JP4098558B2 - Degradation diagnosis method for concrete spray slope - Google Patents
Degradation diagnosis method for concrete spray slope Download PDFInfo
- Publication number
- JP4098558B2 JP4098558B2 JP2002133462A JP2002133462A JP4098558B2 JP 4098558 B2 JP4098558 B2 JP 4098558B2 JP 2002133462 A JP2002133462 A JP 2002133462A JP 2002133462 A JP2002133462 A JP 2002133462A JP 4098558 B2 JP4098558 B2 JP 4098558B2
- Authority
- JP
- Japan
- Prior art keywords
- slope
- stage
- spray slope
- spray
- diagnosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Radiation Pyrometers (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Lining And Supports For Tunnels (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、岩盤斜面や地盤斜面、切土法面などの表面保護工として施工された既存コンクリート吹付法面(以下、吹付法面)クラック等の吹付法面自体の物理的劣化度、吹付法面と岩盤、地盤等の地山との密着度、地山表層部の風化・劣化度等の診断を、種類の異なる3種類の診断方法を併用することにより正確に判断することを可能とした、吹付法面劣化度診断方法に関するものである。
【0002】
【従来の技術】
従来よりこの種診断法としては、▲1▼人間がハンマーで法面を叩くハンマー打音法、▲2▼法面の一部分を破壊してコアを抜き取る、あるいは剥ぎ取る等の診断法等が知られている。
また最近開発された方法として、▲3▼吹付法面の表面温度の変化から地山と吹付法面の密着度を診断しようとする熱赤外線映像法が知られている。
【0003】
【発明が解決しようとする課題】
上記診断法には種々の欠点があった。前記した▲1▼ハンマー打音法は人間の聴覚で判断するため、診断には経験が必要であり、且つ観測者毎に判断基準がばらばらで結果に客観性を欠き再現性が低いこと、急な斜面上での作業に危険が伴う等の欠点があった。
【0004】
また、▲2▼のコア抜き取りあるいは法面剥ぎ取りによる診断法は、高精度で正確である反面、診断範囲(領域)が限られ、法面全体に採用することは多大な労力と時間を費やしコストアップとなるばかりでなく、法面に多くの損傷を与えることになり現実性に欠けていた。
【0005】
さらに、▲3▼熱赤外線映像法は、熱赤外線カメラにより吹付法面表面の温度分布を測定し、温度の違いやその変化により吹付法面と地山の密着状態を推定しようとする方法であるが、吹付法面表面の日射条件や測定時の気温、天候、風などの自然現象、凹凸状態などの吹付法面表面の形状に測定結果が左右されることが多く、また吹付厚が厚い場合、表面に植物やコケが密生する場合、湧水により表面がぬれている場合など、測定が不可能となる測定限界が存在するといった問題があった。
【0006】
【課題を解決するための手段】
岩盤斜面や地盤斜面、切土法面などの表面保護工として施工された既存コンクリート吹付法面の劣化診断方法において、診断対象全体の劣化度を高効率で、簡便かつ非破壊により劣化範囲を推定診断する熱赤外線映像法を用いた第一段階診断法と、上記第一段階診断法により吹付法面と地山との間に分離空隙化した部分と診断された劣化範囲及び上記第一段階診断法では健全部とは判定不可能であった不確定範囲に対し高精度で且つ非破壊で補完診断する発信手段とその受信手段の配置により得られる受信波の解析による横波共振法を用いた第二段階診断法と、上記第一段階診断法及び第二段階診断法により絞り込まれた劣化範囲をコンクリート吹付法面にあけた小さな孔より光学装置を介し或いは吹付法面をコア抜き取りにより局部破壊して観察し、上記吹付法面と地山間の密着度及び地山表層部の劣化状態を診断する第三段階診断法との順に行い、前記吹付法面と地山間の密着度及びその劣化状態を総合的に且つ高精度で安全、確実、低コストで診断できる吹付法面の劣化診断方法を提供するものである。
【0007】
【発明の実施の形態】
以下に、図面を用いて本発明に係る吹付法面の劣化度診断方法について詳細に説明する。
図1は、本発明に係る要部とこの方法全体の概要を示す説明用のフロー図である。また図2は、診断対象となる老朽化した吹付法面の概要図であり、図中Aは吹付法面、Bは岩盤、地盤等の地山,Cは吹付法面Aと地山Bとが密着状態にある健全部、Dは老朽化等により吹付法面Aと地山Bの密着度が低下した分離空隙部である。
【0008】
図1のフロー図の1は第一段階診断法であり、例えば図2に示すような診断対象となる吹付法面A面全体に対し、非接触、非破壊的な診断方法である目視観察、図3および図4(a)〜(c)に示すような熱赤外線映像法等で吹付法面A全体の範囲から地山と吹付法面が分離空隙化した部分Dが広範囲を占めるような、所謂、劣化範囲Eを低精度ではあるが高効率で推定するのに役立つものである。
【0009】
次に、推定された劣化範囲Eに対して、第二段階診断法2、例えば図5(a)、(b)に示すような非破壊検査手法である横波共振法によって、第一段階診断法による診断結果の検証、確認を行うとともに、分離空隙部Dを精度よく特定することにより劣化範囲Eを更に絞り込む。また、第一段階診断法では診断不可能であった測定原理に起因する適用限界範囲についても第二段階診断法でカバーする事ができる。
【0010】
第二段階診断法により高精度で特定された分離空隙部Dに対し、部分破壊を伴う第三段階診断法8を実施し、吹付法面Aと地山Bとの各々の劣化状態と吹付法面Aと地山B間の密着状態(度合い)を観察し、これら1〜3の3つの診断法を組み合わせて総合的に診断した吹付法面の劣化診断方法である。
【0011】
さらに説明すると熱赤外線映像法は、図3に示すように診断対象吹付法面Aの反対側、所謂、前記吹付法面A全体を容易に熱赤外線映像法装置3で撮影できる位置から撮影し、劣化範囲Eを推定するものである。
【0012】
なお、熱赤外線映像法の原理は、空気の体積熱容量が地山等の岩、土にくらべ非常に小さいため、吹付法面Aの背面に空気が介在する分離空隙部(空洞部等)Dの吹付法面表面は、外気や太陽エネルギーの負荷に対し敏感に反応し、地山と吹付法面が密着している健全部Bに比べ温まりやすくさめにくい性質を有していることが知られている。そこで、高温時と低温時の2時刻において表面温度を測定し、両時刻における温度差を観察することにより、例えば図4(a)〜(c)に示すようになる。
【0013】
図4(a)〜(b)は、図9に示すダム周辺の吹付法面における診断結果を示すものである。図4(a)は早朝(低温時)の熱赤外線画像であり、図4(b)は、昼間(高温時)の熱赤外線映像を示し、図4(c)は両熱赤外線映像におけるその温度差、所謂、熱差画像を示すものであり、温度差が大きい部分が分離空隙部であると推定される。したがって、この分離空隙部Dが広く分布する部分、即ち図4(c)において破線で囲んだ部分が劣化範囲Eとして推定されるものである。
【0014】
ただし、熱赤外線映像法は、その原理に基づき、吹付法面表面の日射条件や測定時の気温、天候、風などの自然現象、凹凸状態などの吹付法面表面の形状により測定精度に影響を受ける。また吹付法面Aにおいて、吹付厚が厚い範囲、表面に植物やコケが密生する範囲、湧水により表面がぬれている範囲については測定が不可能である。
【0015】
第二段階診断法2は、コンクリート床版またはタイル張り等の異材間の接着不良度合いを検出する手法である横波共振法を応用したもので、図5(a)のような非破壊検査装置を用い、図5(b)の破線で示すように吹付法面Aを格子で区切り、分離空隙部Dのより正確な範囲特定を行うことにより、劣化範囲Eの絞り込み、特定を行う方法である。図6(a)、(b)はその測定状態を拡大して示す断面図である。
【0016】
図6(a)、(b)は、それぞれ図2に示した吹付法面Aと地山Bが密着している健全(正常)な部分C、吹付法面Aの背面と地山Bが密着不良や分離空隙(空洞)状態もしくは土砂等がその一部を充填した状態である分離空隙部Dの状態を拡大して示す断面図である。
【0017】
横波共振法を具体的に説明すると、図6(a)において示す数100〜数kHzの連続波(正弦波)の信号を発信する発信器兼受信器4の一端に接続線5を介し、発信センサー6、およびこれより10cm離した位置に配置した受信センサー7とを接続し、発信器兼受信器4の他端にはオシロスコープ、パソコン等の表示器機能、コントロール機能を有する装置11を備え、これら全体で吹付法面Aと地山Bの密着度を正確に診断し、分離空隙部Dの範囲を区切りることができるようにしたものである。
【0018】
さらに説明すると、図2の健全部Cの拡大図である図6(a)において、発信センサー6の先端(探触子)を吹付法面Aの表面に当接し測定する。一方、受信センサー7の先端(探触子)は、前記発信センサー6から離れた位置に当接し、上記連続波を発振すると、図7(a)に示す測定結果の波形がオシロスコープ等10に表示される。
【0019】
これに対し、図2の分離空隙部Dの拡大図である図6(b)に示すように、発信センサー6および受信センサー7を各々配置し、上記と同様の作業を行うと、図7(b)に示す測定結果が表示される。図7(a)、(b)の測定結果から、第一段階で推定した劣化範囲Eの中から、より高精度で分離空隙部Dの範囲を非破壊で区分することができる。
【0020】
また、この第二段階診断法に用いる横波共振法は、前記した第一段階で用いる熱赤外線映像法による診断が困難な条件にある法面、即ち、吹付厚が厚い吹付法面、表面に植物やコケが密生する法面、湧水により表面がぬれた吹付法面、日射条件がよくない法面などにおいても診断可能であるため、第一段階診断法で診断できなかった範囲あるいは診断精度に問題の残る範囲を診断、検証することが可能である。
【0021】
第三段階診断法8は、第一段階および第二段階診断法で精度よく特定された分離空洞部Dに対し、必要最小限の部分破壊を行い吹付法面Aの背面と地山B間の状態を高精度で且つ確実に観察するもので、吹付法面にドリルなどで小孔をあけ、ファイバースコープ等の光学装置を介して分離空隙部Dの内部を観察する。より確実に診断を行うときは、個々の箇所でコア抜き機によりコアの抜き取りを行い、得られたコアの観察および穿孔した孔内部の観察から地山と吹付面の密着度、地山表層部の劣化度を診断する。
【0022】
図8(a)〜(c)はコアの抜き取りの一実施例を示すもので、採取したコアおよびコア抜きを行った孔内部の観察から、図8(a)に示すように吹付厚さの測定、図8(b)に示すように地山と吹付法面の密着度の確認、図8(c)のように分離空隙部の有無、地山表層部の劣化状態を診断するものである。
【0023】
ここで吹付法面の劣化診断方法の具体例について、図9に示したダム周辺の吹付法面を例に、図1のフロー図を用いて簡単に説明する。
【0024】
まず、図9に示す吹付法面Aを図1のフロー順序で点検する際、吹付法面Aにクラック、表面異常箇所が発見されたと仮定する。そこで、診断対象法面Aに対し、図3に示すように第一段階診断法1の熱赤外線映像法による診断を、熱赤外線カメラ3により吹付法面を遠隔から撮影することにより行う。測定の結果得られた早朝(低温時)の表面温度画像図4(a)、昼間(高温時)の表面温度画像図4(b)および両差の示差熱画像図4(c)を解析することにより、高温時と低温時の温度差の大きい領域、所謂、分離空洞部Dであると推定される部分を抽出し、この分離空洞部Dが広い範囲を劣化範囲Eと推定する。当例では、分離空洞部Dが法面に向かって右側に集中しており、この部分が補修、補強対策工が必要な劣化範囲Eであることが推定される。
【0025】
次に、第一段階診断法による診断結果から推定された劣化範囲Eに対して、分離空洞部Dの範囲をより高精度に特定し、劣化範囲Eを精度よく絞り込むことを目的として、横波共振法等からなる第二段階診断を図5(b)、図6に示すように行う。それは例えば、図5(b)において破線の格子間(1.5m×1.5m)の交差点上を順次、測定することである。その結果、図6(a)に拡大して示す健全部Cでは、図7(a)に示すような波形の受信波を示し、図6(b)に拡大して示す分離空隙部Dでは、発信センサー6から送られた振動により吹付法面が共振するため、受信波は図7(b)に示すような大きな波形となって受信される。このことから、健全部Cと分離空隙部Dとの区分けは明確に且つ客観的に行えるものである。
【0026】
次に、第一段階、第二段階診断法により特定された分離空隙部Dに対し、第三段階診断法8であるコアの抜き取り調査を実施する。図8(a)〜(c)に示すように、採取されたコアおよびコアを抜き取った孔において所定の観察を行う。すなわち図8(a)は吹付厚さの測定、図8(b)は地山と吹付法面の密着度の確認、図8(c)は分離空隙部Dの有無、地山表層部の劣化状態を診断するものである。
【0027】
最後に第一段階診断法1、第二段階診断法2および第三段階診断法8の順に観察、解析した結果に基づいて総合評価し、補修、補強対策が必要となる劣化範囲を検出しその範囲を特定して、図示するような次の手段に移行するものである。
【0028】
【発明の効果】
上記したように本発明に係るコンクリート吹付法面の劣化診断方法によれば、
▲1▼診断対象吹付法面の全体に対し、劣化範囲を非接触、非破壊かつ簡便な第一段階診断方法で、精度的に完全ではないが高効率で劣化範囲を推定できること。
【0029】
▲2▼第一段階診断法で推定された劣化範囲および第一段階診断法ではその原理上精度に問題の残る範囲に対し、第二段階診断方法によって、非破壊、高精度、かつ強制振動に対する応答波形差により吹付法面と地山の密着度が客観的に明確に識別できること。
【0030】
▲3▼第一、第二段階診断方法で推定(特定)された劣化範囲に対して、第三段階診断法により、コア抜き等の部分破壊を必要最小限の箇所だけにおいて実施し、吹付法面自体の劣化状態、吹付法面と地山の密着ないし分離空隙状態、および地山表層部の風化・劣化状態を確実に観察できること。
【0031】
▲4▼前記▲1▼〜▲3▼までの診断法を順次組み合わせることにより、広大な吹付法面の劣化範囲、劣化箇所を、高効率で絞り込み正確かつ客観的な指標により評価でき、しかも安全に診断できること。
【0032】
▲5▼吹付法面に対し、衝撃を加えることなく且つ部分破壊を最小限に抑え診断による悪影響を極力低減できるとともに、従来法に比べ大幅な精度向上、コスト低減がはかれること、
等の効果を得ることができる。
【図面の簡単な説明】
【図1】本発明に係るコンクリート吹付法面劣化度診断方法の概略手順を示す説明フロー図である。
【図2】診断対象となる吹付法面の状態を示す正面図および断面図である。
【図3】本発明に係る診断方法の第一段階診断法、例えば熱赤外線映像法をイメージ的に示す説明図である。
【図4】本発明における第一段階診断法の一例である熱赤外線映像法により撮影した説明図である。
【図5(a)】
【図5(b)】本発明に係る診断方法の第二段階診断法、例えば横波共振法をイメージ的に示す説明図である。
【図6】本発明における第二段階診断法の一例である横波共振法により、健全部、分離空隙部を観察した際の現象をイメージ的に示す説明図である。
【図7】本発明における第二段階診断法の一例である横波共振法による、健全部、分離空隙部の受信信号をオシロスコープに表示した波形特性図である。
【図8】本発明における第三段階診断法の一例であるコア抜き調査により採取されたコアと採取後の吹付法面を示す説明図である。
【図9】本発明を適用した既存のダム周辺のコンクリート吹付法面全景図である。
【符号の説明】
1…第一段階診断法
2…第二段階診断法
3…熱赤外線カメラ
4…横波共振法装置のうち発信機兼受信機
5…横波共振法装置のうち接続線
6…横波共振法装置のうち発信センサー
7…横波共振法装置のうち受信センサー
8…第三段階診断法
9…接続線
10…オシロスコープ等の表示器
11…パソコン等の解析器
A…診断対象吹付法面
B…地山
C…健全部
D…分離空隙部(空洞部)
E…劣化範囲[0001]
[Technical field to which the invention belongs]
The present invention relates to the degree of physical deterioration of the spraying slope itself of the existing concrete spray slope (hereinafter referred to as spray slope) cracks constructed as a surface protection work for rock slopes, ground slopes, cut slopes, etc. It has become possible to accurately determine the degree of adhesion between the surface and the ground, such as rock and ground, and the weathering / degradation level of the ground surface by combining three different types of diagnostic methods. The present invention relates to a method for diagnosing spray slope deterioration.
[0002]
[Prior art]
Conventionally, this kind of diagnostic method includes (1) a hammering sound method in which a human strikes the slope with a hammer, and (2) a diagnostic method such as destroying a part of the slope and removing or peeling off the core. It has been.
Further, as a recently developed method, (3) a thermal infrared imaging method for diagnosing the degree of adhesion between a natural mountain and a spray slope from the change in the surface temperature of the spray slope is known.
[0003]
[Problems to be solved by the invention]
The above diagnostic methods have various drawbacks. The above-mentioned (1) hammering method is judged by human auditory sense, so experience is necessary for diagnosis, and the judgment criteria vary from observer to observer, and the result is lacking in objectivity and low reproducibility. There were drawbacks such as danger on the work on a rough slope.
[0004]
In addition, the diagnostic method (2) by removing the core or removing the slope is highly accurate and accurate, but the diagnostic range (area) is limited, and it takes a lot of labor and time to adopt it for the entire slope. Not only was the cost increased, but there was a lot of damage to the slope, which was not realistic.
[0005]
Furthermore, (3) thermal infrared imaging is a method of measuring the temperature distribution on the surface of the spray slope with a thermal infrared camera and trying to estimate the contact state between the spray slope and the natural ground based on the difference in temperature and its change. However, the measurement results often depend on the solar radiation conditions on the surface of the spray slope, the temperature at the time of measurement, weather, wind, and other natural phenomena, and the shape of the surface of the spray slope, such as unevenness, and the spray thickness is thick. There is a problem that there is a measurement limit that makes measurement impossible, such as when plants and moss are densely grown on the surface, or when the surface is wet by spring water.
[0006]
[Means for Solving the Problems]
In the deterioration diagnosis method for existing concrete spray slopes constructed as a surface protection work for rock slopes, ground slopes, cut slopes, etc., the degradation extent of the entire diagnosis target is estimated with high efficiency, simple and non-destructive. First stage diagnostic method using thermal infrared imaging method to diagnose, degradation range diagnosed as part of gap formed between spray slope and ground by first stage diagnostic method and first stage diagnostic The method using the transverse resonance method based on the analysis of the received wave obtained by the arrangement of the transmitting means and the receiving means for non-destructive complementary diagnosis with high accuracy for the indeterminate range that could not be determined as a healthy part by the law The degradation range narrowed down by the two-stage diagnostic method and the above-mentioned first-stage diagnostic method and the second-stage diagnostic method is locally destroyed through an optical device from the small hole drilled in the concrete spray slope or by removing the spray slope from the core. Observe and conduct in order of the degree of adhesion between the above-mentioned spray slope and the natural ground and the third stage diagnostic method for diagnosing the deterioration state of the surface area of the natural ground. It is intended to provide a method for diagnosing deterioration of a spray slope that can be diagnosed with safety, reliability, and low cost with high accuracy.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for diagnosing the degree of deterioration of a spray slope according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory flowchart showing an outline of the main part of the present invention and the entire method. Fig. 2 is a schematic diagram of the aging spray slopes to be diagnosed. In the figure, A is the spray slope, B is the ground of rock, ground, etc. C is the spray slope A and ground B. Is a healthy part where D is in a close contact state, and D is a separation gap part in which the contact degree between the spray slope A and the natural ground B is lowered due to aging or the like.
[0008]
1 in the flow chart of FIG. 1 is a first stage diagnostic method, for example, a visual observation that is a non-contact, non-destructive diagnostic method for the entire spray slope A surface to be diagnosed as shown in FIG. As shown in FIG. 3 and FIG. 4 (a) to (c), a portion D in which the natural mountain and the spraying slope are separated from the entire range of the spraying slope A by a thermal infrared imaging method occupies a wide range, This is useful for estimating the so-called deterioration range E with low accuracy but with high efficiency.
[0009]
Next, with respect to the estimated degradation range E, the first stage
[0010]
For the separation gap D identified with high accuracy by the second stage diagnostic method, the third stage
[0011]
To explain further, in the thermal infrared imaging method, as shown in FIG. 3, the opposite side of the spraying slope A to be diagnosed, that is, the entire spraying slope A is taken from the position where the thermal
[0012]
The principle of the thermal infrared imaging method is that the volumetric heat capacity of air is very small compared to rocks and soils such as natural ground, so the separation gaps (cavities, etc.) D where air is interposed on the back of the spray slope A It is known that the spray slope surface reacts sensitively to the load of outside air and solar energy, and has a property that it is easy to warm and hard to squeeze compared to a healthy part B where the ground and the spray slope face are in close contact. Yes. Therefore, by measuring the surface temperature at two times, ie, at a high temperature and at a low temperature, and observing the temperature difference at both times, for example, as shown in FIGS.
[0013]
4 (a) to 4 (b) show the diagnosis results on the spray slope around the dam shown in FIG. 4A is a thermal infrared image in the early morning (low temperature), FIG. 4B shows a thermal infrared image in the daytime (high temperature), and FIG. 4C is the temperature in both thermal infrared images. It shows a difference, a so-called heat difference image, and it is estimated that the portion where the temperature difference is large is the separation gap portion. Therefore, a portion where the separation gap D is widely distributed, that is, a portion surrounded by a broken line in FIG.
[0014]
However, the thermal infrared imaging method is based on the principle, and the measurement accuracy is affected by the solar radiation conditions on the surface of the spray slope, the temperature at the time of measurement, natural phenomena such as the weather and wind, and the shape of the surface of the spray slope such as unevenness. receive. In addition, in the spray slope A, it is impossible to measure the range where the spray thickness is thick, the range where plants and moss grow densely on the surface, and the range where the surface is wet by spring water.
[0015]
The second stage
[0016]
6 (a) and 6 (b) show a healthy (normal) portion C in which the spray slope A and the ground B shown in FIG. 2 are in close contact, and the back of the spray slope A and the ground B in close contact. It is sectional drawing which expands and shows the state of the isolation | separation space | gap part D which is a state with the defect, the isolation | separation space | gap (cavity) state, or the state where the earth and sand etc. were filled with the part.
[0017]
The transverse wave resonance method will be described in detail. The transmitter /
[0018]
More specifically, in FIG. 6A, which is an enlarged view of the healthy portion C in FIG. 2, the tip (probe) of the
[0019]
On the other hand, as shown in FIG. 6B, which is an enlarged view of the separation gap D in FIG. 2, when the
[0020]
In addition, the transverse wave resonance method used in the second stage diagnostic method is a slope that is difficult to diagnose by the thermal infrared imaging method used in the first stage, that is, a spraying face having a thick spraying thickness, and a plant on the surface. It can be diagnosed on slopes where moss grows densely, spray slopes where the surface is wet by spring water, slopes where sunlight conditions are not good, etc., so the range or diagnostic accuracy that could not be diagnosed by the first stage diagnostic method It is possible to diagnose and verify the remaining range of problems.
[0021]
In the third stage
[0022]
FIGS. 8A to 8C show an example of core extraction. From the observation of the collected core and the inside of the hole from which the core was removed, as shown in FIG. Measurement, confirmation of adhesion between ground and spray slope as shown in FIG. 8 (b), presence / absence of separation gap as shown in FIG. 8 (c), and deterioration state of ground surface layer. .
[0023]
Here, a specific example of the method for diagnosing the degradation of the spray slope will be briefly described with reference to the flowchart of FIG. 1 taking the spray slope around the dam shown in FIG. 9 as an example.
[0024]
First, when the spray slope A shown in FIG. 9 is inspected in the flow order of FIG. 1, it is assumed that cracks and surface abnormalities are found on the spray slope A. Therefore, as shown in FIG. 3, diagnosis by the thermal infrared imaging method of the first stage
[0025]
Next, for the purpose of narrowing down the degradation range E with high accuracy by specifying the range of the separation cavity D with high accuracy with respect to the degradation range E estimated from the diagnosis result by the first stage diagnostic method, the transverse wave resonance A second stage diagnosis consisting of a method or the like is performed as shown in FIGS. For example, in FIG. 5B, measurement is sequentially performed on intersections between broken-line grids (1.5 m × 1.5 m). As a result, in the healthy portion C shown enlarged in FIG. 6 (a), the received wave having a waveform as shown in FIG. 7 (a) is shown, and in the separation gap portion D shown enlarged in FIG. 6 (b), Since the spray slope is resonated by the vibration sent from the
[0026]
Next, the core sampling survey which is the third stage
[0027]
Finally, comprehensive evaluation is performed based on the results of observation and analysis in the order of the first stage
[0028]
【The invention's effect】
As described above, according to the deterioration diagnosis method of the concrete spray slope according to the present invention,
(1) The deterioration range is non-contact, non-destructive and simple for the entire diagnosis target spray slope, and the deterioration range can be estimated with high efficiency, though not completely accurate.
[0029]
(2) The degradation range estimated by the first stage diagnosis method and the remaining range of the first stage diagnosis method in terms of accuracy, while the second stage diagnosis method is used for non-destructive, high accuracy, and forced vibration. The degree of adhesion between the spray slope and the ground can be objectively and clearly identified by the response waveform difference.
[0030]
(3) For the degradation range estimated (specified) by the first and second stage diagnosis methods, the third stage diagnosis method is used to perform partial destruction such as core removal only at the minimum necessary locations, and the spraying method. It is possible to reliably observe the deterioration state of the surface itself, the close contact or separation gap state between the spray slope and the natural ground, and the weathering / degradation state of the natural ground surface.
[0031]
(4) By sequentially combining the diagnostic methods from (1) to (3) above, the degradation range and location of the vast spray slope can be evaluated with high-efficiency, accurate and objective indicators, and safe. That can be diagnosed.
[0032]
(5) The impact on the spraying slope can be reduced to the minimum without causing impacts, and the negative effects of diagnosis can be reduced as much as possible. The accuracy and cost can be significantly improved compared to the conventional method.
Etc. can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory flowchart showing a schematic procedure of a concrete spray slope deterioration diagnosis method according to the present invention.
FIG. 2 is a front view and a cross-sectional view showing a state of a spray slope to be diagnosed.
FIG. 3 is an explanatory diagram conceptually showing a first stage diagnostic method of the diagnostic method according to the present invention, for example, a thermal infrared imaging method.
FIG. 4 is an explanatory view taken by a thermal infrared imaging method which is an example of a first stage diagnostic method in the present invention.
[Fig. 5 (a)]
FIG. 5 (b) is an explanatory diagram conceptually showing a second stage diagnostic method of the diagnostic method according to the present invention, for example, a transverse wave resonance method.
FIG. 6 is an explanatory diagram conceptually showing a phenomenon when a sound part and a separation gap part are observed by a transverse wave resonance method which is an example of a second stage diagnostic method in the present invention.
FIG. 7 is a waveform characteristic diagram in which reception signals of a sound part and a separation gap part are displayed on an oscilloscope by a transverse wave resonance method which is an example of a second stage diagnosis method in the present invention.
FIG. 8 is an explanatory diagram showing cores collected by a core removal survey, which is an example of a third stage diagnostic method according to the present invention, and spraying slopes after collection.
FIG. 9 is a full view of a concrete spray slope around an existing dam to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF
E ... Deterioration range
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002133462A JP4098558B2 (en) | 2002-05-09 | 2002-05-09 | Degradation diagnosis method for concrete spray slope |
CN 02142086 CN1456754A (en) | 2002-05-09 | 2002-08-26 | Diagnosis for deterioration of concrete sprayed slope surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002133462A JP4098558B2 (en) | 2002-05-09 | 2002-05-09 | Degradation diagnosis method for concrete spray slope |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003329593A JP2003329593A (en) | 2003-11-19 |
JP4098558B2 true JP4098558B2 (en) | 2008-06-11 |
Family
ID=29416674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002133462A Expired - Fee Related JP4098558B2 (en) | 2002-05-09 | 2002-05-09 | Degradation diagnosis method for concrete spray slope |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4098558B2 (en) |
CN (1) | CN1456754A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009079364A (en) * | 2007-09-25 | 2009-04-16 | Giken Kogyo Kk | Repair method of degraded sprayed mortar covered surface |
JP2014032123A (en) * | 2012-08-03 | 2014-02-20 | Fukui Prefecture | Crack part evaluation method for ground surface reinforcement layer |
JP6034675B2 (en) * | 2012-11-28 | 2016-11-30 | 株式会社高特 | Glide surface weathering depth survey machine |
-
2002
- 2002-05-09 JP JP2002133462A patent/JP4098558B2/en not_active Expired - Fee Related
- 2002-08-26 CN CN 02142086 patent/CN1456754A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2003329593A (en) | 2003-11-19 |
CN1456754A (en) | 2003-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Soleymani et al. | Damage detection and monitoring in heritage masonry structures: Systematic review | |
TWI449883B (en) | Method for analyzing structure safety | |
CN108318584B (en) | Method for detecting pile body quality and inclination by combining single-hole acoustic wave with cross-hole CT | |
CN106596904A (en) | Distributed test system and test method for concrete damage detection | |
CN104634870A (en) | Tunnel structure damage identification device based on vibration response test | |
CN103926313B (en) | A kind of composite porosity Numerical evaluation method based on ultrasound detection | |
CN110210149B (en) | System and method for acquiring dynamic response information of stress and strain in road | |
Kepler et al. | Improved assessment of mass concrete dams using acoustic travel time tomography. Part II—application | |
WO2024147570A1 (en) | System for detecting internal defects in concrete members on basis of artificial intelligence | |
CN201028977Y (en) | Multi-parameter detecting instrument based on compound optical fiber device | |
JP3834749B2 (en) | Structure investigation / diagnosis device using thermography, measuring method of rebar / steel concrete structure by thermography device, and structure investigation / diagnosis system | |
KR102497110B1 (en) | A system for diagnosing integrity of facilities by using sensor of pile-type having IOT function | |
JP4098558B2 (en) | Degradation diagnosis method for concrete spray slope | |
CN108020197A (en) | A kind of detection method of wall deformation | |
EP2965124B1 (en) | A system and method for evaluating a dam state | |
CN210953845U (en) | Concrete crack detection equipment and system | |
KR200179851Y1 (en) | Device to measure stress waves inside a core hole of tunnel lining | |
CN117211244A (en) | Soft soil foundation backfill back subsidence monitoring system | |
CN117910294A (en) | Automatic monitoring and analyzing method for karst landform high slope protection construction | |
CN113532544B (en) | Real-time testing device for strain stiffness and stress state of soil body and construction testing method thereof | |
CN112179987B (en) | Nondestructive testing method for long-distance thin plate structure micro-defects | |
JP3519381B2 (en) | Non-destructive diagnosis method of concrete pole using elastic wave | |
Sunley | The experimental investigation of defects | |
JP2003065942A (en) | Device and method for diagnosing damaged degree of concrete | |
JP2877759B2 (en) | Dynamic diagnosis method of pile or structure defect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061017 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080313 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4098558 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110321 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140321 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |