[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4093100B2 - Floor material and method for manufacturing floor material - Google Patents

Floor material and method for manufacturing floor material Download PDF

Info

Publication number
JP4093100B2
JP4093100B2 JP2003102150A JP2003102150A JP4093100B2 JP 4093100 B2 JP4093100 B2 JP 4093100B2 JP 2003102150 A JP2003102150 A JP 2003102150A JP 2003102150 A JP2003102150 A JP 2003102150A JP 4093100 B2 JP4093100 B2 JP 4093100B2
Authority
JP
Japan
Prior art keywords
fiber
fine
fiber sheet
fine fiber
flooring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003102150A
Other languages
Japanese (ja)
Other versions
JP2004308216A (en
Inventor
秀行 安藤
有三 奥平
将行 奥澤
一哲 梅岡
兼司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003102150A priority Critical patent/JP4093100B2/en
Publication of JP2004308216A publication Critical patent/JP2004308216A/en
Application granted granted Critical
Publication of JP4093100B2 publication Critical patent/JP4093100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)
  • Floor Finish (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フローリング仕上げ床や階段の踏み板等に用いられる床材に関するものである。
【0002】
【従来の技術】
住宅分野において、フローリング仕上げが施された木質系床材は、掃除等の手入れが容易であり、またシックハウス症候群の一因とされるダニの発生を抑えるなどの利点を有することから、集合住宅を中心に急速に使用が拡大している。
【0003】
木質系床材として従来は、例えば合板などの板状材料の表面に突き板や化粧シート等の表面仕上げ材を接着したものが主流であった。しかしこのような床材は表面の平滑性や表面硬度が十分でなく、キャスター付きの椅子や家具の移動など、床材に対して往復する荷重が負荷される場合に、表面が傷付いたり、また長期的な使用に耐え切れずに表面仕上げ材が剥離したりする欠点を有するものであった。
【0004】
そのため近年では、板状材料と表面仕上げ材との間に、比較的高い表面平滑性と表面硬度を有するMDF(中質繊維板)等を表面補強材として設けることによって、耐傷性を向上させるようにした床材が多く提供されている。また本出願人は、特許文献1にみられるような、ケナフ等の繊維板を用いた床材を提供している。
【0005】
【特許文献1】
特開2001−328105号公報
【0006】
【発明が解決しようとする課題】
しかしながら、このような耐傷性を向上させた床材に用いられるMDF等の繊維板は一般に曲げや衝撃等の荷重に対する強度が小さく、床材としての強度を確保するためには合板等の板状材料をある程度厚くする必要があり、また、MDF等の繊維板は室内の温度変化や湿度変化による寸法変化が一般的に合板より大きいため、MDF等の繊維板を合板等の板状材料に接着した床材の場合、反りや突き上げなどの変形や、表面仕上げ材のクラックなど、異常が発生するおそれがあった。
【0007】
また特許文献1のものは、ケナフ等の繊維板を用いることによって上記のMDF等の繊維板の欠点を解消しようとするものであるが、ケナフ等の繊維板では、繊維板中に繊維径の太い長繊維を含んでいることがあり、この太い繊維によって表面仕上げ材の表面に段差が生じ、例えばキャスターなどの往復荷重が長期的に負荷された場合に、この段差によって表面仕上げ材に傷や剥離が生じ易くなるなど、上記の床材と同程度の耐久性に留まることがあるものであった。
【0008】
本発明は上記の点に鑑みてなされたものであり、床材としての十分な曲げ性能や、キャスター等の往復荷重に対する優れた耐傷性(すなわち高い表面硬度)や、長期耐久性をさらに向上させ、且つ、温度変化や湿度変化に対する寸法変化が小さく、反りや突き上げ等の変形や、表面仕上げ材のクラックなどの異常発生を極力抑えることができる床材及び床材の製造方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明の請求項1に係る床材は、ケナフ、ジュート、サイザル麻、油ヤシ、ココヤシから選ばれる繊維1を原料とする繊維マット2に接着剤を付着させると共にこれを加熱加圧成形して得られる繊維板3を少なくとも表層部に有する基材4と、基材4の表面に接着される表面仕上げ材5とを具備して形成される床材において、繊維板3と表面仕上げ材5との間に、繊維板3を構成する繊維より繊維径の細い微細繊維よりなる微細繊維シート6を積層して成ることを特徴とするものである。
【0010】
また請求項2の発明は、請求項1において、微細繊維シート6が木材パルプ繊維よりなるものであることを特徴とするものである。
【0011】
また請求項3の発明は、請求項1又は2において、微細繊維の繊維径が5〜100μmであることを特徴とするものである。
【0012】
また請求項4の発明は、請求項1乃至3のいずれかにおいて、微細繊維シート6の厚みが5〜200μmであることを特徴とするものである。
【0013】
また請求項5の発明は、請求項1乃至4のいずれかにおいて、微細繊維シート6の単位面積あたりの重量が、10〜100g/mであることを特徴とするものである。
【0014】
また請求項6の発明は、請求項1乃至5のいずれかにおいて、微細繊維シート6の微細繊維の配向方向と、繊維板3の繊維1の配向方向とが交差するように、微細繊維シート6を積層して成ることを特徴とするものである。
【0015】
また請求項7の発明は、請求項6において、微細繊維シート6の微細繊維の配向方向と繊維板3の繊維1の配向方向とが略直交するように交差させて成ることを特徴とするものである。
【0016】
また請求項8の発明は、請求項1乃至7のいずれかにおいて、繊維板3と微細繊維シート6の間及び微細繊維シート6と表面仕上げ材5の間にそれぞれ接着剤層7,8を介して微細繊維シート6を積層すると共に、繊維板3と微細繊維シート6の間の接着剤層7の厚みを、微細繊維シート6と表面仕上げ材5の間の接着剤層8の厚みよりも厚く形成して成ることを特徴とするものである。
【0017】
また請求項9の発明は、請求項1乃至8のいずれかにおいて、繊維板3と微細繊維シート6の間及び微細繊維シート6と表面仕上げ材5の間にそれぞれ接着剤層7,8を介して微細繊維シート6を積層すると共に、繊維板3と微細繊維シート6の間の接着剤層7の接着剤として、微細繊維シート6の弾性係数よりも低い弾性係数を有するものを用いて成ることを特徴とするものである。
【0018】
また請求項10の発明は、請求項9において、繊維板3と微細繊維シート6の間の接着剤層7の接着剤がゴム系接着剤であることを特徴とするものである。
【0019】
本発明の請求項11に記載の床材の製造方法は、請求項1乃至10のいずれかに記載の床材を製造するにあたって、ケナフ、ジュート、サイザル麻、油ヤシ、ココヤシから選ばれる繊維1を原料とする繊維マット2に接着剤を付着させ、この接着剤を付着させた繊維マット2に、繊維板3を構成する繊維1より繊維径の細い微細繊維よりなる微細繊維シート6を重ねて加熱加圧成形することによって、微細繊維シート6を表面に積層した繊維板3を作製し、微細繊維シート6の表面に表面仕上げ材5を接着することを特徴とするものである。
【0020】
また請求項12の発明は、請求項11において、接着剤を付着させた繊維マット2の含水率を5〜40重量%の範囲に調整した後、加熱加圧成形を行なうことを特徴とするものである。
【0021】
また請求項13の発明は、請求項11又は12において、微細繊維シート6の片面に熱融着性樹脂を配し、熱融着性樹脂を配した側の面で微細繊維シート6を繊維マット2に重ねて加熱加圧成形を行なうことを特徴とするものである。
【0022】
また請求項14の発明は、請求項11又は12において、微細繊維シート6の内部に熱融着性樹脂を含浸した後、微細繊維シート6を繊維マット2に重ねて加熱加圧成形を行なうことを特徴とするものである。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0024】
図1は本発明に係る床材Aの一例を示すものであり、繊維板3からなる基材4の表面に微細繊維シート6を介して表面仕上げ材5を貼着して形成してある。基材4にはその片側の側端面に雄実11が、他の側端面に雌実12が設けてある。また、表面仕上げ材5は、例えば、表面化粧を目的とした厚みが0.2〜0.3mm程度の薄い化粧単板で形成されるものであり、この化粧単板としては天然木をスライスしたものを挙げることができる。
【0025】
上記の繊維板3は、多数の繊維1を集合させた繊維マット2に接着剤を分散させて付着し、この繊維マット2を加熱加圧成形することによって得ることができるものである。本発明においてこの繊維1として、ケナフ、ジュート、サイザル麻、油ヤシ、ココヤシのいずれかから得られたものを用いるものであり、1種を単独で使用する他に、複数種を混合して使用することもできる。この繊維1はケナフ、ジュート、サイザル麻、油ヤシ、ココヤシから解繊等の工程を経て容易に得ることができる長繊維であり、針葉樹や広葉樹から得られる繊維に比較し、通常で2〜14倍程度の引張強度を有するものである。長繊維マット2を形成する繊維1の長さとしては、平均長さが10mm以上であることが好ましく、100〜400mmであることがより好ましい。また繊維1の径については、平均繊維径が30〜500μmのものを用いることが好適である。
【0026】
繊維マット2に付着させる上記の接着剤としては、特に限定されるものではないが、ユリア系樹脂、メラミン系樹脂、フェノール系樹脂、レゾルシノール系樹脂、エポキシ樹脂、ウレタン樹脂、フルフラール系樹脂、イソシアネート系樹脂などの熱硬化性樹脂接着剤を用いることができる。繊維マット2に対する接着剤の付着量は、接着剤樹脂成分に換算して10〜50重量%の範囲になるように設定するのが好ましい。
【0027】
また、繊維マット2は、その作製方法や繊維1の配向性などについて特に限定されるものではないが、用途によっては、上記の繊維1を略一方向に配向するように調整して作製するのが好ましい。繊維1はその繊維方向の引張強度が高いという特性を有しており、繊維1の長手方向(繊維配向方向)を揃えることにより、繊維板3に優れた引張強度を発現させることができるものであり、床材Aの曲げ強度を高める必要のある場合特に有効である。また、このように繊維1の繊維方向を一方向に揃えることによって、繊維板3の繊維方向への寸法変化を抑えることができるものであり、床材Aの長手方向を繊維板3の繊維方向に揃えて形成することによって、温度変化や湿度変化に対して寸法変化を小さくすることができるものである。
【0028】
ここで、繊維1を全て一方向に正確に一致させて配向させることは極めて困難であるので、繊維板3の所定の一方向に対する繊維1の繊維方向の傾きの角度が+30°〜−30°の範囲に入るように、総ての繊維1を配向させるようにすればよく、より好ましくは、+20°〜−20°の範囲である。繊維1を略一方向に配向させるにあたっては、例えば、図3に示すような配向装置を用いて行なうことができる。この配向装置は、上下のローラ対から構成されるドローイング部分14を複数組備えると共に、櫛状のコーミング部分15を具備して形成されるものである。そして、絡み合った多数本の繊維1をドローイング部分14のローラ間に通した後、コーミング部分15の櫛片16の間に通し、さらに他のドローイング部分14のローラ間に通すようにして略一方向に配向させることができるものであり、図2のような繊維1が略一方向に配向した繊維マット2を得ることができるものである。
【0029】
また、繊維1を配向させないで繊維マット2を作製することもできるものである。この場合の作製方法も特に限定されるものではなく、例えば、平均長さが10〜400mmの繊維1をランダムに堆積し、その後、必要に応じてニードルパンチング等を行なって繊維1を絡め合わせることによって、繊維1が一定方向に配向していない繊維マット2を作製することができる。
【0030】
上記の微細繊維シート6は、繊維板3を構成する上記の繊維1より繊維径の細い微細繊維よりなるものであり、微細繊維の繊維径は5〜100μmの範囲のものが好ましい。微細繊維径が100μmを超えると微細繊維シートの平滑性が損なわれ、微細繊維シート6の上に貼り付けられる表面仕上げ材5の表面に段差が生じるおそれがある。微細繊維の繊維径は小さいほど好ましいが、5μm未満の微細繊維は作製が困難で入手することが難しい。
【0031】
この微細繊維としては特に限定されるものではないが、例えば木材パルプ繊維を用いることができるものであり、木材パルプ繊維からなる紙やシートを微細繊維シート6として使用することができるものである。木材パルプ繊維からなる微細繊維シート6は、入手の容易性、平滑性、ケナフ繊維などの植物繊維と構成成分が似ていて接着性が比較的良好であるなどの点から好ましい。勿論、微細繊維シート6としてはこのような木材パルプ繊維からなる紙やシートに限定されるものではなく、ポリエステル不織布などを用いることもできる。
【0032】
また微細繊維シート6は厚みが5〜200μmの範囲のものが好ましい。厚みが5μm未満であると、微細繊維シート6の強度が弱く、微細繊維シート6を貼り付けるときに破断するおそれがあり、厚みが200μmを超えると、キャスター等の往復荷重に対して微細繊維シート6内で破断が生じるおそれがある。さらに微細繊維シート6は単位面積あたりの重量が、10〜100g/mの範囲のものが好ましい。微細繊維シート6の重量が10g/m未満の場合は、微細繊維シート6を構成する繊維の絶対量が少なくなるため、十分な表面平滑性を付与できなくなり、逆に100g/mを超える場合は、微細繊維シート6を構成する微細繊維同士が十分に絡み合っていない部分が生じることがあり、その部分から微細繊維シート6が破断するおそれがある。
【0033】
そして、上記の接着剤を付着させた繊維マット2を加熱加圧成形して接着剤を硬化させることによって、繊維1が接着剤によって結合された繊維板3を成形することができるものである。加熱加圧成形の際の温度や時間や圧力は、接着剤の種類や繊維板3の厚みや密度などに応じて適宜に設定されるが、例えば、温度は20〜200℃、好ましくは100〜190℃に設定することができる。また加熱加圧成形の際のプレス方法としては、バッチ式の平板プレスや連続プレスなどを採用することができるが、特にこれらに限定されるものではない。
【0034】
上記のように繊維板3を成形した後、繊維板3の表面に微細繊維シート6を接着するようにしてもよいが、上記の接着剤を付着させた繊維マット2の表面に微細繊維シート6を重ね、加熱加圧成形して接着剤を硬化させることによって、繊維1が接着剤によって結合された繊維板3を成形すると同時にこの繊維板3からなる基材4の表面に微細繊維シート6を接着することもできるものである。
【0035】
繊維板3の密度は、特に限定されないが、高い力学的強度が必要な場合は、0.3〜1.0g/cmの範囲に設定するのが好ましく、さらに好ましくは0.5〜0.9g/cmの範囲である。繊維板3の密度が0.3g/cm未満であると、繊維板3の内部に多数の空隙が存在することになり、繊維1同士の接着部分や繊維1同士の絡み合い部分が減少することになって、繊維1同士の接着部分や繊維1同士の絡み合い部分による補強効果が不十分になり、繊維板3の力学的強度が低下するおそれがある。また繊維板3の密度が1.0g/cmを超える場合は、加熱加圧成形の際の圧力として高いものが必要になり、繊維1自体を破損することになって、この場合も繊維板3の力学的強度の向上効果が小さくなるおそれがある。
【0036】
このように繊維マット2を加熱加圧して繊維板3を成形するにあたって、接着剤を塗布した繊維マット2を乾燥して、予め繊維マット2の含水率を5〜40重量%の範囲に調整しておき、この後に加熱加圧成形を行なうのが好ましい。繊維マット2の含水率が5重量%未満であると、加熱加圧成形を行なう前に接着剤が硬化してしまうおそれがあり、逆に含水率が40重量%を超えると、加熱加圧成形のときに接着剤成分が水分蒸発と共に移動し、内部の均一接着性が損なわれるおそれがある。
【0037】
ここで、繊維板3に対する微細繊維シート6の接着強度を高く得るために、微細繊維シート6に熱融着性樹脂からなる接着剤を塗布しておき、熱融着性樹脂が溶融・硬化して形成される接着剤層7によって繊維板3に微細繊維シート6を接着するのが好ましい。この熱融着性樹脂としては、接着剤層7の弾性係数が微細繊維シート6の弾性係数より低くなるものを用いるのが好ましい。このように弾性係数が微細繊維シート6の弾性係数より低い接着剤を用いることによって、接着剤層7が微細繊維シート6と繊維板3との間における緩衝層となり、往復荷重に対する緩衝効果をさらに向上させることができるものである。例えば微細繊維シート6が木材パルプ繊維からなる紙の場合、弾性係数は一般に10〜100MPaの範囲であり、接着剤として接着剤層7の弾性係数が5〜70MPaの範囲になるものを用いるのが好ましい。このような弾性係数の低い接着剤としては、特に限定されるものではないが、スチレンブタジエン(SBR)接着剤などゴム系接着剤を用いるのが好ましい。
【0038】
また上記のように微細繊維シート6に熱融着性樹脂からなる接着剤を塗布するにあたって、微細繊維シート6の内部に熱融着性樹脂からなる接着剤を含浸させた後に、微細繊維シート6を繊維マット2に重ねて加熱加圧成形をするようにすることもできるものであり、加熱加圧成形時に熱融着性樹脂で、繊維板3を構成する繊維1間の空隙を埋めることができ、表面平滑性を更に高めることができるものである。
【0039】
上記のようにして繊維板3からなる基材4の表面に微細繊維シート6を接着した後、微細繊維シート6の表面に表面仕上げ材5を貼着することによって、図1のような床材を得ることができるものである。表面仕上げ材5の貼着は、微細繊維シート6の表面と表面仕上げ材5の表面の少なくとも一方に接着剤を塗布し、この状態で微細繊維シート6の表面に表面仕上げ材5を重ねて加熱加圧をすることによって行なうことができ、接着剤層8を介して微細繊維シート6に表面仕上げ材5を接着することができるものである。この接着剤としては、スチレンブタジエン(SBR)系接着剤、水性ビニルウレタン系接着剤、酢酸ビニル系接着剤などを用いることができ、また加熱加圧は、例えば温度100〜150℃程度、圧力1〜1.5MPa程度、時間60〜120秒程度の条件で行なうことができる。
【0040】
ここで、繊維板3からなる基材4と微細繊維シート6の間に形成される接着剤層7は、その厚みが、微細繊維シート6と表面仕上げ材5の間に形成される接着剤層8の厚みよりも厚くなるように設定するのが好ましいものであり、表面仕上げ材5と微細繊維シート6の間の密着性を高めながら、同時に繊維板3と微細繊維シート6の間の接着剤層7による緩衝作用を効果的に発揮させることができ、表面平滑性向上と緩衝効果を同時に発現させることができるものである。接着剤層7,8の厚みは特に制限されるものではないが、接着剤層7の厚みは5〜50μm程度、接着剤層8の厚みは10〜100μm程度であることが好ましく、接着剤層7と接着剤層8の厚みの比は前者に対して後者が2〜10倍であることが好ましい。
【0041】
上記のようにして得られる本発明に係る床材にあって、基材4となる繊維板3はケナフ、ジュート、サイザル麻、油ヤシ、ココヤシから選ばれる繊維1を原料として成形されたものであり、この繊維1は高強度の長繊維であるので、曲げ荷重に対する剛性、すなわち曲げ変形に対する力学的強度を高く得ることができるものである。すなわち、繊維で形成された板の曲げ強度は、繊維自体の強度のみならず、繊維同士の絡み合いや繊維間の接着部分の接着強度によっても形成されるものであるが、長繊維により形成された繊維板3は、長繊維の絡み合いが内部に多数存在すると共に、長繊維一本当たりの接着剤が付着する部分を増すことができるため、曲げ強度を高く得ることができるものである。また、繊維板3は繊維1自体の強度が高く、しかも長繊維によって内部の空隙構造を均一で緻密な構造とすることができるものであり、その結果、床材Aは、集中荷重に対してどの部分においても高い表面硬度を維持することができるものであり、キャスター等の往復荷重に対する優れた耐傷性を有するものである。
【0042】
特に、上記の実施の形態のように、繊維板3の繊維1を略一方向に配向させることによって、内部の空隙構造をより均一で緻密な構造とすることができるものであり、どの部分においても高い表面硬度を維持することができ、キャスター等の往復荷重に対して一層高い耐傷性を有する床材Aを得ることができるものである。
【0043】
さらに、本発明に係る床材にあって、基材4と表面仕上げ材5との間に微細繊維よりなる微細繊維シート6が積層してあるので、繊維板3からなる基材4の表面の凹凸を微細繊維シート6で吸収すると共に、微細繊維シート6によって表面仕上げ材5の表面を平滑化することができ、キャスター等の往復荷重に対して一層高い耐傷性を有する床材Aを得ることができるものである。
【0044】
また、微細繊維シート6として例えば紙などを用いる場合、抄造する方向に微細繊維が配向しているが、このように微細繊維シート6として微細繊維の繊維方向が所定の一方方向に配向したものを用いる場合、上記のように繊維1を略一方向に配向させた繊維板3に微細繊維シート6を積層するにあたっては、繊維板3の繊維1の配向方向に対して微細繊維シート6の微細繊維の配向方向が交差するように、微細繊維シート6の積層を行なうのが好ましい。
【0045】
微細繊維シート6の強度は、微細繊維の配向方向と平行な方向で最も高く、微細繊維の配向方向と直交する方向で最も低い。また繊維板3の温度や湿度の変化に対する寸法変化は、繊維1の配向方向と平行な方向で最も小さく、繊維1の配向方向と直交する方向で最も大きい。従って、繊維板3の繊維1の配向方向と微細繊維シート6の微細繊維の配向方向が交差するように繊維板3に微細繊維シート6を積層すると、繊維板3の寸法変化を微細繊維シート6で抑制することができ、床材Aの寸法変化を小さくすることができるものである。繊維板3の寸法変化を微細繊維シート6で抑制する効果は、図5に示すように繊維板3の繊維1の配向方向(a矢印で示す)に対して微細繊維シート6の微細繊維の配向方向(b矢印で示す)をほぼ直交させる場合が最も高く、床材Aの寸法変化を小さくする効果を高く得ることができるものである。
【0046】
上記の実施の形態では、繊維板3単体で床材Aの基材4を形成するようにしたが、図6に示すように、合板などの木質板18と、木質板18の表面に貼り付けた繊維板3とで、床材Aの基材4を形成するようにしてもよい。
【0047】
【実施例】
次に、本発明を実施例によって具体的に説明する。
【0048】
(実施例1)
ケナフを解繊して得た平均繊維径が150μmのケナフ繊維を長さ1000〜2000mmに切断し、このケナフ繊維にフェノール系接着剤を15重量%となるようにして分散させた。そしてこのケナフ繊維を6組の上下のローラー対から成るドローイング部分と、櫛状のコーミング部分とを組み合わせた配向装置を用いて一方向に配向させた後、ケナフ繊維を型枠中で単一方向に並べて積み重ねて集合体からなる繊維マットを得た。
【0049】
次に、この繊維マットを40℃の温風により10分間乾燥して、含水率を5重量%に調整した。この後に、この繊維マットを温度170℃、圧力3MPa、時間10分の条件で加熱加圧成形することによって、密度750kg/m 、厚み11.7mmの配向性を有するケナフ繊維板を作製した。
【0050】
微細繊維シートとして、微細繊維の平均繊維径が120μm、厚み220μm、面重量140g/m、弾性係数46MPaのポリステル不織布を用い、微細繊維シートの片面にフェノール樹脂接着剤を塗布した。そして微細繊維シートの接着剤塗布面を上記の繊維板の表面に重ね、温度170℃、圧力1MPa、時間1分の条件で加熱加圧して、繊維板の表面に微細繊維シートを貼付した。このとき、微細繊維シートはその微細繊維の配向方向が繊維板の繊維の配向方向と平行になるように重ねた。また繊維板と微細繊維シートの間の接着剤層の厚みは100μm、弾性係数は52MPaであった。
【0051】
次に、表面仕上げ材として厚さ0.3mmの突き板を用い、表面仕上げ材の片面にフェノール樹脂接着剤を塗布し、そして表面仕上げ材の接着剤塗布面を微細繊維シートに重ね、温度120℃、圧力0.8MPa、時間1分の条件で加熱加圧して、微細繊維シートの表面に厚み20μmの接着剤層で表面仕上げ材を貼付し、床材を得た。
【0052】
(実施例2)
微細繊維シートとして、微細繊維の平均繊維径が120μm、厚み230μm、面重量140g/m、弾性係数42MPaのパルプシートを用いるようにした他は、実施例1と同様にして床材を得た。
【0053】
(実施例3)
平均繊維径が100μmのケナフ繊維を用い、このケナフ繊維をランダムに堆積させ、ニードルパンチングを行なうことによって、ケナフ繊維が配向しない繊維マットを得た。そしてこの繊維マットを用い、実施例1と同様にして厚み1.5mmの配向性を有しないケナフ繊維板を作製した。また微細繊維シートとして、微細繊維の平均繊維径が70μm、厚み230μm、面重量120g/m、弾性係数42MPaのパルプシートを用いた。
【0054】
そして、実施例1と同様にして、繊維板の表面に微細繊維シートを貼着し、さらに表面仕上げ材を貼着し、この後に、厚さ10.2mmの針葉樹合板の上に繊維板をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0055】
(実施例4)
実施例3と同様にして厚み1.5mmの配向性を有しないケナフ繊維板を作製した。また微細繊維シートとして、微細繊維の平均繊維径が70μm、厚み150μm、面重量120g/m、弾性係数42MPaのパルプシートを用いた。
【0056】
そして、実施例1と同様にして、繊維板の表面に微細繊維シートを貼着し、さらに表面仕上げ材を貼着し、この後に、厚さ10.2mmの針葉樹合板の上に繊維板をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0057】
(実施例5)
平均繊維径が100μmのケナフ繊維を用い、実施例1と同様にして厚み1.5mmの配向性を有するケナフ繊維板を作製した。また微細繊維シートとして、微細繊維の平均繊維径が10μm、厚み50μm、面重量30g/m、弾性係数39MPaのパルプ紙を用いた。
【0058】
そして、実施例1と同様にして、繊維板の表面に微細繊維シートを貼着した。このとき、微細繊維シートはその微細繊維の配向方向が繊維板の繊維の配向方向と平行になるように重ねた。また繊維板と微細繊維シートの間の接着剤層は厚み20μm、弾性係数52MPaであった。さらに実施例1と同様にして微細繊維シートの表面に表面仕上げ材を貼着し、この後に、厚さ10.2mmの針葉樹合板の上に繊維板をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0059】
(実施例6)
実施例5と同様にして厚み1.5mmの配向性を有するケナフ繊維板を作製した。また微細繊維シートとして実施例5と同じパルプ紙を用いた。
【0060】
そして、実施例1と同様にして、繊維板の表面に微細繊維シートを貼着した。このとき、微細繊維シートはその微細繊維の配向方向が繊維板の繊維の配向方向と45°の角度で交差するように重ねた。また繊維板と微細繊維シートの間の接着剤層は厚み20μm、弾性係数52MPaであった。さらに実施例1と同様にして微細繊維シートの表面に表面仕上げ材を貼着し、この後に、厚さ10.2mmの針葉樹合板の上に繊維板をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0061】
(実施例7)
微細繊維シートをその微細繊維の配向方向が繊維板の繊維の配向方向と直交するように重ねて、繊維板の表面に微細繊維シートを貼着するようにした他は、実施例6と同様にして、床材を得た。
【0062】
(実施例8)
実施例3と同様にして厚み1.5mmの配向性を有しないケナフ繊維板を作製した。また微細繊維シートとして実施例5と同じパルプ紙を用いた。
【0063】
そして、実施例1と同様にして、繊維板の表面に微細繊維シートを貼着した。このとき、繊維板と微細繊維シートの間の接着剤層は厚み100μm、弾性係数52MPaであった。さらに実施例1と同様にして微細繊維シートの表面に表面仕上げ材を貼着し、この後に、厚さ10.2mmの針葉樹合板の上に繊維板をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0064】
(実施例9)
実施例3と同様にして厚み1.5mmの配向性を有しないケナフ繊維板を作製した。また微細繊維シートとして実施例5と同じパルプ紙を用いた。
【0065】
そして微細繊維シートの片面にポリウレタン樹脂接着剤を塗布し、微細繊維シートの接着剤塗布面を上記の繊維板の表面に重ね、温度160℃、圧力0.8MPa、時間1分の条件で加熱加圧して、繊維板の表面に微細繊維シートを貼付した。このとき、繊維板と微細繊維シートの間の接着剤層の厚みは100μm、弾性係数は13MPaであった。この後に、厚さ10.2mmの針葉樹合板の上に繊維板をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0066】
(実施例10)
実施例3と同様にして厚み1.5mmの配向性を有しないケナフ繊維板を作製した。また微細繊維シートとして実施例5と同じパルプ紙を用いた。
【0067】
そして微細繊維シートの片面にSBR接着剤を塗布し、微細繊維シートの接着剤塗布面を上記の繊維板の表面に重ね、温度120℃、圧力0.8MPa、時間1分の条件で加熱加圧して、繊維板の表面に微細繊維シートを貼付した。このとき、繊維板と微細繊維シートの間の接着剤層の厚みは100μm、弾性係数は23MPaであった。この後に、厚さ10.2mmの針葉樹合板の上に繊維板をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0068】
(実施例11)
平均繊維径が100μmのケナフ繊維を用い、このケナフ繊維をランダムに堆積させ、ニードルパンチングを行なうことによって、ケナフ繊維が配向しない繊維マットを得た。次に実施例1と同様に乾燥して、含水率を4重量%に調整した。
【0069】
また微細繊維シートとして実施例5と同じパルプ紙を用い、微細繊維シートの片面にSBR接着剤を塗布した。そして繊維マットの表面に接着剤塗布面で微細繊維シートを重ね、温度180℃、圧力3MPa、時間3分の条件で加熱加圧成形することによって、厚み1.5mmのケナフ繊維板を作製すると同時に繊維板の表面に微細繊維シートを貼付した。このとき、繊維板と微細繊維シートの間の接着剤層の厚みは100μm、弾性係数は23MPaであった。
【0070】
この後、実施例1と同様にして、微細繊維シートの表面に表面仕上げ材を貼着し、さらに、厚さ10.2mmの針葉樹合板の上に繊維板をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0071】
(実施例12)
繊維マットを乾燥して含水率を12重量%に調整するようにした他は、実施例11と同様にして床材を得た。
【0072】
(実施例13)
実施例12と同様にして含水率を12重量%に調整した繊維マットを用いた。また微細繊維シートとして実施例5と同じパルプ紙を用い、微細繊維シートの片面にポリエチレン樹脂接着剤を塗布した。そして繊維マットの表面に接着剤塗布面で微細繊維シートを重ね、温度180℃、圧力3MPa、時間3分の条件で加熱加圧成形することによって、厚み1.5mmのケナフ繊維板を作製すると同時に繊維板の表面に微細繊維シートを貼付した。このとき、繊維板と微細繊維シートの間の接着剤層の厚みは100μm、弾性係数は25MPaであった。
【0073】
この後、実施例1と同様にして、微細繊維シートの表面に表面仕上げ材を貼着し、さらに、厚さ10.2mmの針葉樹合板の上に繊維板をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0074】
(実施例14)
実施例12と同様にして含水率を12重量%に調整した繊維マットを用いた。また微細繊維シートとして実施例5と同じパルプ紙を用い、微細繊維シートにポリエチレン樹脂接着剤を含浸させた。そして繊維マットの表面に微細繊維シートを重ね、温度180℃、圧力3MPa、時間3分の条件で加熱加圧成形することによって、厚み1.5mmのケナフ繊維板を作製すると同時に繊維板の表面に微細繊維シートを貼付した。このとき、繊維板と微細繊維シートの間の接着剤層の厚みは100μm、弾性係数は25MPaであった。
【0075】
この後、実施例1と同様にして、微細繊維シートの表面に表面仕上げ材を貼着し、さらに、厚さ10.2mmの針葉樹合板の上に繊維板をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0076】
(比較例1)
厚さ11.7mmのラワン合板の表面に厚さ0.3mmの突き板からなる表面仕上げ材をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0077】
(比較例2)
厚さ10.2mmの針葉樹合板の表面に厚さ1.5mmのMDFをフェノール樹脂接着剤で貼り付け、さらにMDFの表面に厚さ0.3mmの突き板からなる表面仕上げ材をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0078】
(比較例3)
厚さ1.5mmのMDFの表面に実施例5と同じ微細繊維シートをフェノール樹脂接着剤で貼り付け、さらに微細繊維シートの表面に厚さ0.3mmの突き板からなる表面仕上げ材をフェノール樹脂接着剤で貼り付けた。このとき、微細繊維シートはその微細繊維の配向方向がMDFの繊維の配向方向と直交するように貼付した。そして厚さ10.2mmの針葉樹合板の表面に厚さ0.3mmの突き板からなる表面仕上げ材をフェノール樹脂接着剤で貼り付けて、床材を得た。
【0079】
【表1】

Figure 0004093100
【0080】
上記のようにして実施例1〜14及び比較例1〜3で得た床材について、等価曲げヤング率、耐キャスター回数、表面硬度を測定し、寒熱B試験を行なった。ここで、等価曲げヤング率は、床材全体を均質な構造と仮定したときの曲げヤング率であり、試験は通常の曲げ試験(JIS A5905など)に準拠しておこなった。また耐キャスター回数は、直径50mmの鋳造キャスターを床材表面に置き、250Nの負荷をかけた状態で20往復/分の速度でキャスターを移動させたときの、表面仕上げ板が剥離するまでの回数として測定した。また表面硬度は、直径10mmの硬球により床材表面に300Nの荷重を負荷したときの凹み量を硬球圧縮ひずみ量として測定した。この場合、凹み量が小さいほど表面硬度に優れた床材であるということができる。さらに寒熱B試験は、JAS(特殊合板)に準拠しておこなった。結果を表2に示す。
【0081】
【表2】
Figure 0004093100
【0082】
【発明の効果】
上記のように本発明の請求項1に係る床材は、ケナフ、ジュート、サイザル麻、油ヤシ、ココヤシから選ばれる繊維を原料とする繊維マットに接着剤を付着させると共にこれを加熱加圧成形して得られる繊維板を少なくとも表層部に有する基材と、基材の表面に接着される表面仕上げ材とを具備して形成される床材において、基材と表面仕上げ材との間に、繊維板を構成する繊維より繊維径の細い微細繊維よりなる微細繊維シートを積層するようにしたものであるので、長繊維からなる繊維板は曲げ強度及び表面硬度が高く、床材として十分な曲げ性能や、キャスター等の往復荷重に対する優れた耐傷性を有する床材を得ることができるものであり、また長繊維からなる繊維板は温度変化や湿度変化に対する寸法変化が小さく、反りや突き上げ等の変形や、表面仕上げ材のクラックなどの異常発生を極力抑えた床材を得ることができるものである。さらに微細繊維よりなる微細繊維シートによって、繊維板からなる基材の表面の凹凸を吸収すると共に表面仕上げ材の表面を平滑化することができ、キャスター等の往復荷重に対して一層高い耐傷性を有する床材を得ることができるものである。
【0083】
また請求項2の発明は、請求項1において、微細繊維シートが木材パルプ繊維よりなるものであるので、木材パルプ繊維の微細繊維シートは平滑化の効果が高いと共に、また同じ植物繊維からなる繊維板との接着性が高く、キャスター等の往復荷重に対する耐久性を高く得ることができるものである。
【0084】
また請求項3の発明は、請求項1又は2において、微細繊維の繊維径が5〜100μmであるので、微細繊維シートの平滑性を保持することができ、仕上げ材の表面を平滑化する効果を高く得ることができるものである。
【0085】
また請求項4の発明は、請求項1乃至3のいずれかにおいて、微細繊維シートの厚みが5〜200μmであるので、微細繊維シートが薄すぎる場合のように破断することがないと共に、微細繊維シートが厚すぎる場合のようにキャスター等の往復荷重に対して微細繊維シート内で破断が生じることがなくなるものである。
【0086】
また請求項5の発明は、請求項1乃至4のいずれかにおいて、微細繊維シートの単位面積あたりの重量が、10〜100g/mであるので、微細繊維シートによる表面仕上げ材の平滑化の効果を高く得ることができるものである。
【0087】
また請求項6の発明は、請求項1乃至5のいずれかにおいて、微細繊維シートの微細繊維の配向方向と、繊維板の繊維の配向方向とが交差するように、微細繊維シートを積層したので、繊維板の寸法変化を微細繊維シートで抑制することができ、床材の寸法変化を小さくすることができるものである。
【0088】
また請求項7の発明は、請求項6において、微細繊維シートの微細繊維の配向方向と繊維板の繊維の配向方向とが略直交するように交差させたので、繊維板の寸法変化を微細繊維シートで抑制する効果を高く得ることができ、床材の寸法変化をより小さくすることができるものである。
【0089】
また請求項8の発明は、請求項1乃至7のいずれかにおいて、繊維板と微細繊維シートの間及び微細繊維シートと表面仕上げ材の間にそれぞれ接着剤層を介して微細繊維シートを積層すると共に、繊維板と微細繊維シートの間の接着剤層の厚みを、微細繊維シートと表面仕上げ材の間の接着剤層の厚みよりも厚く形成したので、表面仕上げ材と微細繊維シートの間の密着性を高めながら、同時に繊維板と微細繊維シートの間の接着剤層による緩衝作用を効果的に発揮させることができ、表面平滑性向上と緩衝効果を同時に発現させることができるものである。
【0090】
また請求項9の発明は、請求項1乃至8のいずれかにおいて、繊維板と微細繊維シートの間及び微細繊維シートと表面仕上げ材の間にそれぞれ接着剤層を介して微細繊維シートを積層すると共に、繊維板と微細繊維シートの間の接着剤層の接着剤として、微細繊維シートの弾性係数よりも低い弾性係数を有するものを用いるようにしたので、接着剤層が微細繊維シートと繊維板との間における緩衝層となり、往復荷重に対する緩衝効果をさらに向上させることができるものである。
【0091】
また請求項10の発明は、請求項9において、繊維板と微細繊維シートの間の接着剤層の接着剤がゴム系接着剤であるので、接着剤層による往復荷重に対する緩衝効果をさらに向上させることができるものである。
【0092】
本発明の請求項11に係る床材の製造方法は、請求項1乃至10のいずれかに記載の床材を製造するにあたって、ケナフ、ジュート、サイザル麻、油ヤシ、ココヤシから選ばれる繊維を原料とする繊維マットに接着剤を付着させ、この接着剤を付着させた繊維マットに、繊維板を構成する繊維より繊維径の細い微細繊維よりなる微細繊維シートを重ねて加熱加圧成形することによって、微細繊維シートを表面に積層した繊維板を作製し、微細繊維シートの表面に表面仕上げ材を接着するようにしたので、繊維板を作製する加熱加圧成形によって、同時に繊維板に微細繊維シートを積層することができ、床材の製造工数の増加を低減することができるものである。
【0093】
また請求項12の発明は、請求項11において、接着剤を付着させた繊維マットの含水率を5〜40重量%の範囲に調整した後、加熱加圧成形を行なうようにしたので、繊維マット内の繊維を接着剤で均一に接着させることができ、均質な繊維板を得ることができるものである。
【0094】
また請求項13の発明は、請求項11又は12において、微細繊維シートの片面に熱融着性樹脂を配し、熱融着性樹脂を配した側の面で微細繊維シートを繊維マットに重ねて加熱加圧成形を行なうようにしたので、熱融着性樹脂による接着剤層で微細繊維シートを繊維板に強固に接着して積層することができるものである。
【0095】
また請求項14の発明は、請求項11又は12において、微細繊維シートの内部に熱融着性樹脂を含浸した後、微細繊維シートを繊維マットに重ねて加熱加圧成形を行なうようにしたので、加熱加圧成形時に熱融着性樹脂で、繊維板を構成する繊維間の空隙を埋めることができ、表面平滑性を更に高めることができるものである。
【図面の簡単な説明】
【図1】本発明に係る床材の実施の形態の一例を示す斜視図である。
【図2】同上の繊維マットの一例を示す斜視図である。
【図3】同上の配向装置を示す概略斜視図である。
【図4】同上の床材の一部の拡大した断面図である。
【図5】同上の床材の分解斜視図である。
【図6】本発明の他の実施の形態の一例を示す斜視図である。
【符号の説明】
1 繊維
2 繊維マット
3 繊維板
4 基材
5 表面仕上げ材
6 微細繊維シート
7 接着剤層
8 接着剤層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flooring used for a flooring finished floor, a step board for stairs, or the like.
[0002]
[Prior art]
In the residential field, wooden flooring with a flooring finish is easy to clean, etc., and has the advantage of reducing the occurrence of ticks that contribute to sick house syndrome. The use is expanding rapidly in the center.
[0003]
Conventionally, wood-based floor materials, for example, have been obtained by adhering a surface finishing material such as a veneer or a decorative sheet to the surface of a plate-like material such as plywood. However, such flooring has insufficient surface smoothness and surface hardness, and the surface is damaged when a reciprocating load is applied to the flooring such as moving a chair or furniture with casters. Moreover, it had the fault that a surface finishing material peels without enduring long-term use.
[0004]
Therefore, in recent years, scratch resistance is improved by providing MDF (medium density fiberboard) having relatively high surface smoothness and surface hardness as a surface reinforcing material between the plate-like material and the surface finish material. Many flooring materials are provided. The present applicant also provides a flooring using a fiberboard such as kenaf, as found in Patent Document 1.
[0005]
[Patent Document 1]
JP 2001-328105 A
[0006]
[Problems to be solved by the invention]
However, fiberboards such as MDF used for floor materials with improved scratch resistance generally have low strength against loads such as bending and impact, and in order to ensure the strength as floor materials, a plate shape such as plywood It is necessary to thicken the material to some extent, and fiber boards such as MDF are generally larger in dimensional changes due to temperature changes and humidity changes in the room than plywood, so MDF and other fiber boards are bonded to plate-like materials such as plywood. In the case of the finished floor material, there is a risk that abnormalities such as deformation such as warping and thrusting, and cracks in the surface finish material may occur.
[0007]
Moreover, although the thing of patent document 1 is going to eliminate the fault of fiberboards, such as said MDF, by using fiberboards, such as kenaf, in fiberboards, such as kenaf, fiber diameter is contained in a fiberboard. There are cases where thick long fibers are included, and this thick fiber causes a step on the surface of the surface finish.For example, when a reciprocating load such as a caster is applied for a long time, the step causes scratches on the surface finish. In some cases, the peeling may easily occur, and the durability may be almost the same as that of the above flooring.
[0008]
The present invention has been made in view of the above points, and further improves the sufficient bending performance as a flooring material, excellent scratch resistance (that is, high surface hardness) against reciprocating loads such as casters, and long-term durability. In addition, the present invention provides a flooring material and a method for manufacturing the flooring material that are small in dimensional change with respect to temperature change and humidity change, and that can suppress deformation such as warping and push-up, and abnormalities such as cracks in the surface finish as much as possible. It is the purpose.
[0009]
[Means for Solving the Problems]
The flooring according to claim 1 of the present invention is obtained by adhering an adhesive to a fiber mat 2 made of fiber 1 selected from kenaf, jute, sisal hemp, oil palm, and coconut, and heating and pressing the same. In a flooring formed by including a base material 4 having at least a surface layer portion of the obtained fiber board 3 and a surface finishing material 5 bonded to the surface of the base material 4, the fiber board 3 and the surface finishing material 5 Between these, a fine fiber sheet 6 made of fine fibers having a fiber diameter smaller than that of the fibers constituting the fiber plate 3 is laminated.
[0010]
The invention of claim 2 is characterized in that, in claim 1, the fine fiber sheet 6 is made of wood pulp fibers.
[0011]
The invention of claim 3 is characterized in that, in claim 1 or 2, the fiber diameter of the fine fibers is 5 to 100 μm.
[0012]
The invention of claim 4 is characterized in that in any one of claims 1 to 3, the thickness of the fine fiber sheet 6 is 5 to 200 μm.
[0013]
Further, the invention of claim 5 is that in any one of claims 1 to 4, the weight per unit area of the fine fiber sheet 6 is 10 to 100 g / m. 2 It is characterized by being.
[0014]
The invention of claim 6 is the fine fiber sheet 6 according to any one of claims 1 to 5, such that the orientation direction of the fine fibers of the fine fiber sheet 6 intersects the orientation direction of the fibers 1 of the fiber board 3. It is characterized by being laminated.
[0015]
The invention of claim 7 is characterized in that, in claim 6, the orientation direction of the fine fibers of the fine fiber sheet 6 and the orientation direction of the fibers 1 of the fiber plate 3 are crossed so as to be substantially orthogonal to each other. It is.
[0016]
In addition, the invention of claim 8 is the invention according to any one of claims 1 to 7, wherein the adhesive layers 7 and 8 are interposed between the fiber board 3 and the fine fiber sheet 6 and between the fine fiber sheet 6 and the surface finish material 5, respectively. The fine fiber sheet 6 is laminated, and the thickness of the adhesive layer 7 between the fiber board 3 and the fine fiber sheet 6 is thicker than the thickness of the adhesive layer 8 between the fine fiber sheet 6 and the surface finish 5. It is characterized by being formed.
[0017]
Further, the invention of claim 9 is the invention according to any one of claims 1 to 8, wherein the adhesive layers 7 and 8 are interposed between the fiber board 3 and the fine fiber sheet 6 and between the fine fiber sheet 6 and the surface finishing material 5, respectively. In addition to laminating the fine fiber sheet 6, the adhesive of the adhesive layer 7 between the fiber board 3 and the fine fiber sheet 6 is made of a material having an elastic modulus lower than that of the fine fiber sheet 6. It is characterized by.
[0018]
The invention of claim 10 is characterized in that, in claim 9, the adhesive of the adhesive layer 7 between the fiber board 3 and the fine fiber sheet 6 is a rubber adhesive.
[0019]
In the method for producing a flooring material according to claim 11 of the present invention, a fiber 1 selected from kenaf, jute, sisal hemp, oil palm, and coconut palm when producing the flooring material according to any one of claims 1 to 10. An adhesive is attached to a fiber mat 2 made from a raw material, and a fine fiber sheet 6 made of fine fibers having a smaller fiber diameter than the fibers 1 constituting the fiber plate 3 is laminated on the fiber mat 2 to which the adhesive is attached. The fiber board 3 which laminated | stacked the fine fiber sheet 6 on the surface is produced by heat-press-molding, and the surface finishing material 5 is adhere | attached on the surface of the fine fiber sheet 6.
[0020]
The invention of claim 12 is characterized in that, in claim 11, the moisture content of the fiber mat 2 to which the adhesive is adhered is adjusted to a range of 5 to 40% by weight, and then heat-press molding is performed. It is.
[0021]
The invention of claim 13 is the invention according to claim 11 or 12, wherein the heat-sealable resin is arranged on one side of the fine fiber sheet 6 and the fine fiber sheet 6 is attached to the fiber mat on the surface on which the heat-sealable resin is placed. 2 is performed by heating and pressing.
[0022]
The invention according to claim 14 is the method according to claim 11 or 12, wherein the fine fiber sheet 6 is impregnated with a heat-fusible resin, and then the fine fiber sheet 6 is superimposed on the fiber mat 2 and subjected to heat and pressure molding. It is characterized by.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0024]
FIG. 1 shows an example of a flooring A according to the present invention, which is formed by adhering a surface finishing material 5 to a surface of a substrate 4 made of a fiber board 3 via a fine fiber sheet 6. The base 4 is provided with a male fruit 11 on one side end face and a female fruit 12 on the other side end face. The surface finishing material 5 is formed of, for example, a thin decorative veneer having a thickness of about 0.2 to 0.3 mm for surface decoration, and natural veneer is sliced as the decorative veneer. Things can be mentioned.
[0025]
The fiber board 3 can be obtained by dispersing and adhering an adhesive to a fiber mat 2 in which a large number of fibers 1 are assembled, and heating and pressing the fiber mat 2. In this invention, as this fiber 1, what was obtained from any one of kenaf, jute, sisal hemp, oil palm, and coconut is used. In addition to using one kind alone, it is used by mixing plural kinds. You can also This fiber 1 is a long fiber that can be easily obtained from kenaf, jute, sisal hemp, oil palm and coconut through a process such as defibration, and is usually 2 to 14 in comparison with fibers obtained from conifers and hardwoods. It has about twice the tensile strength. As length of the fiber 1 which forms the long fiber mat 2, it is preferable that an average length is 10 mm or more, and it is more preferable that it is 100-400 mm. Moreover, about the diameter of the fiber 1, it is suitable to use an average fiber diameter of 30-500 micrometers.
[0026]
The adhesive to be attached to the fiber mat 2 is not particularly limited, but urea-based resins, melamine-based resins, phenol-based resins, resorcinol-based resins, epoxy resins, urethane resins, furfural-based resins, isocyanate-based resins. A thermosetting resin adhesive such as a resin can be used. The adhesion amount of the adhesive to the fiber mat 2 is preferably set to be in the range of 10 to 50% by weight in terms of the adhesive resin component.
[0027]
The fiber mat 2 is not particularly limited with respect to its production method or the orientation of the fiber 1. However, depending on the application, the fiber mat 2 is prepared by adjusting the fiber 1 so as to be oriented substantially in one direction. Is preferred. The fiber 1 has a characteristic that the tensile strength in the fiber direction is high, and by aligning the longitudinal direction of the fiber 1 (fiber orientation direction), the fiber plate 3 can exhibit excellent tensile strength. Yes, it is particularly effective when it is necessary to increase the bending strength of the flooring A. In addition, by arranging the fiber directions of the fibers 1 in one direction as described above, the dimensional change in the fiber direction of the fiber board 3 can be suppressed, and the longitudinal direction of the flooring A is set to the fiber direction of the fiber board 3. Therefore, the dimensional change can be reduced with respect to temperature change and humidity change.
[0028]
Here, since it is very difficult to align all the fibers 1 in one direction accurately, the angle of inclination of the fiber direction of the fibers 1 with respect to a predetermined direction of the fiber plate 3 is + 30 ° to −30 °. All the fibers 1 may be oriented so as to fall within the range, more preferably in the range of + 20 ° to −20 °. The fiber 1 can be oriented in approximately one direction using, for example, an orientation device as shown in FIG. This orienting apparatus is provided with a plurality of drawing portions 14 composed of upper and lower roller pairs and a comb-shaped combing portion 15. Then, a large number of intertwined fibers 1 are passed between the rollers of the drawing portion 14, then passed between the comb pieces 16 of the combing portion 15, and further passed between the rollers of the other drawing portion 14. The fiber mat 2 in which the fibers 1 as shown in FIG. 2 are oriented substantially in one direction can be obtained.
[0029]
Moreover, the fiber mat 2 can also be produced without orienting the fibers 1. The production method in this case is also not particularly limited. For example, fibers 1 having an average length of 10 to 400 mm are randomly deposited, and then the fibers 1 are entangled by performing needle punching or the like as necessary. Thus, a fiber mat 2 in which the fibers 1 are not oriented in a certain direction can be produced.
[0030]
Said fine fiber sheet 6 consists of a fine fiber with a fiber diameter thinner than said fiber 1 which comprises the fiber board 3, The fiber diameter of the range of 5-100 micrometers is preferable for a fine fiber. When the fine fiber diameter exceeds 100 μm, the smoothness of the fine fiber sheet is impaired, and there is a possibility that a step is generated on the surface of the surface finish 5 attached on the fine fiber sheet 6. The smaller the fiber diameter of the fine fibers, the better. However, the fine fibers of less than 5 μm are difficult to produce and difficult to obtain.
[0031]
Although it does not specifically limit as this fine fiber, For example, a wood pulp fiber can be used and the paper and sheet | seat which consist of a wood pulp fiber can be used as the fine fiber sheet 6. FIG. The fine fiber sheet 6 made of wood pulp fibers is preferable from the viewpoints of easy availability, smoothness, and similar constituents to plant fibers such as kenaf fibers and relatively good adhesion. Of course, the fine fiber sheet 6 is not limited to paper or sheet made of such wood pulp fibers, and a polyester non-woven fabric can also be used.
[0032]
The fine fiber sheet 6 preferably has a thickness in the range of 5 to 200 μm. If the thickness is less than 5 μm, the strength of the fine fiber sheet 6 is weak and may break when the fine fiber sheet 6 is attached. If the thickness exceeds 200 μm, the fine fiber sheet is subjected to reciprocating loads such as casters. There is a risk of breakage within 6. Furthermore, the fine fiber sheet 6 has a weight per unit area of 10 to 100 g / m. 2 The thing of the range of is preferable. The weight of the fine fiber sheet 6 is 10 g / m 2 If the ratio is less than 1, the absolute amount of the fibers constituting the fine fiber sheet 6 is small, so that sufficient surface smoothness cannot be imparted, and conversely 100 g / m. 2 In the case of exceeding, there may be a portion where the fine fibers constituting the fine fiber sheet 6 are not sufficiently entangled, and the fine fiber sheet 6 may be broken from the portion.
[0033]
Then, the fiber mat 2 to which the fibers 1 are bonded by the adhesive can be formed by heating and press-molding the fiber mat 2 to which the adhesive is attached, and curing the adhesive. The temperature, time, and pressure at the time of heat and pressure molding are appropriately set according to the type of adhesive, the thickness and density of the fiberboard 3, and the temperature is, for example, 20 to 200 ° C., preferably 100 to 100 ° C. It can be set to 190 ° C. Moreover, as a pressing method at the time of heat and pressure molding, a batch type flat plate press, a continuous press or the like can be adopted, but it is not particularly limited thereto.
[0034]
After forming the fiber board 3 as described above, the fine fiber sheet 6 may be adhered to the surface of the fiber board 3, but the fine fiber sheet 6 is attached to the surface of the fiber mat 2 to which the above adhesive is adhered. The fiber sheet 3 in which the fibers 1 are bonded with the adhesive is formed by simultaneously forming and heating and pressing the adhesive, thereby forming the fine fiber sheet 6 on the surface of the substrate 4 made of the fiber board 3. It can also be bonded.
[0035]
The density of the fiberboard 3 is not particularly limited, but is 0.3 to 1.0 g / cm when high mechanical strength is required. 3 Is preferably set in a range of 0.5 to 0.9 g / cm. 3 Range. The density of the fiberboard 3 is 0.3 g / cm 3 If it is less than that, there will be a large number of voids inside the fiber plate 3, and the bonded portion between the fibers 1 and the entangled portion between the fibers 1 will decrease, and the bonded portion and the fibers between the fibers 1 will decrease. The reinforcing effect of the entangled portions between the two becomes insufficient, and the mechanical strength of the fiberboard 3 may be reduced. The density of the fiberboard 3 is 1.0 g / cm. 3 In the case of exceeding the above, a high pressure is required for the heat and pressure molding, and the fiber 1 itself is damaged. In this case, the effect of improving the mechanical strength of the fiber board 3 may be reduced. is there.
[0036]
In forming the fiber plate 3 by heating and pressing the fiber mat 2 in this manner, the fiber mat 2 coated with the adhesive is dried, and the moisture content of the fiber mat 2 is adjusted in the range of 5 to 40% by weight in advance. It is preferable to perform heating and pressing after this. If the moisture content of the fiber mat 2 is less than 5% by weight, the adhesive may be cured before heat-press molding. Conversely, if the moisture content exceeds 40% by weight, heat-pressure molding is performed. In this case, the adhesive component may move with the evaporation of moisture, and the internal uniform adhesiveness may be impaired.
[0037]
Here, in order to obtain a high bonding strength of the fine fiber sheet 6 to the fiber board 3, an adhesive made of a heat-fusible resin is applied to the fine fiber sheet 6, and the heat-fusible resin is melted and cured. It is preferable that the fine fiber sheet 6 is bonded to the fiber board 3 by the adhesive layer 7 formed in this manner. As the heat-fusible resin, it is preferable to use a resin whose elastic modulus of the adhesive layer 7 is lower than that of the fine fiber sheet 6. By using an adhesive having an elastic coefficient lower than that of the fine fiber sheet 6 in this way, the adhesive layer 7 becomes a buffer layer between the fine fiber sheet 6 and the fiber board 3, and further provides a buffering effect against a reciprocating load. It can be improved. For example, when the fine fiber sheet 6 is a paper made of wood pulp fibers, the elastic modulus is generally in the range of 10 to 100 MPa, and the adhesive has an elastic modulus of the adhesive layer 7 in the range of 5 to 70 MPa. preferable. Such an adhesive having a low elastic modulus is not particularly limited, but it is preferable to use a rubber adhesive such as a styrene butadiene (SBR) adhesive.
[0038]
In addition, when the adhesive made of the heat-fusible resin is applied to the fine fiber sheet 6 as described above, the fine fiber sheet 6 is impregnated with the adhesive made of the heat-fusible resin. The fiber mat 2 can be laminated with heat and pressure molding, and the gap between the fibers 1 constituting the fiber plate 3 can be filled with a heat-fusible resin at the time of heat and pressure molding. And the surface smoothness can be further enhanced.
[0039]
After adhering the fine fiber sheet 6 to the surface of the base material 4 made of the fiber board 3 as described above, the surface finishing material 5 is adhered to the surface of the fine fiber sheet 6 to obtain a flooring as shown in FIG. Can be obtained. Adhesion of the surface finishing material 5 is performed by applying an adhesive to at least one of the surface of the fine fiber sheet 6 and the surface of the surface finishing material 5, and heating the surface finishing material 5 on the surface of the fine fiber sheet 6 in this state. The surface finishing material 5 can be bonded to the fine fiber sheet 6 through the adhesive layer 8. As this adhesive, styrene butadiene (SBR) adhesive, aqueous vinyl urethane adhesive, vinyl acetate adhesive and the like can be used. It can be performed under the conditions of about 1.5 MPa and about 60 to 120 seconds.
[0040]
Here, the adhesive layer 7 formed between the substrate 4 made of the fiber board 3 and the fine fiber sheet 6 has an adhesive layer formed between the fine fiber sheet 6 and the surface finish 5. It is preferable that the thickness is set to be greater than 8, and the adhesive between the fiber board 3 and the fine fiber sheet 6 is improved while improving the adhesion between the surface finish 5 and the fine fiber sheet 6. The buffering action by the layer 7 can be effectively exhibited, and the surface smoothness improvement and the buffering effect can be expressed at the same time. The thickness of the adhesive layers 7 and 8 is not particularly limited, but the thickness of the adhesive layer 7 is preferably about 5 to 50 μm, and the thickness of the adhesive layer 8 is preferably about 10 to 100 μm. The ratio of the thickness of 7 to the adhesive layer 8 is preferably 2 to 10 times the latter with respect to the former.
[0041]
In the flooring according to the present invention obtained as described above, the fiberboard 3 serving as the base material 4 is formed using a fiber 1 selected from kenaf, jute, sisal hemp, oil palm, and coconut as raw materials. In addition, since the fiber 1 is a high-strength long fiber, it is possible to obtain high rigidity against bending load, that is, high mechanical strength against bending deformation. In other words, the bending strength of the plate made of fibers is not only the strength of the fibers themselves, but also formed by the entanglement between the fibers and the adhesive strength of the bonded portion between the fibers, but formed by the long fibers. The fiber board 3 has many entanglements of long fibers inside and can increase the portion where the adhesive per one long fiber adheres, so that the bending strength can be increased. In addition, the fiber board 3 has a high strength of the fiber 1 itself, and the inner void structure can be made into a uniform and dense structure by the long fibers. As a result, the flooring A is free from concentrated loads. In any part, high surface hardness can be maintained, and it has excellent scratch resistance against reciprocating loads such as casters.
[0042]
In particular, as in the above embodiment, by orienting the fibers 1 of the fiber plate 3 in approximately one direction, the internal void structure can be made more uniform and dense, and in any part In addition, it is possible to obtain a floor material A that can maintain a high surface hardness and has higher scratch resistance against reciprocating loads such as casters.
[0043]
Furthermore, in the flooring according to the present invention, since the fine fiber sheet 6 made of fine fibers is laminated between the base material 4 and the surface finish material 5, the surface of the base material 4 made of the fiber board 3 is laminated. While the irregularities are absorbed by the fine fiber sheet 6, the surface of the surface finish 5 can be smoothed by the fine fiber sheet 6, and a flooring A having higher scratch resistance against reciprocating loads such as casters is obtained. It is something that can be done.
[0044]
Further, when using, for example, paper or the like as the fine fiber sheet 6, the fine fibers are oriented in the paper making direction. Thus, the fine fiber sheet 6 in which the fine fibers are oriented in one predetermined direction. When used, when the fine fiber sheet 6 is laminated on the fiber plate 3 in which the fibers 1 are oriented in substantially one direction as described above, the fine fibers of the fine fiber sheet 6 with respect to the orientation direction of the fibers 1 of the fiber plate 3. The fine fiber sheets 6 are preferably laminated so that their orientation directions intersect.
[0045]
The strength of the fine fiber sheet 6 is highest in a direction parallel to the orientation direction of the fine fibers and lowest in a direction orthogonal to the orientation direction of the fine fibers. The dimensional change with respect to changes in temperature and humidity of the fiber board 3 is the smallest in the direction parallel to the orientation direction of the fiber 1 and the largest in the direction orthogonal to the orientation direction of the fiber 1. Therefore, when the fine fiber sheet 6 is laminated on the fiber plate 3 so that the orientation direction of the fiber 1 of the fiber plate 3 and the orientation direction of the fine fiber of the fine fiber sheet 6 intersect, the dimensional change of the fiber plate 3 is reduced. Therefore, the dimensional change of the flooring A can be reduced. The effect of suppressing the dimensional change of the fiber board 3 with the fine fiber sheet 6 is the orientation of the fine fibers of the fine fiber sheet 6 with respect to the orientation direction of the fibers 1 of the fiber board 3 (indicated by arrows a) as shown in FIG. The case where the directions (indicated by arrows b) are almost orthogonal is the highest, and the effect of reducing the dimensional change of the flooring A can be highly obtained.
[0046]
In the above-described embodiment, the base material 4 of the flooring A is formed by the fiber board 3 alone. However, as shown in FIG. 6, it is attached to the surface of the wooden board 18 such as a plywood and the wooden board 18. The base 4 of the flooring A may be formed with the fiberboard 3.
[0047]
【Example】
Next, the present invention will be specifically described with reference to examples.
[0048]
Example 1
A kenaf fiber having an average fiber diameter of 150 μm obtained by defibrating kenaf was cut into a length of 1000 to 2000 mm, and a phenol-based adhesive was dispersed in the kenaf fiber so as to be 15% by weight. This kenaf fiber is oriented in one direction using an orientation device that combines a drawing part composed of six pairs of upper and lower rollers and a comb-like combing part, and then the kenaf fiber is unidirectional in the mold. A fiber mat made of an aggregate was obtained by stacking them side by side.
[0049]
Next, this fiber mat was dried with warm air at 40 ° C. for 10 minutes to adjust the moisture content to 5% by weight. Thereafter, the fiber mat is heated and pressed under the conditions of a temperature of 170 ° C., a pressure of 3 MPa, and a time of 10 minutes, whereby the density is 750 kg / m. 3 A kenaf fiber board having an orientation of 11.7 mm in thickness was produced.
[0050]
As a fine fiber sheet, the average fiber diameter of fine fibers is 120 μm, the thickness is 220 μm, and the surface weight is 140 g / m. 2 Using a polyester nonwoven fabric having an elastic modulus of 46 MPa, a phenol resin adhesive was applied to one side of the fine fiber sheet. Then, the adhesive-coated surface of the fine fiber sheet was superimposed on the surface of the fiber board, and heated and pressurized under the conditions of a temperature of 170 ° C., a pressure of 1 MPa, and a time of 1 minute, and the fine fiber sheet was attached to the surface of the fiber board. At this time, the fine fiber sheet was overlapped so that the orientation direction of the fine fiber was parallel to the orientation direction of the fiber of the fiber board. The thickness of the adhesive layer between the fiberboard and the fine fiber sheet was 100 μm, and the elastic modulus was 52 MPa.
[0051]
Next, using a veneer having a thickness of 0.3 mm as the surface finish, a phenol resin adhesive is applied to one side of the surface finish, and the adhesive-coated surface of the surface finish is superimposed on the fine fiber sheet, and the temperature is 120. A flooring material was obtained by applying heat and pressure on the surface of the fine fiber sheet with an adhesive layer having a thickness of 20 μm under the conditions of ° C., pressure of 0.8 MPa, and time of 1 minute.
[0052]
(Example 2)
As a fine fiber sheet, the average fiber diameter of fine fibers is 120 μm, the thickness is 230 μm, and the surface weight is 140 g / m. 2 A flooring was obtained in the same manner as in Example 1 except that a pulp sheet having an elastic modulus of 42 MPa was used.
[0053]
(Example 3)
Using a kenaf fiber having an average fiber diameter of 100 μm, this kenaf fiber was randomly deposited, and needle punching was performed to obtain a fiber mat in which the kenaf fiber was not oriented. Then, using this fiber mat, a kenaf fiber board having a thickness of 1.5 mm and having no orientation was produced in the same manner as in Example 1. Moreover, as a fine fiber sheet, the average fiber diameter of fine fibers is 70 μm, the thickness is 230 μm, and the surface weight is 120 g / m. 2 A pulp sheet having an elastic modulus of 42 MPa was used.
[0054]
Then, in the same manner as in Example 1, a fine fiber sheet was adhered to the surface of the fiber board, and a surface finish was further adhered thereto, and thereafter, the fiber board was phenolic on a softwood plywood having a thickness of 10.2 mm. A flooring material was obtained by pasting with a resin adhesive.
[0055]
Example 4
A kenaf fiber board having a thickness of 1.5 mm and having no orientation was produced in the same manner as in Example 3. As the fine fiber sheet, the average fiber diameter of fine fibers is 70 μm, the thickness is 150 μm, and the surface weight is 120 g / m. 2 A pulp sheet having an elastic modulus of 42 MPa was used.
[0056]
Then, in the same manner as in Example 1, a fine fiber sheet was adhered to the surface of the fiber board, and a surface finish was further adhered thereto, and thereafter, the fiber board was phenolic on a softwood plywood having a thickness of 10.2 mm. A flooring material was obtained by pasting with a resin adhesive.
[0057]
(Example 5)
Using a kenaf fiber having an average fiber diameter of 100 μm, a kenaf fiber plate having an orientation of 1.5 mm in thickness was produced in the same manner as in Example 1. As the fine fiber sheet, the average fiber diameter of fine fibers is 10 μm, the thickness is 50 μm, and the surface weight is 30 g / m. 2 Pulp paper having an elastic modulus of 39 MPa was used.
[0058]
And it carried out similarly to Example 1, and stuck the fine fiber sheet on the surface of the fiber board. At this time, the fine fiber sheet was overlapped so that the orientation direction of the fine fiber was parallel to the orientation direction of the fiber of the fiber board. The adhesive layer between the fiberboard and the fine fiber sheet had a thickness of 20 μm and an elastic modulus of 52 MPa. Further, in the same manner as in Example 1, a surface finishing material was adhered to the surface of the fine fiber sheet, and then a fiber board was adhered to a softwood plywood having a thickness of 10.2 mm with a phenol resin adhesive, and flooring material was obtained. Got.
[0059]
(Example 6)
In the same manner as in Example 5, a kenaf fiber board having an orientation of 1.5 mm in thickness was produced. The same pulp paper as in Example 5 was used as the fine fiber sheet.
[0060]
And it carried out similarly to Example 1, and stuck the fine fiber sheet on the surface of the fiber board. At this time, the fine fiber sheet was overlapped so that the orientation direction of the fine fiber intersected with the orientation direction of the fiber of the fiber plate at an angle of 45 °. The adhesive layer between the fiberboard and the fine fiber sheet had a thickness of 20 μm and an elastic modulus of 52 MPa. Further, in the same manner as in Example 1, a surface finishing material was adhered to the surface of the fine fiber sheet, and then a fiber board was adhered to a softwood plywood having a thickness of 10.2 mm with a phenol resin adhesive, and flooring material was obtained. Got.
[0061]
(Example 7)
Except that the fine fiber sheet was overlapped so that the orientation direction of the fine fiber was orthogonal to the fiber orientation direction of the fiber board, and the fine fiber sheet was adhered to the surface of the fiber board, the same as in Example 6. The flooring was obtained.
[0062]
(Example 8)
A kenaf fiber board having a thickness of 1.5 mm and having no orientation was produced in the same manner as in Example 3. The same pulp paper as in Example 5 was used as the fine fiber sheet.
[0063]
And it carried out similarly to Example 1, and stuck the fine fiber sheet on the surface of the fiber board. At this time, the adhesive layer between the fiberboard and the fine fiber sheet had a thickness of 100 μm and an elastic modulus of 52 MPa. Further, in the same manner as in Example 1, a surface finishing material was adhered to the surface of the fine fiber sheet, and then a fiber board was adhered to a softwood plywood having a thickness of 10.2 mm with a phenol resin adhesive, and flooring material was obtained. Got.
[0064]
Example 9
A kenaf fiber board having a thickness of 1.5 mm and having no orientation was produced in the same manner as in Example 3. The same pulp paper as in Example 5 was used as the fine fiber sheet.
[0065]
Then, a polyurethane resin adhesive is applied to one side of the fine fiber sheet, and the adhesive application surface of the fine fiber sheet is superimposed on the surface of the above fiber board, and heated under the conditions of a temperature of 160 ° C., a pressure of 0.8 MPa, and a time of 1 minute. The fine fiber sheet was stuck on the surface of the fiberboard. At this time, the thickness of the adhesive layer between the fiberboard and the fine fiber sheet was 100 μm, and the elastic modulus was 13 MPa. Thereafter, a fiberboard was stuck on a softwood plywood having a thickness of 10.2 mm with a phenol resin adhesive to obtain a flooring.
[0066]
(Example 10)
A kenaf fiber board having a thickness of 1.5 mm and having no orientation was produced in the same manner as in Example 3. The same pulp paper as in Example 5 was used as the fine fiber sheet.
[0067]
Then, an SBR adhesive is applied to one side of the fine fiber sheet, and the adhesive-coated surface of the fine fiber sheet is superimposed on the surface of the above fiber board, and heated and pressed under the conditions of a temperature of 120 ° C., a pressure of 0.8 MPa, and a time of 1 minute. Then, a fine fiber sheet was stuck on the surface of the fiber board. At this time, the thickness of the adhesive layer between the fiberboard and the fine fiber sheet was 100 μm, and the elastic modulus was 23 MPa. Thereafter, a fiberboard was stuck on a softwood plywood having a thickness of 10.2 mm with a phenol resin adhesive to obtain a flooring.
[0068]
(Example 11)
Using a kenaf fiber having an average fiber diameter of 100 μm, this kenaf fiber was randomly deposited, and needle punching was performed to obtain a fiber mat in which the kenaf fiber was not oriented. Next, it was dried in the same manner as in Example 1 to adjust the water content to 4% by weight.
[0069]
Moreover, the same pulp paper as Example 5 was used as a fine fiber sheet, and the SBR adhesive agent was apply | coated to the single side | surface of a fine fiber sheet. At the same time as producing a kenaf fiber board having a thickness of 1.5 mm by superposing a fine fiber sheet on the surface of the fiber mat on the adhesive-coated surface, and heating and pressing under conditions of a temperature of 180 ° C., a pressure of 3 MPa, and a time of 3 minutes. A fine fiber sheet was attached to the surface of the fiberboard. At this time, the thickness of the adhesive layer between the fiberboard and the fine fiber sheet was 100 μm, and the elastic modulus was 23 MPa.
[0070]
Thereafter, in the same manner as in Example 1, a surface finishing material is attached to the surface of the fine fiber sheet, and further, a fiber board is attached to a softwood plywood having a thickness of 10.2 mm with a phenol resin adhesive, A flooring was obtained.
[0071]
(Example 12)
A flooring was obtained in the same manner as in Example 11 except that the fiber mat was dried to adjust the water content to 12% by weight.
[0072]
(Example 13)
A fiber mat whose water content was adjusted to 12% by weight in the same manner as in Example 12 was used. Moreover, the same pulp paper as Example 5 was used as a fine fiber sheet, and the polyethylene resin adhesive was apply | coated to the single side | surface of a fine fiber sheet. At the same time as producing a kenaf fiber board having a thickness of 1.5 mm by superposing a fine fiber sheet on the surface of the fiber mat on the adhesive-coated surface, and heating and pressing under conditions of a temperature of 180 ° C., a pressure of 3 MPa, and a time of 3 minutes. A fine fiber sheet was attached to the surface of the fiberboard. At this time, the thickness of the adhesive layer between the fiberboard and the fine fiber sheet was 100 μm, and the elastic modulus was 25 MPa.
[0073]
Thereafter, in the same manner as in Example 1, a surface finishing material is attached to the surface of the fine fiber sheet, and further, a fiber board is attached to a softwood plywood having a thickness of 10.2 mm with a phenol resin adhesive, A flooring was obtained.
[0074]
(Example 14)
A fiber mat whose water content was adjusted to 12% by weight in the same manner as in Example 12 was used. The same pulp paper as in Example 5 was used as the fine fiber sheet, and the fine fiber sheet was impregnated with a polyethylene resin adhesive. Then, a fine fiber sheet is stacked on the surface of the fiber mat, and by heating and pressing under the conditions of a temperature of 180 ° C., a pressure of 3 MPa, and a time of 3 minutes, a kenaf fiber board having a thickness of 1.5 mm is produced and simultaneously formed on the surface of the fiber board. A fine fiber sheet was attached. At this time, the thickness of the adhesive layer between the fiberboard and the fine fiber sheet was 100 μm, and the elastic modulus was 25 MPa.
[0075]
Thereafter, in the same manner as in Example 1, a surface finishing material is attached to the surface of the fine fiber sheet, and further, a fiber board is attached to a softwood plywood having a thickness of 10.2 mm with a phenol resin adhesive, A flooring was obtained.
[0076]
(Comparative Example 1)
A surface finishing material made of a veneer having a thickness of 0.3 mm was attached to the surface of a lauan plywood having a thickness of 11.7 mm with a phenol resin adhesive to obtain a flooring material.
[0077]
(Comparative Example 2)
A 1.5 mm thick MDF is attached to the surface of a 10.2 mm thick softwood plywood with a phenolic resin adhesive, and a surface finishing material consisting of a 0.3 mm thick veneer is further applied to the MDF surface. The flooring was obtained by pasting with.
[0078]
(Comparative Example 3)
The same fine fiber sheet as in Example 5 was attached to the surface of the MDF with a thickness of 1.5 mm with a phenol resin adhesive, and a surface finish material consisting of a veneer with a thickness of 0.3 mm was further applied to the surface of the fine fiber sheet with a phenol resin. Affixed with an adhesive. At this time, the fine fiber sheet was stuck so that the orientation direction of the fine fiber was orthogonal to the orientation direction of the MDF fiber. And the surface finishing material which consists of a veneer of thickness 0.3mm was stuck on the surface of the softwood plywood of thickness 10.2mm with the phenol resin adhesive, and the flooring was obtained.
[0079]
[Table 1]
Figure 0004093100
[0080]
For the flooring materials obtained in Examples 1 to 14 and Comparative Examples 1 to 3 as described above, an equivalent bending Young's modulus, the number of casters, and surface hardness were measured, and a cold B test was performed. Here, the equivalent bending Young's modulus is a bending Young's modulus when it is assumed that the entire flooring material has a homogeneous structure, and the test was performed in accordance with a normal bending test (JIS A5905, etc.). The number of casters to resist is the number of times that the surface finish plate peels off when a caster with a diameter of 50 mm is placed on the floor and the caster is moved at a speed of 20 reciprocations per minute with a load of 250 N applied. As measured. The surface hardness was measured as the amount of dent compression strain when a load of 300 N was applied to the surface of the floor using a hard ball having a diameter of 10 mm. In this case, it can be said that the smaller the dent amount, the more excellent the surface hardness. Furthermore, the cold heat B test was conducted in accordance with JAS (special plywood). The results are shown in Table 2.
[0081]
[Table 2]
Figure 0004093100
[0082]
【The invention's effect】
As described above, the flooring according to claim 1 of the present invention is made by adhering an adhesive to a fiber mat made of fibers selected from kenaf, jute, sisal hemp, oil palm, and coconut, and heating and pressing the same. In the flooring formed by including a base material having at least the surface layer portion of the fiberboard obtained as described above and a surface finishing material bonded to the surface of the base material, between the base material and the surface finishing material, Since a fine fiber sheet made of fine fibers having a smaller fiber diameter than the fibers constituting the fiber board is laminated, the fiber board made of long fibers has high bending strength and surface hardness, and is sufficiently bent as a flooring. It is possible to obtain a flooring material that has excellent performance and scratch resistance against reciprocating loads such as casters, and the fiberboard made of long fibers has little dimensional change due to temperature change and humidity change, warping and thrusting Deformation and the like, are those that can be obtained while minimizing the flooring occurrence of abnormality such as cracks in the facings. Furthermore, the fine fiber sheet made of fine fibers can absorb the unevenness of the surface of the base material made of fiber board and smooth the surface of the surface finish material, and has higher scratch resistance against reciprocating loads such as casters. The floor material which has can be obtained.
[0083]
The invention of claim 2 is that, in claim 1, since the fine fiber sheet is made of wood pulp fiber, the fine fiber sheet of wood pulp fiber has a high smoothing effect and is also made of the same plant fiber. Adhesiveness to the plate is high, and durability against reciprocating loads such as casters can be obtained.
[0084]
Moreover, since the fiber diameter of the fine fiber is 5-100 micrometers in Claim 1 or 2, the invention of Claim 3 can hold | maintain the smoothness of a fine fiber sheet, and the effect which smoothes the surface of a finishing material Can be obtained high.
[0085]
Moreover, since the thickness of the fine fiber sheet is 5 to 200 μm in any one of the first to third aspects, the fine fiber sheet is not broken as in the case where the fine fiber sheet is too thin. As in the case where the sheet is too thick, breakage does not occur in the fine fiber sheet due to reciprocating loads such as casters.
[0086]
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the weight per unit area of the fine fiber sheet is 10 to 100 g / m. 2 Therefore, the effect of smoothing the surface finish material by the fine fiber sheet can be highly obtained.
[0087]
Moreover, since the invention of Claim 6 laminated | stacked the fine fiber sheet in any one of Claim 1 thru | or 5, so that the orientation direction of the fine fiber of a fine fiber sheet and the orientation direction of the fiber of a fiber board may cross | intersect. The dimensional change of the fiberboard can be suppressed by the fine fiber sheet, and the dimensional change of the flooring can be reduced.
[0088]
Further, the invention of claim 7 is the invention according to claim 6, wherein the orientation direction of the fine fibers of the fine fiber sheet and the orientation direction of the fibers of the fiber board are crossed so as to be substantially orthogonal to each other. The effect which suppresses with a sheet | seat can be acquired highly, and the dimensional change of a flooring can be made smaller.
[0089]
The invention according to claim 8 is the method according to any one of claims 1 to 7, wherein the fine fiber sheet is laminated via an adhesive layer between the fiber board and the fine fiber sheet and between the fine fiber sheet and the surface finish. In addition, since the thickness of the adhesive layer between the fiberboard and the fine fiber sheet is formed to be thicker than the thickness of the adhesive layer between the fine fiber sheet and the surface finish, At the same time, the buffering action by the adhesive layer between the fiberboard and the fine fiber sheet can be effectively exhibited while improving the adhesion, and the surface smoothness improvement and the buffering effect can be exhibited at the same time.
[0090]
The invention according to claim 9 is the method according to any one of claims 1 to 8, wherein the fine fiber sheet is laminated via an adhesive layer between the fiber board and the fine fiber sheet and between the fine fiber sheet and the surface finish. In addition, since an adhesive having an elastic coefficient lower than that of the fine fiber sheet is used as an adhesive of the adhesive layer between the fiber board and the fine fiber sheet, the adhesive layer is made of the fine fiber sheet and the fiber board. It becomes a buffer layer in between, and the buffer effect with respect to the reciprocating load can be further improved.
[0091]
In the invention of claim 10, in claim 9, since the adhesive of the adhesive layer between the fiberboard and the fine fiber sheet is a rubber adhesive, the buffering effect against the reciprocating load by the adhesive layer is further improved. It is something that can be done.
[0092]
The method for producing a flooring material according to claim 11 of the present invention is the production of the flooring material according to any one of claims 1 to 10, wherein a fiber selected from kenaf, jute, sisal hemp, oil palm and coconut is used as a raw material. By attaching an adhesive to the fiber mat and attaching the adhesive to the fiber mat, a fine fiber sheet made of fine fibers having a fiber diameter smaller than that of the fibers constituting the fiber plate is stacked and heated and pressed. Since the fiberboard with the fine fiber sheet laminated on the surface was prepared and the surface finishing material was adhered to the surface of the fine fiber sheet, the fine fiber sheet was simultaneously applied to the fiberboard by heat and pressure forming to produce the fiberboard. Can increase the number of man-hours for manufacturing the flooring.
[0093]
The invention according to claim 12 is the fiber mat according to claim 11, wherein the moisture content of the fiber mat to which the adhesive is attached is adjusted to a range of 5 to 40% by weight, and then the heat and pressure molding is performed. The inner fibers can be uniformly bonded with an adhesive, and a uniform fiberboard can be obtained.
[0094]
The invention of claim 13 is the invention according to claim 11 or 12, wherein the heat-fusible resin is arranged on one side of the fine fiber sheet, and the fine fiber sheet is laminated on the fiber mat on the surface on which the heat-fusible resin is arranged. Therefore, the fine fiber sheet can be firmly bonded to the fiber plate and laminated with an adhesive layer made of a heat-fusible resin.
[0095]
Further, the invention of claim 14 is that in claim 11 or 12, since the inside of the fine fiber sheet is impregnated with a heat-fusible resin, the fine fiber sheet is superimposed on the fiber mat and subjected to heat and pressure molding. In addition, the gap between the fibers constituting the fiber board can be filled with the heat-fusible resin at the time of heat and pressure molding, and the surface smoothness can be further improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of a flooring according to the present invention.
FIG. 2 is a perspective view showing an example of the above fiber mat.
FIG. 3 is a schematic perspective view showing the orientation device of the above.
FIG. 4 is an enlarged cross-sectional view of a part of the same flooring.
FIG. 5 is an exploded perspective view of the same flooring.
FIG. 6 is a perspective view showing an example of another embodiment of the present invention.
[Explanation of symbols]
1 fiber
2 Fiber mat
3 Fiberboard
4 Base material
5 Surface finish material
6 Fine fiber sheet
7 Adhesive layer
8 Adhesive layer

Claims (14)

ケナフ、ジュート、サイザル麻、油ヤシ、ココヤシから選ばれる繊維を原料とする繊維マットに接着剤を付着させると共にこれを加熱加圧成形して得られる繊維板を少なくとも表層部に有する基材と、基材の表面に接着される表面仕上げ材とを具備して形成される床材において、繊維板と表面仕上げ材との間に、繊維板を構成する繊維より繊維径の細い微細繊維よりなる微細繊維シートを積層して成ることを特徴とする床材。A base material having at least a fiberboard obtained by attaching an adhesive to a fiber mat made of fibers selected from kenaf, jute, sisal hemp, oil palm, and coconut and heating and press-molding the adhesive, In a flooring formed with a surface finishing material bonded to the surface of a base material, a fine material composed of fine fibers having a fiber diameter smaller than that of the fiber constituting the fiber board is provided between the fiber board and the surface finishing material. A flooring material comprising laminated fiber sheets. 微細繊維シートが木材パルプ繊維よりなるものであることを特徴とする請求項1に記載の床材。The flooring material according to claim 1, wherein the fine fiber sheet is made of wood pulp fibers. 微細繊維の繊維径が5〜100μmであることを特徴とする請求項1又は2に記載の床材。The flooring material according to claim 1 or 2, wherein the fine fiber has a fiber diameter of 5 to 100 µm. 微細繊維シートの厚みが5〜200μmであることを特徴とする請求項1乃至3のいずれかに記載の床材。The flooring material according to any one of claims 1 to 3, wherein the fine fiber sheet has a thickness of 5 to 200 µm. 微細繊維シートの単位面積あたりの重量が、10〜100g/mであることを特徴とする請求項1乃至4のいずれかに記載の床材。Fine weight per unit area of the fiber sheet, flooring according to any one of claims 1 to 4, characterized in that a 10 to 100 g / m 2. 微細繊維シートの微細繊維の配向方向と、繊維板の繊維の配向方向とが交差するように、微細繊維シートを積層して成ることを特徴とする請求項1乃至5のいずれかに記載の床材。The floor according to any one of claims 1 to 5, wherein the fine fiber sheets are laminated so that the orientation direction of the fine fibers of the fine fiber sheet and the orientation direction of the fibers of the fiber board intersect each other. Wood. 微細繊維シートの微細繊維の配向方向と繊維板の繊維の配向方向とが略直交するように交差させて成ることを特徴とする請求項6に記載の床材。The flooring according to claim 6, wherein the orientation direction of the fine fibers of the fine fiber sheet and the orientation direction of the fibers of the fiber plate are crossed so as to be substantially orthogonal. 繊維板と微細繊維シートの間及び微細繊維シートと表面仕上げ材の間にそれぞれ接着剤層を介して微細繊維シートを積層すると共に、繊維板と微細繊維シートの間の接着剤層の厚みを、微細繊維シートと表面仕上げ材の間の接着剤層の厚みよりも厚く形成して成ることを特徴とする請求項1乃至7のいずれかに記載の床材。While laminating the fine fiber sheet through the adhesive layer between the fiber plate and the fine fiber sheet and between the fine fiber sheet and the surface finish, respectively, the thickness of the adhesive layer between the fiber plate and the fine fiber sheet is The flooring according to any one of claims 1 to 7, wherein the flooring is formed thicker than the thickness of the adhesive layer between the fine fiber sheet and the surface finish. 繊維板と微細繊維シートの間及び微細繊維シートと表面仕上げ材の間にそれぞれ接着剤層を介して微細繊維シートを積層すると共に、繊維板と微細繊維シートの間の接着剤層の接着剤として、微細繊維シートの弾性係数よりも低い弾性係数を有するものを用いて成ることを特徴とする請求項1乃至8のいずれかに記載の床材。As an adhesive for the adhesive layer between the fiber board and the fine fiber sheet, the fine fiber sheet is laminated between the fiber board and the fine fiber sheet and between the fine fiber sheet and the surface finish material via an adhesive layer. The flooring material according to any one of claims 1 to 8, wherein the flooring material has an elastic modulus lower than that of the fine fiber sheet. 繊維板と微細繊維シートの間の接着剤層の接着剤がゴム系接着剤であることを特徴とする請求項9に記載の床材。The flooring material according to claim 9, wherein the adhesive of the adhesive layer between the fiberboard and the fine fiber sheet is a rubber adhesive. 請求項1乃至10のいずれかに記載の床材を製造するにあたって、ケナフ、ジュート、サイザル麻、油ヤシ、ココヤシから選ばれる繊維を原料とする繊維マットに接着剤を付着させ、この接着剤を付着させた繊維マットに、繊維板を構成する繊維より繊維径の細い微細繊維よりなる微細繊維シートを重ねて加熱加圧成形することによって、微細繊維シートを表面に積層した繊維板を作製し、微細繊維シートの表面に表面仕上げ材を接着することを特徴とする床材の製造方法。In producing the flooring material according to any one of claims 1 to 10, an adhesive is attached to a fiber mat made of fibers selected from kenaf, jute, sisal hemp, oil palm, and coconut. Fabricate a fiberboard with a fine fiber sheet laminated on the surface by stacking and heating and press-molding a fine fiber sheet made of fine fibers with a fiber diameter smaller than that of the fiber constituting the fiber board on the adhered fiber mat, A method for producing a flooring material comprising bonding a surface finishing material to the surface of a fine fiber sheet. 接着剤を付着させた繊維マットの含水率を5〜40重量%の範囲に調整した後、加熱加圧成形を行なうことを特徴とする請求項11に記載の床材の製造方法。12. The method for producing a flooring according to claim 11, wherein the moisture content of the fiber mat to which the adhesive is attached is adjusted to a range of 5 to 40% by weight, and then heat-pressing is performed. 微細繊維シートの片面に熱融着性樹脂を配し、熱融着性樹脂を配した側の面で微細繊維シートを繊維マットに重ねて加熱加圧成形を行なうことを特徴とする請求項11又は12に記載の床材の製造方法。12. A heat-fusible resin is disposed on one side of the fine fiber sheet, and the fine fiber sheet is superimposed on a fiber mat on the surface on the side where the heat-fusible resin is disposed, and heat-press molding is performed. Or the manufacturing method of the flooring of 12. 微細繊維シートの内部に熱融着性樹脂を含浸した後、微細繊維シートを繊維マットに重ねて加熱加圧成形を行なうことを特徴とする請求項11又は12に記載の床材の製造方法。The method for producing a flooring material according to claim 11 or 12, wherein the fine fiber sheet is impregnated with a heat-fusible resin, and then the fine fiber sheet is superimposed on a fiber mat and subjected to heat and pressure molding.
JP2003102150A 2003-04-04 2003-04-04 Floor material and method for manufacturing floor material Expired - Fee Related JP4093100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102150A JP4093100B2 (en) 2003-04-04 2003-04-04 Floor material and method for manufacturing floor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102150A JP4093100B2 (en) 2003-04-04 2003-04-04 Floor material and method for manufacturing floor material

Publications (2)

Publication Number Publication Date
JP2004308216A JP2004308216A (en) 2004-11-04
JP4093100B2 true JP4093100B2 (en) 2008-05-28

Family

ID=33465723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102150A Expired - Fee Related JP4093100B2 (en) 2003-04-04 2003-04-04 Floor material and method for manufacturing floor material

Country Status (1)

Country Link
JP (1) JP4093100B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468484B (en) * 2007-12-27 2013-05-01 贵州大自然科技有限公司 Method for producing palm fibreboard
CN103790329A (en) * 2012-11-01 2014-05-14 浙江菱格木业有限公司 Paving structure of geothermic solid wood floor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154409A (en) * 2005-11-30 2007-06-21 Nankai Plywood Co Ltd Flooring material and its manufacturing method
KR102138653B1 (en) * 2017-12-05 2020-08-11 강성관 Eco-friendly hemp floor paper and method for preparing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468484B (en) * 2007-12-27 2013-05-01 贵州大自然科技有限公司 Method for producing palm fibreboard
CN103790329A (en) * 2012-11-01 2014-05-14 浙江菱格木业有限公司 Paving structure of geothermic solid wood floor

Also Published As

Publication number Publication date
JP2004308216A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP2733641B2 (en) Architectural board
JP4093100B2 (en) Floor material and method for manufacturing floor material
JP2003039411A (en) Kenaf composite board and its manufacturing method
JP3642214B2 (en) Long fiber composite board and manufacturing method thereof
JP5324032B2 (en) Floor material and manufacturing method thereof
JP2003253869A (en) Flooring
JP2004314593A (en) Method for manufacturing fiber board
JP5214997B2 (en) Fibreboard and decorative material manufacturing method
JP4925194B2 (en) Plywood, building board using the same, wooden soundproof flooring, and method for manufacturing plywood
JP2003041755A (en) Floor material and its manufacturing method
JP2008173809A (en) Manufacturing method for woody composite building panel and woody composite building panel
JP2010030092A (en) Fiber composite base material and its manufacturing method
CN206653489U (en) Structure poplar wood base Scrimber
JP2549259Y2 (en) Laminated board
JP2523238Y2 (en) Laminated board
JPH09174506A (en) Manufacture of wooden building material
JP2001328105A (en) Floor material
JP2519863Y2 (en) Laminate
JP4821335B2 (en) Wood soundproof flooring and its manufacturing method
JP2527517Y2 (en) Laminated board
JP2504398Y2 (en) Architectural board
JPH0612006U (en) Building board
JP2535177Y2 (en) Architectural board
JP2521417Y2 (en) Laminate
JP2519862Y2 (en) Laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees