[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4003128B2 - 画像データ処理装置および方法、記録媒体、並びにプログラム - Google Patents

画像データ処理装置および方法、記録媒体、並びにプログラム Download PDF

Info

Publication number
JP4003128B2
JP4003128B2 JP2002371403A JP2002371403A JP4003128B2 JP 4003128 B2 JP4003128 B2 JP 4003128B2 JP 2002371403 A JP2002371403 A JP 2002371403A JP 2002371403 A JP2002371403 A JP 2002371403A JP 4003128 B2 JP4003128 B2 JP 4003128B2
Authority
JP
Japan
Prior art keywords
vector
motion compensation
reliability
unit
candidate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002371403A
Other languages
English (en)
Other versions
JP2004207802A (ja
Inventor
哲二郎 近藤
勉 渡辺
孝文 森藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002371403A priority Critical patent/JP4003128B2/ja
Priority to US10/744,043 priority patent/US7974345B2/en
Publication of JP2004207802A publication Critical patent/JP2004207802A/ja
Priority to US11/828,102 priority patent/US8218637B2/en
Application granted granted Critical
Publication of JP4003128B2 publication Critical patent/JP4003128B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
    • H04N7/014Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes involving the use of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/40Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video transcoding, i.e. partial or full decoding of a coded input stream followed by re-encoding of the decoded output stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/56Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0112Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level one of the standards corresponding to a cinematograph film standard
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
    • H04N7/0145Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes the interpolation being class adaptive, i.e. it uses the information of class which is determined for a pixel based upon certain characteristics of the neighbouring pixels

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Television Systems (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、画像データ処理装置および方法、記録媒体、並びにプログラムに関し、特に、画像信号の品質をより向上させることができるようにした画像データ処理装置および方法、記録媒体、並びにプログラムに関する。
【0002】
【従来の技術】
DVD(Digital Versatile Disc)などの符号化画像において、映画などの24P(Progressive)(毎秒24フレーム)の画像を2−3プルダウンし、60i(Interlace)(毎秒60フィールド)または60P(毎秒60フレーム)画像に変換する方法が知られている(例えば、特許文献1参照)。
【0003】
また、フレーム数を増加させるのには、時間解像度の創造処理が行われる場合がある(例えば、特許文献2参照)。
【0004】
従来、時間解像度の創造を行う場合、一旦生成されたクリエーション(画像)信号において動き補償用ベクトルを再度求め、その動き補償用ベクトルを利用して時間解像度の創造処理が行われていた。
【0005】
【特許文献1】
特開平07−123291号公報
【特許文献2】
特開2002−199349号公報
【0006】
【発明が解決しようとする課題】
しかしながら、生成されたクリエーション信号には既に符号化歪みが含まれているため、クリエーション信号から再度求めた動き補償用ベクトルを利用して時間解像度の創造を行う方法は、正確な動き量を算出することができず、したがって、高品質の時間解像度の創造を行うことができないという課題があった。
【0007】
本発明はこのような状況に鑑みてなされたものであり、画像信号の品質をより向上させることができるようにするものである。
【0008】
【課題を解決するための手段】
第1の本発明の画像データ処理装置は、動き補償予測符号化された画像データに付加されている動き補償用ベクトルから、中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する第1の抽出手段と、第1の抽出手段により抽出された各候補ベクトルの信頼度を算出する信頼度算出手段と、信頼度算出手段により算出された候補ベクトルの信頼度を評価する評価手段と、評価手段により最も信頼度が大きいと評価された候補ベクトルを、生成画素の動き補償用ベクトルとして選択する第1の選択手段と、第1の選択手段により選択された動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類手段と、クラス分類手段により分類されたクラスに対応した予測係数を選択する第2の選択手段と、注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップする構築手段と、選択された予測係数と予測タップとの積和演算により生成画素を演算する演算手段とを備えることを特徴とする。
【0010】
信頼度算出手段は、注目領域を含む入力信号を再度動き補償予測する再符号化手段と、再符号化された信号に付加されている動き補償用ベクトルから候補ベクトルに対応する位置における動き補償用ベクトルである再符号化ベクトルを抽出する第2の抽出手段と、候補ベクトルと、第2の抽出手段により抽出された再符号化ベクトルとを比較し、当該比較結果に基づいて候補ベクトルの信頼度を算出する比較手段とを備えるようにすることができる。
【0011】
信頼度算出手段は、複数の候補ベクトルから1つの注目候補ベクトルを設定し、該注目候補ベクトル以外の候補ベクトルを周辺ベクトルとして抽出する周辺ベクトル抽出手段と、注目候補ベクトルと、周辺ベクトルとを比較することにより注目候補ベクトルの信頼度を算出する比較手段とを備えるようにすることができる。
【0012】
信頼度算出手段は、候補ベクトルと連続する、時間的に前方向又は後方向に存在する動き補償用ベクトルをベクトルの履歴として抽出する履歴抽出手段と、候補ベクトルと、ベクトルの履歴から得られる時間的に前方向又は後方向の候補ベクトルと比較することにより候補ベクトルの信頼度を算出する比較手段とを備えるようにすることができる。
【0013】
信頼度算出手段は、候補ベクトルと連続する、時間的に前方向又は後方向に存在する動き補償用ベクトルをベクトルの履歴として抽出する履歴抽出手段と、ベクトルの履歴から得られる候補ベクトルの動きの不連続性により候補ベクトルの信頼度を算出する不連続性評価手段とを備えるようにすることができる。
【0014】
第2の抽出手段は、全画面の動き補償用ベクトルを抽出する抽出手段と、候補ベクトルと、全画面の動き補償用ベクトルと比較し、当該比較結果に基づいて候補ベクトルの信頼度を算出する比較手段とを備えるようにすることができる。
【0015】
信頼度算出手段は、候補ベクトルの動き補償残差の大きさに基づいて候補ベクトルの信頼度を算出するようにすることができる。
【0016】
第1の選択手段は、評価手段により最も信頼度が大きいと評価された候補ベクトルを、注目領域の動き補償用ベクトルとして選択できなかった場合、候補ベクトルのうち、動き補償残差が最も小さい候補ベクトルを注目領域の動き補償用ベクトルとして選択するようにすることができる。
【0017】
クラス分類手段は、第1の選択手段により選択された動き補償用ベクトルの動き量に基づいて注目領域を動き量だけシフトした場合の、シフトされた注目領域における、シフトされる前の注目領域の境界のパターンに基づいて、注目領域を複数のクラスのうちの1つに分類するようにすることができる。
【0018】
第1の本発明の画像データ処理方法は、動き補償予測符号化された画像データに付加されている動き補償用ベクトルから、中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する第1の抽出ステップと、第1の抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算出ステップと、信頼度算出ステップの処理により算出された候補ベクトルの信頼度を評価する評価ステップと、評価ステップの処理により最も信頼度が大きいと評価された候補ベクトルを、生成画素の動き補償用ベクトルとして選択する第1の選択ステップと、第1の選択ステップの処理により選択された動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、クラス分類ステップの処理により分類されたクラスに対応した予測係数を選択する第2の選択ステップと、注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップする構築ステップと、選択された予測係数と予測タップとの積和演算により生成画素を演算する演算ステップとを含むことを特徴とする。
【0019】
第1の本発明の記録媒体のプログラムは、動き補償予測符号化された画像データに付加されている動き補償用ベクトルから、中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する第1の抽出ステップと、第1の抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算出ステップと、信頼度算出ステップの処理により算出された候補ベクトルの信頼度を評価する評価ステップと、評価ステップの処理により最も信頼度が大きいと評価された候補ベクトルを、生成画素の動き補償用ベクトルとして選択する第1の選択ステップと、第1の選択ステップの処理により選択された動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、クラス分類ステップの処理により分類されたクラスに対応した予測係数を選択する第2の選択ステップと、注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップする構築ステップと、選択された予測係数と予測タップとの積和演算により生成画素を演算する演算ステップとを含むことを特徴とする。
【0020】
第1の本発明のプログラムは、動き補償予測符号化された画像データに付加されている動き補償用ベクトルから、中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する第1の抽出ステップと、第1の抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算出ステップと、信頼度算出ステップの処理により算出された候補ベクトルの信頼度を評価する評価ステップと、評価ステップの処理により最も信頼度が大きいと評価された候補ベクトルを、生成画素の動き補償用ベクトルとして選択する第1の選択ステップと、第1の選択ステップの処理により選択された動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、クラス分類ステップの処理により分類されたクラスに対応した予測係数を選択する第2の選択ステップと、注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップする構築ステップと、選択された予測係数と予測タップとの積和演算により生成画素を演算する演算ステップとをコンピュータに実行させることを特徴とする。
【0021】
第2の本発明の画像データ処理装置は、動き補償予測符号化された生徒データに付加されている動き補償用ベクトルから、中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する抽出手段と、抽出手段により抽出された各候補ベクトルの信頼度を算出する信頼度算出手段と、信頼度算出手段により算出された候補ベクトルの信頼度を評価する評価手段と、評価手段により最も信頼度が大きいと評価された候補ベクトルを、生成画素の動き補償用ベクトルとして選択する選択手段と、選択手段により選択された動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類手段と、注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップし、クラス分類手段により分類されたクラスに基づいて、構築された予測タップに対応する教師データを用いて、予測係数を学習する学習手段とを備えることを特徴とする。
【0022】
クラス分類手段は、選択手段により選択された動き補償用ベクトルの動き量に基づいて注目領域を動き量だけシフトした場合の、シフトされた注目領域における、シフトされる前の注目領域の境界のパターンに基づいて、注目領域を複数のクラスのうちの1つに分類するようにすることができる。
【0023】
第2の本発明の画像データ処理方法は、動き補償予測符号化された生徒データに付加されている動き補償用ベクトルから、中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する抽出ステップと、抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算出ステップと、信頼度算出ステップの処理により算出された候補ベクトルの信頼度を評価する評価ステップと、評価ステップの処理により最も信頼度が大きいと評価された候補ベクトルを、生成画素の動き補償用ベクトルとして選択する選択ステップと、選択ステップの処理により選択された動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップし、クラス分類ステップの処理により分類されたクラスに基づいて、構築された予測タップに対応する教師データを用いて、予測係数を学習する学習ステップとを含むことを特徴とする。
【0024】
第2の本発明の記録媒体のプログラムは、動き補償予測符号化された生徒データに付加されている動き補償用ベクトルから、中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する抽出ステップと、抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算出ステップと、信頼度算出ステップの処理により算出された候補ベクトルの信頼度を評価する評価ステップと、評価ステップの処理により最も信頼度が大きいと評価された候補ベクトルを、生成画素の動き補償用ベクトルとして選択する選択ステップと、選択ステップの処理により選択された動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップとし、クラス分類ステップの処理により分類されたクラスに基づいて、構築された予測タップに対応する教師データを用いて、予測係数を学習する学習ステップとを含むことを特徴とする。
【0025】
第2の本発明のプログラムは、動き補償予測符号化された生徒データに付加されている動き補償用ベクトルから、中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する抽出ステップと、抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算出ステップと、信頼度算出ステップの処理により算出された候補ベクトルの信頼度を評価する評価ステップと、評価ステップの処理により最も信頼度が大きいと評価された候補ベクトルを、生成画素の動き補償用ベクトルとして選択する選択ステップと、選択ステップの処理により選択された動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップし、クラス分類ステップの処理により分類されたクラスに基づいて、構築された予測タップに対応する教師データを用いて、予測係数を学習する学習ステップとをコンピュータに実行させることを特徴とする。
【0026】
第1の本発明においては、動き補償予測符号化された画像データに付加されている動き補償用ベクトルから、中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルが抽出され、抽出された各候補ベクトルの信頼度が算出され、算出された候補ベクトルの信頼度が評価され、最も信頼度が大きいと評価された候補ベクトルが、生成画素の動き補償用ベクトルとして選択され、選択された動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域が当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類される。そして、分類されたクラスに対応した予測係数が選択され、注目領域内の画素が、中間フレームにおける生成画素を予測するための画素である予測タップされ、選択された予測係数と予測タップとの積和演算により生成画素が演算される。
【0027】
第2の本発明においては、動き補償予測符号化された生徒データに付加されている動き補償用ベクトルから、中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルが抽出され、抽出された各候補ベクトルの信頼度が算出され、算出された候補ベクトルの信頼度が評価され、最も信頼度が大きいと評価された候補ベクトルが、生成画素の動き補償用ベクトルとして選択され、選択された動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域が当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類される。注目領域内の画素が、中間フレームにおける生成画素を予測するための画素である予測タップされ、分類されたクラスに基づいて、構築された予測タップに対応する教師データを用いて、予測係数が学習される。
【0028】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態について説明する。
【0029】
図1は、本発明を適用した画像データ処理装置1の構成を表している。なお、画像データ処理装置1は、データを符号化するなど他の処理を実行する各種構成も有するが、図1の例では、説明の便宜上、省略されている。
【0030】
画像データ処理装置1は、復号部11とクリエーション部12により構成される。この画像データ処理装置1においては、30P(Progressive)(毎秒30フレーム)画像のMPEG(Moving Picture Experts Group)2方式の符号化信号が復号部11で復号され、クリエーション部12でタップ引き寄せにより時間解像度が創造されて、60P(毎秒60フレーム)画像が生成(クリエーション)される。
【0031】
復号部11は、可変長復号部20、逆量子化部21、IDCT(Inverse Discrete Cosine Transform)部22、ピクチャ選択部23、フレームメモリ24、動き補償予測部25、加算器26およびパラメータ制御部27により構成される。復号部11においては、入力された符号化信号から、可変長復号部20により量子化後DCT係数が復号、分離、抽出されるとともに、それに付加され、サイドインフォメーションとして伝送されてきた量子化特性情報および符号化情報が、復号、分離、抽出される。
【0032】
逆量子化部21は、可変長復号部20により抽出された量子化後DCT係数および量子化特性情報を入力し、量子化特性情報に基づいて、量子化後DCT係数を逆量子化し、DCT係数を復元させる。IDCT(逆離散コサイン変換)部22は、復元されたDCT係数を逆離散コサイン変換し、画素値を算出する。IDCT部22の出力は、Iピクチャの場合は、実際の画素値となり、PまたはBピクチャの場合は、対応する画素値間の差分値となる。
【0033】
ピクチャ選択部23は、可変長復号部20により分離された符号化情報を入力し、符号化情報が、他のピクチャに参照されない(動き補償予測処理に用いられない)画像(Bピクチャ)であることを表す場合は、加算部26からの画像信号をそのまま復号信号として出力し、他のピクチャに参照される(動き補償予測処理に用いられる)画像(IピクチャまたはPピクチャ)であることを表す場合は、加算器26からの画像信号を、そのまま復号信号として出力するとともに、フレームメモリ24に供給し、蓄積させる。動き補償予測部25は、フレームメモリ24に記憶された画像データに動き補償用ベクトルに基づいて動き補償を行い、加算器26は、IDCT部22からの差分信号(PピクチャまたはBピクチャの信号)に、動き補償予測部25からの信号を加算し、ピクチャ選択部23に出力する。
【0034】
パラメータ制御部27は、ユーザの操作に基づいた入力部416(図62)からのパラメータAを入力する。パラメータAは、例えば、Volume値とされる。Volume値は、水平解像度と垂直解像度が同時に適切な値となるようにしたり、水平解像度、垂直解像度、並びにノイズ除去度の3者が同時に適切な値となるようにするなどの、画質調整のための値である。その詳細は、例えば、特開2002−218414号に開示されている。また、パラメータ制御部27は、可変長復号部20により抽出された量子化特性情報の量子化スケールと、符号化情報のビットレートを用いて変換関数を演算することにより、パラメータAからパラメータBを求め、そのパラメータBをクラス分類適応処理部31−1乃至31−3に供給する。
【0035】
例えば、パラメータAの「1.0」は、ビットレートが「10Mbps」であり、量子化スケールが「40」である場合の変換関数により演算され、パラメータBの「1.00」とされる。また、パラメータAの「1.0」は、ビットレートが「10Mbps」および量子化スケールが「20」である場合の変換関数により演算され、パラメータBの「0.50」とされる。パラメータAの「0.5」は、ビットレートが「10Mbps」であり、量子化スケールが「40」である場合の変換関数により、パラメータBの「0.50」とされる。パラメータAの「0.5」は、ビットレートが「10Mbps」であり、量子化スケールが「20」である場合の変換関数により、パラメータBの「0.25」とされる。
【0036】
すなわち、パラメータBは、パラメータAを、ビットレートおよび量子化スケールに応じて変換したものである。パラメータAは、ユーザ(人間)から見た画質調整に必要な範囲の値をとるが、パラメータBは、それにビットレートと量子化スケールが組み合わされるので、その範囲の値はパラメータAより多くなる。その結果、より細かい調整が可能となる。
【0037】
クリエーション部12は、クラス分類適応処理部31−1乃至31−3、符号化情報蓄積部32および信号蓄積部33により構成される。クラス分類適応処理部31−1乃至31−3は、それぞれIピクチャ、PピクチャおよびBピクチャのクラス分類適応処理を実行するものであり、符号化情報蓄積部32からの符号化情報に基づいて、ピクチャ選択部23より供給された入力信号から、Iピクチャ、PピクチャまたはBピクチャのデータを取り込む。それぞれは、処理するピクチャが異なる点を除いて、その構成は基本的に同じであるため、これらを個々に区別する必要がない場合、単にクラス分類適応処理部31と称する。
【0038】
クラス分類適応処理部31は、復号部11のピクチャ選択部23から入力された復号信号(以下、入力信号と称する)、および、クラス分類適応処理部31により出力され、信号蓄積部33に一旦蓄積されたクリエーション信号を用いて、可変長復号部20により抽出され、符号化情報蓄積部32に蓄積された符号化情報の動き補償用ベクトルの信頼度を判定し、それに基づいて所定の動き補償用ベクトルを選択する。このように、信頼度の高い動き補償用ベクトルだけを用いることで、高品質の時間解像度処理が可能となる。クラス分類適応処理部31は、選択された動き補償用ベクトル(選択ベクトル)に基づいて、注目画素(中央のタップ)のシフト量を演算し、入力信号およびクリエーション信号から、タップ引き寄せによりクラスタップを構築し、求められる特徴量に応じて、クラスを決定する。さらに、クラス分類適応処理部31は、入力信号およびクリエーション信号から、タップ引き寄せにより予測タップを構築し、パラメータ制御部27からのパラメータBに対応する係数メモリ71−0乃至71−N(図2)内から、クラスに基づいて選択された予測係数データを用いて、予測タップに対して予測演算処理を実行し、時間解像度のクリエーション信号を生成し、出力する。
【0039】
符号化情報蓄積部32は、復号部11の可変長復号部20においてサイドインフォメーションから分離された、複数フレームの符号化情報を蓄積する。符号化情報は、例えば、動き補償用ベクトルなどにより構成される。これにより、クラス分類するときに、空間方向(同一フレーム内)はもとより時間方向(異なるフレーム間)においても、すなわち、時空間方向において、動き補償用ベクトルを参照することができるようになる。
【0040】
信号蓄積部33は、ピクチャ選択部23より供給される入力信号と、クラス分類適応処理部31において生成されたクリエーション信号を蓄積する。入力信号とクリエーション信号は、それぞれ時間的に、現在と過去という位置関係を有するものである。これにより、クラス分類時、または、予測タップ構築時に、時空間方向における信号を参照することができる。
【0041】
図2は、図1のクラス分類適応処理部31の第1の構成例を示している。
【0042】
シフト量演算部51は、候補ベクトル取得部61およびシフト情報抽出部62により構成される。候補ベクトル取得部61は、注目画素に関連する動き補償用ベクトル(時間方向および空間方向の動き補償用ベクトル)を、符号化情報蓄積部32に蓄積された符号化情報から取得する。
【0043】
シフト情報抽出部62は、復号部11のピクチャ選択部23より供給された入力信号および信号蓄積部33に蓄積されたクリエーション信号を用いて、候補ベクトル取得部61により取得された候補ベクトル(動き補償用ベクトル)のうち、注目画素に対応する候補ベクトルの信頼度を評価し、最も信頼度の大きいと判断される候補ベクトルを選択ベクトルとして選択する。そして、シフト情報抽出部62は、選択ベクトルに基づいて、注目画素(中央のタップ)のシフト量を表すシフト情報、および、選択ベクトルの信頼度または動き補償残差などを、シフト量検出特徴量として検出し、クラス分類部52および予測演算部54に出力する。
【0044】
クラス分類部52は、復号部11のピクチャ選択部23より供給された入力信号、および、信号蓄積部33から供給されたクリエーション信号を用いて、シフト情報抽出部62から供給されたシフト量およびシフト量検出特徴量に基づいて、タップ引き寄せによりクラスタップを構築し、クラスタップの特徴量を検出し、検出された特徴量に基づいてクラスコードを生成し、予測係数選択部53に出力する。
【0045】
予測係数選択部53は、係数メモリ71−0乃至71−Nの中から、復号部11のパラメータ制御部27から供給されたパラメータBに対応する係数メモリを選択する。そして、選択された係数メモリに予め記憶された予測係数データのうち、クラス分類部52により生成されたクラスコードに対応する予測係数データを選択し、予測演算部54に出力する。なお、この予測係数データは、図51を参照して後述する学習装置301において算出されたものが、パラメータBに応じて係数メモリ71−0乃至71−Nに予め記憶されたものである。
【0046】
予測演算部54は、復号部11のピクチャ選択部23より供給された入力信号、および、信号蓄積部33より供給されたクリエーション信号を用いて、シフト情報抽出部62から供給された中央のタップのシフト量およびシフト量検出特徴量に基づいて、タップ引き寄せにより予測タップを構築し、その予測タップに基づいて、予測係数選択部53からの予測係数データを用いて予測演算処理を実行し、時間解像度創造したクリエーション信号を生成し、出力する。
【0047】
図3は、図2のシフト情報抽出部62の第1の構成例を示している。
【0048】
図3の例において、シフト情報抽出部62は、信頼度判定部101と動き補償用ベクトル選択部102により構成されている。信頼度判定部101には、候補ベクトル取得部61により取得された候補ベクトル群、復号部11のピクチャ選択部23より供給された入力信号、および、信号蓄積部33より供給されたクリエーション信号が入力される。
【0049】
信頼度判定部101の特徴量抽出部(信頼度演算部)111は、入力信号またはクリエーション信号を用いて、候補ベクトルの動き補償残差を算出することにより、候補ベクトルの信頼度を求める(例えば、動き補償残差が小さいものほど、信頼度は大きいと判定される)。または、特徴量抽出部111は、入力信号またはクリエーション信号を再符号化し、再符号化情報の中から候補ベクトルに対応する動き補償用ベクトルを抽出し、それらを比較することにより、候補ベクトルの信頼度を求める(例えば、両ベクトルの差の絶対値が小さいほど、信頼度が大きいと判定される)。なお、この処理については、図26を参照して詳しく後述する。信頼度評価部112は、特徴量抽出部111により求められた候補ベクトルの信頼度が所定の基準値より大きいか否かを判断し、信頼度が基準値より大きいと判断された候補ベクトルを、有為な候補ベクトルとして、その信頼度とともに、動き補償用ベクトル選択部102に出力する。
【0050】
動き補償用ベクトル選択部102は、再探索部121、特徴量抽出部122および動き補償用ベクトル決定部123により構成される。再探索部121は、入力信号またはクリエーション信号を用いて、信頼度評価部112により出力された有為な候補ベクトルの起点周辺、終点周辺または中点周辺を半画素単位で考慮して、加重平均などを求めることにより、より適した(より信頼度の高い)動き補償用ベクトルがあるか否かを再探索し、より適した動き補償用ベクトルがあった場合は、その動き補償用ベクトルを特徴量抽出部122に出力する(後述する図8、図29の処理)。
【0051】
特徴量抽出部(信頼度演算部)122は、再探索後の有為な候補ベクトル群とその信頼度に基づいて、入力信号またはクリエーション信号を用いて、候補ベクトルの動き補償残差を算出することにより、候補ベクトルの信頼度を求める。動き補償用ベクトル決定部123は、有為な候補ベクトル群の中から、最も信頼度の大きい候補ベクトルを、選択ベクトルとして選び、選択ベクトルに基づいて、注目画素(中央のタップ)のシフト量を求める。また、動き補償用ベクトル決定部123は、例えば、求められた候補ベクトルの信頼度または動き補償残差などのシフト量検出特徴量を、中央のタップのシフト量とともに、クラス分類部52および予測演算部54に出力する。
【0052】
図4は、図2のクラス分類部52の構成例を示している。
【0053】
クラス分類部52は、クラスタップ構築部131およびクラスコード生成部132により構成される。クラスタップ構築部131は、動き補償用ベクトル決定部123からのシフト量およびシフト量検出特徴量に基づいて、入力信号およびクリエーション信号から、タップ引き寄せにより生成画素を求め、クラス分類を行うために必要な、生成画素に対応するクラスタップ(画素)を構築し、クラスコード生成部132に出力する。
【0054】
クラスコード生成部132は、シフト量およびシフト量検出特徴量に基づいて、クラスタップ構築部131により構築されたクラスタップの特徴量を抽出する。この特徴量としては、例えば、中央のタップのシフト量(方向、大きさ)、シフト量検出特徴量のうちの動き補償残差、シフト量検出特徴量のうちの動き補償用ベクトルの信頼度、または、タップ引き寄せ時におけるブロック境界のパターンなどがある。また、クラスコード生成部132は、抽出したクラスタップの特徴量に応じて、予め設定されたしきい値などに基づいて、生成画素のクラスを決定し、決定したクラスのクラスコードを生成し、予測係数選択部53に出力する。
【0055】
図5は、図2の予測演算部54の構成例を示している。
【0056】
予測演算部54は、予測タップ構築部141および演算部142により構成される。予測タップ構築部141は、動き補償用ベクトル決定部123からのシフト量およびシフト量検出特徴量に基づいて、入力信号およびクリエーション信号から、タップ引き寄せにより生成画素を求め、生成画素に対応する予測タップ(画素)を構築し、演算部142に出力する。
【0057】
演算部142は、動き補償用ベクトル決定部123からのシフト量およびシフト量検出特徴量に基づいて、予測タップ構築部141からの予測タップに対して、予測係数選択部53により求められた予測係数データを乗算することで、予測演算処理を実行し、時間解像度のクリエーション信号を生成し、出力する。
【0058】
次に、図6乃至図10を参照して、本発明において行われる時間解像度の創造処理の原理を説明する。なお、図6乃至図10の例においては、30Pの画像を、時間解像度を創造し、60Pの画像に変換するものとし、GOP構造にBピクチャを含まない(IPPPP…という構造の)、M=1の場合について説明する。
【0059】
図6は、時刻t,t−1における各フレームを示している。図6の例においては、各フレームの仕切りは、マクロブロックを表している。まず、図6Aに示されるように、時刻tの注目画素a1が属するマクロブロックm1が求められ、注目画素a1のマクロブロックm1のマクロブロックタイプ、予測方式、動き補償用ベクトルMV1-1がサイドインフォメーションの符号化情報から取得され、取得された予測方式に基づいて、時刻t−1の参照画素b1が求められる。
【0060】
次に、図6Bに示されるように、求められた時刻t−1の参照画素b1から、動き補償用ベクトルMV1-2で動き補償(MC)した時刻tと時刻t−1の中間の時刻t−1/2の生成画素c1が求められる(単純に求める場合には、MV1-2=(1/2)MV1-1とされる)。以上のようにして、時刻t−1/2(t−1<t−1/2<t)における生成画素c1が求められ、生成画素c1により構成される中間フレームが生成される。すなわち、タップ引き寄せによる(その詳細な意味は、図47を参照して後述する)時間解像度の創造が行われる。
【0061】
また、M=1の場合において、I,P,P,…,Pの順に並ぶIピクチャまたはPピクチャは、そのままの順番で表示されるので、図7に示されるように、30P画像を、時間解像度を創造し、60P画像に変換する場合においては、各Iピクチャを起点とし、Pピクチャを終点とした動き補償用ベクトルに基づいて動き補償が実行され、各ピクチャのフレームの間に中間フレームf1,中間フレームf2,…が生成されて表示される。
【0062】
図7の例においては、上段にはビットストリーム内における順番に並ぶフレーム群が示されており、下段には、表示順に並ぶフレーム群が示されている。下段の表示順に並ぶ各ピクチャの下の矢印は、動き補償用ベクトルとして用いることのできる時間方向の候補ベクトルを示しており、矢印の起点が時間方向の候補ベクトルの起点のフレーム(参照画素により構成されるフレーム)であることを示し、矢印の終点が時間方向の候補ベクトルの終点のフレーム(注目画素により構成されるフレーム)であることを示している。また、矢印上に記載された数値(1/2)が、起点および終点のフレーム間において、中間フレームを生成するための動き補償用ベクトルを内分するための値を示している。すなわち、フレームと次のフレームの中間に新たなフレームが生成される場合、両者の間の動き補償用ベクトルの値を1/2倍した動き補償用ベクトルが用いられる。なお、この数値は中間フレームの生成位置により変更される。
【0063】
さらに、より正確に時間解像度の創造を実行するためには、上述した処理に加えて、次に説明する処理が実行される。例えば、図8に示されるように、生成画素c1(図6B)が求められた後に、参照画素b1近傍の、例えば、5×5の画素ブロックBE1において、注目画素a1の周辺の、例えば、3×3画素のブロックAE1に基づいて、画素単位で再度ブロックマッチングが行われ、その中から適する参照画素が求められ、その参照画素と注目画素から、画素c1が再度生成される(図3の再探索部121の処理)。
【0064】
また、図9の例においては、図6の生成画素c1と同様にして、時刻tの注目画素a2が属するマクロブロックm2(図9において、マクロブロックm1から2個分だけ左側のマクロブロック)が求められ、動き補償用ベクトルMV2-1がサイドインフォメーションの符号化情報から取得され、時刻t−1の参照画素b2が求められる。そして、求められた時刻t−1の参照画素b2から、動き補償用ベクトルMV2-2で動き補償した生成画素c2が求められる(時刻t−1/2)。この場合、図9に示されるように、時刻t−1/2のマクロブロックm1とマクロブロックm2の間(ブロックの境界)に対応する部分には、動き補償できない範囲eができてしまう場合がある。
【0065】
このような場合、図10に示されるように、生成画素c1を生成するときに、画素b1の近傍のブロックBE1を利用して、生成画素c1の近傍の画素を含むブロックCE1の画素(例えば、画素c3)が生成される。このような処理を、マクロブロックm2においても行うことで、動き補償できない範囲e内に画素を生成することができる。
【0066】
以上のようにして、動き補償用ベクトルを用いて時間解像度の創造処理が実行される。しかしながら、クラス分類適応処理が行われない場合、動き部と静止部の境界では、動き補償用ベクトルが無理に算出されてしまうため、中間フレームの生成に悪影響を及ぼしてしまうことになる。また、予測フレーム(B,Pピクチャ)中のイントラブロックでは動き補償用ベクトルが存在しないため、時間解像度が創造できなくなる。さらに、動き補償用ベクトルは、16×16画素で構成されるマクロブロック単位にしか存在しないため、時間解像度創造の処理に失敗した場合、関連性のない他のブロックとの置き換えが発生して、画質が極端に劣化してしまう。
【0067】
そこで、本発明においては、クラス分類適応処理を用いてクリエーション処理が行われる。
【0068】
次に、動作について説明する。復号部11の可変長復号部20は、図示せぬ符号化装置から伝送されてきた符号化信号から量子化後DCT係数を復号、分離するとともに、一緒に伝送されてきたサイドインフォメーションから、量子化特性情報を分離し、逆量子化部21に出力する。逆量子化部21は、量子化特性情報に基づいて量子化後DCT係数を逆量子化する。IDCT部22は、逆量子化部21により逆量子化されたDCT係数をIDCT処理し、元の信号を復号する。
【0069】
動き補償予測部25は、可変長復号部20により復号、抽出された符号化情報に含まれる動き補償用ベクトルを用いて、フレームメモリ24に記憶されている画像に動き補償を行い、加算器26に出力する。加算器26は、IDCT部22より出力された信号に、動き補償予測部25により動き補償された信号を加算することで、局部的に復号されたデータを生成し、ピクチャ選択部23に供給する。ピクチャ選択部23は、符号化情報に基づいて加算器26からのデータを選択し、図示せぬ後段の装置に出力するとともに、局部的に復号されたデータのうち、必要なデータをフレームメモリ24に供給し、記憶させる。
【0070】
パラメータ制御部27は、可変長復号部20がサイドインフォメーションから復号、抽出した量子化特性情報と符号化情報に基づいて関数を演算し、その関数に基づいて、ユーザより入力されたパラメータAを、パラメータBに変換する。
【0071】
信号蓄積部33は、ピクチャ選択部23が出力した入力信号を蓄積する。また、符号化情報蓄積部32は、可変長復号部20がサイドインフォメーションから復号、抽出した符号化情報を蓄積する。
【0072】
クラス分類適応処理部31−1,31−2,31−3は、クラス分類適応処理により、それぞれIピクチャ、Pピクチャ、またはBピクチャのフレームのクリエーション信号を創造し、出力する。
【0073】
次に、図11のフローチャートを参照して、本発明のクリエーション処理について説明する。なお、図11においては、クリエーション処理の流れがわかるように、簡単に説明し、各ステップの処理の詳細については、図12以降、順に説明する。
【0074】
クラス分類適応処理部31のシフト量演算部51には、復号部11のピクチャ選択部23から供給された入力信号、信号蓄積部33から供給されたクリエーション信号が入力される。この入力信号とクリエーション信号は、それぞれ時間的に、現在と過去という位置関係を有している。なお、クリエーション信号は複数フレームであってもよい。
【0075】
シフト量演算部51は、ステップS1において復号部11のピクチャ選択部23より入力信号が入力されるまで待機し、入力信号およびクリエーション信号が入力されると、ステップS2において、シフト量の算出処理を実行する(その詳細は、図12のフローチャートを参照して後述する)。
【0076】
ステップS3において、クラス分類部52のクラスタップ構築部131は、復号部11から供給される入力信号および信号蓄積部33から供給されるクリエーション信号を入力し、動き補償用ベクトル決定部123から供給されるシフト量およびシフト量検出特徴量に基づいて、タップ引き寄せにより生成画素を求め、生成画素に応じたクラスタップを構築する。
【0077】
ステップS4において、クラスコード生成部132は、動き補償用ベクトル決定部123からのシフト量およびシフト量検出特徴量に基づいて、クラスタップ構築部131により構築されたクラスタップの特徴量を抽出する。
【0078】
ステップS5において、クラスコード生成部132は、抽出したクラスタップの特徴量に応じて、予め設定されたしきい値などに基づいて、タップ(画素)のクラスを決定し、クラスコードを生成し、予測係数選択部53に出力する。
【0079】
ステップS6において、予測係数選択部53は、復号部11のパラメータ制御部27から供給されたパラメータBに対応する係数メモリ71−0乃至71−Nを選択し、その中の予め記憶された予測係数データのうち、クラス分類部52により生成されたクラスコードに対応する予測係数データを選択し、予測演算部54に出力する。
【0080】
ステップS7において、予測演算部54の予測タップ構築部141は、復号部11からの入力信号および信号蓄積部33に蓄積されているクリエーション信号を入力し、動き補償用ベクトル決定部123から供給されるシフト量およびシフト量検出特徴量に基づいて、タップ引き寄せにより生成画素を求め、生成画素に応じた予測タップを構築し、その予測タップを演算部142に出力する。
【0081】
ステップS8において、演算部142は、ステップS7において構築された予測タップに対して、予測係数選択部53により選択された予測係数データを用いて予測演算処理を行い、時間解像度創造したクリエーション信号を生成し、出力する。
【0082】
以上のようにして、本発明のクリエーション処理が実行され、時間解像度創造したクリエーション信号が生成される。
【0083】
以下、上述した各ステップの処理について順に、詳しく説明する。なお、上述したステップS2の処理については、図12乃至図46を参照して詳しく説明し、ステップS3乃至S8の処理については、図47乃至図50を参照して詳しく説明する。
【0084】
まず、図12のフローチャートを参照して、図11のステップS2におけるシフト量の算出処理を説明する。
【0085】
ステップS21において、シフト量演算部51の候補ベクトル取得部61は、符号化情報蓄積部32から供給された符号化情報から、時間方向および空間方向の動き補償用ベクトルを、候補ベクトルとして取得する。
【0086】
図13および図14を参照して、M=3の場合(IBBPBB…の場合)の時間方向の動き補償用ベクトルについて説明する。図13Aは、通常の時間方向のフレームの並びを示し、図13Bは、中間フレームを生成した場合の通常の時間方向のフレームの並びと動き補償用ベクトルの関係を示し、図14Aは、例外時の時間方向のフレームの並びを示し、図14Bは、中間フレームを生成した場合の例外時の時間方向のフレームの並びと動き補償用ベクトルの関係を示す。I,P,Bの文字の後の数字は、表示時の順番を示す。
【0087】
なお、図7の例と同様に、図13Bおよび図14Bにおいて、下段の表示順に並ぶ各ピクチャの下の横に向う矢印は、時間解像度の創造に用いることのできる(候補ベクトルとなり得る)時間方向の動き補償用ベクトルを示しており、矢印の起点が時間方向の動き補償用ベクトルの起点を示し、矢印の終点が時間方向の動き補償用ベクトルの終点を示している。また、矢印上に記載された数値が、起点および終点のフレーム間において、中間フレームを生成するための動き補償用ベクトルを内分するための値(重み付けのための値)を示しており、この数値は中間フレームの生成位置により変更される。
【0088】
図13Aの例においては、上段に示されるビットストリーム内で最初のIピクチャ(I3ピクチャ)に続く2つのBピクチャ(B4,B5ピクチャ)が表示された後に、次のPピクチャ(P6ピクチャ)が表示される。さらに、2つのBピクチャ(B7,B8ピクチャ)が表示された後に、Iピクチャ(I9ピクチャ)が表示される。図7を参照して上述したM=1の場合と異なり、上段のビットストリーム内のフレーム順(符号化順)(I3,B1,B2,P6,B4,B5,I9,B7,B8,…)と、下段の実際に表示されるときのフレーム順(B1,B2,I3,B4,B5,P6,B7,B8,I9,…)が異なる。
【0089】
以上のような各ピクチャのフレーム間に、図6Bを参照して上述したようにして中間フレームを生成する。図13Bの例においては、I3ピクチャのフレームとB4ピクチャのフレームの間に中間フレームf11を生成する場合には、I3ピクチャを起点としB4ピクチャを終点とする時間方向の動き補償用ベクトルの1/2の値、I3ピクチャを起点としB5ピクチャを終点とする時間方向の動き補償用ベクトルの1/4の値、および、I3ピクチャを起点としP6ピクチャを終点とする時間方向の動き補償用ベクトルの1/6の値のうちの少なくとも1つを用いることができる。
【0090】
同様にして、B4ピクチャのフレームとB5ピクチャのフレームの間に中間フレームf12を生成する場合には、P6ピクチャを起点としB4ピクチャを終点とする時間方向の動き補償用ベクトルの3/4の値、I3ピクチャを起点としB5ピクチャを終点とする時間方向の動き補償用ベクトルの3/4の値、および、I3ピクチャを起点としP6ピクチャを終点とする時間方向の動き補償用ベクトルの1/2の値のうちの少なくとも1つを用いることができ、また、B5ピクチャのフレームとP6ピクチャのフレームの間に中間フレームf13を生成する場合には、P6ピクチャを起点としB4ピクチャを終点とする時間方向の動き補償用ベクトルの1/4の値、P6ピクチャを起点としB5ピクチャを終点とする時間方向の動き補償用ベクトルの1/2の値、および、I3ピクチャを起点としP6ピクチャを終点とする時間方向の動き補償用ベクトルの5/6の値のうち少なくとも1つを用いることができる。
【0091】
さらに、P6ピクチャのフレームとB7ピクチャのフレームの間に中間フレームf14を生成する場合には、P6ピクチャを起点としB7ピクチャを終点とする時間方向の動き補償用ベクトルの1/2の値、および、P6ピクチャを起点としB8ピクチャを終点とする時間方向の動き補償用ベクトルの1/4の値のうちの少なくとも一方を用いることができる。B7ピクチャのフレームとB8ピクチャのフレームの間に中間フレームf15を生成する場合には、I9ピクチャを起点としB7ピクチャを終点とする時間方向の動き補償用ベクトルの3/4の値、および、P6ピクチャを起点としB8ピクチャを終点とする時間方向の動き補償用ベクトルの3/4の値のうち少なくとも一方を用いることができる。また、B8ピクチャのフレームとI9ピクチャのフレームの間に中間フレームf16を生成する場合には、I9ピクチャを起点としB7ピクチャを終点とする時間方向の動き補償用ベクトルの1/4の値、および、I9ピクチャを起点としB8ピクチャを終点とする時間方向の動き補償用ベクトルの1/2の値のうちの少なくとも一方を用いることができる。
【0092】
また、図14Aの例においては、最初にIピクチャ(I1ピクチャ)が表示され、次にBピクチャ(B2ピクチャ)が表示され、次にPピクチャ(P3ピクチャ)が表示され。さらに、2つのBピクチャ(B4,B5ピクチャ)が表示された後に、次のP6ピクチャが表示される。図13Aの例と同様に、上段のビットストリーム内のフレーム順(符号化順)(I1,P3,B2,P6,B4,B5,…)と下段の実際に表示されるときのフレーム順(I1,B2,P3,B4,B5,P6,…)が異なる。
【0093】
以上のような各ピクチャのフレーム間に、図13Bと同様にして中間フレームを生成する。図14Bの例においては、I1ピクチャのフレームとB2ピクチャのフレームの間に中間フレームf21を生成する場合には、I1ピクチャを起点としB2ピクチャを終点とする時間方向の動き補償用ベクトルの1/2の値、および、I1ピクチャを起点としP3ピクチャを終点とする時間方向の動き補償用ベクトルの1/4の値のうちの少なくとも一方を用いることができる。B2ピクチャのフレームとP3ピクチャのフレームの間に中間フレームf22を生成する場合には、P3ピクチャを起点としB2ピクチャを終点とする時間方向の動き補償用ベクトルの1/2の時間方向の値、および、I1ピクチャを起点としP3ピクチャを終点とする時間方向の動き補償用ベクトルの3/4の値のうちの少なくとも一方を用いることができる。
【0094】
以上のように、M=3の場合においては、Bピクチャに対応することにより、中間フレームを生成する際には、最大3個の時間方向に存在する複数の動き補償用ベクトルを時間解像度の創造に用いることができる。
【0095】
以上、30P画像を、時間解像度の創造により、60P画像に変換する場合について説明したが、次に、図15を参照して、起点および終点のフレーム間において、動き補償用ベクトルを内分するための値(重み付けのための値)を用いて、24P画像を、時間解像度の創造により、60P画像に変換する場合について説明する。
【0096】
図15は、時間方向のフレームの並びを示している。図15の例においては、実線のフレームが、24P画像における元フレームを示し、点線のフレームが、60P画像のフレームを示している。各フレームに跨る矢印は、時間解像度の創造に用いることのできる(候補ベクトルとなり得る)時間方向の動き補償用ベクトルMV0乃至MV4を示しており、矢印の起点が時間方向の動き補償用ベクトルの起点を示し、矢印の終点が時間方向の動き補償用ベクトルの終点を示している。また、各フレームの上部または下部に記載された数値が、起点および終点のフレーム間において、各フレームを生成するための動き補償用ベクトルを内分するための値(重み付けのための値)を示しており、この数値は、生成されるフレームの生成位置により変化する。
【0097】
図15Aの例においては、24P画像における6個の元フレームに基づいて、各動き補償用ベクトルを内分する値を用いて、時間解像度の創造が行われ、60P画像の15個のフレームが生成されている。図15Aの例の場合、第1の元フレームと第2の元フレームの間の動き補償用ベクトルMV0の起点と終点の間においては、動き補償用ベクトルMV0を5/14に内分して(重み付けして)1枚のフレームが生成され、かつ、動き補償用ベクトルMV0を5/7に内分して、次の1枚のフレームが生成される。第2の元フレームと第3の元フレームの間の動き補償用ベクトルMV1の起点と終点の間においては、動き補償用ベクトルMV1を1/14に内分して、1枚のフレームが生成され、動き補償用ベクトルMV1を3/7に内分して、次の1枚のフレームが生成され、かつ、動き補償用ベクトルMV1を11/14に内分して、さらに次の1枚のフレーム生成される。
【0098】
同様にして、第3の元フレームと第4の元フレームの間の動き補償用ベクトルMV2の起点と終点の間においては、動き補償用ベクトルMV2を1/7に内分して、1枚のフレームが生成され、動き補償用ベクトルMV2を1/2に内分して、次の1枚のフレームが生成され、かつ、動き補償用ベクトルMV2を6/7に内分して、さらに次の1枚のフレームが生成される。第4の元フレームと第5の元フレームの間の動き補償用ベクトルMV3の起点と終点の間においては、動き補償用ベクトルMV3を3/14に内分して、1枚のフレームが生成され、動き補償用ベクトルMV3を4/7に内分して、次の1枚のフレームが生成され、かつ、動き補償用ベクトルMV3を13/14に内分して、さらに次の1枚のフレームが生成される。第5の元フレームと第6の元フレームの間の動き補償用ベクトルMV4の起点と終点の間においては、動き補償用ベクトルMV4を2/7に内分して、1枚のフレームが生成され、かつ、動き補償用ベクトルMV4を9/14に内分して、次の1枚のフレームが生成される。
【0099】
以上のようにして、24P画像における6個の元フレームに基づいて、それぞれの動き補償用ベクトルに基づいて時間解像度が創造され、60P画像の15個のフレームが生成される。
【0100】
一方、図15Bに示されるように、第1の元フレームと第6の元フレームを起点と終点とする動き補償用ベクトルに基づいて時間解像度創造が行われる場合には、それぞれ1/14,2/14,3/14,…,13/14の重み付けにより、その間のフレームが生成される。もちろん、図15Aに示されるように、より短い動き補償用ベクトルを用いた方が、より連続性のある、なめらかな動きが実現される。
【0101】
DVD(Digital Versatile Disk)などでは、24Pの画像が記録されており、DVDプレーヤは、再生時、60Pの画像に変換して再生している。この場合、上述したように、動き補償用ベクトルを内分する値を用いて、24P画像を、時間解像度の創造により、60P画像に変換することで、なめらかに変化する画像を再生することができる。
【0102】
図16は、上述したようにして動き補償用ベクトルに重み付けをして時間解像度処理をした場合(図16A)と、2−3プルダウンの処理により時間解像度の創造を行った場合(図16B)の動きの連続性を表している。
【0103】
図16Aは、図15Aに示されるように、各元フレーム間の動き補償用ベクトル重み付けをして時間解像度の創造を行った場合を表している。画像がなめらかに、連続的に変化している。
【0104】
これに対して、図16Bに示されるように、2−3プルダウンの処理においては、1枚の元フレームから3枚の元フレームが生成されるので、その3枚のフレーム間では動きはないことになる。次の1枚の元フレームから2枚の元フレームが生成されるので、その2枚の元フレーム間でも動きがない。動きがあるのは、3枚単位と2枚単位の間だけである。したがって、図16Bに示されるように、動きに連続性がなくなってしまう。このようにして生成された60P画像を、さらに、時間解像度を創造しようとしても、不連続な動きを回復することは困難である。
【0105】
以上により、本発明においては、動き補償用ベクトルを内分するための値を用いて、24P画像が、時間解像度が創造され、60P画像に変換されるので、より連続性のある、なめらかな動きが実現される。
【0106】
次に、図17を参照して空間方向の動き補償用ベクトルについて説明する。図17は、横軸が水平方向、縦軸が垂直方向で示されたフレーム上に16×16画素で構成されるマクロブロックQ0乃至Q8を示している。
【0107】
図17Aの例においては、マクロブロックQ0では空間方向の動き補償用ベクトルMV0が対応され、マクロブロックQ1では空間方向の動き補償用ベクトルMV1が対応され、マクロブロックQ2では空間方向の動き補償用ベクトルMV2が対応され、マクロブロックQ3では空間方向の動き補償用ベクトルMV3が対応され、マクロブロックQ5では空間方向の動き補償用ベクトルMV5が対応され、マクロブロックQ6では空間方向の動き補償用ベクトルMV6が対応され、マクロブロックQ7では空間方向の動き補償用ベクトルMV7が対応され、マクロブロックQ8では空間方向の動き補償用ベクトルMV8が対応されている。
【0108】
しかしながら、マクロブロックQ4は、イントラブロックであるため、空間方向の動き補償用ベクトルが対応されていない。
【0109】
そこで、図17Bに示されるように、マクロブロックQ4においては、周囲のマクロブロックQ0乃至Q8から得られる空間方向の動き補償用ベクトルを利用するようにする。例えば、マクロブロックQ4の左上部の8×8画素のブロックにおいては、その左上のマクロブロックQ0の動き補償用ベクトルMV0,その上のマクロブロックQ1の動き補償用ベクトルMV1,その左のマクロブロックQ3の動き補償用ベクトルMV3が代わりに使用される。同様に、マクロブロックQ4の右上部の8×8画素のブロックにおいては、その上のマクロブロックQ1の動き補償用ベクトルMV1,その右上のマクロブロックQ2の動き補償用ベクトルMV2,その右のマクロブロックQ5の動き補償用ベクトルMV5が代わりに使用され、マクロブロックQ4の左下部の8×8画素のブロックにおいては、その左のマクロブロックQ3の動き補償用ベクトルMV3,その左下のマクロブロックQ6の動き補償用ベクトルMV6,その下のマクロブロックQ7の動き補償用ベクトルMV7が代わりに使用され、マクロブロックQ4の右下部の8×8画素のブロックにおいては、その右のマクロブロックQ5の動き補償用ベクトルMV5,その下のマクロブロックQ7の動き補償用ベクトルMV7,その右下のマクロブロックQ8の動き補償用ベクトルMV8が代わりに使用される。これにより、動物体の境界あるいはイントラブロック周辺での画質が向上する。
【0110】
さらに、いまの場合、イントラブロックであるマクロブロックQ4において説明したが、以上のことは他のマクロブロックにも適用することができる。したがって、空間方向において周囲のマクロブロックの動き補償用ベクトルを利用することにより、動き補償用ベクトルの精度を16×16画素単位から8×8画素単位に向上させ、その分、画質を向上させることができる。
【0111】
以上のようにして、時間方向および空間方向において、所定の複数の動き補償用ベクトルが取得される。
【0112】
図12に戻って、候補ベクトル取得部61が、取得したこれらの複数の時間方向および空間方向の動き補償用ベクトルを、候補ベクトルとして、シフト情報抽出部62に出力すると、ステップS22において、シフト情報抽出部62の信頼度判定部101は、これら複数の時間方向および空間方向の候補ベクトルの中から、時間解像度創造(タップ引き寄せ)の際に利用するものを求めるため、信頼度判定処理を実行する。この信頼度判定処理を、図18のフローチャートを参照して説明する。
【0113】
ステップS31において、信頼度判定部101の特徴量抽出部111は、処理すべき候補ベクトルが存在するか否かを判断し、処理すべき候補ベクトルが存在すると判断した場合、ステップS32において、特徴量抽出部111は、信頼度算出処理を実行する。この場合、特徴量抽出部111は、図19に示されるように、動き補償残差算出部161と、動き補償残差評価部162により構成される。
【0114】
次に、この信頼度算出処理を、図20のフローチャートを参照して説明する。
【0115】
ステップS41において、動き補償残差算出部161は、図11のステップS1において供給された復号部11のピクチャ選択部23からの入力信号および信号蓄積部33からのクリエーション信号を用いて、候補ベクトル取得部61より供給された候補ベクトルに対する動き補償残差を算出する。ステップS42において、動き補償残差評価部162は、動き補償残差算出部161が算出した動き補償残差を、所定の基準値または他の候補ベクトルに対する動き補償残差と比較評価することにより、候補ベクトルの信頼度を求め、信頼度評価部112に出力し、処理は、図18のステップS33に進む。この比較評価により、例えば、動き補償残差の値が最小のものが高い評価が与えられる。
【0116】
図21は、中央の人物が右に移動し、カメラがこれに追従して、右へ移動(パン)している場合の原画像の例を示している。図21の例においては、人物の背景に丸や三角の模様を有する壁が存在する。カメラがパンしているので、この背景も、人物と同様に、右へ移動している。この原画像を用いて、図20のステップS41で候補ベクトルに対する動き補償残差が算出され、その動き補償残差のうち、動き補償残差が最小の値となる候補ベクトルが選択ベクトルとされ、その選択ベクトルに基づいて、時間解像度の創造が実行された場合、図22に示されるような中間フレームの画像が生成される。なお、図22において、M=3である。
【0117】
図22の例においては、図21と比較すると、丸や三角の背景のエッジ部分、および、背景と人物の境界部分が、かなり破綻している。これは、M=3の場合、M=1に較べて、フレーム間の距離が長いことに起因する。この生成された中間フレームの画像、および、利用された動き補償用ベクトルの関係を比較することにより、暴れている動き補償用ベクトル(近傍の他の動き補償用ベクトルと大きさまたは方向が大きく異なっている動き補償用ベクトル)が、丸や三角の背景のエッジ部分、および、背景と人物の境界部分に悪影響を及ぼしていることがわかる。
【0118】
そこで、悪影響を及ぼす動き補償用ベクトルを使用せずに、図18のステップS33において動き補償用ベクトルの信頼度を予め判定を実行することにより、信頼度の大きいと判定された有為な動き補償用ベクトルのみを、時間解像度の創造に使用すれば、良好な画像の中間フレームの画像を生成することができる。
【0119】
すなわち、ステップS33において、信頼度評価部112は、図20のステップS42において求められた候補ベクトルに対する信頼度が、予め設定された基準値よりも大きいか否かを判断し、候補ベクトルに対する信頼度が予め設定された基準値よりも大きいと判断した場合、ステップS34において、信頼度評価部112は、候補ベクトルを有為な候補ベクトルとして、その信頼度とともに動き補償用ベクトル選択部102に出力する。その後、処理はステップS31に戻り、それ以降の処理が繰り返される。
【0120】
ステップS33において、候補ベクトルに対する信頼度が予め設定された基準値よりも小さいと判断された場合、ステップS34の処理は実行されず(スキップされ)、ステップS31に戻り、それ以降の処理が繰り返される。すなわち、信頼度が予め設定された基準値よりも小さい候補ベクトルは、悪影響を及ぼす動き補償用ベクトルとして、排除される。
【0121】
ステップS31において、処理すべき候補ベクトルが存在しないと判断された場合、すなわち、すべての候補ベクトルに対する処理が終わったと判断された場合、処理は、図12のフローチャートのステップS23に進む。
【0122】
図23は、図21の原画像を用いて、動き補償残差が最小の値となる候補ベクトルを選択ベクトルとし、図22の中間フレームの画像を生成した場合において、その選択ベクトルの信頼度を数値化し、図21の原画像にマッピングした結果を示している。
【0123】
図23の例においては、太い線で示されている部分(ブロック)ほど、そのブロックに対応する動き補償用ベクトルの信頼度がないことが示されている。図21と図23を比較すると、図21において示されている人物(動物体)の身体の輪郭に沿って太い線が存在しており、人物の境界または背景の一部では動き補償用ベクトルの信頼度が足りない部分があることがわかる。これを利用することで、動物体の境界などを検出することができる。また、これにより、復号されたMPEG2の画像において、動き補償用ベクトルの再検出(図29を参照して後述する再検索部121における再探索)を行う場合に、優先的に、動き補償用ベクトル検出をしなければならない領域(図23の例において太線で示される領域)、および動き補償用ベクトル検出する場合の、例えば、信頼度が高い部分はそのままとし、信頼度が低い部分は動き補償用ベクトルをもう一度求めるといった方針がわかる。
【0124】
これに対して、ステップS53で信頼度を判定し、ステップS34において信頼度の大きい有為な動き補償用ベクトルだけを用いるようにすれば、後述する図46に示されるように、画像の輪郭部における劣化を抑制することができる。
【0125】
図24は、図3の特徴量抽出部111の他の構成例を示している。
【0126】
図24の例においては、特徴量抽出部111は、再符号化部171、抽出部172および評価部173により構成される。再符号化部171は、復号部11から供給された入力信号、または、信号蓄積部33から供給されたクリエーション信号を再符号化し、再符号化情報を取得する。
【0127】
抽出部172は、再符号化部171により取得された再符号化情報の中から、候補ベクトルに対応する動き補償用ベクトルを抽出する。評価部173は、候補ベクトルと、抽出部172により抽出された動き補償用ベクトルとを比較評価することにより、候補ベクトルの信頼度を求め、信頼度評価部112に出力する。
【0128】
図25を参照して、図24の特徴量抽出部111により実行される信頼度算出処理をさらに詳しく説明する。
【0129】
図25に示されるように、図示せぬ符号化部は、原画の画像データを符号化することにより、ビットストリームAと、動き補償用ベクトルAを含んだ符号化情報(サイドインフォメーション)を生成する。また、可変長復号部20(図1)は、ビットストリームAを復号することにより、復号画Aを生成する。再符号化部171は、可変長復号部20より供給された復号画A(入力信号)を再符号化することにより、ビットストリームBと、動き補償用ベクトルBを含んだ再符号化情報を生成する。このビットストリームBは、図示せぬ復号部により復号されることにより復号画Bとなる。
【0130】
したがって、抽出部172は、再符号化部171により取得された再符号化情報の中から、候補ベクトルに対応する動き補償用ベクトルBを抽出する。評価部173は、候補ベクトル取得部61より候補ベクトルとして供給される動き補償用ベクトルAと、抽出部172より供給される動き補償用ベクトルBを比較する。例えば、動き補償用ベクトルAの信頼度が高いとき、動き補償用ベクトルBと比較しても、両者の誤差は、小さい。しかしながら、動き補償用ベクトルAの信頼度が低いと、動き補償用ベクトルAと動き補償用ベクトルBの差が大きくなる。したがって、評価部173は、動き補償用ベクトルAと動き補償用ベクトルBの差が大きいとき、動き補償用ベクトルAの信頼度が低いと判定することができる。これにより、図3の特徴量抽出部122により、信頼度が高いとされた動き補償用ベクトルAから特徴量が抽出され、タップ引き寄せに使用される。
【0131】
以上のように、図24の特徴量抽出部111において、動き補償用ベクトルBは、動き補償用ベクトルAの判定に使用するだけであり、タップ引き寄せには使用しておらず、タップ引き寄せに使用しているのは、動き補償用ベクトルAだけである。したがって、図1の画像データ処理装置1においては、クリエーション信号から再度求められた動き補償用ベクトル(動き補償用ベクトルB)を利用して時間解像度創造を行っているわけではなく、サイドインフォメーション(符号化情報)の動き補償用ベクトル(動き補償用ベクトルA)を比較の対象として利用してクリエーション処理を行っているだけなので、高品質の時間解像度を行うことができる。
【0132】
次に、図24の特徴量抽出部111により実行される信頼度算出処理を、図26のフローチャートを参照して説明する。なお、この信頼度算出処理は、図18のステップS32の信頼度算出処理の他の例である。
【0133】
ステップS51において、再符号化部171は、復号部11から供給された入力信号、または、信号蓄積部33から供給されたクリエーション信号を再符号化し、再符号化情報を取得する。
【0134】
ステップS52において、抽出部172は、ステップS51において再符号化部171により取得された再符号化情報の中から、候補ベクトルに対応する動き補償用ベクトルを抽出する。
【0135】
ステップS53において、評価部173は、候補ベクトルと、ステップS52において抽出部172により抽出された動き補償用ベクトルとを比較評価することにより、候補ベクトルの信頼度を求め、信頼度評価部112に出力する。
【0136】
図27は、図21の原画像を用いて、Pピクチャにおける候補ベクトルとそれに対応する再符号化情報の動き補償用ベクトルとの比較結果を示している。図27の例の場合、黒いブロックほど、信頼度がなく、白いブロックほど信頼度が高いことが示されており、図21において示されている人物(動物体)の身体の輪郭に沿って黒いブロックが多く存在しており、人物の境界または背景の一部では動き補償用ベクトルの信頼度が足りない部分があることがわかる。
【0137】
なお、図18のステップS33の信頼度判定処理においては、上述した2つの信頼度算出処理、または後述する信頼度算出処理により求められた信頼度の結果を組み合わせて(統合して)判定してもよいし、そのうちの1つの信頼度のみを判定するようにしてもよい。
【0138】
以上のようにして、信頼度判定処理が終了されると、次に、図12のステップS23において、動き補償用ベクトル選択部102は、信頼度評価部112により出力された有為な候補ベクトルの中から、動き補償用ベクトルの選択処理を実行する。この動き補償用ベクトルの選択処理を、図28のフローチャートを参照して説明する。
【0139】
ステップS61において、動き補償用ベクトル選択部102の再探索部121は、処理すべき候補ベクトルが存在するか否かを判断し、処理すべき候補ベクトルが存在すると判断した場合、ステップS62において、再探索部121は、復号部11から供給された入力信号および信号蓄積部33から供給されたクリエーション信号を用いて、図29に示されるように、有為な候補ベクトルに対する、動き補償用ベクトルの再探索処理を実行する。
【0140】
図29の例においては、縦軸が時間方向、横軸が各フレームの水平方向を示しており、上から順に、図13Bの各フレーム(I3,B4,B5,P6)が表示順に並び、それぞれのフレーム間に中間フレーム(f11,f12,f13)が生成されている。
【0141】
各フレーム上に跨る矢印は、有為な候補ベクトルを示しており、これらの候補ベクトルは、左から順に、中間フレームf13を生成するために利用可能な3つの候補ベクトル(P6ピクチャを起点としB5ピクチャを終点とする候補ベクトル、P6ピクチャを起点としB4ピクチャを終点とする候補ベクトル、およびI3ピクチャを起点としP4ピクチャを終点とする候補ベクトル)、中間フレームf12を生成するために利用可能な3つの候補ベクトル(P6ピクチャを起点としB4ピクチャを終点とする候補ベクトル、I3ピクチャを起点としB5ピクチャを終点とする候補ベクトル、およびI3ピクチャを起点としP6ピクチャを終点とする候補ベクトル)、および、中間フレームf11を生成するために利用可能な3つの候補ベクトル(I3ピクチャを起点としP6ピクチャを終点とする候補ベクトル、I3ピクチャを起点としB5ピクチャを終点とする候補ベクトル、およびI3ピクチャを起点としB4ピクチャを終点とする候補ベクトル)である。
【0142】
また、各フレームにおいて、候補ベクトルを示す矢印の起点と接する位置が参照画素の位置であり、候補ベクトルを示す矢印の終点と接する位置が注目画素の位置であり、各中間フレーム上において候補ベクトルを示す矢印と交わる黒丸は、その候補ベクトルにより生成され得る生成画素の位置とされる。
【0143】
図29に示されるように、各候補ベクトルの終点を元にして、各候補ベクトルの起点フレーム上の起点(参照画素)周辺p1の動き補償用ベクトルの再探索が実行される。また、各候補ベクトルの起点を元にして、各候補ベクトルの終点フレーム上の終点(注目画素)周辺p2の動き補償用ベクトルの再検索が実行される。さらに、起点フレームと終点フレームの間のフレームであって、各候補ベクトルにおける生成画素に近いフレーム(例えば、図29の左から3番目の、I3ピクチャを起点としてP6ピクチャを終点とする候補ベクトルに関しては、間にB4フレームと、B5フレームがあり、生成画素(フレームf13)に近いフレームは、B5ピクチャのフレームとなる)上の中点周辺p3を元に、各候補ベクトルの起点周辺p1および終点周辺p2の動き補償用ベクトルの再探索が実行される。
【0144】
より詳細に説明すると、図30に示されるように、候補ベクトルの起点周辺p1、終点周辺p2、または中点周辺p3においては、大きい円の図形で表される画素単位だけでなく、小さい円の図形で表される半画素単位を考慮して、加重平均などを求めることで、より適応する動き補償用ベクトルが探索される。すなわち、候補ベクトルの起点周辺p1、終点周辺p2、または中点周辺p3の画素および半画素(画素と画素の間の位置)において、候補ベクトルに対応する最適な動き補償用ベクトルが再探索された場合、それが候補ベクトルとして、特徴量抽出部122に出力される。最適な動き補償用ベクトルが再探索されない場合、信頼度評価部112より供給された候補ベクトルが、そのまま特徴量抽出部122に出力される。
【0145】
以上のようにして、有為な候補ベクトルの再探索を実行することにより、より適した候補ベクトルが取得される。その結果、より高画質の画像を生成することができる。
【0146】
次に、図28のステップS63において、特徴量抽出部122は、信頼度算出処理を実行する。この信頼度算出処理は、上述した図18のステップS32における信頼度算出処理(図20または図26の処理)と同様であり、その説明は繰り返しになるので省略する。
【0147】
すなわち、動き補償用ベクトル選択処理においては、再度、信頼度算出処理が実行される。なお、この場合、図18の信頼度判定処理(信頼度判定部101の特徴量抽出部111)と同じ信頼度算出処理を再度繰り返すようにしてもよいし、例えば、信頼度判定処理において、動き補償残差による信頼度算出処理(動き補償用ベクトル選択部102の特徴量抽出部122)を行い、動き補償用ベクトル選択処理において、再符号化による候補ベクトルに対応する動き補償用ベクトルを抽出し、比較評価による信頼度算出処理を行う(または、その逆)というように、異なる信頼度算出処理を実行させるようにしてもよいし、または、いずれにおいても両方の信頼度算出処理を実行するようにしてもよい。
【0148】
例えば、いまの場合、図28のステップS63において、再符号化による候補ベクトルに対応する動き補償用ベクトルを抽出し、比較評価による信頼度算出処理が行われると、ステップS64において、動き補償用ベクトル決定部123は、その信頼度が一番大きい候補ベクトルを、注目画素の選択ベクトルとして選択する。
【0149】
ステップS65において、動き補償用ベクトル決定部123は、選択ベクトルを選択できたか否かを判断する。ステップS65において、選択ベクトルを選択できなかったと判断された場合、すなわち、信頼度が一番大きい候補ベクトルが絞り込めない場合、動き補償用ベクトル決定部123は、ステップS66において、特徴量抽出部122を制御し、入力信号およびクリエーション信号を用いて、候補ベクトルに対する動き補償残差を求めさせ、ステップS67において、動き補償残差が最小となる候補ベクトルを、選択ベクトルとして選択する。
【0150】
ステップS61において、候補ベクトルが存在しないと判断された場合、ステップS65において、選択ベクトルを選択できたと判断された場合、または、ステップS67において、選択ベクトルが選択された後、処理は、図12に戻る。図12のステップS24において、動き補償用ベクトル決定部123は、選択ベクトルに基づいて、注目画素(中央のタップ)のシフト量を算出する。このシフト量の算出については、図47を参照して後述する。
【0151】
ステップS25において、動き補償用ベクトル決定部123は、ステップS24において算出されたシフト量、およびシフト量検出特徴量を、クラス分類部52および予測演算部54に出力する。このとき出力されるシフト量検出特徴量は、例えば、選択された選択ベクトルの信頼度とされる。なお、特徴量抽出部122により、選択ベクトルに対する動き補償残差が求められていた場合においては、シフト量検出特徴量として、動き補償残差も出力される。
【0152】
以上により、時間的および空間的に複数存在する動き補償用ベクトルのうち、最も信頼度のある動き補償用ベクトルが、注目画素の選択ベクトルとして選択され、その選択ベクトルに基づいて中央のタップ(注目画素)のシフト量が算出される。
【0153】
図31は、図2のシフト情報抽出部62の第2の構成例を示している。なお、図3における場合と対応する部分については、同一の符号を付してある。すなわち、図31のシフト情報抽出部62は、基本的に、図3における場合と同様に構成されている。ただし、図31の信頼度判定部101には、図3のシフト情報抽出部62の信頼度判定部101と異なり、復号部11からの入力信号と、信号蓄積部33からのクリエーション信号が供給されず、候補ベクトル取得部61からの候補ベクトル群だけが供給される。
【0154】
したがって、図31の特徴量抽出部111は、入力信号およびクリエーション信号を信頼度算出のために利用できないので、候補ベクトルと、その周辺の動き補償用ベクトルと比較することにより、候補ベクトルの信頼度を求める。
【0155】
図32は、図31の特徴量抽出部111の構成例を示している。
【0156】
図32の例においては、特徴量抽出部111は、周辺ベクトル抽出部181および比較部182により構成される。周辺ベクトル抽出部181は、動き補償用ベクトルの中から、候補ベクトルに対応する周辺の動き補償用ベクトル(以下、周辺ベクトルと称する)を抽出する。比較部182は、候補ベクトルと、周辺ベクトル抽出部181により抽出された周辺ベクトルを比較評価することにより信頼度を求め、信頼度評価部112に出力する。
【0157】
図31の信頼度判定部101により実行される信頼度判定処理は、ステップS32の信頼度算出処理が異なる点を除いて、図18を参照して説明した信頼度判定処理と同様の処理となるため、その説明は繰り返しになるので、図示、および説明を省略する。したがって、異なっている図18のステップS32(図20および図26)の信頼度算出処理の他の例だけを、図33のフローチャートを参照して説明する。
【0158】
ステップS71において、周辺ベクトル抽出部181は、動き補償用ベクトルの中から、候補ベクトルに対応する周辺ベクトルを抽出する。この周辺ベクトルは、空間的に複数存在する動き補償用ベクトルである。具体的には、候補ベクトル取得部61により取得された動き補償用ベクトルの中から、空間的に複数存在する動き補償用ベクトルが抽出される。
【0159】
ステップS72において、比較部182は、候補ベクトルと、ステップS71において周辺ベクトル抽出部181により抽出された周辺ベクトルを比較評価することにより信頼度を求め、信頼度評価部112に出力する。
【0160】
図34および図35は、図21の原画像を用いて、Bピクチャ(図34)およびPピクチャ(図35)における候補ベクトルと、それに対応する周辺ベクトルの差分絶対値和を用いて信頼度を数値化し(周辺ベクトルとの差分絶対値和が小さい候補ベクトルほど、信頼度が大きい)、画像にマッピングした結果をそれぞれ示している。
【0161】
図34および図35の例においては、黒いブロックほど、周辺に比べて、候補ベクトルが暴れており、信頼度がないことを表している。また、図34に示されるように、Bピクチャのフレームにおいては、動物体の境界背景などで、いくつかばらついているが、図35に示されるように、Pピクチャのフレームでは、そのばらつきの傾向が、図34の場合に較べて、より大きく表れている。これは、図13Bに示されるように、Pピクチャのフレームは、Bピクチャのフレームに較べて、基準となるIピクチャからの時間的距離が長いことに起因する。
【0162】
以上のように、候補ベクトルを周辺ベクトルと比較することによっても信頼度の評価が得られるので、この評価の結果に基づいて、図18のステップS33において信頼度が大きいか否かの判定処理が実行される。
【0163】
図36は、図31の特徴量抽出部111の他の構成例を示している。
【0164】
図36の例においては、特徴量抽出部111は、履歴抽出部191および比較部192により構成される。履歴抽出部191は、候補ベクトル取得部61により取得された動き補償用ベクトルから、時間的に前方向または後方向に存在する複数の動き補償用ベクトルを求め、ベクトルの履歴を抽出する。比較部192は、候補ベクトルと、ベクトルの履歴から取得された、候補ベクトルに対応する過去の動き補償用ベクトル(以下、過去ベクトルと称する)または、未来の動き補償用ベクトル(以下、未来ベクトルと称する)と比較評価することにより信頼度を求め、信頼度評価部112に出力する。
【0165】
図36の特徴量抽出部111により実行される信頼度算出処理を、図37のフローチャートを参照して説明する。
【0166】
ステップS81において、履歴抽出部191は、候補ベクトルに対応するベクトルの履歴を抽出する。具体的には、履歴抽出部191は、候補ベクトル取得部61により取得された動き補償用ベクトルから、時間的に前方向または後方向に存在する複数の動き補償用ベクトルを求め、ベクトルの履歴を抽出する。
【0167】
ステップS82において、比較部192は、ステップS81において履歴抽出部191により抽出されたベクトルの履歴に基づいて、候補ベクトルと、候補ベクトルに対応する過去ベクトル、または、未来ベクトルと比較評価することにより信頼度を求め(例えば、過去ベクトル(または未来ベクトル)との差分絶対値和が小さい候補ベクトルほど信頼度が大きい)、信頼度評価部112に出力する。
【0168】
図38は、図31の特徴量抽出部111のさらに他の構成例を示している。
【0169】
図38の例においては、特徴量抽出部111は、履歴抽出部201および不連続性評価部202により構成される。履歴抽出部201は、履歴抽出部191と同様に、候補ベクトル取得部61により取得された動き補償用ベクトルから、時間的に前方向または後方向に存在する複数の動き補償用ベクトルを求め、ベクトルの履歴を抽出する。不連続性評価部202は、ベクトルの履歴から取得された候補ベクトルに対応する動きの不連続性を評価することにより信頼度を求め、信頼度評価部112に出力する。
【0170】
図38の特徴量抽出部111により実行される信頼度算出処理を、図39のフローチャートを参照して説明する。
【0171】
ステップS91において、履歴抽出部201は、候補ベクトルに対応するベクトルの履歴を抽出する。ステップS92において、不連続性評価部202は、ステップS91においてベクトルの履歴から取得された候補ベクトルに対応する動きの不連続性を評価することにより信頼度を求め(例えば、連続性があるほど、信頼度が大きい)、信頼度評価部112に出力する。
【0172】
上述した図36(図37)および図38(図39)の処理について、図40を参照してさらに説明する。図40の例においては、縦軸は、時間方向を示しており、I3,B4,B5,P6,…と、図中下方へ行くほど時間が経過する。また、横軸は、各フレームの水平方向を示している。
【0173】
この例の場合、B4フレーム上の12個の任意の画素において、順方向(過去)ベクトル(I3ピクチャを起点としB4ピクチャを終点とする動き補償用ベクトル)および逆方向(未来)ベクトル(P6ピクチャを起点としB4ピクチャを終点とする動き補償用ベクトル)により構成される双方向ベクトル(ベクトルの履歴)が示されている。
【0174】
図40の例の場合、左から3番目の逆方向ベクトルに注目すると、この3番目の逆方向ベクトルだけが他の逆方向ベクトルと交差しており(方向が大きく異なっており)、この逆方向ベクトルが暴れているベクトルであることがわかる。
【0175】
以上のように、候補ベクトルに対応する双方向ベクトルの傾向に注目し、順方向ベクトルまたは逆方向ベクトル(過去ベクトルまたは未来ベクトル)と比較することにより、ばらついている候補ベクトルを検出することができ、また、候補ベクトルに対応する双方向ベクトルの傾向に注目し、動きの不連続性を評価することにより、候補ベクトルの変化点を検出することができる。
【0176】
図41は、図31の特徴量抽出部111のさらに他の構成例を示している。
【0177】
図41の例においては、特徴量抽出部111は、抽出部211および比較部212により構成される。抽出部211は、候補ベクトル取得部61より供給された符号化情報の動き補償用ベクトルの中から、画面全体における動き補償用ベクトル(以下、全画面ベクトルと称する)を抽出する。比較部212は、候補ベクトルと、抽出部211により抽出された全画面ベクトルを比較評価することにより信頼度を求め、信頼度評価部112に出力する。
【0178】
図41の特徴量抽出部111により実行される信頼度算出処理を、図42のフローチャートを参照して説明する。
【0179】
ステップS101において、抽出部211は、全画面ベクトルを抽出する。具体的には、抽出部211は、候補ベクトル取得部61から供給された符号化情報の動き補償用ベクトルに基づいて、例えば、1画面の全ての動き補償用ベクトルの平均値を演算することで、全画面ベクトルを抽出する。ステップS102において、比較部212は、候補ベクトルと、ステップS101において抽出された全画面ベクトルを比較評価することにより信頼度を求め、信頼度評価部112に出力する。この場合においても、例えば、全画面ベクトルとの差分絶対値和が小さい候補ベクトルほど、信頼度が大きいとされる。
【0180】
以上のように、候補ベクトルを、全画面の動き補償用ベクトルと比較評価して信頼度を求めることができる。また、図示しないが、候補ベクトルのバラツキを求めるためには、上述した周辺ベクトル、全画面ベクトルまたはベクトルの履歴の他にも、半画素におけるベクトルに関する信頼度を求め、その信頼度に基づいた統計量などから信頼度判定処理を実行するようにしてもよい。さらに、上記説明においては、信頼度判定処理を1つの算出処理で求められた評価度により判定するようにしたが、上述した信頼度算出処理で求められた信頼度を組み合わせた統計量から判定するようにすることもできる。
【0181】
次に、図43は、図2のシフト情報抽出部62の第3の構成例を示している。なお、図3における場合と対応する部分については、同一の符号を付してある。すなわち、図43のシフト情報抽出部62は、基本的に、図3における場合と同様に構成されている。ただし、図43の例の動き補償用ベクトル選択部201は、図3のシフト情報抽出部62の動き補償用ベクトル選択部102と異なり、復号部11および信号蓄積部33から、入力信号およびクリエーション信号は入力されず、信頼度判定部101から有為な候補ベクトル群とその信頼度だけが入力される。
【0182】
すなわち、動き補償用ベクトル選択部201は、有為な候補ベクトルを、図31の信頼度判定部101と同様にして、その候補ベクトルに対応する他の動き補償用ベクトル(例えば、周辺ベクトルまたは過去ベクトルなど)と比較することにより、候補ベクトルのうち、最も信頼度の大きい候補ベクトルを選択ベクトルとして選ぶ。
【0183】
図43の動き補償用ベクトル選択部201により実行される動き補償用ベクトル選択処理を図44のフローチャートを参照して説明する。なお、図44のステップS111乃至S113は、図28のステップS61,S63,S64の処理と同様の処理である(図44の処理は、図28のステップS62、ステップS65乃至S67が除かれている点、および、ステップS112の信頼度算出処理がステップS63の処理と異なる点を除いて、図28の動き補償用ベクトル選択処理と同様の処理である)。さらに、図44のステップS112の信頼度算出処理は、図33、図37、図39および図42を参照して説明した信頼度算出処理と同様であり、その説明は繰り返しになるので省略する。
【0184】
すなわち、上述したように、動き補償用ベクトル選択部201には、信頼度判定部101からの有為な候補ベクトル群だけが入力され、入力信号およびクリエーション信号は入力されないため、入力信号およびクリエーション信号を用いて実行される候補ベクトルの再探索(図28のステップS62)、および、動き補償残差の算出などの信頼度算出処理(図20または図26)は行われず、ステップS112の信頼度算出処理においては、入力信号およびクリエーション信号を用いずに、候補ベクトル群を用いて、候補ベクトルに対応する他の動き補償用ベクトル(例えば、周辺ベクトル、過去ベクトル)との比較により評価する処理である図33、図37、図39および図42の信頼度算出処理が実行され、ステップS113において、信頼度が最も大きい候補ベクトルが選択ベクトルとして選択され、動き補償用ベクトル選択処理は終了される。
【0185】
なお、図44の動き補償用ベクトル選択処理においては、入力信号およびクリエーション信号が利用されないので、図28におけるステップS65乃至S67の処理がない。したがって、ステップS113において、候補ベクトルの中から信頼度が最も大きい候補ベクトル(動き補償用ベクトル)が絞りきれない場合は、選択ベクトルは選択されず、図12のステップS24およびS25では、シフト量もシフト量検出特徴量も算出されない。すなわち、ステップS113において、候補ベクトルの中から信頼度が最も大きい候補ベクトルが絞りきれない場合の以降の処理は、図59のフローチャートを参照して後述するフレーム内処理(他のピクチャを参照しない処理(動き補償予測処理を実行しない処理))の場合のクリエーション処理(ステップS202以降の処理)と同様の処理が実行される。
【0186】
なお、上述した信頼度判定処理および動き補償用ベクトル選択処理において実行される信頼度算出処理の組み合わせは、同様の処理を繰り返し用いるようにしてもよいし、異なる処理の組み合わせとしてもよい。また、組み合わせの数もいくつも組み合わせるようにしてもよい。
【0187】
図45は、図21の原画像を用いて、以上のようにして実行される信頼度算出処理のうち、候補ベクトルと周辺ベクトルとの比較評価(図33)の結果、および、入力信号を再符号化し、候補ベクトルと再符号化情報からの動き補償用ベクトルとの比較評価(図26)の結果を評価値として用い、値が小さい候補ベクトルを選択ベクトルとして選択し、時間解像度の創造を実行した中間フレームの画像を示している。
【0188】
図45の例においては、図22の例と比較して、特に人物(動物体)との境界などの画素の破綻が抑制され、かなり改善されていることがわかる。
【0189】
また、図46は、図21の原画像を用いて、図45の例の場合と同様の信頼度評価を実行し、信頼度のある候補ベクトルを選択ベクトルとし、それに基づいて、中間フレームの画像を生成した場合において、その選択ベクトルの信頼度を数値化し、その中間フレームの画像にマッピングした結果を示している。
【0190】
図46の例においては、輪郭が黒く、太いほど、信頼度がないことが示されており、人物の身体の輪郭は、細く、薄くなっており、動き補償残差が最小の値となる候補ベクトルを選択ベクトルとして中間フレームの画像を生成した場合(図23)よりも、人物(動物体)の境界または背景の一部では動き補償用ベクトルの信頼度があることがわかる。これにより、用いられた動き補償用ベクトル自体がかなり安定していることがわかる。
【0191】
以上のようにして、時間的および空間的な動き補償用ベクトルの信頼度評価が実行され、有為な動き補償用ベクトルのみを選択するようにしたので、生成される中間フレームの画質が改善される。
【0192】
また、動き補償用ベクトル決定部123により選択された選択ベクトルに対応する中央のタップ(注目画素)のシフト量だけでなく、シフト量検出特徴量(例えば、動き補償用ベクトルの信頼度または動き補償残差)が、クラス分類部52および予測演算部54に出力される。このシフト量検出特徴量は、入力信号内に含まれる動き補償用ベクトル自体の信頼度評価になるため、求めた入力信号を処理する際に、注意すべき領域、動物体の境界または再動き補償用ベクトル検出するときに、間違いやすい領域を示すことができ、これに基づいて、以降に説明するクラス分類処理を実行するようにもできる。
【0193】
以上のようにして、図11のステップS2においてシフト量が算出される。このようにして算出されたシフト量を用い、実行される図11のステップS3以降の処理についてさらに詳しく説明する。
【0194】
ステップS3において、クラス分類部52のクラスタップ構築部131は、復号部11からの入力信号および信号蓄積部33からのクリエーション信号を入力し、動き補償用ベクトル決定部123から供給されるシフト量およびシフト量検出特徴量に基づいて、図47に示されるようなタップ引き寄せにより生成画素を求め、生成画素に応じたクラスタップを構築し、そのクラスタップをクラスコード生成部132に出力する。
【0195】
図47を参照して、タップ構造が3×3画素の場合におけるタップ引き寄せの例を説明する。図47Aは、縦軸がフレームの垂直方向、横軸が時間方向の平面におけるタップ構築を示し、図47Bは、縦軸がフレームの垂直方向、横軸がフレームの水平方向の平面におけるタップ構築を示している。
【0196】
図47の例においては、時間軸上の過去フレームF1および未来フレームF3の間に、タップ引き寄せにより中間フレームF2が生成される場合が示されている。なお、時間軸に示されているαは、フレーム間距離などから求められる動き補償用ベクトルMV4を内分する値である。
【0197】
この例の場合、過去フレームF1は、動き補償参照元のフレームであり、クリエーション信号より構築される。また、未来フレームF3は、動き補償参照後のフレームとされており、入力信号より構築される。そして、未来フレームF3上の注目画素a4を終点とし、過去フレームF1上の参照画素b4を起点とする動き補償用ベクトルMV4が選択されており、この動き補償用ベクトルMV4に基づいて、過去フレームF1上の参照画素(中央のタップ)b4からのシフト量S1、および未来フレームF3上の注目画素(中央のタップ)a4からのシフト量S2が求められる。なお、このシフト量S1およびシフト量S2は、上述した図12のステップS24において、動き補償用ベクトル決定部123により算出され、供給されるものである。
【0198】
すなわち、中間フレームF2の生成画素c4は、位置的には、過去フレームF1の画素b0、および未来フレームF3の画素a0に、それぞれ対応している。しかしながら、動き補償用ベクトルMV4に基づいて時間解像度の創造を行った方が良好な画像が得られるので、過去フレームF1においては、参照元として画素b0に代えて画素b4が用いられる。このことは、参照元の画素を、画素b4の位置から画素b0の位置まで、シフト量S1だけシフトして(引き寄せて)時間解像度の創造(中間フレームの生成)に利用することと考えることができる。同様に、未来フレームF3において、参照後(参照先)として画素a0に代えて、画素a4が用いられる。このことは、参照元の画素を、画素a4の位置から画素a0の位置まで、シフト量S2だけシフトして(引き寄せて)時間解像度の創造(中間フレームの生成)に利用することと考えることができる。このようにして、シフトは、理論的(概念的)に考えられるだけであり、実際に行われるわけではない。
【0199】
なお、シフト(引き寄せ)は、タップ群単位で行われるので、注目画素a4および参照画素b4に基づいて、それを含むその周辺の3×3画素のタップ群AE4およびタップ群BE4が求められる。
【0200】
このように、これらのシフト量S1およびS2に基づいて、タップ群AE4またはタップ群BE4が概念的にシフトされ、中間フレームF2上の生成画素(タップ群CEの中央)c4を含めたタップ群CE4が構築される。具体的には、タップ群BE4に内分値αに基づく重み付けをした値と、タップ群AE4に内分値(1−α)に基づく重み付けをした値の和に基づいてタップ群CE4が求められる。
【0201】
なお、MPEG2のBピクチャおよびPピクチャの場合は、参照元、および参照後の位置関係と時間的な位置関係が異なる場合がある。
【0202】
以上のようにして求められたタップ群CE4の中から、生成画素c4に応じたクラスタップ(画素)が構築される。クラス画素の数および位置は、メモリの制限または処理速度などの点を考慮して適宜定められる。
【0203】
例えば、クラスタップ構築部131は、シフト量およびシフト量検出特徴量に基づいて、図48に示されるように、入力信号からの5タップ(画素)と、入力信号よりも時間的に手前(過去)に位置するクリエーション信号からの5タップの10タップをクラスタップ(生成画素周辺の画素)として構築する。
【0204】
入力信号およびクリエーション信号におけるクラスタップの構成例を示す図48において、図48Aは、縦軸がフレームの垂直方向、横軸が時間方向の平面におけるクラスタップを示しており、図48Bは、縦軸がフレームの垂直方向、横軸がフレームの水平方向の平面におけるクラスタップを示している。
【0205】
図48Aの例においては、時間方向の手前(図中左側)のタップ群がクリエーション信号のクラスタップ群であり、時間方向において、先に存在するタップ群(図中右側)が入力信号のクラスタップ群である。このクリエーション信号および入力信号のクラスタップは、それぞれ、図48Bに示されるように、5つのクラスタップで構成されている。すなわち、これらのクラスタップは、図48Aにおいては、それらの重なりにより、3つのクラスタップしか示されていないが、実際には、それぞれ5つのクラスタップで構築されている。
【0206】
そこで、ステップS4において、クラスコード生成部132は、動き補償用ベクトル決定部123からのシフト量およびシフト量検出特徴量に基づいて、クラスタップ構築部131により構築されたクラスタップの特徴量を抽出する。この特徴量としては、例えば、タップのシフト量(大きさまたは方向)、シフト量検出特徴量のうちの動き補償残差、シフト量検出特徴量のうちの動き補償用ベクトルの信頼度、または、タップ引き寄せ時におけるブロック境界のパターンなどがある。
【0207】
図49を参照して、ブロック境界のパターンについて説明する。8×8の画素で構成されるブロックの境界の位置は、図47を参照して上述したタップ引き寄せの結果、64通りのパターンのいずれかとなる。図49Aは、このタップ引き寄せ時のブロック境界のパターンを示している。タップ引き寄せを行った場合のブロックにおける、引き寄せられたタップ(中央のタップ)とブロック境界の位置のパターンは、図49Aに示されるように、64パターンに分けられる。
【0208】
図49Aの例においては、水平方向の線と垂直方向の線は、元の(タップ引き寄せ前の)ブロックの境界を表している。パターン0は、引き寄せられたタップのブロックの境界が元のブロック境界と一致する場合のパターンであり、パターン1は、引き寄せられたタップのブロックが元のブロックから1画素分だけ左側に位置するパターンであり、パターン7は、引き寄せられたタップのブロックが元のブロックから7画素分だけ左側に位置するパターンである。また、パターン8は、引き寄せられたタップのブロックが元のブロックから1画素分だけ上側に位置するパターンであり、パターン15は、引き寄せられたタップのブロックが元のブロックから1画素分だけ上側で、かつ7画素分だけ左側に位置するパターンである。さらに、パターン56は、引き寄せられたタップのブロックが元のブロックから7画素分だけ上側に位置するパターンであり、パターン63は、引き寄せられたタップのブロックが元のブロックから7画素分だけ上側で、かつ、7画素分だけ左側に位置するパターンである。なお、パターン2乃至6、パターン9乃至14、パターン16乃至55およびパターン56乃至62も同様に説明されるため、その説明は省略する。
【0209】
図49Bは、横軸が、図49Aによりパターン分けされたブロック境界のパターンにおけるブロック境界の位置(パターンの番号)を示しており、縦軸は、原画像と、原画像を符号化し、再度復号した復号画像の誤差を示している。図49Bから、引き寄せられたタップが、元のブロック境界の近傍に位置するようなパターンPA1(例えば、パターン0,7,15,56,63)にある場合、原画像と復号画像の誤差が大きい傾向になることがわかる。それに対して、元のブロック境界の位置が、ブロックの内部に位置するようなパターンPA2(例えば、パターン24乃至53)にある場合、原画像と復号画像の誤差が小さい傾向になることがわかる。
【0210】
ブロック境界ではブロックノイズが発生しているため、引き寄せられたタップがブロック境界の端に含まれると、ブロックの端で輝度値の差が生じる。ブロックの端のエッジには、DCT係数で表現すると高域の成分が多く含まれており、高域の成分は、量子化により少なくなってしまう確率が高く、誤差が生じ易くなる。このため、引き寄せられたタップがブロック境界の内部に位置するようなパターンの方が原画像と復号画像の誤差を少なくできる。
【0211】
したがって、タップ引き寄せ時におけるブロック境界のパターンを特徴量として求め、この特徴量に基づいてクラス分類することにより、ブロック歪み、モスキートノイズなどの符号化歪みが抑制され、原画像と復号画像の誤差が少ない、品質のよい中間フレームが生成される。
【0212】
図11のステップS5において、クラスコード生成部132は、抽出したクラスタップの特徴量に応じて、予め設定されたしきい値などに基づいて、タップ(画素)のクラスを決定し、図50に示されるようなクラスコードを生成し、予測係数選択部53に出力する。
【0213】
クラスタップによるクラス分類を行うにあたっては、そのクラスタップを構成するデータの各サンプル値を表すビット列をそのまま所定の順番で並べて得られるビット列を、クラスコードとすることも可能であるが、この場合、クラス数(クラスの総数)が膨大な数になる。そこで、クラス分類には、例えば、KビットADRC(Adaptive Dynamic Range Coding)処理などの圧縮処理が採用される。例えば、1ビットADRC処理される場合(K=1の場合)には、そのクラスタップを構成するデータのサンプル値は1ビットとされる。
【0214】
したがって、図50に示されるクラスコードにおいては、R1の6ビットで、ブロック境界の64個のパターンに応じたクラスが表される。ただし、誤差が小さいPA2は使用せずに、誤差が大きいパターンPA1だけを使用するなどすれば、より少ないビット(例えば、4ビット)でブロック境界のパターンを表すことができる。
【0215】
また、R2の2ビットで、動き補償残差量に応じたクラスが表され、R3の4ビットで、シフト量に応じたクラスが表される。さらに、R4の10ビットで、クラスタップを構成する10タップ分の1ビットADRCコードが表される。その結果、図50の例では、合計22ビットでクラスコードが表される。
【0216】
次に、図11のステップS6において、予測係数選択部53は、係数メモリ71−0乃至71−Nの中から、復号部11のパラメータ制御部27から供給されたパラメータBに対応する係数メモリを選択し、その係数メモリに予め記憶された予測係数データのうち、クラス分類部52により生成されたクラスコードに対応する予測係数データを選択し、予測演算部54の演算部142に出力する。なお、この予測係数データは、図51を参照して後述する学習装置301において算出されたものが、パラメータBに応じて係数メモリ71−0乃至71−Nに予め記憶されたものである。
【0217】
ステップS7において、予測演算部54の予測タップ構築部141は、復号部11からの入力信号および信号蓄積部33に蓄積されているクリエーション信号を入力し、動き補償用ベクトル決定部123から供給されるシフト量およびシフト量検出特徴量に基づいて、図47を参照して上述したタップ引き寄せにより生成画素を求め、生成画素に応じた予測タップを構築し、その予測タップを演算部142に出力する。
【0218】
以上のようにして構築された予測タップを、ステップS8において、演算部142は、予測係数選択部53により選択された予測係数データを用いて予測演算処理を行い、時間解像度創造したクリエーション信号を生成し、出力する。
【0219】
このクリエーション信号は、出力部417(図62)を構成するモニタなどに出力されるとともに、次のクリエーション信号の生成のため、信号蓄積部33に蓄積される。
【0220】
以上のようにして、サイドインフォメーションとして伝送されてきて、蓄積された符号化情報の中から複数の動き補償用ベクトルが抽出され、それらに基づいて、有為な動き補償用ベクトルが選択され、有為な動き補償用ベクトル、および、その信頼度などシフト量検出特徴量に基づいて中間フレームが生成されるので、符号化歪みが抑制され、画像品質が向上する。
【0221】
次に、図51は、図2のクラス分類適応処理部31の予測係数選択部53に内蔵される係数メモリ71−0乃至71−Nに記憶させるクラス毎の予測係数データを学習する学習装置301の第1の構成例を示している。
【0222】
なお、この学習装置301は、クラス分類適応処理部31を有する図1の画像データ処理装置1に設置するようにしてもよいし、独立の装置としてもよい。
【0223】
教師信号としての入力信号(この入力信号は、図1の復号部11のピクチャ選択部23から出力される入力信号とは別の信号である)は、符号化部311に入力されるとともに、予測係数算出部315に教師信号として入力される。また、学習装置301には、図1のパラメータ制御部27における場合と同様にして図示せぬパラメータ生成部によりパラメータB(Volume値)が入力される。
【0224】
符号化部311は、入力信号を符号化し、復号部312に出力する。復号部312は、符号化された信号を、パラメータBに応じて復号し、第1の生徒信号として、シフト量演算部313、クラス分類部314、および予測係数算出部315に出力する。
【0225】
また、教師信号としての入力信号から、図1のクリエーション部12における場合と同様の図示せぬクリエーション部により生成されたクリエーション信号は、第2の生徒信号として、シフト量演算部313、クラス分類部314、および予測係数算出部315に入力される。
【0226】
シフト量演算部313は、基本的に、図2のシフト量演算部51と同様に構成されており、復号部312から供給された符号化情報に含まれる動き補償用ベクトルから、候補ベクトルを取得し、第1の生徒信号および第2の生徒信号を用いて、候補ベクトルの信頼度を評価し、最も信頼度の大きい候補ベクトルを選択ベクトルとして選択する。また、シフト量演算部313は、選択ベクトルに基づいて、中央のタップ(注目画素)のシフト量、および、動き補償用ベクトルの信頼度または動き補償残差などのシフト量検出特徴量を求め、クラス分類部314および予測係数算出部315に出力する。
【0227】
クラス分類部314は、基本的に、図2のクラス分類部52と同様に構成されており、第1の生徒信号と第2の生徒信号を用い、シフト情報抽出部313から供給された中央のタップのシフト量およびシフト量検出特徴量に基づいて、タップ引き寄せにより生成画素を求め、生成画素のクラスタップを構築し、クラスコードを予測係数算出部315に出力する。
【0228】
予測係数算出部315は、第1の生徒信号と第2の生徒信号を用い、シフト情報抽出部62から供給された中央のタップのシフト量およびシフト量検出特徴量に基づいて、タップ引き寄せにより生成画素を求め、生成画素の予測タップを構築し、その予測タップと、それに対応する教師信号(入力信号)を用いて、教師信号と生徒信号との関係を、クラス分類部314からのクラスコードに基づいて学習し、パラメータBからの予測係数を予測することにより、クラス毎の予測係数データを演算、生成する。
【0229】
具体的には、例えば、いま、第1の生徒信号と第2の生徒信号(以下、2つの生徒信号をまとめて、単に、生徒信号と称する)から求められた生成画素(生徒画素)に対応する教師信号の画素の画素値yの予測値E[y]を、いくつかの生徒画素x1,x2,・・・の集合と、所定の予測係数w1,w2,・・・の線形結合により規定される線形1次結合モデルにより求めることを考える。この場合、予測値E[y]は、次式で表すことができる。
【0230】
E[y]=w11+w22+・・・・・・(1)
【0231】
式(1)を一般化するために、予測係数wjの集合でなる行列W、生徒信号のxijの集合でなる行列X、および予測値E[yj]の集合でなる行列Y´を
【数1】
Figure 0004003128
で定義すると、次のような観測方程式が成立する。
【0232】
XW=Y´・・・(2)
【0233】
ここで、行列Xの成分xijは、i件目の生徒信号の集合(i件目の教師信号yiの予測に用いる生徒信号の集合)(予測係数)の中のj番目の生徒信号を意味し、行列Wの成分wjは、生徒信号の集合の中のj番目の生徒信号を表し、従って、E[yi]は、i件目の教師信号の予測値を表す。なお、式(1)の左辺におけるyは、行列Yの成分yiのサフィックスiを省略したものであり、また、式(1)の右辺におけるx1,x2,・・・も、行列Xの成分xijのサフィックスiを省略したものである。
【0234】
式(2)の観測方程式に、例えば、最小自乗法を適用して、元の画素値yに近い予測値E[y]を求めることを考える。この場合、教師信号となる真の画素値yの集合でなる行列Y、および画素値yに対する予測値E[y]の残差eの集合でなる行列Eを、
【数2】
Figure 0004003128
で定義すると、式(2)から、次のような残差方程式が成立する。
【0235】
XW=Y+E・・・(3)
【0236】
この場合、元の画素値yに近い予測値E[y]を求めるための予測係数wjは、自乗誤差
【数3】
Figure 0004003128
を最小にすることで求めることができる。
【0237】
したがって、上述の自乗誤差を予測係数wjで微分したものが0になるばあい、すなわち、次式を満たす予測係数wjが、元の画素値yに近い予測値E[y]を求めるための最適値ということになる。
【0238】
【数4】
Figure 0004003128
Figure 0004003128
【0239】
そこで、まず、式(3)を、予測係数wjで微分することにより、次式が成立する。
【0240】
【数5】
Figure 0004003128
Figure 0004003128
【0241】
式(4)および(5)より、式(6)が得られる。
【0242】
【数6】
Figure 0004003128
Figure 0004003128
【0243】
さらに、式(3)の残差方程式における生徒信号xij、予測係数wj、教師信号yiで、および残差eiの関係を考慮すると、式(6)から、次のような正規方程式を得ることができる。
【0244】
【数7】
Figure 0004003128
Figure 0004003128
【0245】
なお、式(7)に示した正規方程式は、行列(共分散行列)Aおよびベクトルvを、
【数8】
Figure 0004003128
で定義するとともに、ベクトルWを、数1で示したように定義すると、式
AW=v・・・(8)
で表すことができる。
【0246】
式(7)における各正規方程式は、生徒信号xijおよび教師信号yiのセットを、ある程度の数だけ用意することで、求めるべき予測係数wjの数Jと同じ数だけたてることができ、したがって、式(8)を、ベクトルWについて解くことで(ただし、式(8)を解くには、式(8)における行列Aが正則である必要がある)、最適な予測係数(ここでは、自乗誤差を最小にする予測係数)wjを求めることができる。なお、式(8)を解くにあたっては、例えば、掃き出し法(Gauss-Jordanの消去法)などを用いることが可能である。
【0247】
以上のように、最適な予測係数、すなわち、画素値の予測値の統計的な誤差を最小にする予測係数wjを求めておき、さらに、その予測係数wjを用いて、式(1)により、元の画素値yに近い予測値E[y]が求められる。
【0248】
以上のようにして生成された予測係数データは、そのパラメータBに応じて、係数メモリ316−0乃至316−Nのうちのいずれかに格納される。例えば、パラメータBが「1.00」であり、ビットレートが10Mbpsである場合の復号信号から学習された予測係数データは、係数メモリ316−9に格納される。パラメータBが「0.90」であり、ビットレートが9Mbpsである場合の復号信号から学習された予測係数データは、係数メモリ316−8に格納される。パラメータBが「0.10」であり、ビットレートが1Mbpsである場合の復号信号から学習された予測係数データは、係数メモリ316−0に格納される。
【0249】
以上のように、この学習装置301においては、パラメータBに応じて、複数の教師信号と生徒信号から複数の予測係数データが作成され、パラメータBに対応した別々のメモリ(係数メモリ316−0乃至316−Nのうちのいずれか)に格納される。すなわち、パラメータBは、予測係数作成用のパラメータとされる。
【0250】
次に、図52のフローチャートを参照して、学習装置301の学習処理を説明する。
【0251】
ステップS121において、符号化部311は、教師信号としての入力信号を符号化し、復号部312に出力する。このとき、符号化部311は、符号化に伴って生成される量子化特性情報と符号化情報をサイドインフォメーションとして、量子化後DCT係数とともに出力する。ステップS122において、復号部312は、符号化された信号を、パラメータBに応じて復号し、第1の生徒信号を生成して、シフト量演算部313、クラス分類部314および予測係数算出部315に出力する。また、同時に、復号部312は、符号化された信号から取得される符号化情報もシフト量演算部313に出力する。
【0252】
ステップS123において、シフト量演算部313は、シフト量の算出処理を実行する。このシフト量の算出処理は、図12を参照して説明した図2のシフト量演算部51の処理と同様の処理となり、繰り返しになるので、その説明は省略するが、このシフト量の演算処理により、復号部11から供給された符号化情報に含まれる動き補償用ベクトルが、候補ベクトルとして、第1の生徒信号と第2の生徒信号(クリエーション信号)のどちらかを用いて、信頼度を評価され、その中で最も信頼度の大きい候補ベクトルが選択ベクトルとして選択される。そして、選択ベクトルに基づいて、中央のタップ(注目画素)のシフト量、および、選択ベクトルの信頼度または動き補償残差などのシフト量検出特徴量が、クラス分類部314および予測係数算出部315に出力される。
【0253】
ステップS124において、クラス分類部314は、図2のクラス分類部52と同様にして、第1の生徒信号と第2の生徒信号を用い、シフト量演算部313から供給された中央のタップのシフト量およびシフト量検出特徴量に基づいて、タップ引き寄せにより生成画素を求め、生成画素のクラスタップを構築する。クラス分類部314は、ステップS125において、シフト量およびシフト量検出特徴量に基づいて、図2のクラス分類部52と同様にして、クラスタップの特徴量を抽出し、それに基づいて、ステップS126において、クラスコードを生成し、予測係数算出部315に出力する。
【0254】
ステップS127において、予測係数算出部315は、第1の生徒信号と第2の生徒信号を用い、シフト量演算部313から供給された中央のタップのシフト量およびシフト量検出特徴量に基づいて、タップ引き寄せにより生成画素を求め、生成画素の予測タップを構築する(その処理は、図2の予測演算部54の図5の予測タップ構築部141の処理と同様である)。予測係数算出部315は、ステップS128において、その予測タップと、それに対応する教師信号を用いて、教師信号と生徒信号との関係を、クラス分類部314からのクラスコードに基づいて学習し、パラメータBからの予測係数を予測することにより、クラス毎の予測係数データを演算、生成する。ステップS129において、予測係数算出部315は、その予測係数データを、パラメータBに応じた係数メモリ316−0乃至316−Nに記憶し、処理を終了する。
【0255】
以上のようにして、パラメータBに応じて係数メモリ316−0乃至316−Nに記憶されたクラス毎の予測係数データが、図2の予測係数選択部53の係数メモリ71−0乃至71−Nに記憶される。
【0256】
図53は、図1のクラス分類適応処理部31の第2の構成例を示している。なお、図中、図2における場合と、対応する部分については、同一の符号を付してある。すなわち、図53のクラス分類適応処理部31は、基本的に、図2における場合と同様に構成されている。
【0257】
ただし、図53の例においては、復号部11からの入力信号、または、信号蓄積部33からのクリエーション信号が、シフト量演算部51のシフト情報抽出部62に供給されず、図53のシフト情報抽出部62は、候補ベクトル取得部61から供給される候補ベクトルを、他の動き補償用ベクトルと比較評価することにより、候補ベクトルの信頼度を評価し、最も信頼度の大きい候補ベクトルを選択ベクトルとして選択し、選択ベクトルに基づいて、中央のタップのシフト量、および、選択ベクトルの信頼度などのシフト量検出特徴量を生成し、クラス分類部52および予測演算部54に出力する。
【0258】
図54は、図53のシフト情報抽出部62の構成例を示している。なお、図54のシフト情報抽出部62は、基本的に、図43における場合と同様に構成されている。ただし、図54の例においては、図43のシフト情報抽出部62の信頼度判定部101と異なり、信頼度判定部101には、復号部11からの入力信号および信号蓄積部33からのクリエーション信号が入力されず、候補ベクトル取得部61からの候補ベクトル群だけが入力される。すなわち、図54のシフト情報抽出部62は、図31の信頼度判定部101および図43の動き補償用ベクトル選択部201により構成されている。
【0259】
したがって、図54の信頼度判定部101の特徴量抽出部111は、候補ベクトルを、他の動き補償用ベクトル(例えば、周辺ベクトルまたは過去ベクトルなど)と比較することにより、候補ベクトルの信頼度を求める。信頼度判定部101の信頼度評価部112は、特徴量抽出部111により求められた候補ベクトルの信頼度が所定の基準値より大きいか否かを判断し、信頼度が大きいと判断された候補ベクトル(有為な候補ベクトル)のみを、その信頼度とともに、動き補償用ベクトル選択部201に出力する。
【0260】
さらに、動き補償用ベクトル選択部201にも、入力信号およびクリエーション信号は入力されず、信頼度判定部101からの有為な候補ベクトル群とその信頼度だけが入力される。
【0261】
したがって、動き補償用ベクトル選択部201は、有為な候補ベクトルを用いて、他の動き補償用ベクトル(例えば、周辺ベクトルまたは過去ベクトルなど)と比較することにより、候補ベクトルのうち、最も信頼度の大きい候補ベクトルを選ぶ。
【0262】
図55のフローチャートを参照して、図53のクラス分類適応処理部31におけるクリエーション処理を説明する。なお、図55のクリエーション処理は、基本的に、図11のクラス分類適応処理と同様の処理である。すなわち、図55のステップS152において実行されるシフト量の算出処理は、図12のシフト量の算出処理と基本的に同様な処理を行う。ただし、図12のステップS22において実行される信頼度判定処理、および、ステップS23において実行される動き補償用ベクトル選択処理における信頼度算出処理(図18のステップS32および図40のステップS112)が、図33,図37,図39および図42で上述した入力信号およびクリエーション信号を使用しない信頼度算出処理とされる。すなわち、図53のシフト情報抽出部62においては、入力信号およびクリエーション信号を使用する信頼度算出処理(図20および図26)は実行されない。
【0263】
これにより、図55のステップS152のシフト量算出処理においてシフト量とともに出力されるシフト量検出特徴量には、入力信号およびクリエーション信号に基づいて生成される動き補償残差などのような情報は含まれない。したがって、入力信号およびクリエーション信号に基づいて生成される動き補償残差などの情報以外のシフト量抽出特徴量(例えば、動き補償用ベクトルの信頼度など)に基づいて、ステップS153において、クラスタップが構築され、ステップS154において、特徴量が抽出され、ステップS155において、クラスコードが生成される。そして、ステップS156において、予測係数が選択され、ステップS157において、予測タップが構築され、ステップS158において、クリエーション信号が生成、出力される。
【0264】
なお、図2および図53におけるシフト情報抽出部62の構成は、入力される情報に基づいて、信頼度判定部101、動き補償用ベクトル選択部102および201から4つの組み合わせ(図3、図31、図43および図54のシフト情報抽出部62)が可能であり、条件が満足される限り、どの構成を使用するようにしてもよい。
【0265】
図56は、図53のクラス分類適応処理部31の係数メモリ71−0乃至71−Nに記憶させる予測係数データを学習する学習装置301の構成例を示している。なお、図中、図51における場合と、対応する部分については、同一の符号を付してある。すなわち、図56のクラス分類適応処理部301は、基本的に、図51における場合と同様に構成されている。
【0266】
ただし、復号信号、または、クリエーション信号が、シフト量演算部313に入力されず、図56のシフト量演算部313は、復号部312から供給される候補ベクトルのみを用いて、他の動き補償用ベクトルと比較評価することにより、候補ベクトルの信頼度を評価し、最も信頼度の大きい候補ベクトルを選択ベクトルとして選択し、選択ベクトルに基づいて、中央のタップのシフト量、および、選択ベクトルの信頼度などのシフト量検出特徴量を、クラス分類部314および予測演算部315に出力する。
【0267】
図57のフローチャートを参照して、図56の学習装置301の学習処理を説明する。なお、図57の学習処理は、基本的に、図52の学習処理と同様の処理である。すなわち、図57のステップS173において実行されるシフト量の算出処理は、図12のシフト量の算出処理と基本的に同様の処理となる。ただし、図12のステップS22において実行される信頼度判定処理、および、ステップS23において実行される動き補償用ベクトル選択処理における信頼度算出処理(図18のステップS32および図44のステップS112)が、図33,図37,図39および図42で上述した入力信号およびクリエーション信号を使用しない信頼度算出処理とされる。すなわち、図56のシフト量演算部313においては、入力信号およびクリエーション信号を使用する信頼度算出処理(図20および図26)は実行されない。
【0268】
これにより、図57のステップS173のシフト量算出処理においてシフト量とともに出力されるシフト量抽出特徴量には、入力信号およびクリエーション信号に基づいて生成される動き補償残差などのような情報は含まれない。したがって、入力信号およびクリエーション信号に基づいて生成される動き補償残差などの情報以外のシフト量抽出特徴量(例えば、動き補償用ベクトルの信頼度など)に基づいて、ステップS174において、クラスタップが構築され、ステップS175において、特徴量が抽出され、ステップS176において、クラスコードが生成され、ステップS177において、予測タップが構築される。そして、ステップS178において、その予測タップと、それに対応する教師データを用いて、教師データと生徒データとの関係を、クラス分類部314からのクラスコードに基づいて学習し、パラメータBからの予測係数を予測することにより、クラス毎の予測係数データを演算、生成し、ステップS179において、その予測係数データを、パラメータBに応じた係数メモリ316−0乃至316−Nに記憶される。
【0269】
以上のようにして、係数メモリ316−0乃至316−Nに記憶されたクラス毎の予測係数データが、図53の予測係数選択部53の係数メモリ71−0乃至71−Nに記憶される。
【0270】
次に、図58は、図1のクラス分類適応処理部31の第3の構成例を示している。なお、図中、図2における場合と、対応する部分については、同一の符号を付してある。
【0271】
図58の例においては、フレーム内処理(他のピクチャを参照しない処理、すなわち、動き補償予測を実行しない処理)を実行する場合のクラス分類適応処理部31が示されている。図58のクラス分類適応処理部31においては、入力信号がクラス分類部52および予測演算部54に入力される。クラス分類部52は、入力信号を用いて、クラスタップを構築し、抽出された特徴量に基づいて生成されたクラスコードを予測係数選択部53に出力する。
【0272】
予測演算部54は、入力信号を用いて予測タップを構築し、その予測タップに基づいて、予測係数選択部53からの予測係数データを用い、演算処理を実行し、フレーム内処理により時間解像度創造してクリエーション信号を出力する。したがって、図58のクラス分類適応処理部31においては、クリエーション信号は用いられない。
【0273】
次に、図59のフローチャートを参照して、図58のクラス分類適応処理部31が実行するクリエーション処理を説明する。
【0274】
クラス分類部52は、ステップS201において、入力信号が入力されるまで待機しており、入力信号が入力されると、ステップS202において、入力信号を用いて、注目画素に応じたクラスタップを構築する。
【0275】
クラス分類部52は、ステップS203において、構築したクラスタップを構成する画素の特徴量を抽出し、ステップS204において、抽出した特徴量に基づいて、1ビットADRC処理などによりクラスコードを生成し、予測係数選択部53に出力する。
【0276】
ステップS205において、予測係数選択部53は、パラメータ制御部27により出力されたパラメータBに対応する係数メモリ71−0乃至71−Nを選択し、その中に記憶されている予測係数データのうち、クラス分類部52により出力されたクラスコードに対応する予測係数データを選択し、予測演算部54に出力する。なお、この予測係数データは、図60を参照して後述する学習装置301において算出されたものが、パラメータBに応じて係数メモリ71−0乃至71−Nに予め記憶されたものである。
【0277】
予測演算部54は、ステップS206において、入力信号から、注目画素に応じた予測タップを構築し、ステップS207において、予測係数選択部53により選択された予測係数データを用いて予測演算処理を行い、クリエーション信号を生成し、出力する。
【0278】
図60は、図58のクラス分類適応処理部31の予測係数選択部53に内蔵される係数メモリ71−0乃至71−Nに記憶させるクラス毎の予測係数データを学習する学習装置301の構成例を示している。図60の例においては、フレーム内処理を実行する場合のクラス分類適応処理部31の構成例が示されている。なお、図中、図51における場合と、対応する部分については、同一の符号を付してある。
【0279】
図60の例の学習装置301には、入力信号のみが入力され、クリエーション信号は入力されない。
【0280】
図60のクラス分類部314は、基本的に、図58のクラス分類部52と同様に構成されており、復号部312から供給される復号信号である生徒信号を用いて、クラスタップを構築し、クラスコードを予測係数算出部315に出力する。
【0281】
予測係数算出部315は、生徒信号を用いて、予測タップを構築し、その予測タップと、それに対応する教師信号(入力信号)を用いて、教師信号と生徒信号との関係を、クラス分類部314からのクラスコードに基づいて学習し、パラメータB毎に予測係数を予測することにより、クラス毎の予測係数データを演算、生成し、その予測係数データを、パラメータBに応じた係数メモリ316−0乃至316−Nに記憶する。
【0282】
次に、図61のフローチャートを参照して、図60の学習装置301の学習処理を説明する。
【0283】
ステップS231において、符号化部311は、入力信号を符号化し、復号部312に出力する。ステップS232において、復号部312は、符号化された信号を、パラメータBに応じて復号し、生徒信号として、クラス分類部314および予測係数算出部315に出力する。
【0284】
クラス分類部314は、ステップS233において、生徒信号を用いて、クラスタップを構築し、ステップS234において、生徒信号に基づいて、クラスタップの特徴量を抽出する。ステップS235において、クラス分類部314は、抽出されたクラスタップの特徴量に基づいて、クラスコードを生成し、予測係数算出部315に出力する。
【0285】
ステップS236において、予測係数算出部315は、生徒信号を用いて予測タップを構築する。予測係数算出部315は、ステップS237において、その予測タップと、それに対応する教師信号を用いて、教師信号と生徒信号との関係を、クラス分類部314からのクラスコードに基づいて学習し、パラメータBからの予測係数を予測することにより、クラス毎の予測係数データを演算、生成し、ステップS238において、その予測係数データを、パラメータBに応じた係数メモリ316−0乃至316−Nに記憶し、処理を終了する。
【0286】
以上のようにして、パラメータBに応じて係数メモリ316−0乃至316−Nに記憶されたクラス毎の予測係数データが、図60の予測係数選択部53の係数メモリ71−0乃至71−Nに記憶される。
【0287】
なお、本発明の画像データ処理装置は、DVD記録再生装置またはBSデジタル信号受信装置などに適用される。
【0288】
上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。この場合、例えば、図1の画像データ処理装置1は、図62に示されるような画像データ処理装置401により構成される。
【0289】
図62において、CPU(Central Processing Unit)411は、ROM(Read Only Memory) 412に記憶されているプログラム、または、記憶部418からRAM(Random Access Memory)413にロードされたプログラムに従って各種の処理を実行する。RAM413にはまた、CPU411が各種の処理を実行する上において必要なデータなどが適宜記憶される。
【0290】
CPU411、ROM412、およびRAM413は、バス414を介して相互に接続されている。このバス414にはまた、入出力インタフェース415も接続されている。
【0291】
入出力インタフェース415には、キーボード、マウスなどよりなる入力部416、CRT(Cathode Ray Tube),LCD(Liquid Crystal Display)などよりなるディスプレイ、並びにスピーカなどよりなる出力部417、ハードディスクなどより構成される記憶部418、モデム、ターミナルアダプタなどより構成される通信部419が接続されている。通信部419は、図示しないネットワークを介しての通信処理を行う。
【0292】
入出力インタフェース415にはまた、必要に応じてドライブ420が接続され、磁気ディスク421、光ディスク422、光磁気ディスク423、或いは半導体メモリ424などが適宜装着され、それから読み出されたコンピュータプログラムが、必要に応じて記憶部419にインストールされる。
【0293】
一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば、汎用のパーソナルコンピュータなどに、ネットワークや記録媒体からインストールされる。
【0294】
この記録媒体は、図62に示されるように、装置本体とは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク421(フレキシブルディスクを含む)、光ディスク422(CD-ROM(Compact Disk-Read Only Memory),DVD(Digital Versatile Disk)を含む)、光磁気ディスク423(MD(Mini-Disk)(商標)を含む)、もしくは半導体メモリ334などよりなるパッケージメディアにより構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに提供される、プログラムが記録されているROM412や、記憶部419に含まれるハードディスクなどで構成される。
【0295】
なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に従って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0296】
【発明の効果】
以上の如く、本発明によれば、時間解像度を行うことができる。特により高品質の時間解像度を行うことができる。また、本発明によれば、ブロック歪み、モスキートノイズなどの符号化歪みが抑制される。
【図面の簡単な説明】
【図1】本発明を適用した画像データ処理装置の構成例を示すブロック図である。
【図2】図1のクラス分類適応処理部の構成例を示すブロック図である。
【図3】図2のシフト情報抽出部の構成例を示すブロック図である。
【図4】図2のクラス分類部の構成例を示すブロック図である。
【図5】図2の予測演算部の構成例を示すブロック図である。
【図6】M=1の場合のタップ引き寄せの例を説明する図である。
【図7】M=1の場合の中間フレームの生成例を説明する図である。
【図8】M=1の場合のタップ引き寄せの例を説明する図である。
【図9】M=1の場合のタップ引き寄せの他の例を説明する図である。
【図10】M=1の場合のタップ引き寄せのさらに他の例を説明する図である。
【図11】図1のクラス分類適応処理部のクリエーション処理を説明するフローチャートである。
【図12】図11のステップS2のシフト量の算出処理を説明するフローチャートである。
【図13】M=3の場合の時間方向の動き補償用ベクトルの例を説明する図である。
【図14】M=3の場合の時間方向の動き補償用ベクトルの他の例を説明する図である。
【図15】時間解像度の創造の例を説明する図である。
【図16】従来の時間解像度の創造の例を説明する図である。
【図17】空間方向の動き補償用ベクトルの例を説明する図である。
【図18】図12のステップS22の信頼度判定処理を説明するフローチャートである。
【図19】図3の特徴量抽出部の構成例を示すブロック図である。
【図20】図16のステップS32の信頼度算出処理を説明するフローチャートである。
【図21】原画像の例を示す図である。
【図22】生成された中間フレームの画像の例を示す図である。
【図23】数値化された信頼度をマッピングした結果例を示す図である。
【図24】図3の特徴量抽出部の他の構成例を示すブロック図である。
【図25】図3の特徴量抽出部が実行する信頼度算出処理の詳細を説明する図である。
【図26】図18のステップS32の信頼度算出処理の他の例を説明するフローチャートである。
【図27】Pピクチャにおける動き補償用ベクトルの比較結果例を示す図である。
【図28】図12のステップS23の動き補償用ベクトル選択処理を説明するフローチャートである。
【図29】動き補償用ベクトルの再探索処理を説明する図である。
【図30】動き補償用ベクトルの再探索処理の詳細を説明する図である。
【図31】図2のシフト情報抽出部の他の構成例を示すブロック図である。
【図32】図31の特徴量抽出部の構成例を示すブロック図である。
【図33】図18のステップS32の信頼度算出処理の他の例を説明するフローチャートである。
【図34】数値化された信頼度をマッピングした他の結果例を示す図である。
【図35】数値化された信頼度をマッピングしたさらに他の結果例を示す図である。
【図36】図31の特徴量抽出部の他の構成例を示すブロック図である。
【図37】図18のステップS32の信頼度算出処理の他の例を説明するフローチャートである。
【図38】図31の特徴量抽出部のさらに他の構成例を示すブロック図である。
【図39】図18のステップS32の信頼度算出処理のさらに他の例を説明するフローチャートである。
【図40】動き補償用ベクトルの履歴を説明する図である。
【図41】図3の特徴量抽出部の他の構成例を示すブロック図である。
【図42】図18のステップS32の信頼度算出処理の他の例を説明するフローチャートである。
【図43】図2のシフト情報抽出部のさらに他の構成例を示すブロック図である。
【図44】図12のステップS23の動き補償用ベクトル選択処理の他の例を説明するフローチャートである。
【図45】生成された中間フレームの画像の他の例を示す図である。
【図46】数値化された信頼度をマッピングした他の結果例を示す図である。
【図47】タップ引き寄せの例を説明する図である。
【図48】クラスタップの構成例を示す図である。
【図49】ブロック境界のパターン例を説明する図である。
【図50】クラスコードの構成例を示す図である。
【図51】本発明の学習装置の構成例を示すブロック図である。
【図52】図51の学習装置の学習処理を説明するフローチャートである。
【図53】図1のクラス分類適応処理部の他の構成例を示すブロック図である。
【図54】図53のシフト情報抽出部の構成例を示すブロック図である。
【図55】図53のクラス分類適応処理部のクリエーション処理の例を説明するフローチャートである。
【図56】図51の学習装置の他の構成例を示すブロック図である。
【図57】図56の学習装置の学習処理を説明するフローチャートである。
【図58】図1のクラス分類適応処理部のさらに他の構成例を示すブロック図である。
【図59】図58のクラス分類適応処理部のクリエーション処理の例を説明するフローチャートである。
【図60】図51の学習装置のさらに他の構成例を示すブロック図である。
【図61】図60の学習装置の学習処理を説明するフローチャートである。
【図62】本発明の画像データ処理装置の他の構成例を示すブロック図である。
【符号の説明】
1 画像データ処理装置,11 復号部,12 クリエーション部,20 可変長復号部,27 パラメータ制御部,31−1乃至31−3 クラス分類適応処理部,32 符号化情報蓄積部,33 信号蓄積部, 51 シフト量演算部,52 クラス分類部,53 予測係数選択部,54 予測演算部,61 候補ベクトル取得部,62 シフト情報抽出部,71−1乃至71−N 係数メモリ,101 信頼度判定部,102 動き補償用ベクトル選択部,111 特徴量抽出部,112 信頼度評価部,121 再探索部,122 特徴量抽出部,123 動き補償用ベクトル決定部,131 クラスタップ構築部,132 クラスコード生成部,141 予測タップ構築部,142 演算部,161 動き補償残差算出部,162 動き補償残差評価部,171 再符号化部,172 抽出部,173 評価部,181 周辺ベクトル抽出部,182 比較部,191 履歴抽出部,192 比較部,201 履歴抽出部,202 不連続性評価部,211 抽出部,212 比較部,301 学習装置,311 符号化部,312 復号部,313 シフト量演算部,314 クラス分類部,315 予測係数算出部,316−1乃至316−N 係数メモリ

Claims (17)

  1. 動き補償予測符号化された画像データに対して中間フレームを生成することにより時間解像度を創造する画像データ処理装置において、
    動き補償予測符号化された画像データに付加されている動き補償用ベクトルから、前記中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する第1の抽出手段と、
    前記第1の抽出手段により抽出された各候補ベクトルの信頼度を算出する信頼度算出手段と、
    前記信頼度算出手段により算出された前記候補ベクトルの信頼度を評価する評価手段と、
    前記評価手段により最も信頼度が大きいと評価された前記候補ベクトルを、前記生成画素の前記動き補償用ベクトルとして選択する第1の選択手段と、
    前記第1の選択手段により選択された前記動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類手段と、
    前記クラス分類手段により分類された前記クラスに対応した予測係数を選択する第2の選択手段と、
    前記注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップする構築手段と、
    選択された前記予測係数と前記予測タップとの積和演算により前記生成画素を演算する演算手段と
    を備えることを特徴とする画像データ処理装置。
  2. 前記信頼度算出手段は、
    前記注目領域を含む入力信号を再度前記動き補償予測符号化する再符号化手段と、
    再符号化された信号に付加されている動き補償用ベクトルから前記候補ベクトルに対応する位置における動き補償用ベクトルである再符号化ベクトルを抽出する第2の抽出手段と、
    前記候補ベクトルと、前記第2の抽出手段により抽出された前記再符号化ベクトルとを比較し、当該比較結果に基づいて前記候補ベクトルの前記信頼度を算出する比較手段と
    を備えることを特徴とする請求項1に記載の画像データ処理装置。
  3. 前記信頼度算出手段は、
    前記複数の候補ベクトルから1つの注目候補ベクトルを設定し、該注目候補ベクトル以外の候補ベクトルを周辺ベクトルとして抽出する周辺ベクトル抽出手段と、
    前記注目候補ベクトルと、前記周辺ベクトルとを比較することにより前記注目候補ベクトルの前記信頼度を算出する比較手段と
    を備えることを特徴とする請求項1に記載の画像データ処理装置。
  4. 前記信頼度算出手段は、
    前記候補ベクトルと連続する、時間的に前方向又は後方向に存在する動き補償用ベクトルをベクトルの履歴として抽出する履歴抽出手段と、
    前記候補ベクトルと、前記ベクトルの履歴から得られる時間的に前方向又は後方向の前記候補ベクトルと比較することにより前記候補ベクトルの前記信頼度を算出する比較手段と
    を備えることを特徴とする請求項1に記載の画像データ処理装置。
  5. 前記信頼度算出手段は、
    前記候補ベクトルと連続する、時間的に前方向又は後方向に存在する動き補償用ベクトルをベクトルの履歴として抽出する履歴抽出手段と、
    前記ベクトルの履歴から得られる前記候補ベクトルの動きの不連続性により前記候補ベクトルの前記信頼度を算出する不連続性評価手段と
    を備えることを特徴とする請求項1に記載の画像データ処理装置。
  6. 前記信頼度算出手段は、
    全画面の動き補償用ベクトルを抽出する抽出手段と、
    前記候補ベクトルと、前記全画面の動き補償用ベクトルと比較し、当該比較結果に基づいて前記候補ベクトルの前記信頼度を算出する比較手段と
    を備えることを特徴とする請求項1に記載の画像データ処理装置。
  7. 前記信頼度算出手段は、前記候補ベクトルの動き補償残差の大きさに基づいて前記候補ベクトルの前記信頼度を算出する
    ことを特徴とする請求項1に記載の画像データ処理装置。
  8. 前記第1の選択手段は、前記評価手段により最も信頼度が大きいと評価された前記候補ベクトルを、前記注目領域の前記動き補償用ベクトルとして選択できなかった場合、前記候補ベクトルのうち、動き補償残差が最も小さい候補ベクトルを前記注目領域の前記動き補償用ベクトルとして選択する
    ことを特徴とする請求項1に記載の画像データ処理装置。
  9. 前記クラス分類手段は、前記第1の選択手段により選択された前記動き補償用ベクトルの動き量に基づいて前記注目領域を前記動き量だけシフトした場合の、シフトされた前記注目領域における、シフトされる前の前記注目領域の境界のパターンに基づいて、前記注目領域を複数のクラスのうちの1つに分類する
    ことを特徴とする請求項1に記載の画像データ処理装置。
  10. 動き補償予測符号化された画像データに対して中間フレームを生成することにより時間解像度を創造する画像データ処理装置の画像データ処理方法であって、
    動き補償予測符号化された画像データに付加されている動き補償用ベクトルから、前記中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する第1の抽出ステップと、
    前記第1の抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算出ステップと、
    前記信頼度算出ステップの処理により算出された前記候補ベクトルの信頼度を評価する評価ステップと、
    前記評価ステップの処理により最も信頼度が大きいと評価された前記候補ベクトルを、前記生成画素の前記動き補償用ベクトルとして選択する第1の選択ステップと、
    前記第1の選択ステップの処理により選択された前記動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、
    前記クラス分類ステップの処理により分類された前記クラスに対応した予測係数を選択する第2の選択ステップと、
    前記注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップする構築ステップと、
    選択された前記予測係数と前記予測タップとの積和演算により前記生成画素を演算する演算ステップと
    を含むことを特徴とする画像データ処理方法。
  11. 動き補償予測符号化された画像データに対して中間フレームを生成することにより時間解像度を創造するコンピュータが読み取り可能なプログラムであって、
    動き補償予測符号化された画像データに付加されている動き補償用ベクトルから、前記中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する第1の抽出ステップと、
    前記第1の抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算出ステップと、
    前記信頼度算出ステップの処理により算出された前記候補ベクトルの信頼度を評価する評価ステップと、
    前記評価ステップの処理により最も信頼度が大きいと評価された前記候補ベクトルを、 前記生成画素の前記動き補償用ベクトルとして選択する第1の選択ステップと、
    前記第1の選択ステップの処理により選択された前記動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、
    前記クラス分類ステップの処理により分類された前記クラスに対応した予測係数を選択する第2の選択ステップと、
    前記注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップする構築ステップと、
    選択された前記予測係数と前記予測タップとの積和演算により前記生成画素を演算する演算ステップと
    を含むことを特徴とするプログラムが記録されている記録媒体。
  12. 動き補償予測符号化された画像データに対して中間フレームを生成することにより時間解像度を創造するコンピュータに実行させるプログラムであって、
    動き補償予測符号化された画像データに付加されている動き補償用ベクトルから、前記中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する第1の抽出ステップと、
    前記第1の抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算出ステップと、
    前記信頼度算出ステップの処理により算出された前記候補ベクトルの信頼度を評価する評価ステップと、
    前記評価ステップの処理により最も信頼度が大きいと評価された前記候補ベクトルを、前記生成画素の前記動き補償用ベクトルとして選択する第1の選択ステップと、
    前記第1の選択ステップの処理により選択された前記動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、
    前記クラス分類ステップの処理により分類された前記クラスに対応した予測係数を選択する第2の選択ステップと、
    前記注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップする構築ステップと、
    選択された前記予測係数と前記予測タップとの積和演算により前記生成画素を演算する演算ステップと
    含むことを特徴とするプログラム。
  13. 動き補償予測符号化された画像データに対して中間フレームを生成することにより時間解像度を創造する画像データ処理装置において、
    動き補償予測符号化された生徒データに付加されている動き補償用ベクトルから、前記中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する抽出手段と、
    前記抽出手段により抽出された各候補ベクトルの信頼度を算出する信頼度算出手段と、
    前記信頼度算出手段により算出された前記候補ベクトルの信頼度を評価する評価手段と、
    前記評価手段により最も信頼度が大きいと評価された前記候補ベクトルを、前記生成画素の前記動き補償用ベクトルとして選択する選択手段と、
    前記選択手段により選択された前記動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類手段と、
    前記注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップし、前記クラス分類手段により分類された前記クラスに基づいて、構築された前記予測タップに対応する教師データを用いて、予測係数を学習する学習手段と
    を備えることを特徴とする画像データ処理装置。
  14. 前記クラス分類手段は、前記選択手段により選択された前記動き補償用ベクトルの動き量に基づいて前記注目領域を前記動き量だけシフトした場合の、シフトされた前記注目領域における、シフトされる前の前記注目領域の境界のパターンに基づいて、前記注目領域を複数のクラスのうちの1つに分類する
    ことを特徴とする請求項13に記載の画像データ処理装置。
  15. 動き補償予測符号化された画像データに対して中間フレームを生成することにより時間解像度を創造する画像データ処理装置の画像データ処理方法であって、
    動き補償予測符号化された生徒データに付加されている動き補償用ベクトルから、前記中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する抽出ステップと、
    前記抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算出ステップと、
    前記信頼度算出ステップの処理により算出された前記候補ベクトルの信頼度を評価する評価ステップと、
    前記評価ステップの処理により最も信頼度が大きいと評価された前記候補ベクトルを、前記生成画素の前記動き補償用ベクトルとして選択する選択ステップと、
    前記選択ステップの処理により選択された前記動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、
    前記注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップし、前記クラス分類ステップの処理により分類された前記クラスに基づいて、構築された前記予測タップに対応する教師データを用いて、予測係数を学習する学習ステップと
    を含むことを特徴とする画像データ処理方法。
  16. 動き補償予測符号化された画像データに対して中間フレームを生成することにより時間解像度を創造するコンピュータが読み取り可能なプログラムであって、
    動き補償予測符号化された生徒データに付加されている動き補償用ベクトルから、前記中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する抽出ステップと、
    前記抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算出ステップと、
    前記信頼度算出ステップの処理により算出された前記候補ベクトルの信頼度を評価する評価ステップと、
    前記評価ステップの処理により最も信頼度が大きいと評価された前記候補ベクトルを、前記生成画素の前記動き補償用ベクトルとして選択する選択ステップと、
    前記選択ステップの処理により選択された前記動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、
    前記注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップし、前記クラス分類ステップの処理により分類された前記クラスに基づいて、構築された前記予測タップに対応する教師データを用いて、予測係数を学習する学習ステップと
    を含むことを特徴とするプログラムが記録されている記録媒体。
  17. 動き補償予測符号化された画像データに対して中間フレームを生成することにより時間解像度を創造するコンピュータに実行させるプログラムであって、
    動き補償予測符号化された生徒データに付加されている動き補償用ベクトルから、前記中間フレームにおける生成対象画素である生成画素を通る複数の候補ベクトルを抽出する抽出ステップと、
    前記抽出ステップの処理により抽出された各候補ベクトルの信頼度を算出する信頼度算 出ステップと、
    前記信頼度算出ステップの処理により算出された前記候補ベクトルの信頼度を評価する評価ステップと、
    前記評価ステップの処理により最も信頼度が大きいと評価された前記候補ベクトルを、前記生成画素の前記動き補償用ベクトルとして選択する選択ステップと、
    前記選択ステップの処理により選択された前記動き補償用ベクトルの起点位置及び終点位置周辺の領域である注目領域を当該注目領域内の画素値に基づいて複数のクラスのうちの1つに分類するクラス分類ステップと、
    前記注目領域内の画素を、中間フレームにおける生成画素を予測するための画素である予測タップし、前記クラス分類ステップの処理により分類された前記クラスに基づいて、構築された前記予測タップに対応する教師データを用いて、予測係数を学習する学習ステップと
    含むことを特徴とするプログラム。
JP2002371403A 2002-12-24 2002-12-24 画像データ処理装置および方法、記録媒体、並びにプログラム Expired - Fee Related JP4003128B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002371403A JP4003128B2 (ja) 2002-12-24 2002-12-24 画像データ処理装置および方法、記録媒体、並びにプログラム
US10/744,043 US7974345B2 (en) 2002-12-24 2003-12-24 Image processing apparatus and associated methodology of creating motion compensating vectors
US11/828,102 US8218637B2 (en) 2002-12-24 2007-07-25 Image processing apparatus and associated method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371403A JP4003128B2 (ja) 2002-12-24 2002-12-24 画像データ処理装置および方法、記録媒体、並びにプログラム

Publications (2)

Publication Number Publication Date
JP2004207802A JP2004207802A (ja) 2004-07-22
JP4003128B2 true JP4003128B2 (ja) 2007-11-07

Family

ID=32810290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371403A Expired - Fee Related JP4003128B2 (ja) 2002-12-24 2002-12-24 画像データ処理装置および方法、記録媒体、並びにプログラム

Country Status (2)

Country Link
US (2) US7974345B2 (ja)
JP (1) JP4003128B2 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4462823B2 (ja) * 2002-11-20 2010-05-12 ソニー株式会社 画像信号の処理装置および処理方法、それに使用される係数データの生成装置および生成方法、並びに各方法を実行するためのプログラム
FR2869753A1 (fr) * 2004-04-29 2005-11-04 St Microelectronics Sa Procede et dispositif de generation de vecteurs candidats pour les systemes d'interpolation d'images par estimation et compensation de mouvement
CA2574579A1 (en) * 2004-07-20 2006-02-02 Qualcomm Incorporated Method and apparatus for frame rate up conversion with multiple reference frames and variable block sizes
JP4755093B2 (ja) * 2005-02-01 2011-08-24 パナソニック株式会社 画像符号化方法および画像符号化装置
EP1908303A4 (en) * 2005-07-01 2011-04-06 Sonic Solutions METHOD, DEVICE AND SYSTEM FOR USE IN MULTIMEDIA SIGNAL CODING
JP2007122232A (ja) * 2005-10-26 2007-05-17 Casio Comput Co Ltd 画像処理装置及びプログラム
US20070147496A1 (en) * 2005-12-23 2007-06-28 Bhaskar Sherigar Hardware implementation of programmable controls for inverse quantizing with a plurality of standards
KR100778116B1 (ko) * 2006-10-02 2007-11-21 삼성전자주식회사 움직임벡터 보정장치 및 보정방법
GB2444534A (en) * 2006-12-06 2008-06-11 Sony Uk Ltd Assessing the reliability of motion information in motion adaptive image processing
WO2009032255A2 (en) * 2007-09-04 2009-03-12 The Regents Of The University Of California Hierarchical motion vector processing method, software and devices
DE102007051175B4 (de) * 2007-10-25 2012-01-26 Trident Microsystems (Far East) Ltd. Verfahren zur Bewegungsschätzung in der Bildverarbeitung
DE102007051174B4 (de) * 2007-10-25 2011-12-08 Trident Microsystems (Far East) Ltd. Verfahren zur Bewegungsschätzung in der Bildverarbeitung
US8238676B2 (en) * 2007-12-14 2012-08-07 Yamaha Corporation Image data compressor and image data decompressor
JP4813517B2 (ja) * 2008-05-29 2011-11-09 オリンパス株式会社 画像処理装置、画像処理プログラム、画像処理方法、および電子機器
RU2519525C2 (ru) * 2010-02-09 2014-06-10 Ниппон Телеграф Энд Телефон Корпорейшн Способ кодирования с предсказанием вектора движения, способ декодирования с предсказанием вектора движения, устройство кодирования фильма, устройство декодирования фильма и их программы
EP2536149A4 (en) * 2010-02-09 2015-06-24 Nippon Telegraph & Telephone PREDICTIVE CODING METHOD FOR MOTION VECTORS, PREDICTIVE DECODING METHOD FOR MOTION VECTORS, VIDEO CODING DEVICE, VIDEO CODING DEVICE AND PROGRAMS THEREFOR
BR112012019671A2 (pt) * 2010-02-09 2019-09-24 Nippon Telegraph & Telephone método de codificação de previsão de vetor de movimento, método de decodificação de previsão de vetor de movimento, aparelho de codificação de gravura em movimento, aparelho de decodificação de gravura em movimento e programas dos mesmos.
TWI450592B (zh) * 2010-02-09 2014-08-21 Nippon Telegraph & Telephone 動向量預測編碼方法、動向量預測解碼方法、動畫像編碼裝置、動畫像解碼裝置及其程式
WO2011128259A1 (en) * 2010-04-13 2011-10-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A video decoder and a video encoder using motion-compensated prediction
US9471892B2 (en) * 2013-03-14 2016-10-18 Profiles International, Inc. System and method for embedding report descriptors into an XML string to assure report consistency
JP2021129131A (ja) * 2018-05-18 2021-09-02 ソニーグループ株式会社 符号化装置、符号化方法、復号装置、及び、復号方法
CN112740678A (zh) * 2018-09-25 2021-04-30 索尼公司 编码装置、编码方法、解码装置和解码方法
CN116389750A (zh) * 2018-12-28 2023-07-04 Jvc建伍株式会社 动图像解码装置和方法、以及动图像编码装置和方法
MX2021007758A (es) * 2018-12-28 2021-08-05 Godo Kaisha Ip Bridge 1 Dispositivo de codificacion de imagenes, metodo de codificacion de imagenes, dispositivo de decodificacion de imagenes y metodo de decodificacion de imagenes.
CN117221605A (zh) * 2018-12-28 2023-12-12 知识产权之桥一号有限责任公司 图像编码装置和方法、图像解码装置和方法、存储介质
BR112021012426A8 (pt) * 2018-12-28 2022-08-02 Jvckenwood Corp Dispositivo de codificação de imagem em movimento, método de codificação de imagem em movimento, programa de codificação de imagem em movimento, dispositivo de decodificação de imagem em movimento, método de decodificação de imagem em movimento e programa de decodificação de imagem em movimento
CN110312131B (zh) * 2019-07-01 2021-03-23 杭州当虹科技股份有限公司 一种基于深度学习的内容自适应在线视频编码方法
US11838531B2 (en) * 2019-12-06 2023-12-05 Dolby Laboratories Licensing Corporation Cascade prediction

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69031107T2 (de) * 1989-10-14 1997-11-13 Sony Corp Anordnung und Verfahren zum Übertragen eines Videosignals
GB2255466B (en) * 1991-04-30 1995-01-25 Sony Broadcast & Communication Digital video effects system for producing moving effects
KR950002658B1 (ko) * 1992-04-11 1995-03-24 주식회사금성사 영상신호의 압축 부호화 및 복호화장치
DE4322343C2 (de) * 1992-07-06 1996-10-02 Mitsubishi Electric Corp Mittel zum Erfassen eines Bewegungsvektors und Verfahren zum Bestimmen eines Bewegungsvektors
PT651574E (pt) * 1993-03-24 2002-02-28 Sony Corp Processo e aparelho para codiicar/descodificar um vector de movimento e processo para codificacao/descodificacao de um sinal de imagem
US5608458A (en) * 1994-10-13 1997-03-04 Lucent Technologies Inc. Method and apparatus for a region-based approach to coding a sequence of video images
US5731850A (en) * 1995-06-07 1998-03-24 Maturi; Gregory V. Hybrid hierarchial/full-search MPEG encoder motion estimation
KR0180170B1 (ko) * 1995-06-30 1999-05-01 배순훈 움직임 추정 방법 및 추정 장치
US5946044A (en) * 1995-06-30 1999-08-31 Sony Corporation Image signal converting method and image signal converting apparatus
US6023301A (en) * 1995-07-14 2000-02-08 Sharp Kabushiki Kaisha Video coding device and video decoding device
JP3994445B2 (ja) * 1995-12-05 2007-10-17 ソニー株式会社 動きベクトル検出装置及び動きベクトル検出方法
EP1343328A3 (en) * 1996-02-07 2005-02-09 Sharp Kabushiki Kaisha Moving image encoding and decoding device
US5867221A (en) * 1996-03-29 1999-02-02 Interated Systems, Inc. Method and system for the fractal compression of data using an integrated circuit for discrete cosine transform compression/decompression
US6057884A (en) * 1997-06-05 2000-05-02 General Instrument Corporation Temporal and spatial scaleable coding for video object planes
US6058143A (en) * 1998-02-20 2000-05-02 Thomson Licensing S.A. Motion vector extrapolation for transcoding video sequences
JPH11275587A (ja) * 1998-03-20 1999-10-08 Pioneer Electron Corp 動きベクトル生成装置、画像符号化装置、動きベクトル生成方法及び画像符号化方法
KR100325253B1 (ko) * 1998-05-19 2002-03-04 미야즈 준이치롯 움직임벡터 검색방법 및 장치
US6263087B1 (en) * 1998-06-26 2001-07-17 Signafy, Inc. Method of encoding bits in a signal
US6442203B1 (en) * 1999-11-05 2002-08-27 Demografx System and method for motion compensation and frame rate conversion
US6738099B2 (en) * 2001-02-16 2004-05-18 Tektronix, Inc. Robust camera motion estimation for video sequences
KR20040050906A (ko) * 2001-10-08 2004-06-17 코닌클리케 필립스 일렉트로닉스 엔.브이. 모션 추정을 위한 장치 및 방법

Also Published As

Publication number Publication date
US20080008245A1 (en) 2008-01-10
US20040190624A1 (en) 2004-09-30
US7974345B2 (en) 2011-07-05
JP2004207802A (ja) 2004-07-22
US8218637B2 (en) 2012-07-10

Similar Documents

Publication Publication Date Title
JP4003128B2 (ja) 画像データ処理装置および方法、記録媒体、並びにプログラム
RU2559738C2 (ru) Способ и устройство для кодирования/декодирования вектора движения
JP5373626B2 (ja) 複数の動きベクトル・プレディクタを使用して動きベクトルを推定する方法、装置、エンコーダ、デコーダ及びデコーディング方法
JP4763422B2 (ja) イントラ予測装置
JP4480713B2 (ja) 改良型符号化モード選択の方法および装置
JP5913283B2 (ja) 動き予測方法
JP4523023B2 (ja) 画像符号化装置および方法
JP2015008510A (ja) 動き予測検索範囲及び拡張動きベクトルの範囲の動的選択
JP5216710B2 (ja) 復号化処理方法
JP4195057B2 (ja) 適応動きベクトルの探索領域を決定する方法、および適応動きベクトルの探索領域を決定する画像圧縮装置。
JP5441812B2 (ja) 動画像符号化装置、及びその制御方法
US12063386B2 (en) Methods, apparatuses, devices, and storage media for encoding or decoding
JP4847076B2 (ja) トランスコーディングのために出力マクロブロック及び動きベクトルを推定する方法及びトランスコーダ
JP2007228560A (ja) 動画像符号化方法および動画像符号化装置
JP4490351B2 (ja) 階層間予測処理方法,階層間予測処理装置,階層間予測処理プログラムおよびその記録媒体
JP4547668B2 (ja) 動き補償予測符号化装置及び動き補償予測符号化方法
JP4561701B2 (ja) 動画像符号化装置
Ates Enhanced low bitrate H. 264 video coding using decoder-side super-resolution and frame interpolation
KR101353289B1 (ko) 율-왜곡 비용함수를 이용한 트랜스코딩 방법 및 이를 이용한 트랜스코더
WO2000062554A1 (en) Image processing method and image processing device
JPH07203452A (ja) 動画像符号化装置
Singh Adaptive Fast Search Block Motion Estimation In Video Compression
JP2005012838A (ja) 画像符号化装置および方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees