34a that captures the plate thickness data communicates with the microcomputer 33 and processes the captured ultrasonic full waveform digital value to detect a peak. FIG. 20 shows an example of the measurement screen 35 of the sampling software 34a being measured. Then, control of the ultrasonic thickness meter 32, setting and acquisition of sampling conditions, acquisition of measurement data, and the like are executed according to instructions from the data processing software 34b.
図21及び図22に示すような板厚画像を形成するデータ処理ソフト34bは、超音波厚さ計32の条件設定、校正(被検体の音速を得る)、リアクター1の作図及び測定、リアクター1の板厚分布図(色分け)の作成、表示、印刷等の処理を行う。 The data processing software 34b for forming a plate thickness image as shown in FIG. 21 and FIG. 22 sets the conditions of the ultrasonic thickness gauge 32, calibrates (obtains the sound velocity of the subject), plots and measures the reactor 1, and the reactor 1 Processing such as creation, display, and printing of a thickness distribution diagram (color-coded).
次に図18によりデータ処理ソフト34bが実行するデータ処理動作について説明する。図18(a)はリアクター1の作図を行う動作であり、ステップS1において、パソコン34のキーボードやマウス等の入力手段を用いてリアクター1の寸法を入力すると、データ処理ソフト34bによりリアクター1を作図し(ステップS2)、作図したファイルを保存する(ステップS3)。 Next, the data processing operation executed by the data processing software 34b will be described with reference to FIG. FIG. 18 (a) is an operation that performs drawing of the reactor 1, in step S 1, if you enter the dimensions of the reactor 1 by using an input means such as a keyboard or a mouse of the personal computer 34, the reactor 1 by the data processing software 34b Drawing (step S 2 ) and saving the drawn file (step S 3 ).
図18(b)は板厚測定を行う動作であり、前記ステップS3で保存したリアクター1の作図ファイルを読み込み(ステップS11)、走行台車5,6を測定開始位置にセットする(ステップS12)。パソコン34のキーボードやマウス等の入力手段を用いて測定開始位置を入力し(ステップS13)、パソコン34の表示画面に表示された図20に示す測定画面35の測定開始ボタン35aをクリックすると共に(ステップS14)、図15に示すコントローラ27の走行開始ボタン27iを押す(ステップS15)。 FIG. 18 (b) is an operation for performing thickness measurement, the step S 3 reads the drawing file of the reactor 1 stored at (Step S 11), and sets the measurement start position traveling vehicle 5,6 (Step S 12 ). The measurement start position is input using an input means such as a keyboard or a mouse of the personal computer 34 (step S 13 ), and the measurement start button 35 a of the measurement screen 35 shown in FIG. 20 displayed on the display screen of the personal computer 34 is clicked. (step S 14), pressing a running start button 27i of the controller 27 shown in FIG. 15 (step S 15).
走行台車5,6は走行しながら超音波探触子7により容器鋼板の板厚を測定し(ステップS16)、リアクター1の容器鏡部1aの板厚を測定する走行台車6であれば回転半径規定部材19により規定された曲率半径の1周分が終了した段階で、また、リアクター1の容器胴部1bの板厚を測定する走行台車5で容器胴部1bを鉛直方向に測定する場合には直進する1ライン分が終了した段階で、また、走行台車5で容器胴部1bを円周方向に測定する場合にはリアクター1の容器胴部1bの1周分が終了した段階で(ステップS17)、夫々図15に示すコントローラ27の走行停止ボタン27jを押すと共に(ステップS18)、パソコン34の表示画面に表示された図20に示す測定画面35の測定中止ボタン35bをクリックし(ステップS19)、同測定画面35の保存終了ボタン35cをクリックしてエンコーダ16により検出された走行台車5,6の走行位置情報と関連付けられた板厚測定データをファイル保存する(ステップS20)。 The traveling carts 5 and 6 measure the plate thickness of the container steel plate with the ultrasonic probe 7 while traveling (step S 16 ). If the traveling cart 6 measures the plate thickness of the container mirror 1a of the reactor 1, the traveling carts 6 and 6 rotate. When one round of the radius of curvature defined by the radius defining member 19 is completed, and when the container body 1b is measured in the vertical direction with the traveling carriage 5 that measures the plate thickness of the container body 1b of the reactor 1 At the stage when one straight line is completed, and when the container body 1b is measured in the circumferential direction by the traveling carriage 5, at the stage when one turn of the container body 1b of the reactor 1 is completed ( step S 17), (step S 18 with pressing the travel stop button 27j of the controller 27 shown in each FIG. 15), and click the measurement stop button 35b of the measurement screen 35 shown in FIG. 20 displayed on the display screen of the PC 34 (Step S 19 ), measurement screen 35 Save end button 35c Click the save file thickness measurement data associated with the traveling position information of the traveling carriage 5 and 6 detected by the encoder 16 (step S 20).
そして、リアクター1の容器鏡部1a及び容器胴部1bの全域の板厚測定が終了するまで(ステップS21)順次、次の板厚測定箇所へ移動し(ステップS22)、リアクター1の容器鏡部1a及び容器胴部1bの全域の板厚測定が終了した段階で板厚測定を終了する。 Until the thickness of the entire area of the container mirror portion 1a and the container body 1b of the reactor 1 measurement is completed (step S 21) sequentially moves to the next thickness measurement locations (step S 22), the reactor 1 vessel The plate thickness measurement is finished at the stage where the plate thickness measurement of the entire area of the mirror portion 1a and the container body portion 1b is completed.
図18(c)は測定した板厚の分布図を作成する動作を示し、前記ステップS3で保存したリアクター1の作図ファイルを読み込むと共に(ステップS31)、前記ステップS20で保存した板厚測定ファイルを読み込む(ステップS32)。 Figure 18 (c) shows an operation to create a distribution diagram of the plate thickness measured, the read drawing file of the reactor 1 stored in step S 3 (step S 31), and stored at step S 20 thickness A measurement file is read (step S32 ).
そして、データ処理ソフト34bはリアクター1の作図データと板厚測定データとを関連付けて図21の板厚分布図画面36に示すような板厚分布図を作成する(ステップS33)。板厚分布図の作成が終了した段階で(ステップS34)、図21に示す板厚分布図画面36を出力し(ステップS35)、印刷する場合には(ステップS36)、プリンタ出力して(ステップS37)終了する。 Then, the data processing software 34b associates the plotting data of the reactor 1 with the plate thickness measurement data and creates a plate thickness distribution diagram as shown in the plate thickness distribution screen 36 of FIG. 21 (step S33 ). When the creation of the plate thickness distribution diagram is completed (step S 34 ), the plate thickness distribution screen 36 shown in FIG. 21 is output (step S 35 ), and when printing is performed (step S 36 ), it is output to the printer. (Step S37 ) and the process ends.
図22は板厚測定結果の一例を示す図であり、図22(a)はリアクター1の容器鋼板の腐食部分を表示した図、図22(b)は板厚分布を色分け表示した図、図22(c)は5mm×5mmの単位セル毎に板厚の測定数値を表示した図である。 FIG. 22 is a view showing an example of the plate thickness measurement result, FIG. 22 (a) is a view showing the corroded portion of the vessel steel plate of the reactor 1, FIG. 22 (b) is a view showing the plate thickness distribution by color, and FIG. FIG. 22 (c) is a diagram in which measured thickness values are displayed for each unit cell of 5 mm × 5 mm.
通常、鋼板の表面には腐食防止のために塗膜が施されており、この塗膜の厚さを差し引いた値が実際の板厚である。そこで、本実施形態では、塗膜表面に設置した超音波探触子7により容器鋼板の板厚を測定するに当たって、超音波全波形デジタル値から検出されたピーク位置に基づいて、図19に示すように、塗膜表面に設置した超音波探触子7の送信振動子Tから発信された超音波が鋼板の底面で折り返して受信振動子Rで1回目に受信された底面エコーに基づく塗膜を含む全厚tR・B1と、塗膜表面に設置した超音波探触子7の送信振動子Tから発信された超音波が鋼板の底面で折り返し、更に塗膜と鋼板との境界面で折り返し、更に鋼板の底面で折り返して受信振動子Rで2回目に受信された底面エコーに基づく塗膜を含む全厚tR・B2との差により実際の鋼板の板厚tB1・B2を求めることが出来る。 Usually, a coating film is applied to the surface of the steel plate to prevent corrosion, and the value obtained by subtracting the thickness of the coating film is the actual plate thickness. Therefore, in this embodiment, when measuring the plate thickness of the container steel plate by the ultrasonic probe 7 installed on the coating film surface, the peak position detected from the digital value of the total waveform of the ultrasonic wave is shown in FIG. As described above, the coating film based on the bottom surface echo that is transmitted from the transmitting transducer T of the ultrasonic probe 7 placed on the coating film surface at the bottom surface of the steel plate and received by the receiving transducer R for the first time. the the total thickness tR · B 1 containing, ultrasonic wave transmitted from the transmitting transducer T of the ultrasound probe 7 placed on the surface of the coating film is folded back at the bottom surface of the steel sheet, further at the interface between the coating and the steel sheet The actual thickness of the steel sheet tB 1 · B 2 is calculated by the difference from the total thickness tR · B 2 including the coating film based on the bottom echo received by the receiving transducer R for the second time. You can ask.
ここで、1回目に受信された底面エコーの信号が得られたものの、2回目に受信される底面エコーの信号が小さくて板厚tB1・B2を取得出来ない場合には、その近傍で得られた位置のデータを用いて板厚tB1・B2を求める。 Here, if the bottom echo signal received for the first time is obtained, but the bottom echo signal received for the second time is too small to obtain the plate thickness tB 1 · B 2 , The plate thickness tB 1 · B 2 is obtained using the obtained position data.
即ち、2回目に受信される底面エコーの信号が小さくて板厚tB1・B2を取得出来ない位置の板厚の予測値をtcur、板厚tB1・B2を取得出来ない位置の塗膜厚を含む全厚をt(R・B1)cur、近傍で板厚tB1・B2を取得出来た位置の塗膜厚を含む全厚をt(R・B1)near、近傍で板厚tB1・B2を取得出来た位置の板厚をt(B1・B2)nearとすると、tcur=t(R・B1)cur−{t(R・B1)near−t(B1・B2)near}により板厚の予測値を算出することが出来、この値を板厚として採用することが出来る。 That is, the estimated value of the thickness at the position where the bottom echo signal received at the second time is small and the thickness tB 1 · B 2 cannot be obtained is t cur , and the position where the thickness tB 1 · B 2 cannot be obtained. T (R · B 1 ) cur is the total thickness including the coating thickness, and t (R · B 1 ) near is the total thickness including the coating thickness at the position where the plate thickness tB 1 · B 2 can be obtained in the vicinity. If the plate thickness at the position where the plate thickness tB 1 · B 2 can be obtained with t (B 1 · B 2 ) near , then t cur = t (R · B 1 ) cur − {t (R · B 1 ) near A predicted value of the plate thickness can be calculated by −t (B 1 · B 2 ) near }, and this value can be adopted as the plate thickness.
尚、前記実施形態では、略円筒形の容器胴部1bが鉛直方向に配置され、容器鏡部1aが上下に配置された場合の容器の一例について説明したが、略円筒形の容器胴部1bが水平方向に配置され、容器鏡部1aが左右に配置された場合の容器に対しても同様に適用することが出来る。 In the above-described embodiment, an example of a container in which the substantially cylindrical container body 1b is arranged in the vertical direction and the container mirror 1a is arranged up and down has been described. However, the substantially cylindrical container body 1b is described. Can be similarly applied to a container when the container mirror 1a is disposed on the left and right.
次に図25〜図27を用いて、板厚測定方法について説明する。本実施形態では、走行台車5,6に搭載された超音波探触子7を用いて超音波応答波形のエコー高さの電圧値を検出することにより容器となるリアクター1の容器鏡部1a及び容器胴部1bの板厚を連続的に測定する。 Next, a plate thickness measuring method will be described with reference to FIGS. In this embodiment, the container mirror unit 1a of the reactor 1 serving as a container by detecting the voltage value of the echo height of the ultrasonic response waveform using the ultrasonic probe 7 mounted on the traveling carriages 5 and 6; The plate | board thickness of the container trunk | drum 1b is measured continuously.
図26に示すように、容器鋼板の底面における超音波探触子7による超音波応答波形である底面エコー波形43bのエコー高さの電圧値を検出する底面エコー監視ゲート42を所定の時間幅範囲で設定し、その底面エコー監視ゲート42の開始時点を第1の開始時点t(n)としたときのその底面エコー監視ゲート42が底面エコー波形43bを切る位置において算出された容器鋼板の第1の板厚S(n)と、底面エコー監視ゲート42の開始時点を前記第1の開始時点t(n)よりも所定の時間だけ早い応答時刻の第2の開始時点t(n+1)に移動したときのその底面エコー監視ゲート42が底面エコー波形43bを切る位置において算出された容器鋼板の第2の板厚S(n+1)と、を比較して第2の板厚S(n+1)が第1の板厚S(n)よりも小さい間は底面エコー監視ゲート42の開始時点を所定の時間だけ早い応答時刻に移動する。 As shown in FIG. 26, the bottom surface echo monitoring gate 42 for detecting the voltage value of the echo height of the bottom surface echo waveform 43b which is the ultrasonic response waveform by the ultrasonic probe 7 on the bottom surface of the container steel plate is provided in a predetermined time width range. And the first echo of the container steel plate calculated at the position where the bottom echo monitoring gate 42 cuts the bottom echo waveform 43b when the start time of the bottom echo monitoring gate 42 is the first start time t (n). And the start time of the bottom echo monitoring gate 42 are moved to a second start time t (n + 1) which is a response time earlier than the first start time t (n) by a predetermined time. The second plate thickness S (n + 1) is compared with the second plate thickness S (n + 1) of the container steel plate calculated at the position where the bottom echo monitoring gate 42 cuts the bottom echo waveform 43b. The bottom is less than the plate thickness S (n) Move the start time of the echo monitoring gate 42 to fast response time for a predetermined time.
図26では、底面エコー監視ゲート42の開始時点をt(n)→t(n+1)→t(n+2)→t(n+3)→t(n+4)→t(n+5)→t(n+6)→t(n+7)まで順次移動した際に、その底面エコー監視ゲート42が底面エコー波形43bを切る位置において算出された容器鋼板の板厚S(n)>S(n+1)>S(n+2)>S(n+3)>S(n+4)>S(n+5)>S(n+6)=S(n+7)となる。 In FIG. 26, the starting point of the bottom echo monitoring gate 42 is t (n) → t (n + 1) → t (n + 2) → t (n + 3) → t (n + 4) → t (n + 5) → t (n + 6) → t ( (n + 7)> S (n)> S (n + 1)> S (n + 2)> S (n + 3) calculated at the position where the bottom echo monitoring gate 42 cuts the bottom echo waveform 43b when moving to n + 7) )> S (n + 4)> S (n + 5)> S (n + 6) = S (n + 7).
そして、第2の板厚S(n+7)と、第1の板厚S(n+6)とが一致した場合に底面エコー監視ゲート42の開始時点t(n+6)を固定する。 Then, when the second plate thickness S (n + 7) matches the first plate thickness S (n + 6), the start time t (n + 6) of the bottom echo monitoring gate 42 is fixed.
これにより、図25に示すように、底面エコー監視ゲート42の開始時点tを容器鋼板の底面における超音波探触子による超音波応答波形となる底面エコー波形43bの立ち上がり時点に近づけることが出来、図26に示すように、第2の板厚S(n+7)と第1の板厚S(n+6)とが一致した場合に底面エコー監視ゲート42の開始時点t(n+6)を固定することで、その底面エコー監視ゲート42が底面エコー波形43bを切る位置において算出された容器鋼板の板厚Sを正確に測定することが出来る。 Thereby, as shown in FIG. 25, the start time t of the bottom surface echo monitoring gate 42 can be brought close to the rising time point of the bottom surface echo waveform 43b that becomes an ultrasonic response waveform by the ultrasonic probe on the bottom surface of the container steel plate, As shown in FIG. 26, when the second plate thickness S (n + 7) and the first plate thickness S (n + 6) coincide with each other, by fixing the start time t (n + 6) of the bottom echo monitoring gate 42, The plate thickness S of the container steel plate calculated at the position where the bottom echo monitoring gate 42 cuts the bottom echo waveform 43b can be accurately measured.
尚、図26において、底面エコー監視ゲート42の開始時点をt(n+7)まで移動しても、図26に示すように底面エコー波形43bの前に傷エコー波形や多重エコー波形等がない場合には問題ないが、底面エコー波形43bの前に図示しない傷エコー波形や多重エコー波形等が存在する場合にはその傷エコー波形や多重エコー波形等を底面エコー監視ゲート42が検出してしまうため底面エコー監視ゲート42の開始時点t(n+6)を固定することで、底面エコー波形43bの前に図示しない傷エコー波形や多重エコー波形等が存在する場合であってもその傷エコー波形や多重エコー波形等を底面エコー監視ゲート42が検出することがない。 In FIG. 26, even if the start time of the bottom echo monitoring gate 42 is moved to t (n + 7), as shown in FIG. 26, there is no scratch echo waveform, multiple echo waveform, etc. before the bottom echo waveform 43b. Although there is no problem, if a scratch echo waveform or multiple echo waveform (not shown) is present before the bottom echo waveform 43b, the bottom echo monitoring gate 42 detects the scratch echo waveform, multiple echo waveform, or the like. By fixing the start time t (n + 6) of the echo monitoring gate 42, even if a scratch echo waveform or multiple echo waveform (not shown) exists before the bottom echo waveform 43b, the scratch echo waveform or multiple echo waveform is present. Etc. are not detected by the bottom echo monitoring gate 42.
底面エコー監視ゲート42の開始時点tを所定の時間だけ早い応答時刻に移動する際に、超音波探触子7の振動周期の半波長分の時間ピッチを最小単位とすることが出来る。例えば、超音波探触子7の振動周波数が5MHzの場合の半波長分の時間は0.1×10−6〔sec〕であり、この時間ピッチを最小単位として底面エコー監視ゲート42の開始時点tを順次早い応答時刻に移動することが出来る。 When the start time t of the bottom echo monitoring gate 42 is moved to a response time that is earlier by a predetermined time, the time pitch corresponding to a half wavelength of the vibration period of the ultrasonic probe 7 can be set as a minimum unit. For example, the time for a half wavelength when the vibration frequency of the ultrasonic probe 7 is 5 MHz is 0.1 × 10 −6 [sec], and the start point of the bottom echo monitoring gate 42 is set with this time pitch as a minimum unit. t can be moved to an earlier response time sequentially.
これにより、図24に示して前述したように、底面エコー監視ゲート42の監視範囲を不用意に広げず、底面エコー波形43b付近に狭く底面エコー監視ゲート42の監視範囲を設けて、多重エコー波形43c等のノイズを誤検知することなく鋼板の正しい板厚を得ることが出来る。 Accordingly, as described above with reference to FIG. 24, the monitoring range of the bottom echo monitoring gate 42 is not inadvertently widened, and a narrow monitoring range of the bottom echo monitoring gate 42 is provided in the vicinity of the bottom echo waveform 43b. The correct thickness of the steel sheet can be obtained without erroneous detection of noise such as 43c.
図27は各超音波探触子7のch1〜ch12の全てのチャンネルで、各底面エコー監視ゲート42をそれぞれ移動して、該底面エコー監視ゲート42の開始時点tを容器鋼板の底面における超音波探触子7による超音波応答波形となる底面エコー波形43bの立ち上がり時点に近づけて固定することで、全チャンネルで各底面エコー波形43bの見逃しが発生していない一例である。 FIG. 27 shows the movement of the bottom echo monitoring gates 42 in all channels ch1 to ch12 of each ultrasonic probe 7, and the start time t of the bottom echo monitoring gates 42 is determined by the ultrasonic waves on the bottom surface of the container steel plate. This is an example in which the bottom echo waveform 43b is not overlooked in all channels by fixing the bottom echo waveform 43b, which becomes an ultrasonic response waveform by the probe 7, close to the rising point.
このように、超音波探触子7を用いて、容器鋼板の板厚を連続的に測定する多チャンネル型の板厚測定装置において、鋼板の底面から反射して帰る各底面エコー波形43bを検出するために設定する各底面エコー監視ゲート42の監視範囲の開始時点tを各チャンネル毎に自動設定することが出来る。 In this way, in the multi-channel type plate thickness measuring apparatus that continuously measures the plate thickness of the vessel steel plate using the ultrasonic probe 7, each bottom echo waveform 43b reflected from the bottom surface of the steel plate is detected. Therefore, it is possible to automatically set the start time t of the monitoring range of each bottom echo monitoring gate 42 to be set for each channel.
次に図28〜図30を用いて、異なる材質からなる表面層を張り合わせて構成される容器鋼板の容器鋼板と表面層との間に剥離がある場合のノイズ判定方法について説明する。 Next, with reference to FIG. 28 to FIG. 30, a noise determination method in the case where there is separation between a container steel plate and a surface layer of a container steel plate formed by bonding surface layers made of different materials will be described.
図28は表面層と容器鋼板との境界面における超音波探触子による超音波応答波形で、(a)は容器鋼板と表面層との間に剥離がある場合の超音波応答波形の一例であり、(b)は容器鋼板と表面層との間に剥離がない場合の健全部と減肉部を有する超音波応答波形の一例を示す図であり、(c)は容器鋼板中に介在物やラミネーション等の傷がある場合の超音波応答波形の一例を示す図である。 FIG. 28 is an ultrasonic response waveform by an ultrasonic probe at the interface between the surface layer and the container steel plate, and (a) is an example of an ultrasonic response waveform when there is a separation between the container steel plate and the surface layer. And (b) is a diagram showing an example of an ultrasonic response waveform having a healthy part and a thinned part when there is no separation between the container steel plate and the surface layer, and (c) is an inclusion in the container steel plate. It is a figure which shows an example of an ultrasonic response waveform in case there exists damage | wounds, such as lamination.
本実施形態では、異なる材質からなる表面層を張り合わせて構成される容器鋼板の表面層側から超音波探触子7を用いて超音波応答波形のエコー高さの電圧値を検出することにより容器鋼板の板厚を連続的に測定する場合に、図28に示すように、表面層と容器鋼板との境界面における超音波探触子7による超音波応答波形となる境界面反射エコー波形43aのエコー高さの電圧値を検出する境界面エコー監視ゲート41を所定の時間幅範囲で設定する。 In the present embodiment, the container is obtained by detecting the voltage value of the echo height of the ultrasonic response waveform using the ultrasonic probe 7 from the surface layer side of the container steel plate formed by bonding the surface layers made of different materials. When continuously measuring the plate thickness of the steel plate, as shown in FIG. 28, the boundary reflection echo waveform 43a that becomes the ultrasonic response waveform by the ultrasonic probe 7 at the boundary surface between the surface layer and the container steel plate. The boundary surface echo monitoring gate 41 that detects the voltage value of the echo height is set within a predetermined time width range.
そして、その境界面エコー監視ゲート41の時間幅範囲におけるエコー高さの平均電圧値、エコー高さの累積電圧値及びエコー高さのピーク電圧値のうちの少なくとも1つを算出して容器全体における統計分布を作成する。 Then, at least one of the average voltage value of the echo height, the cumulative voltage value of the echo height, and the peak voltage value of the echo height in the time width range of the boundary surface echo monitoring gate 41 is calculated, Create a statistical distribution.
図29(a)は境界面エコー監視ゲート41の時間幅範囲におけるエコー高さの平均電圧値を算出して容器全体における統計分布を作成したものであり、異なる材質からなる表面層を張り合わせて構成される容器鋼板と表面層との間に剥離が生じていた場合には、図28(a)に示すように境界面エコー波形43aとしてエコー高さの高い電圧値からなる剥離波形が現れて、図28(b)に示す正常な境界面エコー波形43aからなる剥離なし分布と、図28(a)に示す剥離波形からなる剥離分布とが、その統計分布において2分化される。 FIG. 29 (a) shows the statistical distribution of the entire container by calculating the average voltage value of the echo height in the time width range of the boundary surface echo monitoring gate 41, and is constructed by bonding the surface layers made of different materials. When peeling occurs between the container steel plate and the surface layer, a peeling waveform consisting of a voltage value having a high echo height appears as a boundary echo waveform 43a as shown in FIG. 28 (a), The non-peeling distribution consisting of the normal boundary surface echo waveform 43a shown in FIG. 28B and the peeling distribution consisting of the peeling waveform shown in FIG. 28A are divided into two in the statistical distribution.
そして、その統計分布から2分化されたエコー高さの平均電圧値が高いほうの剥離分布を容器鋼板と表面層との剥離によるノイズ群として判定する。 Then, the separation distribution with the higher average voltage value of the echo height divided into two from the statistical distribution is determined as a noise group due to separation between the container steel plate and the surface layer.
図29(b)は境界面エコー監視ゲート41の時間幅範囲におけるエコー高さの累積電圧値を算出して容器全体における統計分布を作成したものであり、図28(b)に示されるような剥離なし分布と、図28(a)に示されるような剥離分布とに2分化される。そして、その統計分布から2分化されたエコー高さの累積電圧値が高いほうの剥離分布をノイズ群として判定する。 FIG. 29B shows a statistical distribution in the entire container by calculating the cumulative voltage value of the echo height in the time width range of the boundary surface echo monitoring gate 41, as shown in FIG. It is divided into a distribution without separation and a separation distribution as shown in FIG. Then, a separation distribution having a higher cumulative voltage value of echo height divided into two from the statistical distribution is determined as a noise group.
図29(c)は境界面エコー監視ゲート41の時間幅範囲におけるエコー高さのピーク電圧値を算出して容器全体における統計分布を作成したものであり、図28(b)に示されるような剥離なし分布と、図28(a)に示されるような剥離分布とに2分化される。そして、その統計分布から2分化されたエコー高さのピーク電圧値が高いほうの剥離分布をノイズ群として判定する。 FIG. 29 (c) shows a statistical distribution in the entire container by calculating the peak voltage value of the echo height in the time width range of the boundary surface echo monitoring gate 41, as shown in FIG. 28 (b). It is divided into a distribution without separation and a separation distribution as shown in FIG. Then, the separation distribution with the higher peak voltage value of the echo height divided into two from the statistical distribution is determined as the noise group.
図30は境界面エコー監視ゲート41を設定したその時間幅範囲におけるエコー高さのピーク電圧値を算出して容器全体における統計分布を作成した結果、剥離なし分布と剥離分布との重なりにより容易に2分化出来ない場合の一例を示す図である。このような場合は、図29に示したエコー高さの平均電圧値の容器全体における統計分布か、或いはエコー高さの累積電圧値の容器全体における統計分布を併用して、その統計分布から2分化された剥離分布をノイズ群として判定することが出来る。 Fig. 30 shows the result of calculating the peak voltage value of the echo height in the time width range where the boundary surface echo monitoring gate 41 is set and creating a statistical distribution for the entire container. It is a figure which shows an example in case 2 cannot be divided. In such a case, the statistical distribution of the average voltage value of the echo height in the entire container shown in FIG. 29 or the statistical distribution of the cumulative voltage value of the echo height in the entire container is used in combination. The differentiated separation distribution can be determined as a noise group.
即ち、図29に示したエコー高さの平均電圧値、エコー高さの累積電圧値及びエコー高さのピーク電圧値の容器全体における各統計分布のうちの少なくとも2つを利用して、それ等の統計分布から2分化された剥離分布をノイズ群として判定することが出来、これによりノイズ群の判定精度を向上することが出来る。 That is, using at least two of the statistical distributions of the average voltage value of the echo height, the cumulative voltage value of the echo height, and the peak voltage value of the echo height shown in FIG. The separation distribution divided into two from the statistical distribution can be determined as a noise group, thereby improving the noise group determination accuracy.
そして、各統計分布から2分化された剥離分布からなるノイズ群を指定して板厚表示をしないことにより容器鋼板と表面層との剥離による実厚よりも薄い厚さを示す誤表示を防止することが出来る。 And, by designating a noise group consisting of the separation distribution divided into two from each statistical distribution and not displaying the plate thickness, erroneous display indicating a thickness thinner than the actual thickness due to separation between the container steel plate and the surface layer is prevented. I can do it.
次に図31〜図33を用いて、容器鋼板の鋼材中に介在物やラミネーション等が存在する場合のノイズ判定方法について説明する。 Next, a noise determination method in the case where inclusions, laminations, and the like are present in the steel plate of the container steel plate will be described with reference to FIGS.
図32に示す曲線aは容器鋼板が腐食により減肉した部分を超音波探触子7を用いて1mmピッチで板厚を測定した場合の板厚の変化する様子を示し、曲線bは容器鋼板の鋼材中にラミネーションが存在する部分を超音波探触子7を用いて1mmピッチで板厚を測定した場合の板厚の変化する様子を示し、曲線cは容器鋼板の鋼材中に介在物が存在する部分を超音波探触子7を用いて1mmピッチで板厚を測定した場合の板厚の変化する様子を示す図である。 A curve a shown in FIG. 32 shows how the plate thickness changes when the thickness of the vessel steel plate is reduced by corrosion at a 1 mm pitch using the ultrasonic probe 7, and a curve b shows the vessel steel plate. Shows the change of the plate thickness when the thickness is measured at 1 mm pitch using the ultrasonic probe 7 in the portion where the lamination exists in the steel material, and curve c shows the inclusion in the steel material of the container steel plate. It is a figure which shows a mode that a plate | board thickness changes when a plate | board thickness is measured by the 1 mm pitch using the ultrasonic probe 7 for the existing part.
図32の曲線aで示すように、容器鋼板が腐食により減肉した部分はその板厚の変化が緩慢であるが、曲線b,cで示すように、容器鋼板の鋼材中にラミネーションや介在物が存在する部分はそのラミネーションや介在物の部位両端部でその板厚の変化が急変する。 As shown by the curve a in FIG. 32, the thickness of the portion where the vessel steel plate is reduced due to corrosion is slow, but as shown by the curves b and c, lamination and inclusions are contained in the steel plate of the vessel steel plate. In the portion where there is, the change in the plate thickness changes abruptly at both ends of the lamination and inclusions.
例えば、超音波探触子7が1mm位置が変わるだけで、測定された鋼板の板厚が5mmも異常変化すようなものは腐食によるデータ変化とは考えないものとして測定板厚データをノイズとして分別して除去することが出来る。 For example, if the ultrasonic probe 7 changes only 1 mm and the measured steel plate thickness changes abnormally by 5 mm, the measured plate thickness data is regarded as noise. Can be separated and removed.
超音波探触子7を用いて超音波応答波形のエコー高さの電圧値を検出することにより容器鋼板の板厚を連続的に測定する場合に、先ず容器全体を所定のピッチで測定した場合の隣り合わせの板厚値の差を算出して容器全体における統計分布を作成する。 When the plate thickness of the container steel plate is continuously measured by detecting the voltage value of the echo height of the ultrasonic response waveform using the ultrasonic probe 7, when the entire container is first measured at a predetermined pitch A statistical distribution in the entire container is created by calculating the difference in the thickness values of the adjacent sides.
図33は容器全体を所定のピッチで測定した場合の隣り合わせの板厚値の差を算出して容器全体における統計分布を作成した結果、容器鋼板の鋼材中にラミネーションや介在物が存在する場合に平均値“0”を中心とした標準的な差分分布と、−(マイナス)側及び+(プラス)側に離れて分布する急変値分布の一例を示す図である。 Fig. 33 shows the result of calculating the statistical distribution of the entire container by calculating the difference between adjacent plate thickness values when the entire container is measured at a predetermined pitch, and as a result, there are laminations and inclusions in the steel of the container steel plate. It is a figure which shows an example of the standard difference distribution centering on the average value "0", and the sudden change value distribution distributed away in the-(minus) side and + (plus) side.
そして、図33に示す統計分布から板厚値の差が−(マイナス)側の正常範囲よりも小さくなった箇所をノイズ群の始点とし、更に板厚値の差が+(プラス)側の正常範囲よりも大きくなった箇所をノイズ群の終点とし、そのノイズ群の始点と終点における近接した一対の部位でその間の板厚が連続的に小さい範囲をノイズ群として判定する。 Then, from the statistical distribution shown in FIG. 33, the point where the difference in the plate thickness value is smaller than the normal range on the-(minus) side is taken as the starting point of the noise group, and the difference in the plate thickness value is normal on the + (plus) side. A location that is larger than the range is set as the end point of the noise group, and a range in which the thickness between the pair of adjacent portions at the start point and end point of the noise group is continuously small is determined as the noise group.
図31は容器全体を所定のピッチで測定した場合の隣り合わせの板厚値の差を算出して板厚値の差が−(マイナス)側の正常範囲よりも小さくなった箇所をノイズ群の始点とし、更に板厚値の差が+(プラス)側の正常範囲よりも大きくなった箇所をノイズ群の終点とし、そのノイズ群の始点と終点における近接した一対の部位でその間の板厚が連続的に小さい範囲をノイズ群として判定する様子を説明する図であり、図31に示す8chの超音波探触子7により検出された多重エコー波形43cにより測定された厚さの薄い板厚値44を容器鋼板の鋼材中にラミネーションや介在物が存在するノイズ群として判定することが出来る。 Figure 31 shows the starting point of the noise group when the difference between adjacent plate thickness values when the entire container is measured at a predetermined pitch and the difference in plate thickness values is smaller than the normal range on the-(minus) side. Furthermore, the point where the difference in thickness value is larger than the normal range on the + (plus) side is the end point of the noise group, and the plate thickness between the pair of adjacent parts at the start point and end point of the noise group is continuous. FIG. 32 is a diagram for explaining a state in which an extremely small range is determined as a noise group, and a thin plate thickness value 44 measured by the multiple echo waveform 43c detected by the 8-ch ultrasonic probe 7 shown in FIG. Can be determined as a noise group in which laminations and inclusions exist in the steel plate of the container steel plate.
そして、そのノイズ群を指定して板厚表示をしないことにより容器鋼板の鋼材中に存在する介在物やラミネーション等による実厚よりも薄い厚さを示す誤表示を防止することが出来る。 And by designating the noise group and not displaying the plate thickness, it is possible to prevent erroneous display indicating a thickness thinner than the actual thickness due to inclusions, lamination, etc. existing in the steel of the container steel plate.
次に図34〜図36を用いて、外周部にジャケット鋼材4が設けられた容器内部側から超音波探触子7を用いて超音波応答波形のエコー高さの電圧値を検出することにより容器鋼板の板厚を連続的に測定した後、ジャケット鋼材4外部側から補修箇所を指定する方法について説明する。 Next, by using FIG. 34 to FIG. 36, by detecting the voltage value of the echo height of the ultrasonic response waveform using the ultrasonic probe 7 from the inside of the container in which the jacket steel material 4 is provided on the outer peripheral portion. After continuously measuring the plate | board thickness of a container steel plate, the method to designate a repair location from the jacket steel material 4 outer side is demonstrated.
先ず、図34に示すように、略円筒形状の容器胴部1bの内面を(X,Y)の二次元座標上に展開し、走行台車5に搭載された超音波探触子7により連続的に測定された容器胴部1bの鋼板の板厚をプロットする。 First, as shown in FIG. 34, the inner surface of the substantially cylindrical container body 1b is developed on the two-dimensional coordinates (X, Y), and continuously by the ultrasonic probe 7 mounted on the traveling carriage 5. The thickness of the steel plate of the container body 1b is plotted.
ここで、容器胴部1bの内面側から見た展開図の各部位と外面側から見た展開図の各部位とは左右対称になり、更に、容器胴部1bの内面側から見た展開図の各部位の寸法と、ジャケット鋼材4の外面側から見た展開図の各部位の寸法とは、図36に示すように、容器胴部1bの内径半径をr、容器胴部1bの板厚をS1、容器胴部1bの外面とジャケット鋼材4の内面との間の離間間隔をg、ジャケット鋼材4の板厚をS2としたとき、容器胴部1bの内周長は2πr、ジャケット鋼材4の外周長は2π(r+S1+g+S2)であることから、左右方向に(r+S1+g+S2)/r倍に拡大される。 Here, each part of the development view seen from the inner surface side of the container body 1b and each part of the development view seen from the outer surface side are symmetrical, and further, the development view seen from the inner surface side of the container body 1b. 36, and the dimensions of each part of the developed view seen from the outer surface side of the jacket steel material 4, the inner radius of the container body 1b is r and the plate thickness of the container body 1b as shown in FIG. S 1, when the separation distance between the outer surface of the container body 1b and the inner surface of the jacket steel 4 g, the thickness of the jacket steel 4 was S 2 and the inner circumference of the container body 1b is 2.pi.r, jacket Since the outer peripheral length of the steel material 4 is 2π (r + S 1 + g + S 2 ), it is expanded to (r + S 1 + g + S 2 ) / r times in the left-right direction.
従って、容器胴部1bの内面を展開すると共に、容器胴部1bの内面側から超音波探触子7により連続的に測定された容器胴部1bの鋼板の板厚をプロットした(X,Y)の二次元座標について、左右対称に座標変換すると同時に左右方向に(r+S1+g+S2)/r倍の拡大座標変換を行う。 Accordingly, the inner surface of the container body 1b is developed, and the plate thickness of the steel plate of the container body 1b continuously measured by the ultrasonic probe 7 from the inner surface side of the container body 1b is plotted (X, Y). The two-dimensional coordinates of () are subjected to coordinate transformation symmetrically, and at the same time, (r + S 1 + g + S 2 ) / r-fold enlarged coordinate transformation is performed in the horizontal direction.
この場合の(X,Y)の二次元座標を左右対称に座標変換すると同時に左右方向に(r+S1+g+S2)/r倍の拡大座標変換を行う場合、以下の変換式を使って座標変換することが出来る。 In this case, when the two-dimensional coordinates (X, Y) are coordinate-converted symmetrically, and at the same time the (r + S 1 + g + S 2 ) / r-fold enlarged coordinate conversion is performed, the coordinate conversion is performed using the following conversion formula. I can do it.
このようにして座標変換された(X′,Y′)の二次元座標は、図35に示すように、ジャケット鋼材4の外面を展開した二次元座標として作成される。 The two-dimensional coordinates (X ′, Y ′) thus transformed are created as two-dimensional coordinates in which the outer surface of the jacket steel material 4 is developed as shown in FIG.
図34に示す(X,Y)の二次元座標では、図34の左下を原点とし、X軸は右側を+方向にとり、Y軸は上側を+方向にとって表示したものであり、図35に示す(X′,Y′)の二次元座標では、図35の右下を原点とし、X′軸は左側を+方向にとり、Y′軸は上側を+方向にとって表示したものである。 In the two-dimensional coordinates (X, Y) shown in FIG. 34, the lower left of FIG. 34 is the origin, the X axis is displayed with the right side in the + direction, and the Y axis is displayed with the upper side in the + direction. In the two-dimensional coordinates (X ′, Y ′), the lower right in FIG. 35 is the origin, the X ′ axis is the left side in the + direction, and the Y ′ axis is the upper side in the + direction.
そして、図35に示すように、(X′,Y′)の二次元座標上にプロットされた容器鋼板の板厚に基づいてジャケット鋼材4の外部側から補修箇所を正確に指定することが出来る。 Then, as shown in FIG. 35, the repair location can be accurately designated from the outside of the jacket steel material 4 based on the thickness of the container steel plate plotted on the two-dimensional coordinates (X ′, Y ′). .
このように、ピンポイントの狭い範囲でジャケット鋼材4の外部側から補修箇所を正確に指定することが出来、従来の経験による補修法と比較して、効率的に容器胴部1bの補修作業を実施することが出来る。 In this way, it is possible to specify the repair location accurately from the outside of the jacket steel material 4 in a narrow pinpoint range, and the repair work of the container body 1b can be performed more efficiently than the repair method based on the conventional experience. Can be implemented.
本発明は、容器鋼板の板厚を測定する装置に適用出来、特にリアクター(反応容器)等のように容器鏡部(容器底部)が球面状或いは円錐状の曲面で構成され、容器胴部にバッフルや攪拌部材等の障害物がある場合でも容器鋼板の板厚を容易に測定することが出来る容器鋼板の板厚測定装置に適用出来るものである。 INDUSTRIAL APPLICABILITY The present invention can be applied to an apparatus for measuring the thickness of a container steel plate, and in particular, a container mirror part (container bottom part) such as a reactor (reaction container) is configured with a spherical or conical curved surface. Even when there are obstacles such as baffles and stirring members, the present invention can be applied to a plate thickness measuring device for a vessel steel plate that can easily measure the plate thickness of a vessel steel plate.
1…リアクター、1a…容器鏡部(容器底部)、1b…容器胴部、2…攪拌機、3…バッフル、3a…支持部材、4…ジャケット鋼材、5,6…走行台車、7…超音波探触子、7a…小台車、8…ステアリング機構、8a…ステアリング角度調整ノブ、9…磁石、10…前輪、11…後輪、12…走行モータ、13…超音波探触子ユニット、14…本体フレーム、15…キャリッジ部材、16…エンコーダ、17…制御ケーブルコネクタ、17a…電源ケーブルや信号ケーブル、18…回転ガイドジョイント、19…回転半径規定部材、20…支点部材、21…ホルダ部材、21a…長さ調整ノブ、22…回動アーム、22a…回動軸、24…衝突センサ、25…補助磁石、26…補助車輪、27…コントローラ、27a…LED、27b,27c…左右輪操作スティック、27d…マイクロホン、27e…スピーカ、27f…速度調整摘み、27g…速度バランス調整摘み、27h…方向反転ボタン、27i…走行開始ボタン、27j…走行停止ボタン、28…バックル、30…未測定部、31…制御部、32…超音波厚さ計、33…マイコン、33a…高速A/D、33b…カウンタ、33c…マイコンソフト、34…パソコン、34a…サンプリングソフト、34b…データ処理ソフト、35…測定画面、35a…測定開始ボタン、35b…測定中止ボタン、35c…保存終了ボタン、36…板厚分布図画面、41…境界面エコー監視ゲート、42…底面エコー監視ゲート、43a…境界面エコー波形、43b…底面エコー波形、43c…多重エコー波形、43d…傷エコー波形、44…厚さの薄い板厚値 DESCRIPTION OF SYMBOLS 1 ... Reactor, 1a ... Container mirror part (container bottom part), 1b ... Container trunk | drum, 2 ... Stirrer, 3 ... Baffle, 3a ... Support member, 4 ... Jacket steel material, 5,6 ... Running cart, 7 ... Ultrasonic probe Tensile, 7a ... small carriage, 8 ... steering mechanism, 8a ... steering angle adjustment knob, 9 ... magnet, 10 ... front wheel, 11 ... rear wheel, 12 ... travel motor, 13 ... ultrasonic probe unit, 14 ... main body Frame, 15 ... Carriage member, 16 ... Encoder, 17 ... Control cable connector, 17a ... Power cable and signal cable, 18 ... Rotation guide joint, 19 ... Rotation radius defining member, 20 ... Supporting member, 21 ... Holder member, 21a ... Length adjusting knob, 22 ... rotating arm, 22a ... rotating shaft, 24 ... collision sensor, 25 ... auxiliary magnet, 26 ... auxiliary wheel, 27 ... controller, 27a ... LED, 27b, 27c ... left and right wheel operation stick, 27d ... Microphone, 27e ... 27f ... Speed adjustment knob, 27g ... Speed balance adjustment knob, 27h ... Direction reversal button, 27i ... Running start button, 27j ... Running stop button, 28 ... Buckle, 30 ... Unmeasured part, 31 ... Control part, 32 ... Super Sound wave thickness meter, 33 ... Microcomputer, 33a ... High-speed A / D, 33b ... Counter, 33c ... Microcomputer software, 34 ... PC, 34a ... Sampling software, 34b ... Data processing software, 35 ... Measurement screen, 35a ... Measurement start button 35b ... measurement stop button, 35c ... save end button, 36 ... plate thickness distribution screen, 41 ... boundary echo monitoring gate, 42 ... bottom echo monitoring gate, 43a ... boundary echo waveform, 43b ... bottom echo waveform, 43c ... Multiple echo waveform, 43d ... Scratch echo waveform, 44 ... Thin plate thickness value
Claims (1)
前記走行台車に搭載され、複数の超音波探触子が搭載された超音波探触子ユニットと、
前記容器鏡部の軸中心に設定される支点に対して着脱可能な支点部材と、
一端部に回転ガイドジョイントを介して回転自在に前記走行台車が連結されると共に、他端部が前記支点部材に対して該支点部材を中心に回転自在に設けられ、前記容器鏡部の軸中心に設定される支点と、前記走行台車との離間距離を規定する回転半径規定部材と、
を有し、
前記回転半径規定部材の固定長さを調整することで前記走行台車の走行半径を規定しつつ、所定の曲率半径の円周一周における前記容器鏡部の鋼板板厚を測定することを特徴とする容器鋼板の板厚測定装置。 A traveling vehicle that travels with left and right front wheels and left and right rear wheels, the front wheel or the rear wheel having a steering mechanism capable of changing the radius of curvature of the travel locus, and having a curved surface with a predetermined curvature and having a projected shape A traveling carriage capable of traveling on a steel plate of a circular container mirror part;
An ultrasonic probe unit mounted on the traveling carriage and mounted with a plurality of ultrasonic probes;
A fulcrum member that can be attached to and detached from a fulcrum set at the axial center of the container mirror part;
The traveling carriage is rotatably connected to one end portion via a rotation guide joint, and the other end portion is provided to be rotatable about the fulcrum member with respect to the fulcrum member. A turning radius defining member that defines a separation distance from the fulcrum set to the traveling carriage,
Have a,
The steel plate thickness of the container mirror portion is measured at one circumference of a predetermined curvature radius while regulating the running radius of the running carriage by adjusting the fixed length of the turning radius defining member. Thickness measuring device for container steel plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007018103A JP4004535B2 (en) | 2002-10-25 | 2007-01-29 | Thickness measuring device for container steel plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002311288 | 2002-10-25 | ||
JP2007018103A JP4004535B2 (en) | 2002-10-25 | 2007-01-29 | Thickness measuring device for container steel plate |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004556824A Division JP4004503B2 (en) | 2002-10-25 | 2003-10-24 | Thickness measuring device for container steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007147645A JP2007147645A (en) | 2007-06-14 |
JP4004535B2 true JP4004535B2 (en) | 2007-11-07 |
Family
ID=38209166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007018103A Expired - Fee Related JP4004535B2 (en) | 2002-10-25 | 2007-01-29 | Thickness measuring device for container steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4004535B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4004537B2 (en) * | 2002-10-25 | 2007-11-07 | 旭化成エンジニアリング株式会社 | Sheet thickness measurement method |
JP5740135B2 (en) * | 2010-10-25 | 2015-06-24 | 中日本ハイウェイ・エンジニアリング東京株式会社 | Plate thickness measuring device |
CN112525993B (en) * | 2020-11-27 | 2023-03-21 | 河北科技师范学院 | Portable ultrasonic detection equipment for civil engineering |
-
2007
- 2007-01-29 JP JP2007018103A patent/JP4004535B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007147645A (en) | 2007-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4004503B2 (en) | Thickness measuring device for container steel plate | |
CN100523802C (en) | Airplane body checking method and device | |
JP4004536B2 (en) | Thickness measuring device for container steel plate | |
JP6908195B2 (en) | Self-propelled inspection device and inspection method for metal plates, and manufacturing method of metal plates | |
JP3826805B2 (en) | Collision prevention method for autonomous vehicles | |
JP4004535B2 (en) | Thickness measuring device for container steel plate | |
JPS61133856A (en) | Method and apparatus for diagnosing underground pipeline | |
JP4004537B2 (en) | Sheet thickness measurement method | |
JP3670525B2 (en) | Thickness measuring device for cylindrical tank bottom plate | |
JP2000292142A (en) | Tank bottom plate diagnosing equipment | |
JP4455255B2 (en) | Axle flaw detection apparatus and method | |
JP2002228431A (en) | Device and method for measuring sheet thickness of tank bottom sheet | |
JP3469877B2 (en) | Steel plate thickness measurement method | |
JP3748879B2 (en) | Apparatus and method for measuring thickness of cylindrical tank bottom plate | |
JP6973425B2 (en) | Self-propelled inspection device and inspection method for metal plates | |
JP6709102B2 (en) | Fishing net shape identification device | |
JP2001091239A (en) | Thickness-measuring device and method for tank bottom plate | |
JPH063341A (en) | Self-traveling flaw detecting device | |
JPH0368863A (en) | Ultrasonic flaw detector | |
CN118331119A (en) | Self-adjusting speed robot based on weak magnetic nondestructive detection and detection method thereof | |
RU2002129062A (en) | METHOD FOR CONTACTLESS ULTRASONIC CONTROL OF VARIETY RENTAL AND PIPES AND INSTALLATION FOR ITS IMPLEMENTATION | |
JP2001188609A (en) | Method and device for controlling traveling position of traveling truck | |
JPS59114460A (en) | Ultrasonic flaw detection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070529 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070821 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4004535 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |