JP4003566B2 - 音声認識装置 - Google Patents
音声認識装置 Download PDFInfo
- Publication number
- JP4003566B2 JP4003566B2 JP2002211841A JP2002211841A JP4003566B2 JP 4003566 B2 JP4003566 B2 JP 4003566B2 JP 2002211841 A JP2002211841 A JP 2002211841A JP 2002211841 A JP2002211841 A JP 2002211841A JP 4003566 B2 JP4003566 B2 JP 4003566B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- noise
- spectrum
- subtraction
- speech
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Description
【発明の属する技術分野】
本発明は、継続的に雑音の発生する騒音下において、有効に作用する音声認識装置に関する。
【0002】
【従来の技術】
入力された音声から発音、単語及び文章を分析理解する装置である音声認識装置において、雑音信号を除去し音声信号のみを取りだすことが望ましいことは言うまでもない。ところが継続的ではあるものの一定ではない雑音の発生する騒音下においては、雑音を予め予測することは容易ではない。白色雑音でない騒音の例としては、移動中の車両、船舶、航空機等の操縦室或いは貨物室、作業機器及び輸送機器による騒音を有する工場及び倉庫内などが挙げられる。
【0003】
このような、継続的ではあるものの一定ではない雑音の発生する騒音下における音声認識装置において、雑音を低下させる手法にスペクトルサブトラクション法がある(S. F. Boll, IEEE Trans Acoust. Speech Signal Process., Vol. 27, No. 2, April 1979, pp. 113-120)。線形スペクトルサブトラクション法は、入力信号を周波数スペクトルに変換した後、音声を含む信号区間と背景雑音信号区間とに判別し、音声を含む信号区間の周波数スペクトルからその直前の背景雑音信号区間の周波数スペクトルを減じることで音声信号の周波数スペクトルを得るものである。この際、直前の背景雑音信号区間の周波数スペクトルのパワーを一律に1乃至3倍として音声を含む信号区間の周波数スペクトルから減じることで、雑音抑制をより効果的にすることもできる。
【0004】
一方、非線形スペクトルサブトラクション法と呼ばれる、減算パラメータαを周波数毎に設定するものが知られている(P. Lockwood and J. Bondy, Speech Communication, 11 (1992) 215)。これは、周波数毎の減算パラメータα(ω)を、音声を含まない周波数スペクトルの、各周波数ω毎の最大値(又はそれに比例させる)とするものである。例えば時間軸上40個のフレームを切り出し、各々を周波数変換して、周波数毎に40個のスペクトル(パワー)のうちの最大値をとるとするものである。減算パラメータαの設定方法は、特開平9−160594、特開平10−177394の他、出願人による特開2002−14694がある。
【0005】
また、次の式で示されるフィルタを掛けるウィナーフィルタも知られている。ウィナーフィルタは線形処理であるので、スペクトルサブトラクション法のようには音声が劣化しない。
【数1】
H(ω)={S(ω)/(S(ω)+N(ω))}^β
【0006】
数1において、ωは周波数、S(ω)はノイズの重畳した信号スペトクル、N(ω)は音声を含む区間の直前の音声を含まない区間の信号スペクトル(ノイズ)、βは定数で、{}^βは、{}のβ乗を意味する。βはたとえば2とする。
【0007】
更に、周波数帯域ごとに複数の騒音抑制手段を用いる技術も知られている。特開平9−34496では、240Hzと800Hzの2箇所の境界周波数で周波数帯域を3分割し、低周波帯域ではハイパスフィルタを、中周波帯域S/N比に応じた重み付けを、高周波帯域では適応フィルタを用いるものである。また、J. Meyer and K. U. Simmer, IEEE ICASSP-97 pp.1167-1170のように、約1700Hzを境界周波数として、低周波帯域に対してはスペクトルサブトラクションを、高周波帯域に対してはウィナーフィルタを用いる技術も知られている。
【0008】
【発明が解決しようとする課題】
上記特開平9−34496も、J. Meyerらの技術も境界周波数を固定するものである。しかし、境界周波数をどのように設定するか、またそれがどうして最適であるのかについては特開平9−34496も、J. Meyerらの論文も明確には示していない。実際のところ、例えば走行中の自動車の車室内騒音については、車速のような走行状況により騒音の大きさか大きく異なるのであり、境界周波数はそのような騒音の状況に対して設定されるべきである。
【0009】
本発明は上記のように、複数の騒音抑制手段を用いる技術において、それら手段を適用する周波数帯域の境界周波数を可変にする技術を提供するものである。
【0010】
【課題を解決するための手段】
上記の課題を解決するため、請求項1に記載の手段によれば、騒音下における騒音抑制機能を有する音声認識装置において、可変な境界周波数よりも低周波数側では非線形スペクトルサブトラクションを、高周波数側ではウィナーフィルタ又はカルマンフィルタを作用させ、可変な境界周波数は、入力される信号のS/N比又はノイズレベルによって随時設定されることを特徴とする。
【0011】
【0012】
また、請求項2に記載の手段によれば、前記非線形スペクトルサブトラクションにおいては、任意の区間に対し周波数スペクトルを求める周波数分析手段と、音声を含まない時間区間に対し、前記周波数分析手段により求められた雑音周波数スペクトルのスペクトル包絡を求め、各周波数における該スペクトル包絡に対応して減算パラメータを設定する減算パラメータ算定手段と、音声を含む時間区間に対し、前記周波数分析手段により求められた周波数スペクトルから、前記雑音周波数スペクトルの周波数ごとに前記減算パラメータ算定手段により決定された各周波数における減算パラメータを乗じた値を減算する減算手段とにより騒音抑制機能を発揮することを特徴とする。
【0013】
【作用及び発明の効果】
複数の騒音抑制機能を周波数帯域ごとに使い分ける際、境界周波数を可変とすることで、周波数帯域ごとに音の状況に応じた最適の騒音抑制機能を用いることができる。境界周波数は、入力される信号のS/N比又はノイズレベルによって随時設定することが望ましく、騒音抑制機能は2種類で可変な境界周波数が設定されることにより低周波数側と高周波数側で各々作用させることで最も簡単な構成とすることができる。
【0014】
非線形スペクトルサブトラクションはS/N比が小さい、即ちノイズの大きい領域で騒音抑制機能が良く低周波帯域に向く。また、ウィナーフィルタやカルマンフィルタはS/N比が大きい、即ちノイズの小さい領域で騒音抑制機能が良く高周波帯域に向く。非線形スペクトルサブトラクションは出願人による特開2002−14694の技術を用いることで、装置の小型化と演算速度の向上が図れる。
【0015】
【発明の実施の形態】
まず、図1にノイズを含まない音声のスペクトルと、エンジンを駆動させて停止状態、100km/hでの走行中、120km/hでの走行中の3つの車室内での音声のないノイズのスペクトルを示す。5000Hz以下のほとんどの領域において、エンジンを駆動させて停止状態のノイズスペクトルは音声スペクトルよりも20dB以上小さい。一方、100km/h走行中のノイズスペクトル、120km/h走行中のノイズスペクトルは2000Hz以下では音声スペクトルと同程度か音声スペクトルよりも大きいノイズとなる部分があることがわかる。ここで、100km/h走行中のノイズスペクトルは約2000Hzで音声スペクトルよりも5dB小さくなり、それ以上の周波数では5dB以上小さい。また、120km/h走行中のノイズスペクトルは約2500Hzで音声スペクトルよりも5dB小さくなり、それ以上の周波数では音声スペクトルよりも小さい。そこで、音声のスペクトルとノイズのスペクトルを例えば500Hzごとに分割して比較し、S/N比が例えば5dBとなった領域以上はウィナーフィルタ(WF)で騒音を抑制し、それよりも下の領域では非線形スペクトルサブトラクション(NSS)とすることで、境界領域を可変としながら周波数帯域ごとに最適な騒音抑制手段とすることができることがわかる。また別の方法として、各周波数ごとにS/N比が例えば5dB以上の場合はウィナーフィルタ(WF)を用い、5dB以下の場合は非線形スペクトルサブトラクション(NSS)を用いることもできる。
【0016】
上記の作用を有する音声認識装置100の構成を図2に示す。入力信号が高速フーリエ変換器(FFT、周波数分析手段)1により周波数スペクトル信号となる。スペクトル信号は例えば0〜10kHzの範囲である。次にその周波数スペクトル信号が音声有無判定器(音声区間判定手段)2により、1連の入力信号の音声の有無が判定される。例えば1000〜4000Hzの範囲での周波数スペクトルのパワーが他の範囲の周波数スペクトルのパワーよりも大きいか、などの特徴により判定される。ここで音声が含まれない雑音信号区間であると判断されると、雑音周波数スペクトル記憶部(メモリ)3に周波数スペクトル(雑音周波数スペクトルN(ω))が記憶される。
【0017】
これは音声を含む信号区間が入力されるまで続けられ、雑音周波数スペクトルN(ω)が更新されていく。そして、音声を含む信号区間が入力されると、その高速フーリエ変換器(周波数分析手段)1の出力(音声有無判定器2で音声を含むとされたS(ω))が、閾値周波数(ωth)算定部40、低域通過機能部41、高域通過機能部42に出力される。
【0018】
閾値周波数(ωth)算定部40では、音声を含むスペクトルS(ω)と、雑音周波数スペクトル記憶部(メモリ)3に記憶された雑音周波数スペクトルN(ω)とから、音声を含むスペクトルS(ω)が雑音周波数スペクトルN(ω)よりも5dB大きい閾値周波数ωthを決定する。ここで、ωthを境に、常に音声を含むスペクトルS(ω)が雑音周波数スペクトルN(ω)よりも5dB大きい領域と、常に音声を含むスペクトルS(ω)が雑音周波数スペクトルN(ω)よりも5dB大きくない領域とに分けることは必ずしも必要ではない。例えば、500Hzごとの帯域に分けて、その帯域内のスペクトルS(ω)の合計値が雑音周波数スペクトルN(ω)の合計値よりも5dB大きい最も低周波の帯域を選び、その帯域の低周波側の端を当該閾値周波数ωthとするなどの方法でも良い。次に低域通過機能部41、高域通過機能部42に閾値周波数ωthが出力される。低域通過機能部41、高域通過機能部42は時間軸上のLPF、HPFの役割を周波数軸上で果たすものである。本実施例においては、低域通過機能部41ではスペクトルS(ω)に対し、ω≧ωthとなるωに対しスペクトルS(ω)を0に置換する。反対に、高域通過機能部42ではスペクトルS(ω)に対し、ω<ωthとなるωに対しスペクトルS(ω)を0に置換する。こうして、時間軸上のLPFの役割を周波数軸上で果たす低域通過機能部41はω≧ωthとなるωに対しては0に置換された、スペクトルSlow(ω)を低周波帯域NSS処理部10に出力し、時間軸上のHPFの役割を周波数軸上で果たす高域通過機能部42はω<ωthとなるωに対しては0に置換された、スペクトルShigh(ω)を高周波帯域WF処理部20に出力する。
【0019】
低周波帯域NSS処理部10は減算パラメータ算定部11とNSS演算部とからなり、スペクトルS(ω)の低周波帯域に対し、非線形スペクトルサブトラクションを行う。その処理内容は次の通りである。まず、減算パラメータ算定部11は、随時、雑音周波数スペクトル記憶部(メモリ)3から雑音周波数スペクトルN(ω)を読み出し、減算パラメータα(ω)を次のように更新する。まず雑音周波数スペクトルN(ω)の対数logN(ω)が対数演算器111により求められる。次に高速フーリエ変換器(FFT)112により、ケプストラムCが求められる。次に低ケフレンシー窓器113によりケプストラムCのうち低ケフレンシー部分C'が求められる。次に逆高速フーリエ変換器(IFFT)114により、雑音周波数スペクトルN(ω)の対数logN(ω)の包絡l(ω)が求められる。包絡l(ω)の値から減算パラメータα(ω)が算出器115により求められる。
【0020】
図3は雑音周波数スペクトルN(ω)のスペクトル包絡と減算パラメータαとの関係の一例を示すグラフ図である。本実施例では雑音周波数スペクトル包絡に対し、減算パラメータαが最大2.6最小0.9となるよう設定している。即ち、雑音周波数スペクトル包絡の値が高いところでは減算パラメータαを大きく、雑音周波数スペクトル包絡の値が低いところでは減算パラメータαを小さくする。このように、雑音スペクトル包絡の各周波数ごとの値から減算パラメータαを決定するよう設定することで、容易に周波数依存のパラメータαを決定できる。
【0021】
こうして、随時更新された減算パラメータαを使用して、NSS演算部12は、次の処理により出力Plow(ω)を算出し、加算部43に出力する。尚、Slow(ω)が0のときは、Plow(ω)も0として出力される。
【数2】
Plow(ω)=Slow(ω)−α(ω)N(ω)
【0022】
一方、高周波帯域WF処理部20はWF決定部21とWF演算部22とから成り、スペクトルShigh(ω)の高周波帯域に対し、ウィナーフィルタ処理を行う。ウィナーフィルタ処理は既に述べた次の式で示されるフィルタH(ω)をスペクトルShigh(ω)に乗じることで達成される。
【数3】
H(ω)={Shigh(ω)/(Shigh(ω)+N(ω))}^β
【0023】
まず、WF決定部21では、雑音周波数スペクトル記憶部(メモリ)3から雑音周波数スペクトルN(ω)を読み出し、スペクトルShigh(ω)とから数3の演算によりフィルタH(ω)を決定する。次にWF演算部22では、スペクトルShigh(ω)とフィルタH(ω)を乗じて、出力Phigh(ω)を算出する。Shigh(ω)が0のときは、Phigh(ω)も0として出力される。
【0024】
こうして、スペクトルSlow(ω)が、低周波帯域NSS処理部10にて非線形スペクトルサブトラクションにより騒音が抑制された、出力Plow(ω)に変換され、加算部43に出力される。また、スペクトルShigh(ω)が、高周波帯域WF処理部20にてウィナーフィルタ処理により騒音が抑制された、出力Phigh(ω)に変換され、加算部43に出力される。出力Plow(ω)は、Slow(ω)が0であるω≧ωthとなるωに対しやはり0であり、出力Phigh(ω)は、Shigh(ω)が0であるω<ωthとなるωに対しやはり0である。結局これらの和P(ω)=Plow(ω)+Phigh(ω)は、元の信号のスペクトルS(ω)の、ω<ωthである低周波帯域では非線形スペクトルサブトラクションにより、ω≧ωthである高周波帯域ではウィナーフィルタ処理により騒音が抑制された音声信号となる。当該2つの帯域の境界周波数が可変であるので、音声認識装置100は、騒音の状況に適応して最適な騒音抑制機能を発揮することのできる音声認識装置となる。
【0025】
上記音声認識装置100は、音声を含む信号区間における雑音スペクトルを充分に抑制するよう推定した、減算パラメータとすることができる。こうして、スペクトル包絡から減算パラメータを算出することで、全体の構成としても小さく、且つ適切な減算パラメータを算出できるものである。もっとも、より多量の計算を必要とする従来の非線形スペクトルサブトラクション法を用いて本願発明を実施しても良く、また、線形スペクトルサブトラクション法を用いても良い。更には、ウィナーフィルタ処理の他、カルマンフィルタ処理を用いて本願発明を実施しても良い。また、3以上の騒音抑制手段を組み合わせて、用いることも可能である。
【0026】
本発明は、特に自動車の車室内での音声認識装置の、騒音抑制手段として特に有用である。更には、対話式カーナビゲーション、対話式運転情報案内における、運転手の音声を認識する際の、自動車の車室内の騒音を除去して言語認識する音声認識装置として特に有効である。この際、例えば対話式カーナビゲーションのスイッチを入れた後の一定時間を音声区間と認識するような構成としても良い。この場合、図2の音声有無判定器に代えて音声区間計測器を用い、スイッチを入れた後の一定時間を音声区間としてスペクトルS(ω)を出力し、その前までのスペクトルを雑音周波数スペクトルN(ω)としてメモリ3に記憶する構成とすれば良い。
【0027】
本願においては周波数スペクトルは、0又は正の値をとるものとする。
また、ケプストラムを求める際、スペクトルanから次のようにケプストラムcnを求めても良い。尚、Σは、kについて、k=1からk=n-1までの和である。
【数4】
cn=an−Σkckan-k/n
【図面の簡単な説明】
【図1】 本願発明の技術的思想を説明するためのグラフ図。
【図2】 本発明の具体的な一実施例に係る音声認識装置100の構成を示すブロック図。
【図3】 本発明の雑音周波数スペクトルと減算パラメータαを決定する雑音周波数スペクトル包絡との関係を示すグラフ図。
【符号の説明】
100 音声認識装置
1、112 高速フーリエ変換器
10 低周波帯域NSS処理部
11 減算パラメータ算定部
12 NSS演算部
111 対数演算器
113 低ケフレンシー窓器
114 逆高速フーリエ変換器
115 算出器
2 音声有無判定器
20 高周波帯域WF処理部
21 WF決定部
22 WF演算部
3 雑音周波数スペクトル記憶部(メモリ)
40 閾値周波数算定部
41 低域通過機能部
42 高域通過機能部
43 加算部
5 認識部
Claims (2)
- 騒音下における騒音抑制機能を有する音声認識装置において、
可変な境界周波数よりも、低周波数側では非線形スペクトルサブトラクションを、高周波数側ではウィナーフィルタ又はカルマンフィルタを作用させ、
前記可変な境界周波数は、入力される信号のS/N比又はノイズレベルによって随時設定されることを特徴とする音声認識装置。 - 前記非線形スペクトルサブトラクションにおいては、
任意の区間に対し周波数スペクトルを求める周波数分析手段と、
音声を含まない時間区間に対し、前記周波数分析手段により求められた雑音周波数スペクトルのスペクトル包絡を求め、各周波数における該スペクトル包絡に対応して減算パラメータを設定する減算パラメータ算定手段と、
音声を含む時間区間に対し、前記周波数分析手段により求められた周波数スペクトルから、前記雑音周波数スペクトルの周波数ごとに前記減算パラメータ算定手段により決定された各周波数における減算パラメータを乗じた値を減算する減算手段と
により騒音抑制機能を発揮することを特徴とする請求項1に記載の音声認識装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002211841A JP4003566B2 (ja) | 2002-07-19 | 2002-07-19 | 音声認識装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002211841A JP4003566B2 (ja) | 2002-07-19 | 2002-07-19 | 音声認識装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004053965A JP2004053965A (ja) | 2004-02-19 |
JP4003566B2 true JP4003566B2 (ja) | 2007-11-07 |
Family
ID=31934929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002211841A Expired - Lifetime JP4003566B2 (ja) | 2002-07-19 | 2002-07-19 | 音声認識装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4003566B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006279185A (ja) * | 2005-03-28 | 2006-10-12 | Casio Comput Co Ltd | 撮像装置、音声記録方法及びプログラム |
JP4639902B2 (ja) * | 2005-03-30 | 2011-02-23 | カシオ計算機株式会社 | 撮像装置、音声記録方法及びプログラム |
JP4639907B2 (ja) * | 2005-03-31 | 2011-02-23 | カシオ計算機株式会社 | 撮像装置、音声記録方法及びプログラム |
KR20070078171A (ko) | 2006-01-26 | 2007-07-31 | 삼성전자주식회사 | 신호대 잡음비에 의한 억제 정도 조절을 이용한 잡음 제거장치 및 그 방법 |
JP5728903B2 (ja) | 2010-11-26 | 2015-06-03 | ヤマハ株式会社 | 音響処理装置およびプログラム |
CN114743562B (zh) * | 2022-06-09 | 2022-11-01 | 成都凯天电子股份有限公司 | 一种飞机声纹识别方法、系统、电子设备及存储介质 |
-
2002
- 2002-07-19 JP JP2002211841A patent/JP4003566B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004053965A (ja) | 2004-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4283212B2 (ja) | 雑音除去装置、雑音除去プログラム、及び雑音除去方法 | |
JP3454190B2 (ja) | 雑音抑圧装置および方法 | |
CN108630221B (zh) | 基于量化snr分析和自适应维纳滤波的音频信号质量增强 | |
CN104704560B (zh) | 共振峰依赖的语音信号增强 | |
US8989403B2 (en) | Noise suppression device | |
US8504362B2 (en) | Noise reduction for speech recognition in a moving vehicle | |
JP4753821B2 (ja) | 音信号補正方法、音信号補正装置及びコンピュータプログラム | |
US20080069364A1 (en) | Sound signal processing method, sound signal processing apparatus and computer program | |
US20150127330A1 (en) | Externally estimated snr based modifiers for internal mmse calculations | |
US20060031067A1 (en) | Sound input device | |
JP4003566B2 (ja) | 音声認識装置 | |
EP1995722B1 (en) | Method for processing an acoustic input signal to provide an output signal with reduced noise | |
JP2000330597A (ja) | 雑音抑圧装置 | |
US9633673B2 (en) | Accurate forward SNR estimation based on MMSE speech probability presence | |
US20150127331A1 (en) | Speech probability presence modifier improving log-mmse based noise suppression performance | |
US7127072B2 (en) | Method and apparatus for reducing random, continuous non-stationary noise in audio signals | |
JP4123835B2 (ja) | 雑音抑圧装置および雑音抑圧方法 | |
JP2001159899A (ja) | 騒音抑圧装置 | |
JP3693022B2 (ja) | 音声認識方法及び音声認識装置 | |
JP2003271166A (ja) | 入力信号処理方法および入力信号処理装置 | |
JP4235128B2 (ja) | 入力音処理装置 | |
JP2002014694A (ja) | 音声認識装置 | |
JPH11327593A (ja) | 音声認識システム | |
JP2001134286A (ja) | 雑音抑圧装置、音声認識システム及び記録媒体 | |
JP2007079389A (ja) | 音声分析方法および音声分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070703 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070813 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4003566 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |