JP4002083B2 - Dimethyl terephthalate composition and method for producing the same - Google Patents
Dimethyl terephthalate composition and method for producing the same Download PDFInfo
- Publication number
- JP4002083B2 JP4002083B2 JP2001307289A JP2001307289A JP4002083B2 JP 4002083 B2 JP4002083 B2 JP 4002083B2 JP 2001307289 A JP2001307289 A JP 2001307289A JP 2001307289 A JP2001307289 A JP 2001307289A JP 4002083 B2 JP4002083 B2 JP 4002083B2
- Authority
- JP
- Japan
- Prior art keywords
- terephthalate
- dimethyl
- dmt
- cake
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 title claims description 111
- 239000000203 mixture Substances 0.000 title claims description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 63
- -1 alkylene glycol Chemical compound 0.000 claims description 18
- 238000004821 distillation Methods 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 12
- 238000005886 esterification reaction Methods 0.000 claims description 11
- 229920001283 Polyalkylene terephthalate Polymers 0.000 claims description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 8
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 7
- 238000010992 reflux Methods 0.000 claims description 7
- 239000011541 reaction mixture Substances 0.000 claims description 5
- CJOJIAKIRLKBOO-UHFFFAOYSA-N dimethyl 2-hydroxybenzene-1,4-dicarboxylate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C(O)=C1 CJOJIAKIRLKBOO-UHFFFAOYSA-N 0.000 claims description 4
- BNHGKLCJHMOJSX-UHFFFAOYSA-N methyl 4-(1,3-dioxolan-2-yl)benzoate Chemical compound C1=CC(C(=O)OC)=CC=C1C1OCCO1 BNHGKLCJHMOJSX-UHFFFAOYSA-N 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 3
- 229920002215 polytrimethylene terephthalate Polymers 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims 3
- 230000032050 esterification Effects 0.000 claims 2
- 238000006467 substitution reaction Methods 0.000 claims 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 description 17
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000006227 byproduct Substances 0.000 description 9
- 238000012691 depolymerization reaction Methods 0.000 description 9
- 229920000728 polyester Polymers 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- 238000003756 stirring Methods 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000007809 chemical reaction catalyst Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 4
- QPKOBORKPHRBPS-UHFFFAOYSA-N bis(2-hydroxyethyl) terephthalate Chemical compound OCCOC(=O)C1=CC=C(C(=O)OCCO)C=C1 QPKOBORKPHRBPS-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 238000005809 transesterification reaction Methods 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 2
- 229960001826 dimethylphthalate Drugs 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- FEIOASZZURHTHB-UHFFFAOYSA-N methyl 4-formylbenzoate Chemical compound COC(=O)C1=CC=C(C=O)C=C1 FEIOASZZURHTHB-UHFFFAOYSA-N 0.000 description 2
- QSSJZLPUHJDYKF-UHFFFAOYSA-N methyl 4-methylbenzoate Chemical compound COC(=O)C1=CC=C(C)C=C1 QSSJZLPUHJDYKF-UHFFFAOYSA-N 0.000 description 2
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluic acid Chemical compound CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- REIDAMBAPLIATC-UHFFFAOYSA-M 4-methoxycarbonylbenzoate Chemical compound COC(=O)C1=CC=C(C([O-])=O)C=C1 REIDAMBAPLIATC-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- WJJGAKCAAJOICV-UHFFFAOYSA-N N-dimethyltyrosine Natural products CN(C)C(C(O)=O)CC1=CC=C(O)C=C1 WJJGAKCAAJOICV-UHFFFAOYSA-N 0.000 description 1
- ZVOOGERIHVAODX-UHFFFAOYSA-N O-demycinosyltylosin Natural products O=CCC1CC(C)C(=O)C=CC(C)=CC(CO)C(CC)OC(=O)CC(O)C(C)C1OC1C(O)C(N(C)C)C(OC2OC(C)C(O)C(C)(O)C2)C(C)O1 ZVOOGERIHVAODX-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ポリエステル製造の出発原料となるテレフタル酸ジメチルに関し、更に詳しくは、ポリエステル原料としての特性が改善されたテレフタル酸ジメチル組成物及びその製造方法に関する。
【0002】
【従来の技術】
テレフタル酸ジメチル(以下、DMTと略記することがある。)は、エチレングリコール(以下、EGと略記することがある。)との重縮合体であるポリエチレンテレフタレート(以下、PETと略記することがある。)の主原料であるが、該DMTの代表的な製造方法としてビッテン−ハーキュレス法(Witten−Hercules法)がある。
【0003】
該方法はパラキシレン(以下、PXと略記することがある。)及びp−トルイル酸メチルを空気酸化して、得られた酸化反応混合物を高温高圧条件下、メタノールでエステル化し、エステル化反応混合物からDMTを分離精製する方法である。
【0004】
しかしながら、上述のような方法でPXから製造したDMT(以下、PX−DMTと略記することがある。)は、水蒸気などを接触させると加水分解反応を起こし、酸成分が副生するという問題と、酸化反応で副生するヒドロキシテレフタル酸ジメチル(以下、HDTと略記することがある。)を多量に含有するため、該HDTに由来する蛍光強度が強く、色相が悪いという問題点があった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術が有していた問題を解決し、酸価上昇が抑制され、良好な色相を有するDMT組成物を提供することにある。
【0006】
【課題を解決するための手段】
発明者らは、上記従来技術に鑑み、特に、PX−DMTには存在せず、DMTの酸価上昇防止のため、DMTと容易に混合させることができ、かつ重合反応や製品ポリマー品質には影響のない物質について鋭意研究を重ねた。
【0007】
その結果、特定の構造を有する化合物を微量含有させることで、DMTの酸価上昇を防止できること、また、DMT色相悪化の原因物質を究明し、その含有量を低下させれば良好な色相のDMT組成物を製造できることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明の目的は、
主たる成分がテレフタル酸ジメチルであって、4−(1,3−ジオキソラン−2−イル)安息香酸メチルを0.001〜200ppm、ヒドロキシテレフタル酸ジメチルを0〜1ppm含有する、テレフタル酸ジメチル組成物により達成することができる。
【0009】
【発明の実施の形態】
本発明においては、まず、4−(1,3−ジオキソラン−2−イル)安息香酸メチル(以下、4−DOMBと略記することがある。)を得ることが必要であるが、この方法として、(1)合成によって得る方法、及び(2)ポリアルキレンテレフタレートからEGとMeOHとを用いてDMTを回収するプロセスの副生物を活用する方法を挙げることができ、どちらの方法に由来する4−DOMBであっても、DMT中に微量に含有させることで、本発明の目的は達成される。
【0010】
なお上記(1)の合成方法としては、4−カルボメトキシベンズアルデヒドとEGとをそれぞれ等モル量、既知の汎用酸性触媒下、80〜150℃で常圧加熱反応させれば4−DOMBを容易に得ることができる。なお、ここで脱水反応により副生する水を除去することが重要であり、この副生水除去には、留去若しくはモレキュラーシーブを使用するのが効果的である。
【0011】
一方、上記(2)のDMT回収プロセスの副生物を活用する方法は、副生物をそのまま活用でき、得られた4−DOMBは、その後精製操作も必要としないので、工業的にも大変好ましい方法である。
【0012】
該方法は、まずポリアルキレンテレフタレートを既知の解重合触媒存在下、EG中で解重合反応させる。ここでポリアルキレンテレフタレートとは、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートである。解重合反応で得られた混合物は必要であれば、解重合反応で用いた過剰なEGを抜出し、その後MeOH及び置換エステル化反応触媒と共に反応器内へ導入し、置換エステル化反応させて、粗DMTとアルキレングリコールとを生成させ、この反応混合物に冷却処理を施して、その後遠心分離機により粗テレフタル酸ジメチルのケークと混合溶液とに分離する。
【0013】
次いで、(A)得られた前記ケークに対して、30〜60℃の条件下、1〜5重量倍のメタノールを加えた後、再度遠心分離機により粗テレフタル酸ジメチルのケークと混合溶液に分離する操作を実施するか、(B)得られた該ケークを蒸留精製するにあたり、例えば、蒸留塔頂温度を160〜210℃、圧力を2.7〜13.3kPaとして、還流比を0.1〜2の条件の範囲となるように制御することで、4−DOMBを0.001〜200ppmの範囲で含有するDMT組成物を得ることが可能である。なお、(A)の方法と(B)の方法とは併用しても何等問題は無い。
【0014】
また、HDTについては、DMT中のHDT濃度が、DMTの蛍光強度増加に直接つながることから、該HDT濃度を極力低くする必要があるが、一般的なPX−DMT中のHDT濃度は、PXをまず酸化反応させ生成することから、HDTが副生し最終製品のDMT中には1ppm以上のHDTを含む問題がある。しかしながら、前記(2)のDMT回収プロセスの副生物を活用する方法を採用すれば、HDTが0〜1ppmの範囲のDMT組成物を得ることができる。
【0015】
以上のことから、DMT中に0.001〜200ppmの4−DOMB、0〜1ppmのHDTを含有するDMT組成物を得ることにより、酸価の上昇を防止でき、且つ、蛍光強度が低く色相が良好なポリエステル原料としての特性が改善されたテレフタル酸ジメチル組成物を得ることが可能となる。
【0016】
本発明において、ポリエステル回収プロセスを利用する上記(A)及び/又は(B)の方法の場合において、4−DOMBの添加は回分式でも連続式であっても、いずれも問題なく採用することができるし、また前掲(2)のDMT回収プロセスの副生物を活用する方法を採用し、以下の条件としたときには、4−DOMBとHDTとの含有量が本発明の範囲内におけるDMT組成物を比較的容易に得ることができる。
【0017】
すなわち、ポリエステルのEGによる解重合反応は温度110〜230℃、圧力0.0〜0.2MPa(ゲージ圧)程度であればよく、この範囲である際には、EG解重合反応が十分行われる。ここで、解重合反応温度が110℃未満であると、解重合時間が非常に長くなり効率的でなくなる。一方、230℃を越えると高圧対応の反応器が必要となり、運転面や安全面から考えると好ましくない。
【0018】
また、MeOHによる置換エステル化反応を行う際の反応温度としては、50〜150℃の範囲、反応圧力としては、0.0〜0.59MPa(ゲージ圧)の範囲とすることが好ましく、この範囲にある際には、置換エステル化反応が十分に行われる。なお、置換エステル化反応時間は30分間〜4時間とすることが好ましい。
【0019】
ここで、解重合反応触媒及び置換エステル化反応触媒として既知の触媒をいずれも用いることができるが、アルカリ金属及びアルカリ土類金属の、炭酸塩、炭酸水素塩、及びカルボン酸塩からなる群から選ばれた少なくとも1種以上の金属塩化合物を用いることが、その触媒能の高さの面から好ましい。更には、いずれの反応触媒としても、炭酸ナトリウムを用いることが特に好ましい。
【0020】
この置換エステル化反応で得られた混合物中には、粗DMT、MeOH、EG、及びEG解重合反応と置換エステル化反応での副生成物が存在し、4−DOMB、HDT、その他ジオキサン、ジメチルエーテル、水などが含まれる。
【0021】
この混合物をそのまま用い再結晶操作、あるいはDMTの結晶が完全に溶解しない場合は、加熱して混合溶液による溶解操作を行う。この際、置換エステル化反応温度をそのまま、若しくは混合物の組成により温度を60〜150℃の範囲で一度加熱を行った後、10〜50℃の範囲に冷却する。必要であれば溶媒の潜熱を利用し、混合物を冷却することが好ましい。
【0022】
混合溶液中でのDMT濃度は、10〜40wt%の範囲とすることが好ましい。DMTの濃度が10wt%未満であると、溶媒の使用量が増大し経済的に好ましくない。
【0023】
再結晶処理された混合物は、遠心分離操作などで固液分離し、次いで得られたケークにMeOHを加え洗浄を行う。
【0024】
ここで加えるMeOHの量及び洗浄時の温度は、粗DMTケークを基準として、1〜5倍量、30〜60℃の範囲であることが洗浄効果、固液スラリーのハンドリング性、経済的にも好ましい。なお、該洗浄工程において粗DMTケーク中に含有する4−DOMBが完全に除去されることは無い。また洗浄回数は1〜3回程度行えばよいが、更に洗浄回数を追加しても何ら問題は無い。
【0025】
MeOH洗浄、固液分離を終えた粗DMTケークは加熱、溶融することでMeOHを更に除去後、最終的に減圧下で蒸留精製を行い、留分としてDMT組成物が取り出される。
【0026】
該蒸留精製時の条件は、2.7〜13.3kPaの減圧下、塔頂温度が160〜210℃、還流比0.1〜2.0で実施される。
【0027】
4−DOMBは、DMTに比べ蒸気圧がやや低い程度であり、この範囲内であれば、得られるDMT組成物中に極微量に含有させることができる。蒸留精製条件において、過度の強化はDMT組成物中の4−DOMBの検知が困難となるので好ましくなく、また条件の過度の緩和は、酸成分が留出することでDMT組成物の酸価品質の上昇を招くので避けるべきである。
【0028】
よって、4−DOMBを回収DMT中に、適正な量で含有させるには、蒸留理論段で5〜20段を有する蒸留塔を用い、5.3〜9.3kPaの減圧下、塔頂温度が180〜195℃、還流比0.3〜1.0の条件とすることが品質管理上、特に好ましい。
【0029】
一方、HDTについても、解重合反応段階で副生するHDT量が微量であるため、上記の精製条件を適用すれば、所望のHDT濃度に調整することが可能である。
【0030】
【実施例】
以下実施例により本発明の内容を更に具体的に説明するが本発明はこれにより何等限定を受けるものではない。
【0031】
なお、4−DOMB、HDTの定性分析は、アセトン溶媒及びMeOH溶媒を用い再結晶抽出操作を実施したのち濃縮し、特級試薬アセトン溶媒中で測定して行った。測定装置は、ガスクロマトグラフィー(装置:ヒューレット・パッカード社製HP5890、キャピラリーカラム:J&W社製DB−17)を用いた。
【0032】
また、4−DOMB、HDTの定量分析は、GC−MASS(装置:ヒューレット・パッカード社製、GC/質量検出器=HP6890/HP5973、キャピラリーカラム:J&W社製DB−17)を使用して行った。
【0033】
DMTの蛍光強度については、測定溶媒としてクロロホルムを用い、励起波長:328nmで蛍光波長:454nmで測定した。蛍光光度計は、(株)日立製作所社製F−4500を使用した。
【0034】
ビス−β−ヒドロキシエチレンテレフタレート(以下、BHETと略記することがある。)及び低級オリゴマー成分は、GPC(装置:(株)日立製作所社製L−4000液体クロマトグラフィー、テトラヒドロフラン溶媒)を用い、成分組成比を求めた。
【0035】
テレフタル酸のアルカリ透過率は、「化学工学 第58巻 第10号 第787−789頁(1994年 化学工業会出版)」に記載されている、7.5gのテレフタル酸を50ml、(2mol/L)の水酸化カリウム水溶液を用いて溶液となし、行路長1cmでの340nm波長の透過率より求めた。
【0036】
[参考例1]
ペトロセル社製の白色ブリケット形状のDMTについて、微量成分測定を行った。検知された含有微量成分には、酸成分としてp−トルイル酸、テレフタル酸モノメチル、異性体として、イソフタル酸ジメチル、フタル酸ジメチル、その他エステル類としてp−トルイル酸メチル、4−カルボメトキシベンズアルデヒド、(o、m、p)−フタル酸ジメチルのメチル基一置換体が検出されたが、4−DOMBは、検知されなかった。
【0037】
また、該DMT中にHDTが1.5ppm検出され、蛍光強度を測定すると、その数値は900であった。
【0038】
[参考例2]
三井化学株式会社社製の高純度テレフタル酸(以下、PTAと略記することがある。)のアルカリ透過率を測定したところ、91%であった。
【0039】
[実施例1]
EG200部を500mlセパラブルフラスコに投入し、更に炭酸ソーダ1.5部、ポリエチレンテレフタレート50部を投入し、撹拌速度100rpmにて撹拌しつつ昇温し、内温を185℃とした。この状態を4時間保持したところ、解重合反応が完結した。得られた解重合物を6.65kPaの減圧蒸留で濃縮し、濃縮液と、留分としてのEG150部を回収した。
【0040】
この濃縮液にエステル交換反応触媒として炭酸ソーダ0.5部とMeOH100部を投入し、常圧で液温を75℃、撹拌速度100rpmの状態を1時間保持し、エステル交換反応を実施した。
【0041】
得られた混合物を40℃まで冷却し、ガラス製3G−4のフィルターで濾過した。フィルター上に回収できた粗DMTを100部のMeOH中に投入し、40℃に加温・撹拌洗浄し、再度ガラス製のフィルターで濾過した。この洗浄は2回繰り返した。
【0042】
フィルター上に捕捉できた粗DMTを蒸留装置に仕込み、圧力6.65kPa還流比0.5の条件で減圧蒸留を実施し、留分としてDMT組成物を得た。留分は40部回収できた。釜残を測定しDMT量を測定すると2部であり、投入したポリエチレンテレフタレート量を基準にするとDMTの反応率は93重量%であった。
【0043】
蒸留により精製されたDMT組成物中には、4−DOMBが20ppm、HDTが0.5ppm検出された。DMT組成物中の4−DOMB及びHDTをそれぞれ標品の4−DOMB及びHDTとをGC−MASS解析による比較を実施した結果、検出されたフラグメントイオンが一致し、同一構造であることが確認された。
【0044】
精製されたDMT組成物の品質は、純度99.9重量%以上を有し、酸価は、0.003mg(KOH)/g(DMT)、蛍光強度は330であり、その他品質特性は、参考例で用いた市販品DMTと同等であった。
【0045】
[実施例2]
実施例1で得られたDMT組成物40部を、250℃、圧力3.92MPaに保持しながら連続的に水蒸気を吹き込み、過剰な水蒸気と生成したMeOHを連続的に抜き出し加水分解反応を実施した。反応はほぼ定量的に進み、テレフタル酸が33重量部生成した。
【0046】
得られたテレフタル酸30部にMeOH60部を加え、40℃で撹拌洗浄を行った後、テレフタル酸を濾別し乾燥させた。得られたテレフタル酸のアルカリ透過率を測定したところ、90%であり、三井化学株式会社製のPTAとの有意差は見られなかった。
【0047】
[実施例3]
実施例1で得られたDMT組成物40部とEG75部とをセパラブルフラスコに投入し、100rpm撹拌下で昇温していくと、200℃付近でMeOHが発生し、反応開始が確認された。留出したMeOHは2器の分離塔で系外に留去し、同伴したEGとDMT留分とはフラスコ内に戻す操作を実施した。
【0048】
上記の操作を繰り返しながら、フラスコ内温が220〜250℃となった時点を反応終点としたところ、所要時間は8時間程度要した。
【0049】
得られた混合物の組成をガスクロマトグラフィーで分析したところ、DMTは反応により完全に消失していた。該分析とGPC分析により、BHETは45重量%確認された。その他の成分はそれぞれシャープな分子量分布を示しており、2〜5量体の低級オリゴマーであることが確認できた。
【0050】
[実施例4]
実施例1で得られたDMT組成物を原料として用い、常法に従ってPET製造テストを実施した。酢酸マンガン触媒を用い、EI反応を常圧下、245℃まで実施し、BHETを主成分とする低級オリゴマーを得た。引き続いて、得られたBHETを主成分とする低級オリゴマーに、三酸化アンチモンを加え、0.1kPaの高真空下、290℃、1.8時間で重合を実施した。得られたポリマーの固有粘度は0.70であった。その他ポリマー品質特性である色相、熱特性、DEG含有量についても市販品試薬DMTから製造するポリマーとほぼ同じ分析値であった。
【0051】
上記得られた、ポリマーについて、ヘッドスペースサンプラー装置(パーキンエルマー社製、HS40XL)を取り付けたガスクロマトグラフィーを用い、200℃×60分の条件下で、揮発成分を測定した。結果、4−DOMB及びHDTは検知されなかった。
【0052】
[比較例1]
実施例1において、粗DMTの蒸留条件を圧力6.65kPa、還流比0.05の条件で減圧蒸留を実施し、留分としてDMT組成物を得た。留分は40部回収できた。釜残を測定しDMT量を測定すると2部であり、投入したポリエステルを基準にするとDMTの反応率は93重量%であった。
【0053】
蒸留により精製されたDMT組成物中には、4−DOMBが40ppm、HDTが1.1ppm検出された。
【0054】
精製されたDMT組成物の品質は、純度99.9重量%以上を有し、酸価は、0.003mg(KOH)/g(DMT)であったが、蛍光強度は700という高い数値を示した。
【0055】
[比較例2]
実施例1において、エステル交換反応後、得られた混合物を40℃まで冷却し、ガラス製3G−4のフィルターで濾過した。フィルター上に回収できた45部の粗DMTを40部のMeOH中に投入し、40℃に加温・撹拌洗浄し、再度ガラス製のフィルターで濾過した。この洗浄は2回繰り返した。
【0056】
フィルター上に捕捉できた粗DMTを蒸留装置に仕込み、圧力6.65kPa還流比0.5の条件で減圧蒸留を実施し、留分としてDMTを得た。留分は40部回収できた。釜残を測定しDMT量を測定すると2部であり、投入したポリエステルを基準にするとDMTの反応率は93重量%であった。
【0057】
蒸留により精製されたDMT組成物中には、4−DOMBが250ppm、HDTが0.5ppm検出された。
【0058】
精製されたDMT組成物の品質は、純度99.8重量%であり、酸価は、0.01mg(KOH)/g(DMT)となり、参考例1で用いた市販品試薬DMTと同等の品質を有するものは得ることができなかった。
【0059】
【発明の効果】
本発明によれば、ポリエステル原料としての特性が改善されたテレフタル酸ジメチル組成物を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to dimethyl terephthalate as a starting material for producing polyester, and more particularly to a dimethyl terephthalate composition having improved properties as a polyester material and a method for producing the same.
[0002]
[Prior art]
Dimethyl terephthalate (hereinafter sometimes abbreviated as DMT) is a polyethylene terephthalate (hereinafter abbreviated as PET) which is a polycondensate with ethylene glycol (hereinafter sometimes abbreviated as EG). )), A representative method for producing the DMT is the Bitten-Hercules method (Witten-Hercules method).
[0003]
In this method, para-xylene (hereinafter sometimes abbreviated as PX) and methyl p-toluate are oxidized in air, and the resulting oxidation reaction mixture is esterified with methanol under high-temperature and high-pressure conditions to produce an esterification reaction mixture. This is a method for separating and purifying DMT from slag.
[0004]
However, DMT produced from PX by the above-described method (hereinafter sometimes abbreviated as PX-DMT) causes a hydrolysis reaction when contacted with water vapor and the like, resulting in a problem that an acid component is by-produced. In addition, since it contains a large amount of dimethyl hydroxyterephthalate (hereinafter sometimes abbreviated as HDT) by-produced by the oxidation reaction, there is a problem that the fluorescence intensity derived from the HDT is strong and the hue is poor.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to provide a DMT composition that solves the above-mentioned problems of the prior art, has a good hue, and suppresses an increase in acid value.
[0006]
[Means for Solving the Problems]
In view of the above-mentioned prior art, the inventors are not particularly present in PX-DMT, and can be easily mixed with DMT to prevent an increase in the acid value of DMT. We conducted intensive research on substances that have no effect.
[0007]
As a result, it is possible to prevent an increase in the acid value of DMT by containing a small amount of a compound having a specific structure, and to investigate a causative substance of DMT hue deterioration and to reduce the content thereof, a DMT having a good hue The present inventors have found that a composition can be produced and have completed the present invention.
[0008]
That is, the object of the present invention is to
A main component is dimethyl terephthalate, which contains 0.001 to 200 ppm of methyl 4- (1,3-dioxolan-2-yl) benzoate and 0 to 1 ppm of dimethyl hydroxyterephthalate. Can be achieved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, first, it is necessary to obtain methyl 4- (1,3-dioxolan-2-yl) benzoate (hereinafter sometimes abbreviated as 4-DOMB). Examples include (1) a method obtained by synthesis, and (2) a method utilizing a by-product of a process of recovering DMT from polyalkylene terephthalate using EG and MeOH. 4-DOMB derived from either method Even so, the object of the present invention can be achieved by containing a small amount in DMT.
[0010]
In addition, as a synthesis method of the above (1), 4-carbomethoxybenzaldehyde and EG can be easily converted to 4-DOMB by heating at normal pressure at 80 to 150 ° C. in an equimolar amount under a known general-purpose acidic catalyst. Obtainable. Here, it is important to remove water by-produced by the dehydration reaction, and it is effective to use distillation or molecular sieve to remove the by-product water.
[0011]
On the other hand, the method of utilizing the by-product of the DMT recovery process of (2) above can utilize the by-product as it is, and the obtained 4-DOMB does not require a purification operation thereafter, and is therefore a very preferable method from an industrial viewpoint. It is.
[0012]
In this method, first, polyalkylene terephthalate is depolymerized in EG in the presence of a known depolymerization catalyst. Here, the polyalkylene terephthalate is polyethylene terephthalate, polytrimethylene terephthalate, or polybutylene terephthalate. If necessary, the mixture obtained by the depolymerization reaction is used to extract excess EG used in the depolymerization reaction, and then introduce it into the reactor together with MeOH and a substituted esterification reaction catalyst. DMT and alkylene glycol are formed, the reaction mixture is cooled, and then separated into a crude dimethyl terephthalate cake and mixed solution by a centrifuge.
[0013]
Next, (A) 1 to 5 times by weight of methanol was added to the obtained cake at 30 to 60 ° C., and then separated into a crude dimethyl terephthalate cake and mixed solution by a centrifuge again. (B) In purifying the obtained cake by distillation, for example, the top temperature of the distillation column is 160 to 210 ° C., the pressure is 2.7 to 13.3 kPa, and the reflux ratio is 0.1. It is possible to obtain a DMT composition containing 4-DOMB in a range of 0.001 to 200 ppm by controlling to be in a range of ˜2. Note that there is no problem even if the method (A) and the method (B) are used in combination.
[0014]
As for HDT, since the HDT concentration in DMT directly leads to an increase in the fluorescence intensity of DMT, it is necessary to reduce the HDT concentration as much as possible. However, the HDT concentration in general PX-DMT is PX Since it is first formed by an oxidation reaction, HDT is produced as a by-product, and the final product DMT has a problem of containing 1 ppm or more of HDT. However, if the method of utilizing the by-product of the DMT recovery process (2) is adopted, a DMT composition having an HDT in the range of 0 to 1 ppm can be obtained.
[0015]
From the above, by obtaining a DMT composition containing 0.001 to 200 ppm of 4-DOMB and 0 to 1 ppm of HDT in DMT, an increase in acid value can be prevented, and the fluorescence intensity is low and the hue is low. It becomes possible to obtain a dimethyl terephthalate composition having improved properties as a good polyester raw material.
[0016]
In the present invention, in the case of the above method (A) and / or (B) using a polyester recovery process, the addition of 4-DOMB can be adopted without any problem, whether batch or continuous. In addition, when the method utilizing the by-product of the DMT recovery process described in (2) above is adopted and the following conditions are used, a DMT composition having a content of 4-DOMB and HDT within the scope of the present invention is obtained. It can be obtained relatively easily.
[0017]
That is, the depolymerization reaction of polyester by EG may be performed at a temperature of about 110 to 230 ° C. and a pressure of about 0.0 to 0.2 MPa (gauge pressure). When the temperature is within this range, the EG depolymerization reaction is sufficiently performed. . Here, when the depolymerization reaction temperature is less than 110 ° C., the depolymerization time becomes very long and the efficiency becomes inefficient. On the other hand, if the temperature exceeds 230 ° C., a high-pressure reactor is required, which is not preferable from the viewpoint of operation and safety.
[0018]
Further, the reaction temperature at the time of performing the substituted esterification reaction with MeOH is preferably in the range of 50 to 150 ° C., and the reaction pressure is preferably in the range of 0.0 to 0.59 MPa (gauge pressure). In this case, the substituted esterification reaction is sufficiently performed. The substituted esterification reaction time is preferably 30 minutes to 4 hours.
[0019]
Here, any known catalyst can be used as the depolymerization reaction catalyst and the substituted esterification reaction catalyst, but from the group consisting of carbonates, bicarbonates, and carboxylates of alkali metals and alkaline earth metals. It is preferable to use at least one selected metal salt compound from the viewpoint of high catalytic ability. Furthermore, it is particularly preferable to use sodium carbonate as any reaction catalyst.
[0020]
In the mixture obtained by this substituted esterification reaction, there are crude DMT, MeOH, EG, and by-products in the EG depolymerization reaction and substituted esterification reaction, and 4-DOMB, HDT, other dioxane, dimethyl ether. , Including water.
[0021]
When this mixture is used as it is, recrystallization operation, or when the DMT crystals are not completely dissolved, the mixture is heated and dissolved with a mixed solution. At this time, the substituted esterification reaction temperature is left as it is or after heating once in the range of 60 to 150 ° C. depending on the composition of the mixture, it is then cooled to the range of 10 to 50 ° C. If necessary, it is preferable to cool the mixture using the latent heat of the solvent.
[0022]
The DMT concentration in the mixed solution is preferably in the range of 10 to 40 wt%. If the concentration of DMT is less than 10 wt%, the amount of solvent used increases, which is not economically preferable.
[0023]
The recrystallized mixture is subjected to solid-liquid separation by centrifugation or the like, and then MeOH is added to the obtained cake for washing.
[0024]
The amount of MeOH to be added and the temperature at the time of washing are 1 to 5 times the amount of 30 to 60 ° C. based on the crude DMT cake, the washing effect, the solid-liquid slurry handling property, and economically preferable. In the washing step, 4-DOMB contained in the crude DMT cake is not completely removed. The number of cleanings may be about 1 to 3, but there is no problem even if the number of cleanings is further added.
[0025]
After the MeOH washing and solid-liquid separation, the crude DMT cake is heated and melted to further remove MeOH, and finally purified by distillation under reduced pressure, and the DMT composition is taken out as a fraction.
[0026]
The conditions for the distillation purification are carried out under a reduced pressure of 2.7 to 13.3 kPa, a tower top temperature of 160 to 210 ° C., and a reflux ratio of 0.1 to 2.0.
[0027]
4-DOMB has a slightly lower vapor pressure than DMT, and can be contained in a very small amount in the DMT composition obtained within this range. In distillation purification conditions, excessive strengthening is not preferable because it is difficult to detect 4-DOMB in the DMT composition, and excessive relaxation of the conditions is due to the acid value quality of the DMT composition being distilled out of the acid component. Should be avoided.
[0028]
Therefore, in order to contain 4-DOMB in an appropriate amount in the recovered DMT, a distillation column having 5 to 20 theoretical plates is used, and the top temperature is 5.3 to 9.3 kPa under reduced pressure. It is particularly preferable for quality control that the conditions are 180 to 195 ° C. and the reflux ratio is 0.3 to 1.0.
[0029]
On the other hand, since the amount of HDT produced as a by-product in the depolymerization reaction stage is very small, HDT can be adjusted to a desired HDT concentration by applying the above purification conditions.
[0030]
【Example】
The contents of the present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.
[0031]
In addition, the qualitative analysis of 4-DOMB and HDT was performed by carrying out recrystallization extraction operation using an acetone solvent and MeOH solvent, and then concentrating and measuring in a special grade reagent acetone solvent. As the measuring apparatus, gas chromatography (apparatus: HP5890 manufactured by Hewlett-Packard Company, capillary column: DB-17 manufactured by J & W) was used.
[0032]
Further, quantitative analysis of 4-DOMB and HDT was performed using GC-MASS (apparatus: manufactured by Hewlett-Packard Company, GC / mass detector = HP6890 / HP5973, capillary column: DB-17 manufactured by J & W).
[0033]
The fluorescence intensity of DMT was measured using chloroform as a measurement solvent, excitation wavelength: 328 nm, and fluorescence wavelength: 454 nm. As the fluorometer, F-4500 manufactured by Hitachi, Ltd. was used.
[0034]
Bis-β-hydroxyethylene terephthalate (hereinafter sometimes abbreviated as BHET) and lower oligomer component are components using GPC (apparatus: L-4000 liquid chromatography, tetrahydrofuran solvent, manufactured by Hitachi, Ltd.). The composition ratio was determined.
[0035]
The alkali permeability of terephthalic acid is 50 g of 7.5 g of terephthalic acid described in “Chemical Engineering Vol. 58, No. 10, pp. 787-789 (1994, published by Chemical Industry Association)” (2 mol / L ) Was used as a solution using a potassium hydroxide aqueous solution, and the transmittance was determined from the transmittance at a wavelength of 340 nm with a path length of 1 cm.
[0036]
[Reference Example 1]
Trace component measurement was performed on white briquette-shaped DMT manufactured by Petrocell. The detected trace components include p-toluic acid, monomethyl terephthalate as the acid component, dimethyl isophthalate, dimethyl phthalate as the isomer, methyl p-toluate, 4-carbomethoxybenzaldehyde, o, m, p) A methyl mono-substituted dimethyl phthalate was detected, but 4-DOMB was not detected.
[0037]
Further, when 1.5 ppm of HDT was detected in the DMT and the fluorescence intensity was measured, the numerical value was 900.
[0038]
[Reference Example 2]
The alkali transmittance of high-purity terephthalic acid (hereinafter sometimes abbreviated as PTA) manufactured by Mitsui Chemicals, Inc. was measured and found to be 91%.
[0039]
[Example 1]
200 parts of EG were put into a 500 ml separable flask, 1.5 parts of sodium carbonate and 50 parts of polyethylene terephthalate were added, the temperature was raised while stirring at a stirring speed of 100 rpm, and the internal temperature was set to 185 ° C. When this state was maintained for 4 hours, the depolymerization reaction was completed. The resulting depolymerized product was concentrated by distillation under reduced pressure at 6.65 kPa, and the concentrated solution and 150 parts of EG as a fraction were recovered.
[0040]
To this concentrated liquid, 0.5 parts of sodium carbonate and 100 parts of MeOH were added as a transesterification reaction catalyst, and the transesterification reaction was carried out at normal pressure while maintaining the liquid temperature at 75 ° C. and the stirring speed of 100 rpm.
[0041]
The resulting mixture was cooled to 40 ° C. and filtered through a glass 3G-4 filter. The crude DMT recovered on the filter was put into 100 parts of MeOH, heated to 40 ° C., washed with stirring, and filtered again with a glass filter. This washing was repeated twice.
[0042]
Crude DMT that could be captured on the filter was charged into a distillation apparatus, and vacuum distillation was performed under conditions of a pressure of 6.65 kPa at a reflux ratio of 0.5 to obtain a DMT composition as a fraction. Forty fractions were recovered. When the amount of DMT was measured by measuring the residue in the kettle, it was 2 parts. Based on the amount of polyethylene terephthalate added, the reaction rate of DMT was 93% by weight.
[0043]
In the DMT composition purified by distillation, 20 ppm of 4-DOMB and 0.5 ppm of HDT were detected. As a result of comparing the 4-DOMB and HDT in the DMT composition with 4-DOMB and HDT of the sample by GC-MASS analysis, it was confirmed that the detected fragment ions matched and had the same structure. It was.
[0044]
The quality of the purified DMT composition has a purity of 99.9% by weight or more, the acid value is 0.003 mg (KOH) / g (DMT), the fluorescence intensity is 330, and other quality characteristics are for reference. It was equivalent to the commercial product DMT used in the examples.
[0045]
[Example 2]
While maintaining 40 parts of the DMT composition obtained in Example 1 at 250 ° C. and a pressure of 3.92 MPa, water vapor was continuously blown, and excess water vapor and generated MeOH were continuously extracted to perform a hydrolysis reaction. . The reaction proceeded almost quantitatively and 33 parts by weight of terephthalic acid was produced.
[0046]
After adding 60 parts of MeOH to 30 parts of the obtained terephthalic acid and stirring and washing at 40 ° C., the terephthalic acid was filtered off and dried. When the alkali transmittance of the obtained terephthalic acid was measured, it was 90%, and no significant difference was observed with PTA manufactured by Mitsui Chemicals.
[0047]
[Example 3]
When 40 parts of the DMT composition obtained in Example 1 and 75 parts of EG were put into a separable flask and the temperature was raised with stirring at 100 rpm, MeOH was generated at around 200 ° C., and the start of the reaction was confirmed. . Distilled MeOH was distilled out of the system in two separation towers, and the entrained EG and DMT fractions were returned to the flask.
[0048]
As the reaction end point was reached when the flask internal temperature reached 220 to 250 ° C. while repeating the above operation, the required time was about 8 hours.
[0049]
When the composition of the obtained mixture was analyzed by gas chromatography, DMT was completely lost by the reaction. BHET was confirmed to be 45 wt% by the analysis and GPC analysis. Each of the other components showed a sharp molecular weight distribution, and was confirmed to be a dimer to pentamer lower oligomer.
[0050]
[Example 4]
Using the DMT composition obtained in Example 1 as a raw material, a PET production test was carried out according to a conventional method. Using manganese acetate catalyst, EI reaction was carried out under normal pressure up to 245 ° C. to obtain a lower oligomer mainly composed of BHET. Subsequently, antimony trioxide was added to the obtained lower oligomer mainly composed of BHET, and polymerization was carried out at 290 ° C. for 1.8 hours under a high vacuum of 0.1 kPa. The intrinsic viscosity of the obtained polymer was 0.70. Other polymer quality characteristics such as hue, thermal characteristics, and DEG content were almost the same analytical values as those of the polymer produced from the commercially available reagent DMT.
[0051]
About the obtained polymer, the volatile component was measured on the conditions of 200 degreeC x 60 minutes using the gas chromatography which attached the head space sampler apparatus (the Perkin-Elmer company make, HS40XL). As a result, 4-DOMB and HDT were not detected.
[0052]
[Comparative Example 1]
In Example 1, distillation under reduced pressure was performed under the conditions of distillation of crude DMT at a pressure of 6.65 kPa and a reflux ratio of 0.05 to obtain a DMT composition as a fraction. Forty fractions were recovered. When the residue in the kettle was measured and the amount of DMT was measured, it was 2 parts, and the reaction rate of DMT was 93% by weight based on the added polyester.
[0053]
In the DMT composition purified by distillation, 4-DOMB was detected at 40 ppm and HDT was detected at 1.1 ppm.
[0054]
The quality of the purified DMT composition had a purity of 99.9% by weight or more, and the acid value was 0.003 mg (KOH) / g (DMT), but the fluorescence intensity showed a high value of 700. It was.
[0055]
[Comparative Example 2]
In Example 1, after the transesterification reaction, the obtained mixture was cooled to 40 ° C. and filtered through a glass 3G-4 filter. 45 parts of crude DMT recovered on the filter was put into 40 parts of MeOH, heated to 40 ° C. with stirring and washed, and filtered again with a glass filter. This washing was repeated twice.
[0056]
Crude DMT that could be captured on the filter was charged into a distillation apparatus, and distillation under reduced pressure was performed under conditions of a pressure of 6.65 kPa at a reflux ratio of 0.5, and DMT was obtained as a fraction. Forty fractions were recovered. When the residue in the kettle was measured and the amount of DMT was measured, it was 2 parts, and the reaction rate of DMT was 93% by weight based on the added polyester.
[0057]
In a DMT composition purified by distillation, 250 ppm of 4-DOMB and 0.5 ppm of HDT were detected.
[0058]
The quality of the purified DMT composition is 99.8% by weight, and the acid value is 0.01 mg (KOH) / g (DMT), which is the same quality as the commercial reagent DMT used in Reference Example 1. Those with a could not be obtained.
[0059]
【The invention's effect】
According to the present invention, a dimethyl terephthalate composition having improved properties as a polyester raw material can be provided.
Claims (5)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001307289A JP4002083B2 (en) | 2000-11-27 | 2001-10-03 | Dimethyl terephthalate composition and method for producing the same |
CNB018212786A CN1234676C (en) | 2000-11-27 | 2001-11-22 | Dimethyl terephthalate composition and its producing method |
PCT/JP2001/010241 WO2002042253A1 (en) | 2000-11-27 | 2001-11-22 | Dimethyl terephthalate composition and process for producing the same |
EP01997193.6A EP1344765B1 (en) | 2000-11-27 | 2001-11-22 | Process for producing a dimethyl terephthalate composition |
KR1020037006969A KR100746678B1 (en) | 2000-11-27 | 2001-11-22 | Dimethyl terephthalate composition and process for producing the same |
US10/432,822 US7078440B2 (en) | 2000-11-27 | 2001-11-22 | Dimethyl terephthalate composition and process for producing the same |
MXPA03004661A MXPA03004661A (en) | 2000-11-27 | 2001-11-22 | Dimethyl terephthalate composition and process for producing the same. |
AU2408202A AU2408202A (en) | 2000-11-27 | 2001-11-22 | Dimethyl terephthalate composition and process for producing the same |
AU2002224082A AU2002224082B2 (en) | 2000-11-27 | 2001-11-22 | Dimethyl terephthalate composition and process for producing the same |
HK04104846A HK1061840A1 (en) | 2000-11-27 | 2004-07-06 | Dimethyl terephthalate composition and process forproducing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-359137 | 2000-11-27 | ||
JP2000359137 | 2000-11-27 | ||
JP2001307289A JP4002083B2 (en) | 2000-11-27 | 2001-10-03 | Dimethyl terephthalate composition and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002220362A JP2002220362A (en) | 2002-08-09 |
JP4002083B2 true JP4002083B2 (en) | 2007-10-31 |
Family
ID=26604599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001307289A Expired - Lifetime JP4002083B2 (en) | 2000-11-27 | 2001-10-03 | Dimethyl terephthalate composition and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4002083B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5178211B2 (en) * | 2008-01-22 | 2013-04-10 | 帝人株式会社 | Method for recovering dimethyl terephthalate with improved hue from PET bottle waste |
-
2001
- 2001-10-03 JP JP2001307289A patent/JP4002083B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002220362A (en) | 2002-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5441914B2 (en) | Terephthalic acid composition and method for producing the same | |
JP2008088096A (en) | Method for producing bis-(2-hydroxyethyl) terephthalate and method for producing polyethylene terephthalate | |
JPH06504762A (en) | Lactide production method by dehydration of aqueous lactic acid raw material | |
US3940426A (en) | Process for producing biphenyltetracarboxylic dianhydrides | |
US5770764A (en) | Process for preparing purified aromatic polycarboxylic acids | |
JPH072738A (en) | Separation and recovery dimethyl naphthalenedicarboxylate and dimethyl terephthalate | |
JP4002083B2 (en) | Dimethyl terephthalate composition and method for producing the same | |
GB2041916A (en) | Process for the Recovery of Dimethyl Terephthalate From Polyethylene Terephthalate Polymer Waste | |
JPWO2005040246A1 (en) | Acyloxyacetic acid polymer and process for producing the same | |
US4900865A (en) | Method for producing a di-(mono- or poly-)carboxyaryl ether | |
JP2002060369A (en) | Method for recycling polyester waste | |
JP4645032B2 (en) | Method for producing spiroglycol | |
JP4486237B2 (en) | Method for recovering active ingredients from polyester waste | |
JP2004352713A (en) | Method for producing 1,3-propanediol | |
JP3866876B2 (en) | Method for recovering dimethyl terephthalate | |
JPS6118543B2 (en) | ||
JP4444443B2 (en) | Method for recovering valuable components from polyester waste | |
JPH01268663A (en) | Production of monoglyceride | |
JP2002060543A (en) | Method for recycling polyester waste | |
JPS5859214A (en) | Recovery of terephthalic acid component | |
JP4439964B2 (en) | Method for producing 2,6-naphthalenedicarboxylic acid | |
JP2866214B2 (en) | Production method of alkane glycol | |
JP3866872B2 (en) | Method for recovering dimethyl terephthalate | |
JP2756373B2 (en) | Method for producing 1,1,1-trifluoro-3-nitro-2-propene | |
JP2002167363A (en) | Dimethylterephthalate composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040521 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070515 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070724 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070816 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4002083 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130824 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |