[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4000616B2 - Gear having excellent pitting resistance and method for producing the same - Google Patents

Gear having excellent pitting resistance and method for producing the same Download PDF

Info

Publication number
JP4000616B2
JP4000616B2 JP08578997A JP8578997A JP4000616B2 JP 4000616 B2 JP4000616 B2 JP 4000616B2 JP 08578997 A JP08578997 A JP 08578997A JP 8578997 A JP8578997 A JP 8578997A JP 4000616 B2 JP4000616 B2 JP 4000616B2
Authority
JP
Japan
Prior art keywords
gear
layer
carburized
less
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08578997A
Other languages
Japanese (ja)
Other versions
JPH10259470A (en
Inventor
千尋 笠松
庸 住田
剛 松田
茂 安田
正顕 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP08578997A priority Critical patent/JP4000616B2/en
Publication of JPH10259470A publication Critical patent/JPH10259470A/en
Application granted granted Critical
Publication of JP4000616B2 publication Critical patent/JP4000616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【技術分野】
本発明は,自動車,建設車両および建設機器などにおいて広く利用される歯車,特に耐ピッチング性に優れる歯車,及びその製造方法に関する。
【0002】
【従来技術】
自動車,建設車両および建設機器を取り巻く環境は,省エネルギー化や一層の性能向上が社会的に要請されており,益々,車体の軽量化やエンジン出力の増大への取り組みが進められている。このため,自動車や建設車両・機器に使用される歯車,特に,駆動系伝達部に使用されている歯車の使用環境は,一層過酷になっており,優れた歯元疲労強度や耐ピッチング性を備えた歯車が要求されている。
【0003】
従来の歯車は,これを作製する歯車用鋼として,クロム鋼であるJlS−SCr420鋼,あるいは,クロムモリブデン鋼であるJlS−SCM420鋼などの肌焼鋼を用いていた。そして,これらの肌焼鋼を歯車形状に成形した後,浸炭・焼入れ・焼戻し(以下,浸炭処理という)を施して,いわゆる浸炭歯車となしていた。
【0004】
【解決しようとする課題】
しかしながら,上記従来の歯車においては,次の問題がある。
即ち,近年,自動車や建設車両・建設機器に要求されている車体の軽量化やエンジンの高出力要求が益々強くなっている。そのため,従来鋼を従来の基準で浸炭処理しただけの浸炭歯車では,これらの要求を満たすことができない状態になりつつある。
【0005】
これに対し,強度を向上させた浸炭歯車用鋼については,多数の提案がなされており,また,ショットピーニング処理など製造方法に関する提案も多数なされている。そして,これらの提案によって,特に,歯元強度に関しては飛躍的な向上を示してきた。
【0006】
しかし,歯元強度の向上に対して,歯面強度の向上はそれほど大きくない。このため,歯車の破損モードは,歯元疲労から歯面疲労すなわちピッチング破壊へと変遷した。特に,高面圧および高速回転で使用される歯車は,その環境に対応しきれず,耐ピッチング性が不足するという問題を生じている。
【0007】
このような耐ピッチング性不足に対しては,鋼中酸素量を低減したり,微量元素を添加することによる介在物の形態制御や,浸炭異常層生成元素を低減することによる浸炭異常層の生成を抑制する手法,あるいは焼戻し軟化抵抗性を付与させた歯車用浸炭用鋼が,種々提案されている。
【0008】
例えば,特開平1−52467号公報には,非金属介在物の形状を規定する試みが示されている。しかし,このような提案は,製鋼工程において高度な処理を必要とするため,製造コストを上昇させ,最終的には鋼材のコストを上げることになり,コスト低減を主張するユーザのニーズには合わなくなってきている。
【0009】
また,特開平2−85343号公報には,Si添加量を低減することにより浸炭異常層の発生を抑制し,歯面強度(耐ピッチング性)を向上させる提案が示されている。これに類似した提案は,他にも多数見うけられる。
しかしながら,本開発者らが行った詳細な調査・研究によると,浸炭異常層を抑制する方法では,優れた耐ピッチング性が得られないばかりか,個々の歯車におけるピッチング寿命のばらつきがかえって助長されることがわかった。
【0010】
本発明は,かかる従来の問題に鑑みてなされたもので,低コストで製造することができ,かつ,耐ピッチング性に優れた歯車及びその製造方法を提供しようとするものである。
【0011】
【課題の解決手段】
請求項1の発明は,肌焼鋼を歯車形状に成形後,浸炭処理して得られる歯車において,
上記肌焼鋼は,重量比にて,C:0.10〜0.30%,Si:0.50〜1.50%,Mn:0.30〜1.00%,Cr:0.50〜2.00%,Mo:0.50%以下を含有し,かつ,
1.5≦3×Si(%)−Mn(%)+Cr(%)/4+Mo(%)
を満足し,残部がFeおよび不可避的不純物からなる組成よりなり,
かつ,浸炭処理後の歯車は,C濃度が0.65%以上で,かつ,残留オーステナイト量が25%以下の浸炭層を有していると共に,該浸炭層の外層には不完全焼入れ組織よりなる浸炭異常層を有しており,
上記浸炭異常層の最大深さは5〜40μmであって,かつ,該最大深さ位置から表面までの断面における上記浸炭異常層の占める面積は70%以上であり,
かつ,ピッチング強度が2600MPa以上であることを特徴とする耐ピッチング性に優れる歯車にある
【0012】
本発明において注目すべきことは,上記特定の組成の肌焼鋼を用い上記不完全焼入れ組織よりなる浸炭異常層を積極的に設けたことである。
【0013】
上記浸炭異常層とは,上記のごとく不完全焼入れ組織よりなる層である。不完全焼入れ組織とは,一連の浸炭処理における焼入れ時に発生したトルースタイトあるいはベイナイトよりなる組織である。この浸炭異常層は,処理品の断面を鏡面仕上げした後,ナイタール等の腐食液で腐食すると,黒く腐食されることで,その形態を容易に観察することが可能である。また,この浸炭異常層は,次のように生成する。
【0014】
即ち,例えばガス浸炭処理の場合,浸炭雰囲気中にはある程度の酸素が含まれている。この酸素が鋼の表面から進入すると,結晶粒界近傍の素地に含まれている(固溶している)Si,Cr,Mn,Ni,Moなどのうち,SiおよびCr,Mnは,結晶粒界を拡散してきた酸素と結びつき酸化物を形成する。このため,酸化物が形成された付近では焼入れ性が低下する。それ故,焼入れ時にマルテンサイトが生成されず,トルースタイトあるいはベイナイトが生成する。このトルースタイトあるいはベイナイトよりなる不完全焼入れ組織の層が浸炭異常層である。
【0015】
この浸炭異常層は歯車の最表面に設けられるが,その最大深さは上記のごとく5〜40μmとし,さらに該最大深さ位置から表面までの断面における上記浸炭異常層の占める面積(以下,占有面積率という)が70%以上とする。
この浸炭異常層は,図1に示すごとく,通常,深さにばらつきをもって形成される。そのため,本発明においては,浸炭異常層の厚みを最大深さによって定義すると共に,深さの凹凸の度合いを上記浸炭異常層の占有面積率によって定義した。
【0016】
上記浸炭異常層の最大深さが5μm未満の場合には,後述する初期なじみ性の効果が十分に発揮されないという問題がある。一方,40μmを超える場合には,浸炭異常層の摩耗による摩耗量が大きすぎて歯車の歯当たりが悪化し,運転中のノイズが大きくなったり,かえって歯面に作用する応力分布が悪くなるという問題がある。
【0017】
また,上記の最大深さ位置から表面までの間における浸炭異常層の占める面積が70%未満の場合には,浸炭異常層の深さのばらつきが非常に大きくなる。そのため,後述する浸炭異常層の摩耗後においても,軟質の不完全焼入れ組織が浸炭層表面にくさび状に多数残存することとなる。それ故,これを起点とする亀裂が発生しやすいという問題がある。
【0018】
一方,浸炭異常層の上記占有面積率の上限は,理想的には100%であることが好ましい。即ち,上記浸炭異常層は,その占有面積率が高ければ高いほど深さの凹凸が少なくなり,均一な層となる。そのため,浸炭異常層の摩耗後においては,歯車表面に高硬度の浸炭層が露出し,その後の耐ピッチング性を向上させることができる。
【0019】
次に,上記浸炭異常層の下層に位置する浸炭層は,上記のごとく,C(炭素)濃度が0.65%以上で,かつ,残留オーステナイト量が25%以下とする。
C濃度が0.65%未満の場合には,浸炭焼入れによって得られるマルテンサイト組織の硬度があまり高くならないという問題がある。ただし,C濃度の上限は,粒界にセメンタイトが生成し,疲労強度や耐ピッチング性を低下させるおそれがあるため,1.2%とすることが好ましい。
また,浸炭層における残留オーステナイト量が25%を超える場合には,浸炭層の硬度を十分に高めることができないという問題がある。
【0020】
次に,本発明の歯車の素材としては,上記特定の組成からなる肌焼鋼を用いる。以下に,各化学成分範囲の限定理由を説明する。
【0021】
C:0.10〜0.30%,
浸炭焼入処理,焼戻し処理を行った歯車部品に要求される強度を十分に満たすため,すなわち,浸炭歯車部品の内部硬さHv200〜500を得るためには,0.10%以上のCを含有する必要がある。しかし,0.30%を超えて含有させると内部の靱性が劣化し,歯車の強度を低下させ,さらには被削性の低下や冷間鍛造性を悪化させるため,上限を0.30%とした。
【0022】
Si:0.50〜1.50%,
浸炭処理時,浸炭層のSiは,浸炭雰囲気中の酸素と反応して酸化物を形成する。このため被処理品の表層付近は焼入性が低下し,いわゆる浸炭異常層を形成する。すなわち,Siは,浸炭異常層の形成に重要な影響を及ぼす元素であり,かつ,マルテンサイト組織の焼戻し軟化抵抗性を高める元素でもある。本発明においては,所望の形態の浸炭異常層を得るため,および,焼戻し軟化抵抗性を高めるために,Siを0.50%を超えて含有させる必要がある。しかし,1.50%を超えて含有させると,上記の浸炭異常層が得られないばかりか,冷間鍛造性,被削性,靱性を低下させるため,上限を1.50%とした。
【0023】
Mn:0.30〜1.00%,
Mnは,焼入性向上に顕著な効果を有する元素であり,歯車の内部まで強度を確保するのに必要な硬さ(Hv200〜500)を保証するためには,0.30%以上のMnを含有する必要がある。さらに,Mnも浸炭異常層を生成する元素であるため,その添加量は浸炭異常層の形態を左右する。このため,歯車に必要な浸炭異常層を得るためには,1.00%を超えてはならない。
【0024】
Cr:0.50〜2.00%,
Crは,焼入性を向上させる元素であり,浸炭焼入れ後,上記の内部硬さを得るためには0.30%以上含有させる必要がある。一方,2.00%を超えて含有させると,著しく冷間鍛造性や被削性を悪化させるため上限を2.00%とした。
【0025】
Mo:0.50%以下,
Moは,焼入性およひ靱性を向上させるとともに,浸炭処理後の結晶粒を微細化する効果を有する。また,浸炭異常層を抑制する効果があり,Siが有する浸炭異常層の生成効果と併用することにより,所望の形態の浸炭異常層を得ることができる。この元素は,多量に添加すると,所望の浸炭異常層が得られないだけでなく,コストを上昇させ,更には,冷間鍛造性・被削性を悪化させる。そのため,0.50%を上限とした。なお,上記効果を発揮させるため,下限値は0.10%とすることが好ましい。
【0026】
次に,上記肌焼鋼において化学成分を規制するところの下記の関係式について説明する。
化学成分を規制する関係式,3×Si(%)−Mn(%)+Cr(%)/4+Mo(%)は,マルテンサイトの焼戻し抵抗性を規制するパラメータである。即ち,歯車の歯面は,摩擦による発熱により200〜500℃の環境にさらされ,表面が焼戻される。その結果,歯面の硬度の低下が大きい場合,つまり上記焼戻し抵抗性が低い場合には,ピッチング破壊の要因となる。
【0027】
上記関係式において,その値が1.5以上の場合には,マルテンサイトの焼戻し抵抗性が向上し,歯車の使用中,歯面におけるマルテンサイトの硬さの低下をHv100以下に抑えることができ,歯面硬度の面から耐ピッチング性を向上させることができる。なお,上記関係式の値の上限値は,素材硬さの上昇による加工性(被削性)の悪化や合金元素の増量によるコスト上昇の理由により3.0であることが好ましい。
【0028】
次に,本発明における作用につき説明する。
本発明の歯車は,上記のごとく,特定のC濃度及び残留オーステナイトを有する浸炭層の外層に,さらに上記特定量の浸炭異常層を設けてある。そのため,本発明の歯車は,実使用の段階において優れた初期なじみ性を発揮し,優れた耐ピッチング性を発揮する。
【0029】
即ち,浸炭歯車においては,浸炭処理後に研磨などを行わない場合は,歯面の形状がある程度の誤差(ひずみ)を含むことは避けられない。また,個々の歯車は言うまでもなく,1つの歯車の中でも歯毎に形状が微妙に違っている。この誤差(ひずみ)は,歯面に加わる接触圧力分布に大きく影響を及ぼす。
その結果,従来の歯車のかみ合わせ駆動時において歯面に生じる最大の接触圧力は極度に高い値となり,負荷容量の限界値に達していることもしばしばである。これらは,歯車強度はもちろんのこと,特に面圧の影響が支配的な要因であるピッチング寿命を大きく左右する。
【0030】
この点において,本発明の歯車は,上記高硬度の浸炭層の外層に上記浸炭異常層を上記特定厚みだけ有している。そのため,歯面に存在する誤差の悪影響は,装置に組み込まれた歯車のなじみ運転により,大幅に緩和することができる。
即ち,浸炭異常層は,不完全焼入れ組織よりなる軟質な組織である。そのため摩耗し易い特徴を持つ。この性質が,歯車の初期なじみ性を大きく向上させる。具体的には,歯車を実際にかみ合わせ駆動させることにより,歯面に生じている不均一な応力分布を緩和すべく浸炭異常層が摩耗し,歯面の形状が自己修正される。
【0031】
そして,本発明における浸炭異常層の厚みは5〜40μmである。そのため,この浸炭異常層は上記の初期なじみによって十分に除去される。
また,浸炭異常層が除去された歯面においては,その下層の浸炭層が表面に露出した状態となる。この浸炭層は,上記のごとくC濃度が0.65%以上のマルテンサイト組織よりなり,しかも含有する残留オーステナイト量が25%以下であり,非常に高い硬度を有している。
【0032】
そのため,初期なじみがなされた歯車においては,その歯面は,均一な接触状態が得られる形状と,均一な高硬度とを有するものとなる。
それ故,本発明の歯車は,なじみ運転後において,非常に優れた耐ピッチング性を発揮する。
【0033】
一方,歯車は,使用中の摩擦熱により200〜500℃の環境に曝されて焼戻される。この焼戻しによって歯面の硬度,即ち浸炭層の硬度が低下した場合には,上記の優れた耐ピッチング性が損なわれる。
この点において,本発明の歯車は,上記特定の成分範囲の肌焼鋼を素材として用いている。そのため,焼戻しによる軟化抵抗性に優れている。それ故,高温に曝される運転中においても歯面強度を高く維持することができ,上記の優れた耐ピッチング性を発揮することができる。
【0034】
また,本発明における上記肌焼鋼は,従来の素材に比べてコスト高となるような組成変更を行っていない。また,歯車形状への成形及び浸炭処理のコストも従来と同様とすることができる。
それ故,本発明においては,上記優れた耐ピッチング性の有する歯車を低コストで得ることができる。
【0035】
なお,浸炭異常層自体は,例えばJlS−SCr420鋼,SCM420鋼などの従来の歯車用鋼を用いた場合においても形成することは可能ではある。しかしながら,これらの従来鋼の浸炭異常層は上記占有面積率が小さい(70%未満)。即ち,微視的に見れば,不完全焼入れ組織とマルテンサイト組織の混在する層が歯面表面に存在する状態となる。
【0036】
それ故,従来鋼を用いた歯車においては,たとえ浸炭異常層を設けたとしても,良好な初期なじみ状態が得られないばかりか,残留した不完全焼入れ組織を起点としてピッチング破壊に至る場合が多い。また,同鋼のマルチンサイト組織は軟化抵抗性にも劣る。
【0037】
次に,請求項の発明のように,上記肌焼鋼は,上記組成に加え,さらに,Al:0.020〜0.060%,N:0.0080〜0.0200%を含有していることが好ましい。これにより,歯車の強度をさらに向上させることができる。
【0038】
Al:0.020〜0.060%,
Alは,鋼中のNと化合し,AlNとして浸炭焼入後の結晶粒を微細化し,靱性を向上させる効果を有する。この効果を得るためには,0.020%以上のAlを含有させる必要がある。しかし,0.060%を超えて含有させると,鋼中において過度のAl2 3 が生成され,強度が低下するため,上限を0.060%とした。
【0039】
N:0.0080〜0.0200%,
Nは上述の通り,Alと化合し,AlNとして結晶粒を微細化させる。このような効果を得るためには,0.0080%以上のNを含有する必要がある。一方,0.0200%を超えて含有せさても,前記の効果が飽和するとともに,製鋼時にNがガス化し,鋼の製造を困難にする恐れがあるため,上限を0.0200%とした。
【0040】
また,請求項の発明のように,上記肌焼鋼は,上記組成に加え,さらに,Ti:0.20%以下,Nb:0.20%以下,V:0,30%以下のうちから,1種または2種以上を含有していることが好ましい。これにより,歯車の強度をさらに高めることができる。
【0041】
Ti:0.20%以下,V:0.30%以下,Nb:0.20%以下,
これらの元素は,浸炭後の結晶粒を微細化するなど,靱性を向上させるとともに,疲労強度を向上させる。しかし,多量に添加しても,これらの効果が飽和するだけでなく,粗大な析出物を形成し,強度を低下させるため,上限を,Tiは0.20%,Vは0.30%:Nbは0.20%とした。なお,上記効果を十分に発揮させるため,下限は,Tiは0.01%,Vは0.03%,Nbは0.01%とすることが好ましい。
【0042】
次に,請求項の発明のように,重量比にて,C:0.10〜0.30%,Si:0.50〜1.50%,Mn:0.30〜1.00%,Cr:0.50〜2.00%,Mo:0.50%以下を含有し,かつ,
1.5≦3×Si(%)−Mn(%)+Cr(%)/4+Mo(%)
を満足し,残部がFeおよび不可避的不純物からなる組成の肌焼鋼を用い,
該肌焼鋼を歯車形状に成形し,
次いで,浸炭処理を行って,C濃度が0.65%以上で,かつ,残留オーステナイト量が25%以下の浸炭層を形成すると共に,該浸炭層の外層には不完全焼入れ組織よりなる浸炭異常層を形成し,
かつ,該浸炭異常層の最大深さは5〜40μmとすると共に,該最大深さ位置から表面までの断面における上記浸炭異常層の占める面積は70%以上とすることにより,ピッチング強度を2600MPa以上とすることを特徴とする耐ピッチング性に優れる歯車の製造方法がある
【0043】
上記浸炭処理は,浸炭・焼入れ・焼戻しを含む一連の処理を指す。
また,浸炭は,従来と同様の種々の処理方法を用いることができる。そして,例えばガス浸炭を行う場合には,公知のごとく,ガスのカーボンポテンシャル,温度,処理時間等を最適値に調整することにより,容易に浸炭層のC濃度を調整することができる。
【0044】
また,浸炭を行ってC濃度を調整した後には,その直後又は冷却後に焼入れを行う。焼入れは,一次焼入れと二次焼入れを組み合わせて行っても良いし,直接焼入れを行っても良い。また,上記残留オーステナイト量の調整のため,焼入れ後にサブゼロ処理を行うこともできる。
また,焼入れ後の焼戻しは,通常行われるように,約130〜180℃において行う。
【0045】
このような一連の浸炭処理を,歯車形状に成形した上記特定の成分範囲の肌焼鋼に対して行う。これにより,上記特定の浸炭層と上記特定の浸炭異常層とを有する歯車を容易に製造することができる。
なお,各数値限定の限定理由は上記と同様である。
【0046】
また,請求項の発明のように,上記肌焼鋼は,上記組成に加え,さらに,Al:0.020〜0.060%,N:0.0080〜0.0200%を含有していることが好ましい。
さらに,請求項の発明のように,上記肌焼鋼は,上記組成に加えさらに,Ti:0.20%以下,Nb:0.20%以下,V:0,30%以下のうちから,1種または2種以上を含有していることが好ましい。
これらの場合にも上記と同様の効果が得られる。また,数値限定理由も上記と同様である。
【0047】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかる耐ピッチング性に優れる歯車及びその製造方法につき,図1〜図3を用いて説明する。
本例の歯車1は,図2に示すごとく,一般的な平歯車の例である。なお,平歯車は一例であって,はすば歯車,やまば歯車,かさ歯車,ねじ歯車,ウォームギアその他の種々の歯車に適用可能である。
この歯車1を製造するに当たっては,まず,後述する表2に示したA鋼を素材の肌焼鋼として準備した。
【0048】
A鋼は,表2に示すごとく,C,Si,Mn,Cr,Moの含有量を本発明範囲内に規制すると共にAlを0.030%,Nを0.0120%加えた鋼であり,かつ,1.5≦3×Si(%)−Mn(%)+Cr(%)/4+Mo(%)を満足する鋼である。
【0049】
そして,A鋼を用いて歯車1を作製するに当たっては,これをまず,図2に示した形状の歯車1に切削加工により成形する。
次いで,成形された歯車1を浸炭処理する。本例における浸炭処理は,ガス浸炭法を用い,具体的には図3に示すごとく行った。
【0050】
即ち,まずカーボンポテンシャル(C.P)を0.8〜1.2%に維持すると共に温度950℃にキープしたガス雰囲気中において75分間浸炭させた後,同じく温度950℃で若干C.Pを下げたガス雰囲気中において炭素を鋼内に拡散させる。次いで,C.Pを維持したまま温度を850℃に下げて30分間均熱処理をした後,130℃の油に焼入れた。その後,温度160℃,1時間の焼戻し処理を行った。
【0051】
なお,この処理条件は,鋼種等によって変更することができる。例えば最初の浸炭及び拡散の温度を930〜980℃,時間を0.5〜5時間,均熱の温度を840〜870℃,時間を0.5〜2時間程度の間において変更することができる。
【0052】
上記浸炭処理により得られた歯車1は,図1に示すごとく,母相10の上に浸炭層12が形成され,さらにその上に浸炭異常層11が形成された表面状態となる。
本例における浸炭層12は,EPMAによる分析の結果,C濃度が0.70%であり,X線回折法による調査の結果,残留オーステナイト量が22%となっていた。また,浸炭層12の硬度はHv810と非常に高くなった。
【0053】
また,浸炭異常層11は,図1に示すごとく,その最大深さDが12μmであって,かつ,最大深さ位置から表面までの断面Aにおける浸炭異常層11の占める面積は80%であった。
【0054】
次に,本例の歯車1の作用につき説明する。
本例の歯車1は,上記のごとく,高硬度の浸炭層12の外層に,さらに上記特定量の浸炭異常層12を設けてある。
そのため,図1に示すごとく,2つの歯車1をかみ合わせて駆動することにより優れた初期なじみ性が発揮される。
【0055】
即ち,歯車1においては,歯面15に生じる不均一な応力分布を緩和すべく浸炭異常層11が摩耗し,歯面15の形状が自己修正される。そして,浸炭異常層11が摩耗により除去された歯面15においては,その下層の浸炭層12が表面に露出した状態となる。
【0056】
それ故,本例の歯車1は,一定の初期なじみ運転後においては,歯面15の均一な接触状態が得られて応力分布が均一となると共に,接触面が高硬度の浸炭層により構成されるようになる。
これにより,従来の浸炭異常層を極力少なくする対策を施した歯車に比べて接触時の応力状態を良好にすることができ,耐ピッチング性を向上させることができる。
【0057】
さらに,本例の歯車1は,上記特定組成のA鋼を素材として用いている。そのため,歯車の運転時における摩擦熱による硬度低下も少ない。
それ故,本例の歯車1は,長期間の使用によっても耐ピッチング性があまり劣化せず,長寿命となる。
【0058】
実施形態例2
本例は,実施形態例1のA鋼に代えて,表1に示した20種類の供試鋼を準備して歯車を作製し,その浸炭層の軟化抵抗性を定量的に評価した。
各供試鋼を用いた歯車の作製は,基本的に実施形態例1と同様の製造方法によって行った。ただし,成分の違いによる焼入れ性の差異による影響を緩和するため,いずれの歯車も浸炭処理における焼戻し後において温度−40〜−70℃,1時間のサブゼロ処理を実施した。
【0059】
また,軟化抵抗性の評価のため,上記のサブゼロ処理後において,さらに温度250℃,4時間の再焼戻し処理を行った。そして,再焼戻し処理前と後の浸炭層の断面硬度を測定した。
測定結果を表1及び図4に示す。また,各鋼の化学成分における次の関係式,3×Si(%)−Mn(%)+Cr(%)/4+Mo(%)の値についても表1に併記する。
なお図4は,横軸に関係式の値を,縦軸に硬さ(Hv)をとり,再焼戻し前(○),再焼戻し後(●)の硬度をプロットしたものである。
【0060】
表1及び図4より知られるごとく,いずれの供試鋼においても,再焼戻し前の浸炭層の硬度は,800Hv前後と非常に高い硬度を示した。これに対し,再焼戻し後においては,上記関係式の値が小さいほど硬度が低い傾向を示した。特に,同図に示すごとく,関係式の値が1.5未満の場合には,700Hvを切るような低い硬度まで大きく低下した。
【0061】
この硬度低下と上記関係式の値との関係を明確にすべく,これを図5に示す。
図5は,横軸に関係式の値を,縦軸に硬度の低下値(Hv)をとったものである。
同図より知られるごとく,関係式の値と再焼戻しによる硬度の低下値には相関関係があることがわかる。そして,関係式の値が1.5を超える場合には,再焼戻しによる硬さ低下が100Hv以下となることもわかる。
【0062】
以上の結果から,上記関係式の値を1.5以上に規制した鋼を用いた本発明の歯車は,歯車使用時の摩擦熱による軟化を抑制することができ,歯車の耐ピッチング性を長期にわたって維持することができることが明確となった。
【0063】
【表1】

Figure 0004000616
【0064】
実施形態例3
本例は,表2に示すごとく,実施形態例1において用いたA鋼の他に8種類(合計9種類)の供試鋼を準備し,肌焼鋼の組成,浸炭異常層の深さ等がピッチング強度等にどのように影響するかを定量的に評価した。
まず,準備した供試鋼の化学成分の一覧を表2に示す。
【0065】
【表2】
Figure 0004000616
【0066】
次に,各供試鋼は,溶解,鍛伸鍛造,焼ならしを行った後に,後述する各試験用の試験片に加工し,浸炭処理行った。浸炭処理は,後述の表3に示すごとく,浸炭層のC濃度を0.65%以上に保ちつつ,浸炭異常層の最大深さ及び占有面積率を変化させるように行った。具体的には,通常のガス浸炭を行ったものについては,実施形態例1の浸炭方法(図3)を基本とし,温度,時間,C.Pの各条件を微調整することにより行った。また,浸炭異常層を全く生成させないものについては,真空ガス浸炭処理により行った。
【0067】
次に,歯車における歯面強度の評価するための代替試験として,図6,図7に示すごとく,ローラピッチング試験を行った。
ローラピッチング試験は,図6,図7に示すごとく,中央部分に試験部分411を有する小ローラ41と,円盤状の大ローラ42とを用いて行う。これら小ローラ41及び大ローラ42は,同一鋼種を用いて同じ製造工程及び浸炭処理を施して作製する。
【0068】
小ローラ41は,図7(a)に示すごとく,全長Lが130mmの中央部分に,幅Wが28mm,外径D1 が26mmの試験部分411を設けてなる。また,大ローラ42は,図7(b)に示すごとく,厚みTが18mm,外径D2 が130mmの円盤であって,その端部421は図7(c)に示すごとく,クラウニング半径300mmの曲面にしてある。
【0069】
そして,図6に示すごとく,軸429にセットした大ローラ42の端部421と小ローラ41の試験部分411とを当接させた状態で,それぞれの周速に差をつけて回転させる。具体的には,小ローラ41の回転数を2000rpmとし,すべり率(周速差)を−40%とした。また,潤滑は油温120℃のATF(オートマチックトランスミッションフルード)により行った。
【0070】
そして,小ローラ41と大ローラ42との間に一定の面圧をかけた状態で回転させてピッチング発生までの小ローラ41の総回転数を求める。これを面圧を代えて繰り返し行う。なお,ローラピッチング試験機としては,コマツエンジニアリング(株)製のものを用いた。
【0071】
そして,本例においては,小ローラ41を107 回以上回転させてもピッチングが発生しない面圧(107 回耐久面圧)をピッチング強度(MPa)として評価に用いた。
試験結果を表3に示す。
【0072】
表3より知られるごとく,浸炭異常層の最大深さが0のもの及び40μmを超えるもの(試料No.1,6,12)については,すべてピッチング強度が1800MPa以下と低い値になった。
また,浸炭異常層の最大深さが5〜40μmの範囲内のものであっても,浸炭異常層の占有面積率が70%未満の場合(試料No.3,14)には,同じく1800MPa以下という低い値となった。逆に,浸炭異常層の占有面積率が70%以上の場合でも,上記のごとく浸炭異常層の最大深さが40μmを越える場合(試料No.6)には,同じく1800MPa以下という低い値となった。
【0073】
また,浸炭異常層の最大深さ及び占有面積率が良好であっても,鋼の成分範囲が本発明範囲外の場合(試料No.13),及び浸炭異常層の最大深さ及び占有面積率が良好であり,かつ,鋼の成分範囲が本発明範囲内にあっても,上述した関係式の値が1.5未満の場合(試料No.10)については,ピッチング強度が低い結果となった。
【0074】
次に,歯車の歯元強度を推定するための代替試験として,小野式回転曲げ疲労試験を行った。
小野式回転曲げ疲労試験は,図8に示すごとき形状の試験片5を用い,JIS−Z2274の「金属材料の回転曲げ疲れ試験方法」に準じて行った。なお,回転数は3600rpmとした。
そして,本例においては,107 回以上回転させても破断しない曲げ応力(107 回耐久応力)を評価に用いた。
【0075】
試験結果を表3に示す。
表3により知られるごとく,試料No.6以外のものは52Kgf/mm2 以上となり良好な結果が得られた。これに対し,試料No.6は,小野式回転曲げ強度が最も低い値となった。これは,浸炭異常層の最大深さが深すぎたためであると考えられる。
【0076】
【表3】
Figure 0004000616
【0077】
以上の試験結果から,鋼の成分範囲,関係式の具備,浸炭異常層の適度な形成によって,ピッチング強度を確実に向上させることができることがわかる。また,ピッチング強度を向上できる範囲においては,小野式回転曲げ強度も良好であり,歯車における歯元強度も良好に維持することができることがわかる。
【0078】
【発明の効果】
上述のごとく,本発明によれば,低コストで製造することができ,かつ,耐ピッチング性に優れた歯車及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例1における,浸炭異常層の形成状態を示す説明図。
【図2】実施形態例1の歯車を示す説明図。
【図3】実施形態例1における,浸炭処理条件を示す説明図。
【図4】実施形態例2における,再焼戻し前後における浸炭層の硬度を示す説明図。
【図5】実施形態例2における,再焼戻しによる硬度低下状態を示す説明図。
【図6】実施形態例3における,ローラピッチング試験方法を示す説明図。
【図7】実施形態例3における,(a)小ローラ,(b)大ローラ,(c)大ローラ端部の形状を示す説明図。
【図8】実施形態例3における,小野式回転曲げ疲労試験の試験片形状を示す説明図。
【符号の説明】
1...歯車,
10...母相,
11...浸炭異常層,
12...浸炭層,[0001]
【Technical field】
The present invention relates to a gear widely used in automobiles, construction vehicles, construction equipment, and the like, in particular, a gear excellent in pitching resistance, and a manufacturing method thereof.
[0002]
[Prior art]
In the environment surrounding automobiles, construction vehicles and construction equipment, there is a social demand for energy saving and further performance improvement, and efforts to reduce the weight of the vehicle body and increase the engine output are being promoted. For this reason, the usage environment of gears used in automobiles, construction vehicles and equipment, especially gears used in drive train transmission parts, has become more severe, and has excellent tooth fatigue strength and pitting resistance. Gears equipped are required.
[0003]
Conventional gears used case-hardening steel such as JlS-SCr420 steel, which is chromium steel, or JlS-SCM420 steel, which is chromium molybdenum steel, as the gear steel for producing the gear. These case-hardened steels were formed into gear shapes, and then carburized, quenched, and tempered (hereinafter referred to as carburizing treatment) to form so-called carburized gears.
[0004]
[Problems to be solved]
However, the conventional gear has the following problems.
That is, in recent years, there has been an increasing demand for lighter body and higher engine output required for automobiles, construction vehicles and construction equipment. For this reason, carburized gears that are simply carburized from conventional steel according to conventional standards are becoming unable to satisfy these requirements.
[0005]
On the other hand, many proposals have been made on steel for carburized gears with improved strength, and many proposals have been made regarding manufacturing methods such as shot peening. These proposals have shown dramatic improvements, especially in terms of tooth root strength.
[0006]
However, the improvement of the tooth surface strength is not so great with respect to the improvement of the tooth root strength. For this reason, the gear failure mode changed from root fatigue to tooth surface fatigue, that is, pitching failure. In particular, gears used with high surface pressure and high speed rotation cannot cope with the environment, resulting in a problem of insufficient pitting resistance.
[0007]
For this lack of pitting resistance, it is possible to reduce the amount of oxygen in the steel, to control the form of inclusions by adding trace elements, and to form an abnormal carburization layer by reducing carburizing abnormal layer formation elements. Various methods have been proposed to suppress the erosion or carburizing steel for gears with resistance to temper softening.
[0008]
For example, JP-A-1-52467 discloses an attempt to define the shape of non-metallic inclusions. However, such a proposal requires advanced processing in the steelmaking process, which increases the manufacturing cost and ultimately increases the cost of the steel material, which meets the needs of users who insist on cost reduction. It is gone.
[0009]
Japanese Patent Laid-Open No. 2-85343 discloses a proposal for suppressing the occurrence of a carburized abnormal layer and reducing the tooth surface strength (pitting resistance) by reducing the amount of Si added. There are many other proposals similar to this.
However, according to the detailed investigation and research conducted by the developers, the method of suppressing the carburized abnormal layer does not only provide excellent pitting resistance, but also promotes variations in pitching life of individual gears. I found out.
[0010]
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a gear that can be manufactured at low cost and has excellent pitching resistance, and a manufacturing method thereof.
[0011]
[Means for solving problems]
  The invention of claim 1 is a gear obtained by carburizing the case-hardened steel after forming it into a gear shape.
  The above case-hardened steel has a weight ratio of C: 0.10 to 0.30%, Si: 0.50 to 1.50%, Mn: 0.30 to 1.00%, Cr: 0.50. 2.00%, Mo: 0.50% or less, and
  1.5 ≦ 3 × Si (%) − Mn (%) + Cr (%) / 4 + Mo (%)
And the balance is composed of Fe and inevitable impurities,
  In addition, the carburized gear has a carburized layer having a C concentration of 0.65% or more and a residual austenite amount of 25% or less, and an outer hardened structure has an incompletely hardened structure. Has a carburized abnormal layer,
The maximum depth of the carburizing abnormal layer is 5 to 40 μm, and the area occupied by the carburizing abnormal layer in the cross section from the maximum depth position to the surface is 70% or more,
  And it exists in the gear excellent in pitching resistance characterized by pitching strength being 2600MPa or more.
[0012]
  What should be noted in the present invention is that the case-hardened steel having the above specific composition is used.,Carburized abnormal layer consisting of the above incompletely quenched structure,This is a positive setting.
[0013]
The carburized abnormal layer is a layer composed of an incompletely quenched structure as described above. An incompletely hardened structure is a structure made of troostite or bainite generated during quenching in a series of carburizing processes. This carburized abnormal layer can be easily observed when it is corroded black when it is corroded with a corrosive solution such as nital after mirror finishing of the cross section of the treated product. The carburized abnormal layer is generated as follows.
[0014]
That is, for example, in the case of gas carburizing, a certain amount of oxygen is contained in the carburizing atmosphere. When this oxygen enters from the steel surface, among Si, Cr, Mn, Ni, Mo, etc. contained (solid solution) in the substrate near the grain boundary, Si, Cr, and Mn are crystal grains. Combines with oxygen that has diffused through the field to form oxides. For this reason, the hardenability decreases in the vicinity where the oxide is formed. Therefore, martensite is not generated during quenching, and troostite or bainite is generated. This layer of incompletely quenched structure made of troostite or bainite is a carburized abnormal layer.
[0015]
  This carburizing abnormal layer is provided on the outermost surface of the gear, and the maximum depth is 5 to 40 μm as described above, and the area occupied by the carburizing abnormal layer in the cross section from the maximum depth position to the surface (hereinafter referred to as the occupation) The area ratio is 70% or more.
  As shown in FIG. 1, this abnormal carburizing layer is usually formed with variations in depth. Therefore, in the present invention, the thickness of the carburizing abnormal layer is defined by the maximum depth, and the degree of the unevenness of the depth is defined by the occupation area ratio of the carburizing abnormal layer.
[0016]
When the maximum depth of the carburized abnormal layer is less than 5 μm, there is a problem that the effect of initial conformability described later is not sufficiently exhibited. On the other hand, if it exceeds 40 μm, the amount of wear due to wear of the carburized abnormal layer will be too large, the tooth contact of the gear will deteriorate, the noise during operation will increase, and the stress distribution acting on the tooth surface will be deteriorated. There's a problem.
[0017]
Moreover, when the area occupied by the carburizing abnormal layer between the maximum depth position and the surface is less than 70%, the variation in the depth of the carburizing abnormal layer becomes very large. For this reason, even after the carburizing abnormal layer described later is worn, a large number of soft incompletely quenched structures remain in a wedge shape on the surface of the carburizing layer. Therefore, there is a problem that a crack starting from this tends to occur.
[0018]
On the other hand, the upper limit of the occupied area ratio of the carburized abnormal layer is ideally 100%. In other words, the carburized abnormal layer becomes a uniform layer with less depth unevenness as the occupied area ratio is higher. Therefore, after wear of the carburized abnormal layer, the hardened carburized layer is exposed on the gear surface, and the subsequent pitting resistance can be improved.
[0019]
Next, the carburized layer located below the abnormal carburized layer has a C (carbon) concentration of 0.65% or more and a residual austenite amount of 25% or less as described above.
When the C concentration is less than 0.65%, there is a problem that the hardness of the martensite structure obtained by carburizing and quenching is not so high. However, the upper limit of the C concentration is preferably 1.2% because cementite is generated at the grain boundaries and the fatigue strength and pitting resistance may be reduced.
Further, when the amount of retained austenite in the carburized layer exceeds 25%, there is a problem that the hardness of the carburized layer cannot be sufficiently increased.
[0020]
Next, as the gear material of the present invention, case-hardened steel having the above specific composition is used. Hereinafter, the reasons for limiting each chemical component range will be described.
[0021]
C: 0.10 to 0.30%,
In order to sufficiently satisfy the strength required for the carburized and tempered gear parts, that is, to obtain the internal hardness Hv200 to 500 of the carburized gear parts, 0.10% or more of C is contained. There is a need to. However, if the content exceeds 0.30%, the internal toughness deteriorates, the strength of the gear is reduced, and further the machinability and cold forgeability are deteriorated. did.
[0022]
Si: 0.50 to 1.50%,
During carburizing, Si in the carburized layer reacts with oxygen in the carburizing atmosphere to form oxides. For this reason, the hardenability decreases near the surface layer of the product to be treated, and a so-called carburized abnormal layer is formed. That is, Si is an element that has an important influence on the formation of a carburized abnormal layer, and is an element that increases the temper softening resistance of the martensite structure. In the present invention, it is necessary to contain Si exceeding 0.50% in order to obtain a carburized abnormal layer having a desired form and to improve the temper softening resistance. However, if the content exceeds 1.50%, the above carburized abnormal layer is not obtained, and cold forgeability, machinability, and toughness are lowered, so the upper limit was made 1.50%.
[0023]
Mn: 0.30 to 1.00%,
Mn is an element that has a remarkable effect on improving hardenability, and in order to guarantee the hardness (Hv 200 to 500) necessary to secure the strength to the inside of the gear, Mn of 0.30% or more is required. It is necessary to contain. Furthermore, since Mn is an element that forms an abnormal carburization layer, the amount of addition affects the form of the abnormal carburization layer. For this reason, in order to obtain the carburized abnormal layer necessary for the gear, it must not exceed 1.00%.
[0024]
Cr: 0.50 to 2.00%,
Cr is an element that improves hardenability. After carburizing and quenching, it is necessary to contain 0.30% or more in order to obtain the above internal hardness. On the other hand, if it exceeds 2.00%, the cold forgeability and machinability are remarkably deteriorated, so the upper limit was made 2.00%.
[0025]
Mo: 0.50% or less,
Mo has the effect of improving hardenability and toughness and miniaturizing the crystal grains after carburizing. In addition, there is an effect of suppressing the carburizing abnormal layer, and a carburizing abnormal layer of a desired form can be obtained by using it together with the generation effect of the carburizing abnormal layer possessed by Si. When a large amount of this element is added, not only the desired carburized abnormal layer cannot be obtained, but also the cost is increased, and further, cold forgeability and machinability are deteriorated. Therefore, 0.50% was made the upper limit. In order to exhibit the above effect, the lower limit is preferably 0.10%.
[0026]
Next, the following relational expression for regulating the chemical composition in the case hardening steel will be described.
The relational expression 3 × Si (%) − Mn (%) + Cr (%) / 4 + Mo (%) for regulating the chemical component is a parameter for regulating the tempering resistance of martensite. That is, the tooth surface of the gear is exposed to an environment of 200 to 500 ° C. due to heat generated by friction, and the surface is tempered. As a result, when the decrease in the hardness of the tooth surface is large, that is, when the tempering resistance is low, it causes pitching failure.
[0027]
In the above relational expression, when the value is 1.5 or more, the tempering resistance of martensite is improved, and the decrease in martensite hardness on the tooth surface can be suppressed to Hv100 or less during use of the gear. , Pitting resistance can be improved in terms of tooth surface hardness. The upper limit value of the relational expression is preferably 3.0 for reasons of deterioration of workability (machinability) due to an increase in material hardness and cost increase due to an increase in the amount of alloy elements.
[0028]
Next, the operation of the present invention will be described.
As described above, the gear of the present invention is further provided with the specific amount of carburized abnormal layer on the outer layer of the carburized layer having a specific C concentration and retained austenite. Therefore, the gear of the present invention exhibits excellent initial conformability at the stage of actual use and exhibits excellent pitting resistance.
[0029]
In other words, in the case of carburized gears, it is inevitable that the shape of the tooth surface includes a certain amount of error (strain) if polishing is not performed after the carburizing process. Needless to say, each gear has a slightly different shape for each tooth in a single gear. This error (strain) greatly affects the contact pressure distribution applied to the tooth surface.
As a result, the maximum contact pressure generated on the tooth surface during conventional gear meshing driving is extremely high, and often reaches the limit value of the load capacity. These have a great influence on the pitching life as well as the gear strength, especially the influence of surface pressure.
[0030]
In this regard, the gear of the present invention has the carburizing abnormal layer of the specific thickness on the outer layer of the high-hardness carburizing layer. Therefore, the adverse effect of errors existing on the tooth surface can be greatly mitigated by the running-in operation of the gear incorporated in the device.
That is, the carburized abnormal layer is a soft structure composed of an incompletely quenched structure. Therefore, it has the characteristic that it is easy to wear. This property greatly improves the initial conformability of the gear. Specifically, when the gears are actually engaged and driven, the carburized abnormal layer wears to alleviate the uneven stress distribution generated on the tooth surface, and the tooth surface shape is self-corrected.
[0031]
And the thickness of the carburizing abnormal layer in this invention is 5-40 micrometers. Therefore, this carburized abnormal layer is sufficiently removed by the above-mentioned initial familiarity.
Moreover, in the tooth surface from which the carburized abnormal layer has been removed, the lower carburized layer is exposed on the surface. This carburized layer is composed of a martensite structure having a C concentration of 0.65% or more as described above, and the amount of retained austenite contained is 25% or less, and has a very high hardness.
[0032]
For this reason, in the gear that has been initially adapted, the tooth surface has a shape capable of obtaining a uniform contact state and a uniform high hardness.
Therefore, the gear of the present invention exhibits extremely excellent pitting resistance after the familiar operation.
[0033]
On the other hand, the gear is tempered by being exposed to an environment of 200 to 500 ° C. by frictional heat during use. When the hardness of the tooth surface, that is, the hardness of the carburized layer is reduced by this tempering, the above-mentioned excellent pitting resistance is impaired.
In this respect, the gear of the present invention uses the case-hardened steel having the specific component range as a material. Therefore, it has excellent resistance to softening by tempering. Therefore, the tooth surface strength can be kept high even during operation exposed to high temperatures, and the above-described excellent pitting resistance can be exhibited.
[0034]
In addition, the case-hardened steel in the present invention has not been changed in composition so as to be more expensive than conventional materials. Further, the cost of forming into a gear shape and carburizing treatment can be the same as the conventional one.
Therefore, in the present invention, the gear having the excellent pitching resistance can be obtained at low cost.
[0035]
The carburizing abnormal layer itself can be formed even when a conventional gear steel such as JlS-SCr420 steel or SCM420 steel is used. However, these carburized abnormal layers of conventional steel have a small occupation area ratio (less than 70%). That is, when viewed microscopically, a layer in which an incompletely quenched structure and a martensite structure are mixed is present on the tooth surface.
[0036]
Therefore, in the gears using conventional steel, even if a carburized abnormal layer is provided, not only a good initial running-in state can be obtained, but pitching failure often occurs starting from the remaining incompletely hardened structure. . The martensitic structure of the steel is also inferior in softening resistance.
[0037]
  Next, the claim2In addition to the above composition, the case-hardened steel preferably further contains Al: 0.020 to 0.060% and N: 0.0080 to 0.0200%. Thereby, the strength of the gear can be further improved.
[0038]
Al: 0.020 to 0.060%,
Al combines with N in the steel, and as AlN, has the effect of refining crystal grains after carburizing and quenching to improve toughness. In order to acquire this effect, it is necessary to contain 0.020% or more of Al. However, if it exceeds 0.060%, excessive Al in the steel2OThreeIs generated and the strength decreases, so the upper limit was made 0.060%.
[0039]
N: 0.0080-0.0200%,
As described above, N combines with Al to refine crystal grains as AlN. In order to obtain such an effect, it is necessary to contain 0.0080% or more of N. On the other hand, if the content exceeds 0.0200%, the above effect is saturated and N may gasify during steel making, which may make it difficult to produce steel. Therefore, the upper limit was made 0.0200%.
[0040]
  Claims3In addition to the above-described composition, the case-hardened steel further includes one or two of Ti: 0.20% or less, Nb: 0.20% or less, V: 0, 30% or less. It is preferable to contain more than seeds. Thereby, the strength of the gear can be further increased.
[0041]
Ti: 0.20% or less, V: 0.30% or less, Nb: 0.20% or less,
These elements improve toughness and improve fatigue strength by, for example, refining crystal grains after carburizing. However, even if added in a large amount, these effects are not only saturated, but also coarse precipitates are formed and the strength is lowered. Therefore, the upper limit is set to 0.20% for Ti and 0.30% for V: Nb was 0.20%. In order to sufficiently exhibit the above effects, it is preferable that the lower limit is 0.01% for Ti, 0.03% for V, and 0.01% for Nb.
[0042]
  Next, the claim4In the weight ratio, C: 0.10 to 0.30%, Si: 0.50 to 1.50%, Mn: 0.30 to 1.00%, Cr: 0.50 2.00%, Mo: 0.50% or less, and
  1.5 ≦ 3 × Si (%) − Mn (%) + Cr (%) / 4 + Mo (%)
Using a case-hardened steel with a composition consisting of Fe and inevitable impurities.
  Forming the case-hardened steel into a gear shape;
  Next, carburizing treatment is performed to form a carburized layer having a C concentration of 0.65% or more and a retained austenite amount of 25% or less, and the carburized layer has an incompletely hardened structure on the outer layer. Forming a layer,
And the maximum depth of the carburizing abnormal layer is 5 to 40 μm, and the area occupied by the carburizing abnormal layer in the cross section from the maximum depth position to the surface is 70% or more,There is a manufacturing method of a gear excellent in pitching resistance characterized by having a pitching strength of 2600 MPa or more..
[0043]
The carburizing process refers to a series of processes including carburizing, quenching, and tempering.
In addition, carburizing can be performed by using various processing methods similar to those in the past. For example, when performing gas carburization, the C concentration of the carburized layer can be easily adjusted by adjusting the carbon potential, temperature, processing time, etc. of the gas to optimum values as is well known.
[0044]
Moreover, after carburizing and adjusting the C concentration, quenching is performed immediately thereafter or after cooling. Quenching may be performed by combining primary quenching and secondary quenching, or may be performed directly. Further, in order to adjust the amount of retained austenite, sub-zero treatment can be performed after quenching.
Further, tempering after quenching is performed at about 130 to 180 ° C. as is usually done.
[0045]
Such a series of carburizing processes is performed on the case-hardened steel having the specific component range formed into a gear shape. Thereby, a gear having the specific carburized layer and the specific carburized abnormal layer can be easily manufactured.
The reason for limiting each numerical value is the same as described above.
[0046]
  Claims5In addition to the above composition, the case-hardened steel preferably further contains Al: 0.020 to 0.060% and N: 0.0080 to 0.0200%.
  In addition, the claims6In addition to the above composition, the case-hardened steel further includes one or two of Ti: 0.20% or less, Nb: 0.20% or less, V: 0, 30% or less. It is preferable to contain the above.
  In these cases, the same effect as described above can be obtained. The reason for the numerical limitation is the same as above.
[0047]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
A gear excellent in pitching resistance according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to FIGS.
The gear 1 of this example is an example of a general spur gear as shown in FIG. The spur gear is an example, and can be applied to a helical gear, a helical gear, a bevel gear, a screw gear, a worm gear, and other various gears.
In manufacturing this gear 1, first, steel A shown in Table 2 described later was prepared as a case-hardened steel.
[0048]
As shown in Table 2, steel A is a steel in which the contents of C, Si, Mn, Cr, and Mo are regulated within the scope of the present invention, and Al is added by 0.030% and N is added by 0.0120%. In addition, the steel satisfies 1.5 ≦ 3 × Si (%) − Mn (%) + Cr (%) / 4 + Mo (%).
[0049]
And when producing the gear 1 using A steel, this is first shape | molded by the cutting process to the gear 1 of the shape shown in FIG.
Next, the formed gear 1 is carburized. The carburizing process in this example was performed using a gas carburizing method as shown in FIG.
[0050]
That is, first, the carbon potential (CP) was maintained at 0.8 to 1.2% and carburized for 75 minutes in a gas atmosphere kept at a temperature of 950 ° C., and then slightly C.P. Carbon is diffused into the steel in a gas atmosphere with reduced P. Next, C.I. While maintaining P, the temperature was lowered to 850 ° C., soaked for 30 minutes, and then quenched into 130 ° C. oil. Thereafter, a tempering treatment was performed at a temperature of 160 ° C. for 1 hour.
[0051]
This processing condition can be changed depending on the steel type. For example, the initial carburizing and diffusion temperature can be changed between 930 to 980 ° C., the time between 0.5 and 5 hours, the soaking temperature between 840 and 870 ° C., and the time between 0.5 and 2 hours. .
[0052]
As shown in FIG. 1, the gear 1 obtained by the carburizing process is in a surface state in which a carburized layer 12 is formed on the parent phase 10 and a carburized abnormal layer 11 is further formed thereon.
The carburized layer 12 in this example has a C concentration of 0.70% as a result of analysis by EPMA, and a residual austenite amount of 22% as a result of investigation by an X-ray diffraction method. Further, the hardness of the carburized layer 12 was very high as Hv810.
[0053]
In addition, as shown in FIG. 1, the carburizing abnormal layer 11 has a maximum depth D of 12 μm, and the area occupied by the carburizing abnormal layer 11 in the cross section A from the maximum depth position to the surface is 80%. It was.
[0054]
Next, the operation of the gear 1 of this example will be described.
As described above, the gear 1 of the present example is further provided with the specific amount of carburizing abnormality layer 12 on the outer layer of the high-hardness carburizing layer 12.
Therefore, as shown in FIG. 1, excellent initial conformability is exhibited by engaging and driving the two gears 1.
[0055]
That is, in the gear 1, the carburizing abnormal layer 11 is worn to alleviate the uneven stress distribution generated on the tooth surface 15, and the shape of the tooth surface 15 is self-corrected. And in the tooth surface 15 from which the carburizing abnormal layer 11 was removed by abrasion, the lower carburizing layer 12 is exposed on the surface.
[0056]
Therefore, in the gear 1 of this example, after a certain initial running-in operation, a uniform contact state of the tooth surface 15 is obtained, the stress distribution is uniform, and the contact surface is constituted by a hardened carburized layer. Become so.
As a result, the stress state at the time of contact can be made better and the pitting resistance can be improved as compared with the conventional gears that have taken measures to reduce the carburized abnormal layer as much as possible.
[0057]
Furthermore, the gear 1 of this example uses A steel having the above specific composition as a material. Therefore, there is little decrease in hardness due to frictional heat during gear operation.
Therefore, the gear 1 of the present example has a long life because the pitting resistance does not deteriorate much even after long-term use.
[0058]
Embodiment 2
In this example, in place of the steel A of Example 1, 20 types of test steels shown in Table 1 were prepared to produce gears, and the softening resistance of the carburized layer was quantitatively evaluated.
Production of gears using each test steel was basically performed by the same manufacturing method as in the first embodiment. However, in order to alleviate the effects of differences in hardenability due to differences in components, each gear was subjected to subzero treatment at a temperature of −40 to −70 ° C. for 1 hour after tempering in the carburizing treatment.
[0059]
Further, for the evaluation of softening resistance, after the sub-zero treatment, a re-tempering treatment at a temperature of 250 ° C. for 4 hours was further performed. And the cross-sectional hardness of the carburized layer before and after the re-tempering treatment was measured.
The measurement results are shown in Table 1 and FIG. In addition, Table 1 also shows the following relational expression in the chemical composition of each steel, the value of 3 × Si (%) − Mn (%) + Cr (%) / 4 + Mo (%).
In FIG. 4, the horizontal axis represents the value of the relational expression, the vertical axis represents the hardness (Hv), and the hardness before re-tempering (◯) and after re-tempering (●) is plotted.
[0060]
As can be seen from Table 1 and FIG. 4, the hardness of the carburized layer before re-tempering was as high as around 800 Hv in any of the test steels. On the other hand, after re-tempering, the smaller the value of the above relational formula, the lower the hardness. In particular, as shown in the figure, when the value of the relational expression is less than 1.5, the hardness greatly decreased to a low hardness of less than 700 Hv.
[0061]
In order to clarify the relationship between the hardness decrease and the value of the above relational expression, this is shown in FIG.
In FIG. 5, the horizontal axis represents the value of the relational expression, and the vertical axis represents the hardness decrease value (Hv).
As can be seen from the figure, there is a correlation between the value of the relational expression and the decrease in hardness due to re-tempering. And when the value of a relational expression exceeds 1.5, it turns out that the hardness fall by re-tempering becomes 100 Hv or less.
[0062]
From the above results, the gear of the present invention using the steel in which the value of the above relational expression is regulated to 1.5 or more can suppress softening due to frictional heat when the gear is used, and can improve the pitting resistance of the gear for a long time. It became clear that can be maintained over.
[0063]
[Table 1]
Figure 0004000616
[0064]
Embodiment 3
In this example, as shown in Table 2, in addition to the steel A used in the first embodiment, eight types (9 types in total) of test steels were prepared, and the composition of the case-hardened steel, the depth of the carburized abnormal layer, etc. Of the impact of the pitch on the pitching strength and the like was quantitatively evaluated.
First, Table 2 shows a list of chemical components of the prepared test steels.
[0065]
[Table 2]
Figure 0004000616
[0066]
Next, each test steel was melted, forged and forged, and normalized, then processed into test specimens described later and carburized. As shown in Table 3 to be described later, the carburizing treatment was performed so as to change the maximum depth and occupied area ratio of the carburized abnormal layer while keeping the C concentration of the carburized layer at 0.65% or more. More specifically, for normal gas carburizing, the carburizing method of Embodiment 1 (FIG. 3) is basically used, and the temperature, time, C.I. This was performed by finely adjusting each condition of P. For those that do not generate carburized abnormal layers at all, vacuum gas carburization was performed.
[0067]
Next, as an alternative test for evaluating the tooth surface strength of the gear, a roller pitching test was performed as shown in FIGS.
As shown in FIGS. 6 and 7, the roller pitching test is performed using a small roller 41 having a test portion 411 in the center portion and a disk-shaped large roller 42. The small roller 41 and the large roller 42 are manufactured by performing the same manufacturing process and carburizing process using the same steel type.
[0068]
As shown in FIG. 7A, the small roller 41 has a width W of 28 mm, an outer diameter D at a central portion having an overall length L of 130 mm.1Is provided with a test portion 411 of 26 mm. The large roller 42 has a thickness T of 18 mm and an outer diameter D as shown in FIG.2Is a 130 mm disk, and its end 421 has a curved surface with a crowning radius of 300 mm as shown in FIG.
[0069]
Then, as shown in FIG. 6, in a state where the end portion 421 of the large roller 42 set on the shaft 429 and the test portion 411 of the small roller 41 are in contact with each other, the peripheral speed is rotated with a difference. Specifically, the rotation speed of the small roller 41 was 2000 rpm, and the slip ratio (circumferential speed difference) was −40%. The lubrication was performed with ATF (automatic transmission fluid) having an oil temperature of 120 ° C.
[0070]
Then, the rotation is performed with a constant surface pressure applied between the small roller 41 and the large roller 42, and the total number of rotations of the small roller 41 until the occurrence of pitching is obtained. This is repeated by changing the surface pressure. A roller pitching tester manufactured by Komatsu Engineering Co., Ltd. was used.
[0071]
In this example, the small roller 41 is set to 107Surface pressure (107(Endurance surface pressure) was used as the pitching strength (MPa) for evaluation.
The test results are shown in Table 3.
[0072]
As can be seen from Table 3, the pitching strength was as low as 1800 MPa or less for all cases where the maximum depth of the carburized abnormal layer was 0 and over 40 μm (Sample Nos. 1, 6, 12).
Moreover, even if the maximum depth of the carburized abnormal layer is within the range of 5 to 40 μm, if the occupied area ratio of the carburized abnormal layer is less than 70% (sample No. 3, 14), it is also 1800 MPa or less. The value was low. On the contrary, even when the occupied area ratio of the carburized abnormal layer is 70% or more, when the maximum depth of the carburized abnormal layer exceeds 40 μm as described above (Sample No. 6), the value is also as low as 1800 MPa or less. It was.
[0073]
Further, even when the maximum depth and occupied area ratio of the carburized abnormal layer are good, the steel component range is outside the scope of the present invention (Sample No. 13), and the maximum depth and occupied area ratio of the carburized abnormal layer are When the value of the above-mentioned relational expression is less than 1.5 (sample No. 10) even when the steel composition range is within the range of the present invention, the result of the low pitching strength is obtained. It was.
[0074]
Next, an Ono-type rotating bending fatigue test was conducted as an alternative test for estimating the tooth root strength of gears.
The Ono type rotating bending fatigue test was performed according to JIS-Z2274 “Rotating bending fatigue test method of metal material” using a test piece 5 having a shape as shown in FIG. The rotation speed was 3600 rpm.
And in this example, 107Bending stress (107Used for evaluation.
[0075]
The test results are shown in Table 3.
As known from Table 3, sample no. Other than 6, 52Kgf / mm2Thus, good results were obtained. In contrast, sample no. No. 6 had the lowest Ono rotary bending strength. This is thought to be because the maximum depth of the carburized abnormal layer was too deep.
[0076]
[Table 3]
Figure 0004000616
[0077]
From the above test results, it can be seen that the pitching strength can be reliably improved by the composition range of the steel, the provision of the relational expression, and the appropriate formation of the carburized abnormal layer. It can also be seen that within the range in which the pitching strength can be improved, the Ono-type rotary bending strength is also good and the tooth root strength of the gear can be maintained well.
[0078]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a gear that can be manufactured at a low cost and has excellent pitching resistance, and a method for manufacturing the gear.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing a formation state of an abnormal carburization layer in Embodiment 1;
FIG. 2 is an explanatory view showing a gear according to Embodiment 1;
FIG. 3 is an explanatory diagram showing carburizing process conditions in the first embodiment.
4 is an explanatory diagram showing the hardness of a carburized layer before and after re-tempering in Embodiment 2. FIG.
FIG. 5 is an explanatory view showing a hardness reduction state due to re-tempering in Embodiment 2;
6 is an explanatory diagram showing a roller pitching test method in Embodiment 3. FIG.
FIGS. 7A and 7B are explanatory views showing the shapes of (a) a small roller, (b) a large roller, and (c) a large roller end portion in Embodiment 3. FIG.
FIG. 8 is an explanatory view showing a test piece shape of an Ono type rotating bending fatigue test in Example 3;
[Explanation of symbols]
1. . . gear,
10. . . Mother phase,
11. . . Carburized abnormal layer,
12 . . Carburized bed,

Claims (6)

肌焼鋼を歯車形状に成形後,浸炭処理して得られる歯車において,
上記肌焼鋼は,重量比にて,C:0.10〜0.30%,Si:0.50〜1.50%,Mn:0.30〜1.00%,Cr:0.50〜2.00%,Mo:0.50%以下を含有し,かつ,
1.5≦3×Si(%)−Mn(%)+Cr(%)/4+Mo(%)
を満足し,残部がFeおよび不可避的不純物からなる組成よりなり,
かつ,浸炭処理後の歯車は,C濃度が0.65%以上で,かつ,残留オーステナイト量が25%以下の浸炭層を有していると共に,該浸炭層の外層には不完全焼入れ組織よりなる浸炭異常層を有しており,
上記浸炭異常層の最大深さは5〜40μmであって,かつ,該最大深さ位置から表面までの断面における上記浸炭異常層の占める面積は70%以上であり,
かつ,ピッチング強度が2600MPa以上であることを特徴とする耐ピッチング性に優れる歯車。
For gears obtained by carburizing after case-hardened steel is formed into a gear shape,
The above case-hardened steel has a weight ratio of C: 0.10 to 0.30%, Si: 0.50 to 1.50%, Mn: 0.30 to 1.00%, Cr: 0.50. 2.00%, Mo: 0.50% or less, and
1.5 ≦ 3 × Si (%) − Mn (%) + Cr (%) / 4 + Mo (%)
And the balance is composed of Fe and inevitable impurities,
In addition, the carburized gear has a carburized layer having a C concentration of 0.65% or more and a residual austenite amount of 25% or less, and an outer hardened structure has an incompletely hardened structure. Has a carburized abnormal layer,
The maximum depth of the carburizing abnormal layer is 5 to 40 μm, and the area occupied by the carburizing abnormal layer in the cross section from the maximum depth position to the surface is 70% or more,
And the gear excellent in pitching resistance characterized by pitching strength being 2600 Mpa or more.
請求項1において,上記肌焼鋼は,上記組成に加え,さらに,Al:0.020〜0.060%,N:0.0080〜0.0200%を含有していることを特徴とする耐ピッチング性に優れる歯車。2. The hardened steel according to claim 1, further comprising Al: 0.020 to 0.060% and N: 0.0080 to 0.0200% in addition to the above composition. A gear with excellent pitching properties. 請求項1又は2において,上記肌焼鋼は,上記組成に加え,さらに,Ti:0.20%以下,Nb:0.20%以下,V:0,30%以下のうちから,1種または2種以上を含有していることを特徴とする耐ピッチング性に優れる歯車。3. The case-hardened steel according to claim 1 or 2, wherein, in addition to the above composition, Ti: 0.20% or less, Nb: 0.20% or less, V: 0, 30% or less, A gear excellent in pitting resistance characterized by containing two or more kinds. 重量比にて,C:0.10〜0.30%,Si:0.50〜1.50%,Mn:0.30〜1.00%,Cr:0.50〜2.00%,Mo:0.50%以下を含有し,かつ,
1.5≦3×Si(%)−Mn(%)+Cr(%)/4+Mo(%)
を満足し,残部がFeおよび不可避的不純物からなる組成の肌焼鋼を用い,
該肌焼鋼を歯車形状に成形し,
次いで,浸炭処理を行って,C濃度が0.65%以上で,かつ,残留オーステナイト量が25%以下の浸炭層を形成すると共に,該浸炭層の外層には不完全焼入れ組織よりなる浸炭異常層を形成し,
かつ,該浸炭異常層の最大深さは5〜40μmとすると共に,該最大深さ位置から表面までの断面における上記浸炭異常層の占める面積は70%以上とすることにより,ピッチング強度を2600MPa以上とすることを特徴とする耐ピッチング性に優れる歯車の製造方法。
By weight ratio, C: 0.10 to 0.30%, Si: 0.50 to 1.50%, Mn: 0.30 to 1.00%, Cr: 0.50 to 2.00%, Mo : 0.50% or less, and
1.5 ≦ 3 × Si (%) − Mn (%) + Cr (%) / 4 + Mo (%)
Using a case-hardened steel with a composition consisting of Fe and inevitable impurities.
Forming the case-hardened steel into a gear shape;
Next, carburizing treatment is performed to form a carburized layer having a C concentration of 0.65% or more and a retained austenite amount of 25% or less, and the carburized layer has an incompletely hardened structure on the outer layer. Forming a layer ,
In addition, the maximum depth of the carburized abnormal layer is 5 to 40 μm, and the area occupied by the carburized abnormal layer in the cross section from the maximum depth position to the surface is 70% or more, so that the pitching strength is 2600 MPa or more. A method for producing a gear excellent in pitting resistance, characterized in that
請求項4において,上記肌焼鋼は,上記組成に加え,さらに,Al:0.020〜0.060%,N:0.0080〜0.0200%を含有していることを特徴とする耐ピッチング性に優れる歯車の製造方法。In addition to the said composition, the said case hardening steel contains Al: 0.020-0.060%, N: 0.0080-0.0200% in addition to the said composition, The resistance-proof characterized by the above-mentioned. A gear manufacturing method with excellent pitching properties. 請求項4又は5において,上記肌焼鋼は,上記組成に加えさらに,Ti:0.20%以下,Nb:0.20%以下,V:0,30%以下のうちから,1種または2種以上を含有していることを特徴とする耐ピッチング性に優れる歯車の製造方法。6. The case-hardened steel according to claim 4 or 5, in addition to the above composition, Ti: 0.20% or less, Nb: 0.20% or less, V: 0, 30% or less, one or two. The manufacturing method of the gear excellent in pitting resistance characterized by containing the seed | species or more.
JP08578997A 1997-03-19 1997-03-19 Gear having excellent pitting resistance and method for producing the same Expired - Fee Related JP4000616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08578997A JP4000616B2 (en) 1997-03-19 1997-03-19 Gear having excellent pitting resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08578997A JP4000616B2 (en) 1997-03-19 1997-03-19 Gear having excellent pitting resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10259470A JPH10259470A (en) 1998-09-29
JP4000616B2 true JP4000616B2 (en) 2007-10-31

Family

ID=13868665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08578997A Expired - Fee Related JP4000616B2 (en) 1997-03-19 1997-03-19 Gear having excellent pitting resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4000616B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413866B1 (en) 2011-11-16 2014-07-09 김상진 A multiplying gear cementation heat treatment way for velocity of the wind development

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4000787B2 (en) * 2001-04-23 2007-10-31 愛知製鋼株式会社 High-strength gear excellent in tooth root bending strength and pitting resistance and manufacturing method thereof
JP4313983B2 (en) * 2002-04-18 2009-08-12 Jfeスチール株式会社 Steel for case hardening bearings with excellent toughness and rolling fatigue life in sub-high temperature range
JP4390576B2 (en) 2003-03-04 2009-12-24 株式会社小松製作所 Rolling member
JP4390526B2 (en) 2003-03-11 2009-12-24 株式会社小松製作所 Rolling member and manufacturing method thereof
JP4798963B2 (en) * 2004-05-13 2011-10-19 Jfe条鋼株式会社 High strength gear and manufacturing method thereof
JP5178104B2 (en) * 2007-09-12 2013-04-10 山陽特殊製鋼株式会社 Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength
JP5163242B2 (en) * 2008-04-07 2013-03-13 新日鐵住金株式会社 Case-hardened steel
JP5163241B2 (en) * 2008-04-07 2013-03-13 新日鐵住金株式会社 Case-hardened steel
US20120318408A1 (en) * 2010-04-19 2012-12-20 Shuji Kozawa Steel part excellent in temper softening resistance
JP2016098426A (en) * 2014-11-26 2016-05-30 山陽特殊製鋼株式会社 Case hardened steel for mechanical structure excellent in pitching resistance used for carburization case

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413866B1 (en) 2011-11-16 2014-07-09 김상진 A multiplying gear cementation heat treatment way for velocity of the wind development

Also Published As

Publication number Publication date
JPH10259470A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
JP3308377B2 (en) Gear with excellent tooth surface strength and method of manufacturing the same
TWI399441B (en) Induction hardening steel component or parts with pre-carbonitriding treatment
TWI507540B (en) Anti-coking excellent gear
JPH10176219A (en) Steel parts for high bearing resistance, and their production
JP5185852B2 (en) Gears with excellent resistance to peeling damage
JP4000616B2 (en) Gear having excellent pitting resistance and method for producing the same
JP4000787B2 (en) High-strength gear excellent in tooth root bending strength and pitting resistance and manufacturing method thereof
JP2016204697A (en) Stock shape material of high frequency hardening component, high frequency hardening component and manufacturing method therefor
JP2001073072A (en) Carbo-nitrided parts excellent in pitching resistance
JP3410947B2 (en) Rolling element of continuously variable transmission and method of manufacturing the same
JP4102866B2 (en) Gear manufacturing method
JP5068065B2 (en) Gear parts with excellent compatibility
JP3975699B2 (en) High-strength gear excellent in tooth root bending strength and pitting resistance and manufacturing method thereof
JP4356923B2 (en) Steel parts for machine structures
JP4874199B2 (en) Gear parts with excellent compatibility
JPH09296250A (en) Steel for gear excellent in face fatigue strength
JPH07188895A (en) Manufacture of parts for machine structure use
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP5623698B2 (en) Case-hardened parts with excellent strength in all areas from static strength to high cycle fatigue strength
JP4821582B2 (en) Steel for vacuum carburized gear
JP3282654B2 (en) Carbonitriding and quenching method and rolling parts
JPH05132713A (en) Manufacture of high bearing pressure machine structural parts
JP4486881B2 (en) Gears with excellent tooth surface fatigue strength
JP3607583B2 (en) Steel for power transmission parts and power transmission parts
JP7417093B2 (en) steel material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees