[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4087349B2 - Pulse laser surface treatment method - Google Patents

Pulse laser surface treatment method Download PDF

Info

Publication number
JP4087349B2
JP4087349B2 JP2004092319A JP2004092319A JP4087349B2 JP 4087349 B2 JP4087349 B2 JP 4087349B2 JP 2004092319 A JP2004092319 A JP 2004092319A JP 2004092319 A JP2004092319 A JP 2004092319A JP 4087349 B2 JP4087349 B2 JP 4087349B2
Authority
JP
Japan
Prior art keywords
pulse laser
processed
residual stress
irradiated
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004092319A
Other languages
Japanese (ja)
Other versions
JP2005272989A (en
Inventor
雄二 佐野
智広 濱田
英樹 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2004092319A priority Critical patent/JP4087349B2/en
Publication of JP2005272989A publication Critical patent/JP2005272989A/en
Application granted granted Critical
Publication of JP4087349B2 publication Critical patent/JP4087349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、高速度鋼(ハイス)、金型鋼、浸炭鋼、窒化鋼、軸受鋼、超硬合金などからなる部材の表面にパルスレーザを照射することにより、極表面層を除く部材内部の硬さおよび残留応力などの材料特性を調整するパルスレーザ表面処理方法に関する。   The present invention irradiates the surface of a member made of high speed steel (high speed), die steel, carburized steel, nitrided steel, bearing steel, cemented carbide, etc. The present invention relates to a pulse laser surface treatment method for adjusting material properties such as thickness and residual stress.

工具、金型、軸受などの機械要素や部材は、摩擦、応力、衝撃など、厳しい使用条件に晒されるため、耐熱性、耐衝撃性、耐摩耗性、耐塑性変形性、耐欠損性、耐チッピング性など、高い耐久性能が要求される。
ところが、硬い材料は脆いため、耐摩耗性や耐塑性変形性を向上させると、耐欠損性や耐チッピング性が低下するという二律背反の問題がある。
Machine elements and members such as tools, molds, and bearings are exposed to severe operating conditions such as friction, stress, and impact, so heat resistance, impact resistance, wear resistance, plastic deformation resistance, fracture resistance, High durability such as chipping is required.
However, since a hard material is brittle, there is a trade-off problem that when wear resistance and plastic deformation resistance are improved, chipping resistance and chipping resistance are reduced.

表面処理技術は、部材とは異なる材料特性を部材表面に付与することができるため、このような二律背反の技術的問題点を解決することとができる。
例えば、塗装やメッキによる鋼材の防錆、ショットピーニングによる疲労強度の向上や応力腐食割れ(SCC)の予防なども、表面処理技術の適用例である。
Since the surface treatment technique can impart material characteristics different from those of the member to the surface of the member, it is possible to solve such a technical problem of trade-off.
For example, rust prevention of steel materials by painting or plating, improvement of fatigue strength by shot peening, prevention of stress corrosion cracking (SCC), etc. are also examples of application of surface treatment technology.

部材表面にTiN膜、TiC膜、TiCN膜、TiAlN膜などをコーティングすると、部材の耐摩耗性、耐焼付き性、耐食性などが飛躍的に向上するため、工具や金型を始めとして多くの工業製品に応用されている。   When a TiN film, TiC film, TiCN film, TiAlN film, etc. are coated on the surface of a member, the wear resistance, seizure resistance, corrosion resistance, etc. of the member are drastically improved. Therefore, many industrial products such as tools and molds are used. Has been applied.

これらのコーティングは、物理的手法によるPVD(Physical Vapor Deposition)法、あるいは化学反応を利用したCVD(Chemical Vapor Deposition)法によって成膜されることが多く、ビッカース硬さ(Hv)にして2,000〜3,000という高い硬度が得られるため、硬質膜と呼ばれている。   These coatings are often deposited by physical methods such as PVD (Physical Vapor Deposition), or chemical vapor deposition (CVD), and Vickers hardness (Hv) of 2,000-3,000. This is called a hard film.

硬質膜は、600℃程度の比較的低温で成膜することが可能であるが、硬質膜と部材との熱膨張差によって、成膜後には高い圧縮残留応力が硬質膜に内在する。
硬質膜をコーティングした工具や金型において、この圧縮残留応力が大きいと、耐欠損性や耐熱衝撃性においても優れた性能を発揮することが知られている。
Although the hard film can be formed at a relatively low temperature of about 600 ° C., a high compressive residual stress is inherent in the hard film after the film formation due to the difference in thermal expansion between the hard film and the member.
It is known that in a tool or a die coated with a hard film, when this compressive residual stress is large, excellent performance in terms of fracture resistance and thermal shock resistance is exhibited.

しかしながら、硬質膜に内在する圧縮残留応力が限度を超えて高過ぎる場合には、使用中の応力に硬質膜が耐えられずに破壊を起こし、硬質膜が剥離する場合がある。
その結果、それらの工具や金型は部材表面が露出してしまい、耐摩耗性、耐溶着性、耐熱衝撃性などの性能が損なわれるばかりか、それらの工具や金型を使って製作した製品の不良品の量産や、工具および金型の破損、破損して飛散した破断片の噛み込みによる製造装置の破損や製造ラインの停止といった二次的被害を招くことも予想される。
However, when the compressive residual stress inherent in the hard film exceeds the limit and is too high, the hard film cannot withstand the stress during use and may break down, and the hard film may peel off.
As a result, the surface of the parts of these tools and molds is exposed, and not only the performance such as wear resistance, welding resistance and thermal shock resistance is impaired, but also products manufactured using these tools and molds. It is also expected that there will be secondary damage such as mass production of defective products, breakage of tools and molds, breakage of production equipment due to breakage of broken pieces scattered and breakage of production lines.

そのため、剥離を生じさせない範囲にコーティングの条件を調整しているが、現状では、コーティングロットのバラツキや部材の形状、及び表面状態などの影響で、剥離を完全に抑制するまでには到っていない。   For this reason, the coating conditions are adjusted to the extent that peeling does not occur, but at present, it has reached the point of completely suppressing peeling due to the effects of coating lot variations, member shapes, and surface conditions. Absent.

また、剥離が発生しにくいように、コーティング膜の膜厚を薄くする手法をとる場合もあるが、その場合には膜厚が薄いため損耗によって寿命が制限されるほか、工具および金型としての性能が低下する傾向にあり、満足のいくものは得られていなかった。   In some cases, the coating film thickness may be reduced so that peeling does not occur easily. In that case, the film thickness is so thin that its life is limited by wear, and as a tool and mold. There was a tendency for performance to decline, and no satisfactory one was obtained.

また、TiN膜を始めとする硬質膜のビッカース硬さ(Hv)は2,000〜3,000と大きいが、部材のビッカース硬さ(Hv)は1,000以下であるため、外力による変形においても硬質膜と部材との界面でミスマッチが生じ、鋭利な他の部材との接触を繰り返すような場合には界面で剥離が生じやすいという欠点があった。
また、部材表面の耐久性を向上させるものとして、拡散浸透法、表面焼入れ法、機械的衝撃法などにより部材表面の高硬度化を図る手段も実用化されている。
In addition, Vickers hardness (Hv) of hard films such as TiN film is as large as 2,000 to 3,000, but since the Vickers hardness (Hv) of the member is 1,000 or less, the hard film and member are also deformed by deformation due to external force. In the case where a mismatch occurs at the interface and the contact with other sharp members is repeated, there is a drawback that the interface easily peels off.
Further, as means for improving the durability of the member surface, means for increasing the hardness of the member surface by a diffusion penetration method, a surface quenching method, a mechanical impact method, or the like has been put into practical use.

これらの場合、コーティング法の硬質膜と部材界面におけるほどの明確な材料特性ミスマッチは生じないが、使用条件によっては同様に基材から硬度の高い表面層が剥離するという問題があった。   In these cases, the material property mismatch as clear as that at the hard film and member interface of the coating method does not occur, but there is a problem that the surface layer having high hardness is similarly peeled off from the base material depending on the use conditions.

本発明は上記課題を解決するためになされたものであり、異なる表面特性を有するような部材に対し、部材の表面を損傷することなく、部材から表面層が剥離したり、き裂が生じたりするのを防ぎ、部材に要求される耐摩耗性、耐溶着性、耐衝撃性などの耐久性能を向上させ、部材の寿命延長を図ることのできるパルスレーザ表面処理方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. For a member having different surface characteristics, the surface layer is peeled off from the member or a crack is generated without damaging the surface of the member. It is an object of the present invention to provide a pulsed laser surface treatment method capable of improving the durability performance such as wear resistance, welding resistance, impact resistance, etc. required for a member and extending the life of the member. To do.

以上の目的を達成するために、請求項1に記載の発明は、液体雰囲気中に配置された被表面処理部材に対してパルスレーザを照射して材料特性を調整するパルスレーザ表面処理方法であって、金属部材の表面にコーティング法によってチタンを含有しかつ前記金属部材よりも硬度が高い硬質膜を成膜することで被表面処理部材を構成し、この被表面処理部材を、パルスレーザに対して透明な性質を有する液体雰囲気中に配置し、この被表面処理部材に照射するパルスレーザの出力を、パルスレーザ照射によって発生させる衝撃波の圧力が前記硬質膜の降伏応力よりも小さくかつ前記金属部材の降伏応力よりも大きくるように制御したうえで、パルスレーザを照射することを特徴とする。 In order to achieve the above object, the invention described in claim 1 is a pulse laser surface treatment method for adjusting material characteristics by irradiating a surface treatment member disposed in a liquid atmosphere with a pulse laser. Then, a surface-treated member is formed by forming a hard film containing titanium on the surface of the metal member by a coating method and having a hardness higher than that of the metal member. placed in a liquid atmosphere having a transparent property Te, the output of the pulse laser is irradiated to the object to be surface treated member, small and the metal than the pressure of the shock wave to be generated is the yield stress of the hard film by elevation Parusure the irradiation after having controlled largely Do so that than the yield stress of the member, and irradiating the pulsed laser.

本発明のパルスレーザ表面処理方法によれば、異なる表面特性を有するような部材に対し、部材の表面を損傷することなく、部材から表面層が剥離したり、き裂が生じたりするのを防ぎ、部材に要求される耐摩耗性、耐溶着性、耐衝撃性などの耐久性能を向上させ、部材の寿命延長を図ることができる。   According to the pulse laser surface treatment method of the present invention, it is possible to prevent the surface layer from peeling off or cracking from a member having different surface characteristics without damaging the surface of the member. Further, durability performance such as wear resistance, welding resistance and impact resistance required for the member can be improved, and the life of the member can be extended.

以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明の第1の実施の形態によるパルスレーザ表面処理方法を示す図で、1は表面処理を施される金属からなる被表面処理部材(以下単に被処理部材と称する)で、図示しない容器内に満たされた水などの液体2の中に置かれている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a view showing a pulse laser surface treatment method according to a first embodiment of the present invention, and 1 is a surface treatment member (hereinafter simply referred to as a treatment member) made of metal to be subjected to surface treatment. Not placed in a liquid 2 such as water filled in a container.

3は図示しないレーザ発振器から発振されたパルスレーザで、焦点レンズのような光学集光装置4を介して前記液体雰囲気中の被処理部材1の表面に照射されている。
このようなパルスレーザ表面処理方法において、パルスレーザ3のピーク出力密度が被処理部材1のプラズマ発生閾値(金属の場合概ね0.1〜10TW/m2)を超えると、パルスレーザ3が照射された被処理部材1の極表層(1μm以下)が瞬時に蒸発し、表面にプラズマ5が発生する。
Reference numeral 3 denotes a pulse laser oscillated from a laser oscillator (not shown), which is irradiated onto the surface of the member 1 to be processed in the liquid atmosphere via an optical condensing device 4 such as a focus lens.
In such a pulse laser surface treatment method, when the peak output density of the pulse laser 3 exceeds the plasma generation threshold of the member 1 to be processed (approximately 0.1 to 10 TW / m 2 in the case of metal), the object to be irradiated with the pulse laser 3 is irradiated. The extreme surface layer (1 μm or less) of the processing member 1 is instantly evaporated and plasma 5 is generated on the surface.

液体2中では、液体2の慣性が瞬間的に強く働くため、プラズマ5はほとんど膨張することができず、狭い領域にパルスレーザ3のエネルギーが集中する。このため、プラズマ5の圧力は大気中や真空中と比較して十〜百倍にも達する。
また、被処理部材1に照射されるパルスレーザ3のピーク出力密度をI(TW/m2)とすると、発生するプラズマ5の圧力P(GPa)は概ね、P=(0.2×I)0.5で求めることができる。
In the liquid 2, since the inertia of the liquid 2 works momentarily strongly, the plasma 5 hardly expands, and the energy of the pulse laser 3 is concentrated in a narrow region. For this reason, the pressure of the plasma 5 reaches 10 to 100 times that in the air or in vacuum.
If the peak output density of the pulse laser 3 irradiated to the member 1 is I (TW / m 2 ), the pressure P (GPa) of the generated plasma 5 is approximately P = (0.2 × I) 0.5 . Can be sought.

従って、パルスレーザ3のピーク出力密度が1〜100TW/m2であれば、プラズマ5の圧力は概ね450MPa〜4.5GPaとなり、パルスレーザ3の照射によって被処理部材1表面を塑性変形させて材料特性を調整することができる。 Accordingly, if the peak output density of the pulse laser 3 is 1 to 100 TW / m 2 , the pressure of the plasma 5 is approximately 450 MPa to 4.5 GPa, and the surface of the member 1 to be processed is plastically deformed by the irradiation of the pulse laser 3 to obtain material characteristics. Can be adjusted.

本発明における液体雰囲気としてはパルスレーザ3に対して透明な性質を有するものが好ましく、前記した水の他に、油、アルコール、アンモニア水、ホウ酸水など、水以外の液体を用いることができる。その場合には、次の係数kを使用してP=(0.2×I×k)0.5により、プラズマ5の圧力を求めることができる。
k=(液体の音響インピーダンス)/(水の音響インピーダンス)
ここで、液体の音響インピーダンスは、(液体の密度)×(液体中の音速)であるため、前記した液体であれば、結果は水の場合と大きくは変わらない。
The liquid atmosphere in the present invention preferably has a property transparent to the pulse laser 3, and in addition to the water described above, liquids other than water such as oil, alcohol, ammonia water, boric acid water, etc. can be used. . In that case, the pressure of the plasma 5 can be obtained by P = (0.2 × I × k) 0.5 using the following coefficient k.
k = (acoustic impedance of liquid) / (acoustic impedance of water)
Here, since the acoustic impedance of the liquid is (the density of the liquid) × (the speed of sound in the liquid), if the liquid is the above-described liquid, the result is not significantly different from the case of water.

図1に示すパルスレーザ表面処理方法で発生した高圧のプラズマ5は、被処理部材1の表面を瞬間的に圧縮し、圧縮による被処理部材1表面の変位は衝撃波6となって被処理部材1の深さ方向に伝播する。   The high-pressure plasma 5 generated by the pulse laser surface treatment method shown in FIG. 1 instantaneously compresses the surface of the member 1 to be processed, and the displacement of the surface of the member 1 to be processed due to the compression becomes a shock wave 6. Propagate in the depth direction.

このとき、衝撃波6の圧力が被処理部材1の降伏応力を上回ると、局所的な塑性変形が生じ、結果として残留応力および硬さなどの材料特性が変化する。
ここで、どの部位(深さ)が塑性変形を受けるかは、被処理部材1における材料特性(降伏応力)の分布と衝撃波6の伝播(減衰)の様子によって決まる。
At this time, if the pressure of the shock wave 6 exceeds the yield stress of the member 1 to be processed, local plastic deformation occurs, and as a result, material characteristics such as residual stress and hardness change.
Here, which part (depth) undergoes plastic deformation is determined by the distribution of material characteristics (yield stress) in the member 1 to be processed and the state of propagation (attenuation) of the shock wave 6.

図2は、縦軸に被処理部材1に加わる衝撃波6の圧力(P1)、および被処理部材1の降伏応力(S)を、横軸に塑性変形が及ぶ範囲(D1)を含む被処理部材1の深さ(D)との関係を示した説明図である。   FIG. 2 shows the member to be processed including the pressure (P1) of the shock wave 6 applied to the member 1 to be processed on the vertical axis and the yield stress (S) of the member 1 to be processed, and the range (D1) on which the plastic deformation extends on the horizontal axis. It is explanatory drawing which showed the relationship with 1 depth (D).

図2に示すように、一定の初期降伏応力(Sb)を持つ被処理部材1を衝撃波6が伝播する場合、塑性変形は被処理部材1の最表面から、衝撃波6の圧力(P1)が被処理部材1の降伏応力(Sb)を下回る深さまでの範囲(D1)に及ぶ。   As shown in FIG. 2, when the shock wave 6 propagates through the member 1 to be processed having a constant initial yield stress (Sb), the plastic deformation is caused by the pressure (P1) of the shock wave 6 from the outermost surface of the member 1 to be processed. It extends to a range (D1) up to a depth lower than the yield stress (Sb) of the processing member 1.

図3は、表面が硬質膜でコーティングされた被処理部材1を例にとり、降伏応力(S)が一定でない場合について、衝撃波6の圧力(P1)、被処理部材1の降伏応力(S)、塑性変形が及ぶ範囲(D1)の関係を示した説明図である。   FIG. 3 shows an example of a member 1 whose surface is coated with a hard film. When the yield stress (S) is not constant, the pressure of the shock wave 6 (P1), the yield stress (S) of the member 1 to be processed, It is explanatory drawing which showed the relationship of the range (D1) which plastic deformation reaches.

ここで、硬質膜の降伏応力をSc、被処理部材1の降伏応力をSbとし、衝撃波6の圧力P1が、Sc>P1>Sbなる関係を満足する場合、硬質膜は衝撃波6の圧力(P1)によって塑性変形を受けず、被処理部材1のみが塑性変形による材料特性の調整を受けることになる。
すなわち、このような条件では、被処理部材1表面の硬質膜には何の特性変化も与えずに、表面直下の被処理部材1にのみ深さ(D1)の範囲で特性変化を与えることができる。
Here, when the yield stress of the hard film is Sc and the yield stress of the workpiece 1 is Sb, and the pressure P1 of the shock wave 6 satisfies the relationship Sc>P1> Sb, the hard film has the pressure of the shock wave 6 (P1 ), And only the member 1 to be processed is subjected to adjustment of material characteristics by plastic deformation.
That is, under such conditions, the hard film on the surface of the member to be processed 1 is not subjected to any characteristic change, and only the member to be processed 1 immediately below the surface is subjected to the characteristic change within the depth (D1) range. it can.

なお、より正確には、パルスレーザ3の照射によって被処理部材1の表面が塑性変形を受け、加工硬化が進むため、図2および図3における降伏応力(S)の分布はパルスレーザの照射毎に変化していく。
従って、被処理部材1の一箇所に照射するパルスレーザ3の数を制御することによって、被処理部材1内部の特性変化を調整することができる。
More precisely, since the surface of the member 1 to be processed is plastically deformed by the irradiation of the pulse laser 3 and the work hardening proceeds, the distribution of the yield stress (S) in FIG. 2 and FIG. Will change.
Therefore, by controlling the number of pulse lasers 3 irradiated to one place of the member 1 to be processed, the change in characteristics inside the member 1 to be processed can be adjusted.

図4および図5は、本発明によるパルスレーザ表面処理方法の具体例として、パルスエネルギー200mJのパルスレーザ3をスポット径0.8mmに集光し、水中のオーステナイトステンレス鋼(SUS304)に照射したときの被処理部材1の深さ(D)と残留応力および硬さとの変化を示した図である。   4 and 5 show a specific example of the pulse laser surface treatment method according to the present invention when a pulse laser 3 having a pulse energy of 200 mJ is focused to a spot diameter of 0.8 mm and irradiated to austenitic stainless steel (SUS304) in water. It is the figure which showed the change of the depth (D) of the to-be-processed member 1, residual stress, and hardness.

使用したパルスレーザのパルス幅は8nsであり、ピーク出力密度は50TW/m2である。前述の式に従えばプラズマ5の圧力Pは約3GPaとなり、オーステナイトステンレス鋼(SUS304)の降伏応力(数百MPa)を十分に上回っている。
なお、この例では、部材表面の20mm×20mmの領域にパルスレーザを一様に照射しているが、材料の表面一箇所あたりには18パルスが照射されている。
The pulse width of the used pulse laser is 8 ns, and the peak output density is 50 TW / m 2 . According to the above formula, the pressure P of the plasma 5 is about 3 GPa, which is sufficiently higher than the yield stress (several hundred MPa) of austenitic stainless steel (SUS304).
In this example, a 20 mm × 20 mm region on the surface of the member is uniformly irradiated with a pulsed laser, but 18 pulses are irradiated on one surface of the material.

図4および図5に示すとおり、パルスレーザ照射前の残留応力分布7および硬さ分布8に比べパルスレーザの照射後の残留応力分布9および硬さ分布10は深さ約1mmまで圧縮残留応力が形成され、硬さは表面から約0.7mmまで上昇している。   As shown in FIGS. 4 and 5, the residual stress distribution 9 and the hardness distribution 10 after irradiation with the pulse laser have a compressive residual stress up to a depth of about 1 mm as compared with the residual stress distribution 7 and the hardness distribution 8 before the pulse laser irradiation. Formed, the hardness rises to about 0.7mm from the surface.

なお、被処理部材表面の残留応力はX線回折法により求め、その深さ分布は電解研磨と残留応力測定を繰り返すことにより求めた。
また、硬さ分布は被処理部材の断面を研磨し、マイクロビッカース硬度計で測定した。
The residual stress on the surface of the member to be processed was determined by X-ray diffraction, and the depth distribution was determined by repeating electrolytic polishing and residual stress measurement.
The hardness distribution was measured with a micro Vickers hardness meter after polishing the cross section of the member to be treated.

次に、拡散浸透法による窒化処理によって予め表面層の硬さを上昇させた被処理部材に対して、パルスレーザを照射して材料特性を調整するパルスレーザ表面処理方法について説明する。   Next, a pulse laser surface treatment method will be described in which a material to be treated is adjusted by irradiating a member to be treated whose surface layer hardness has been increased in advance by nitriding treatment using a diffusion permeation method.

図6は、熱間金型工具鋼(SKD61)の焼入れ−焼戻し材に軟窒化処理を施した被処理部材について、パルスレーザ照射前と後の被処理部材の深さ(D)とビッカース硬さ(Hv)の分布11、12を示した説明図である。   FIG. 6 shows the depth (D) and Vickers hardness of the processed member before and after the pulse laser irradiation for the processed member obtained by soft nitriding the quench-tempered material of hot die tool steel (SKD61). It is explanatory drawing which showed the distributions 11 and 12 of (Hv).

パルスレーザの照射条件は、パルスエネルギー200mJ、スポット径0.6mmであり、水中で一箇所あたり28パルスの照射を行った。なお、パルスレーザを照射した面積は20mm×20mmである。   Pulse laser irradiation conditions were a pulse energy of 200 mJ and a spot diameter of 0.6 mm, and 28 pulses were irradiated per spot in water. The area irradiated with the pulse laser is 20 mm × 20 mm.

図6に示すように、パルスレーザ照射前の軟窒化処理材のビッカース硬さ分布11は、表面から約0.1mmの範囲でビッカース硬さ(Hv)が1,000を超え、被処理部材の基材の硬さ(Hv=400〜500)と極端な差が生じていることが分かる。   As shown in FIG. 6, the Vickers hardness distribution 11 of the nitrocarburized material before the pulse laser irradiation has a Vickers hardness (Hv) exceeding 1,000 within a range of about 0.1 mm from the surface. It can be seen that there is an extreme difference in hardness (Hv = 400-500).

一方、パルスレーザ照射後の軟窒化処理材のビッカース硬さ分布12は表面から0.1〜0.6mmの範囲で硬さが上昇してなだらかな曲線となっている。
これにより、パルスレーザ照射によって材料特性の一つである硬さ分布の調整が可能であることが分かる。
On the other hand, the Vickers hardness distribution 12 of the nitrocarburized material after the pulse laser irradiation is a gentle curve with increasing hardness in the range of 0.1 to 0.6 mm from the surface.
Thus, it is understood that the hardness distribution which is one of the material characteristics can be adjusted by the pulse laser irradiation.

材料特性(硬度分布)調整の効果を確認するため、パルスレーザ照射を行った軟窒化処理材とパルスレーザ未照射のものについて、熱疲労試験を行った。
その結果、パルスレーザ未照射の部材では約16,000ショットで表層部の剥離が始まったが、パルスレーザ照射を行った部材では30,000ショットを超えても表層部の剥離やき裂は発生せず、硬度分布の調整によって軟窒化処理材の耐久性能の向上が可能なことを確認した。
In order to confirm the effect of adjusting the material characteristics (hardness distribution), a thermal fatigue test was performed on the nitrocarburized material subjected to pulse laser irradiation and the material not irradiated with the pulse laser.
As a result, peeling of the surface layer started in about 16,000 shots for the parts not irradiated with the pulse laser, but peeling or cracking of the surface layer did not occur even after exceeding 30,000 shots for the parts subjected to the pulse laser irradiation, and the hardness distribution It was confirmed that the durability performance of the nitrocarburized material can be improved by adjusting the above.

次に、機械的衝撃法の一つであるショットピーニング処理によって予め表面層の硬度を上昇させた被処理部材に対して、パルスレーザを照射して材料特性を調整するパルスレーザ表面処理方法について説明する。   Next, a pulse laser surface treatment method that adjusts material properties by irradiating a target laser whose surface layer hardness has been increased in advance by shot peening, which is one of mechanical shock methods, is irradiated with a pulse laser. To do.

図7は、歯車用浸炭焼入れ鋼(SNCM420H)にショットピーニング処理を施した被処理部材について、パルスレーザ照射前と後の被処理部材の深さ(D)と残留応力(MPa)の分布13、14、15を示した説明図である。   FIG. 7 shows the distribution 13 of the depth (D) and the residual stress (MPa) of the processed member before and after the pulse laser irradiation for the processed member subjected to the carburized and quenched steel for gears (SNCM420H). It is explanatory drawing which showed 14 and 15. FIG.

パルスレーザの照射条件は次の二つの条件で行った。すなわち、(1)パルスエネルギー80mJ、スポット径0.8mmであり、水中で一箇所あたり50パルス照射、(2)パルスエネルギー200mJ、スポット径0.8mmであり、水中で一箇所あたり50パルス照射、の2条件である。なお、パルスレーザを照射した面積は何れも20mm×20mmである。   The irradiation conditions of the pulse laser were the following two conditions. That is, (1) pulse energy 80mJ, spot diameter 0.8mm, 50 pulses per spot in water, (2) pulse energy 200mJ, spot diameter 0.8mm, 50 spots per spot in water 2 It is a condition. The area irradiated with the pulse laser is 20 mm × 20 mm.

図7に示すように、パルスレーザ照射前の歯車用浸炭焼入れ鋼(SNCM420H)の残留応力分布13は、表面から約0.2mmの範囲で高い圧縮残留応力を示し、0.2mmより深い位置の残留応力値はほぼ0であるため、応力値に極端な差が生じている。   As shown in FIG. 7, the residual stress distribution 13 of the carburized and hardened steel for gears (SNCM420H) before pulse laser irradiation shows high compressive residual stress in the range of about 0.2 mm from the surface, and residual stress at a position deeper than 0.2 mm. Since the value is almost 0, there is an extreme difference in the stress value.

一方、条件(1)でパルスレーザを照射した歯車用浸炭焼入れ鋼(SNCM420H)の残留応力分布15は、表面から約0.6mmの範囲で残留応力が圧縮側に推移している。
また、条件(2)でパルスレーザを照射した歯車用浸炭焼入れ鋼(SNCM420H)の残留応力分布14は、表面から約1.0mmの範囲で残留応力が圧縮側に推移している。
On the other hand, in the residual stress distribution 15 of the carburized and quenched steel for gears (SNCM420H) irradiated with the pulse laser under the condition (1), the residual stress is shifted to the compression side in the range of about 0.6 mm from the surface.
Further, in the residual stress distribution 14 of the carburized and hardened steel for gears (SNCM420H) irradiated with the pulse laser under the condition (2), the residual stress is shifted to the compression side in the range of about 1.0 mm from the surface.

これにより、パルスレーザの照射により、両条件とも深さ0.2mm近辺の急激な圧縮残留応力値の低下が改善され、材料特性の一つである残留応力分布の調整が可能であることが分かった。
なお、硬さ分布については図示していないが、残留応力分布と同様の傾向にあり、パルスレーザ照射によって硬さ分布もよりなだらかな曲線となることが分かった。
As a result, it was found that the pulsed laser irradiation improved the sudden decrease in compressive residual stress value in the vicinity of a depth of 0.2 mm under both conditions, and it was possible to adjust the residual stress distribution, which is one of the material properties. .
Although the hardness distribution is not shown, it has the same tendency as the residual stress distribution, and it has been found that the hardness distribution becomes a gentler curve by the pulse laser irradiation.

材料特性(残留応力および硬さ分布)の調整効果を確認するため、パルスレーザ照射を実施したショットピーニング処理材と、パルスレーザ未照射のものについてチッピング試験を行った。   In order to confirm the effect of adjusting the material properties (residual stress and hardness distribution), a chipping test was performed on the shot peened material that was irradiated with the pulse laser and the material that was not irradiated with the pulse laser.

その結果、パルスレーザ未照射の部材では約380回の衝撃荷重でチッピングが始まったが、条件(1)でパルスレーザを照射した被処理部材では約1,900回、条件(2)の場合には約3,200回の衝撃荷重までチッピングは起こらず、残留応力および硬さ分布の調整によってショットピーニング処理材の耐久性能の向上が可能なことを確認した。   As a result, chipping started with an impact load of about 380 times for the member not irradiated with the pulse laser, but about 1,900 times for the member to be processed irradiated with the pulse laser under the condition (1), approximately under the condition (2). It was confirmed that chipping did not occur until the impact load of 3,200 times, and that the durability performance of the shot peened material could be improved by adjusting the residual stress and hardness distribution.

なお、表面焼入れ法によって表面の硬度上昇を図った被処理部材についても、前述の軟窒化処理材(拡散浸透法)およびショットピーニング処理材(機械的衝撃法)と同様の傾向を示す結果が得られている。
すなわち、パルスレーザ照射によって表面焼入れ材の材料特性を調整することができ、耐久性能の向上が可能なことを確認している。
In addition, with respect to the processed member whose surface hardness was increased by the surface quenching method, the same tendency as the soft nitriding material (diffusion penetration method) and the shot peening material (mechanical impact method) was obtained. It has been.
That is, it has been confirmed that the material characteristics of the surface-hardened material can be adjusted by pulse laser irradiation, and the durability performance can be improved.

次に、コーティング法の一つであるPVD法によって表面にTiN硬質膜を形成し、予め表面硬度を上昇させた被処理部材に対して、パルスレーザを照射して材料特性を調整するパルスレーザ表面処理方法について説明する。
高速度工具鋼(SKH51)の表面に、アークイオンプレーティングにより約2μm厚さのTiNをコーティングし、パルスレーザを照射した。
Next, the surface of the pulse laser that adjusts the material properties by irradiating the target member whose surface hardness has been increased in advance by forming a TiN hard film on the surface by PVD, which is one of the coating methods. A processing method will be described.
The surface of high-speed tool steel (SKH51) was coated with TiN having a thickness of about 2 μm by arc ion plating and irradiated with a pulsed laser.

コーティング時の被処理部材(サブストレート)温度は300℃であり、コーティング後に被処理部材を室温まで冷却すると、コーティング材(TiN)と被処理部材(SKH51)の熱膨張係数の差によって、コーティング材(TiN)には大きな圧縮応力が生じる。   The temperature of the material to be treated (substrate) during coating is 300 ° C. When the material to be treated is cooled down to room temperature after coating, the coating material is affected by the difference in thermal expansion coefficient between the coating material (TiN) and the material to be treated (SKH51). A large compressive stress is generated in (TiN).

X線回折によって応力測定を行った結果、コーティング材(TiN)には約1GPaの圧縮応力が生じていた。
一方、被処理部材は、コーティング材(TiN)と比較して極端に厚いため、残留応力値はほぼ0であり、硬質膜と被処理部材との界面に大きな残留応力のミスマッチが生じていた。
As a result of measuring stress by X-ray diffraction, a compressive stress of about 1 GPa was generated in the coating material (TiN).
On the other hand, since the member to be treated is extremely thick compared to the coating material (TiN), the residual stress value is almost 0, and a large residual stress mismatch has occurred at the interface between the hard film and the member to be treated.

図8は、TiNコーティングを施した高速度工具鋼(SKH51)について、パルスレーザ照射前と後の硬質膜(TiN)の残留応力16、17、18、被処理部材(SKH51)の深さ(D)と残留応力(MPa)の分布19、20、21を示した説明図である。   FIG. 8 shows the residual stresses 16, 17, and 18 of the hard film (TiN) before and after the pulse laser irradiation, the depth of the member to be processed (SKH51) for the high-speed tool steel (SKH51) coated with TiN (D ) And residual stress (MPa) distributions 19, 20, and 21.

パルスレーザの照射は次の二つの条件で行った。すなわち、(1)パルスエネルギー15mJ、スポット径0.4mmであり、水中で一箇所あたり13パルス照射、(2)パルスエネルギー50mJ、スポット径0.4mmであり、水中で一箇所あたり13パルス照射、の2条件である。なお、パルスレーザを照射した面積は何れも20mm×20mmである。   Pulse laser irradiation was performed under the following two conditions. That is, (1) pulse energy of 15 mJ and spot diameter of 0.4 mm, irradiation of 13 pulses per spot in water, (2) pulse energy of 50 mJ and spot diameter of 0.4 mm, irradiation of 13 pulses per spot in water It is a condition. The area irradiated with the pulse laser is 20 mm × 20 mm.

図8に示すとおり、パルスレーザ照射前の残留応力は、硬質膜16−被処理部材19界面に約1GPaにも及ぶミスマッチが生じていた。
しかしながら、条件(1)でパルスレーザを照射することにより、残留応力は硬質膜17および被処理部材20の界面とも約300MPaの圧縮応力17となり、硬質膜−被処理部材界面の残留応力のミスマッチは、ほぼ解消され、残留応力分布20を示した。
As shown in FIG. 8, in the residual stress before the pulse laser irradiation, a mismatch of about 1 GPa occurred at the interface between the hard film 16 and the member 19 to be processed.
However, by irradiating with a pulse laser under the condition (1), the residual stress becomes a compressive stress 17 of about 300 MPa at the interface between the hard film 17 and the member 20 to be processed. The residual stress distribution 20 was almost eliminated.

一方、条件(2)でパルスレーザを照射したものは、硬質膜の残留応力18が約400MPaの引張りとなり、被処理部材の残留応力21は界面で約700MPaの圧縮応力を示した。
これは前述のとおり、硬質膜は硬度が高く衝撃波の圧力では塑性変形を受けず、硬質膜直下の被処理部材が面内方向に塑性変形を受けた結果、被処理部材は圧縮応力に、その反作用として硬質膜は引張応力となったものと考えられる。
条件(1)の場合には、パルスレーザ照射前の残留応力のミスマッチを解消するのに適切な条件であったが、条件(2)では被処理部材の塑性変形がさらに進んだ結果と考えられる。
On the other hand, when the pulse laser was irradiated under the condition (2), the residual stress 18 of the hard film was tensile of about 400 MPa, and the residual stress 21 of the member to be processed showed a compressive stress of about 700 MPa at the interface.
This is because, as described above, the hard film has high hardness and does not undergo plastic deformation under the pressure of the shock wave. As a result of the plastic member being subjected to plastic deformation in the in-plane direction, the member to be processed is subjected to compressive stress. As a reaction, the hard film is considered to have become a tensile stress.
In the case of the condition (1), it was an appropriate condition for eliminating the mismatch of the residual stress before the pulse laser irradiation. However, in the condition (2), it is considered that the plastic deformation of the member to be processed further progressed. .

これらの結果から、パルスレーザの照射条件を制御することによって、硬質膜−被処理部材界面近傍の材料特性(残留応力)の調整が可能であることが分かった。
材料特性(残留応力)調整の効果を確認するため、TiNによる硬質膜コーティングを施した高速度工具鋼(SKH51)に対して、パルスレーザ照射を行ったものと未照射のものを準備してTiNの剥離性を評価した。
From these results, it was found that the material characteristics (residual stress) in the vicinity of the interface between the hard film and the member to be processed can be adjusted by controlling the irradiation condition of the pulse laser.
In order to confirm the effect of adjusting material properties (residual stress), high-speed tool steel (SKH51) coated with a hard film with TiN was prepared by applying pulsed laser irradiation and non-irradiated TiN. The peelability of was evaluated.

被膜の密着性はスクラッチ試験により評価するのが一般的であるが、ここではロックウェル硬さ試験機を使用して1,000Nの負荷を与えた後、圧痕の内部および周囲における被膜の剥離や割れを観察して評価を行った。   The adhesion of the film is generally evaluated by a scratch test. Here, after applying a load of 1,000 N using a Rockwell hardness tester, the film peels and cracks inside and around the indentation. Was observed and evaluated.

その結果、パルスレーザ未照射のものについては、圧痕の周囲に微小な割れが多数観察された。
一方、パルスレーザ照射を行ったものについては、圧痕の周囲に剥離や割れは観察できなかった。これは、条件(1)ではパルスレーザ照射によって硬質膜−被処理部材界面における残留応力のミスマッチが解消されたためと考えられる。
As a result, a lot of minute cracks were observed around the indentation in the case where the pulse laser was not irradiated.
On the other hand, no peeling or cracking was observed around the indentation in the case of pulse laser irradiation. This is presumably because, under condition (1), the residual stress mismatch at the interface between the hard film and the member to be processed was eliminated by the pulse laser irradiation.

また、条件(2)ではパルスレーザ照射による被処理部材の塑性変形によって被処理部材の硬度が上昇し、ロックウェル硬さ試験機による硬球押付け時の変形が少なくなったことが主な要因と考えられる。
以上より、パルスレーザを照射して被処理部材の材料特性を調整することにより、TiNコーティング膜およびコーティング部材の耐久性能が向上することを確認した。
Further, in condition (2), the hardness of the member to be processed is increased by the plastic deformation of the member to be processed by the pulse laser irradiation, and the main factor is considered that the deformation at the time of pressing the hard ball by the Rockwell hardness tester is reduced. It is done.
From the above, it was confirmed that the durability performance of the TiN coating film and the coating member was improved by irradiating the pulse laser and adjusting the material properties of the member to be processed.

次に、液体雰囲気として、水、油、アルコール、アンモニア水、ホウ酸水中で被処理部材にパルスレーザを照射した場合について説明する。
前述のとおり、液体雰囲気中でパルスレーザ3を照射すると、被処理部材1の極表層が瞬時に蒸発してプラズマ5が発生する。
Next, the case where a to-be-processed member is irradiated with a pulse laser in water, oil, alcohol, ammonia water, boric acid water as a liquid atmosphere will be described.
As described above, when the pulse laser 3 is irradiated in the liquid atmosphere, the extreme surface layer of the member 1 to be processed is instantly evaporated and the plasma 5 is generated.

液体2は密度が高いため、プラズマ5は液体分子と瞬時に衝突する。その結果、プラズマ5の発生とほぼ同時に一部の液体分子は活性なプラズマとなり、被処理部材1の表面と反応する。
更に、被処理部材1の極表層(数μm)はプラズマ5からの熱輻射によって加熱され、被処理部材内部への原子の拡散が促進される。
Since the liquid 2 has a high density, the plasma 5 instantaneously collides with liquid molecules. As a result, some liquid molecules become active plasma almost simultaneously with the generation of the plasma 5 and react with the surface of the member 1 to be processed.
Further, the extreme surface layer (several μm) of the member 1 to be processed is heated by the heat radiation from the plasma 5 and the diffusion of atoms into the member to be processed is promoted.

実験では、鉄を主成分とする被処理部材1に水中でパルスレーザを照射すると、鉄と水が分解して生じた酸素が反応し、大気中では形成が難しい四三酸化鉄(Fe3O4)の緻密な表面層が厚さ数μmにわたって形成されることが分かった。 In the experiment, when the object to be treated 1, which is mainly composed of iron, is irradiated with a pulse laser in water, the oxygen produced by the decomposition of iron and water reacts and forms iron trioxide (Fe 3 O, which is difficult to form in the atmosphere). It was found that the dense surface layer 4 ) was formed over a thickness of several μm.

四三酸化鉄(Fe3O4)の形成は表面の不活性化に有効であり、熱間金型工具鋼(SKD61)の表面に数μmの厚さで四三酸化鉄(Fe3O4)を形成すると、浸食、腐食、焼付きなどによる溶損が桁違いに小さくなることが分かった。 The formation of triiron tetroxide (Fe 3 O 4 ) is effective for surface deactivation, and the surface of hot die tool steel (SKD61) has a thickness of several μm and is made of iron trioxide (Fe 3 O 4). ), It was found that the melting loss due to erosion, corrosion, seizure and the like is remarkably reduced.

同様に、鉄を主成分とする被処理部材1の表面に油またはアルコール中でパルスレーザ3を照射すると、油またはアルコール分子を構成する炭素原子が部材表面に取り込まれ、浸炭層が形成されることが分かった。   Similarly, when the surface of the member 1 containing iron as a main component is irradiated with a pulse laser 3 in oil or alcohol, carbon atoms constituting the oil or alcohol molecules are taken into the member surface to form a carburized layer. I understood that.

アンモニア水中でパルスレーザ3の照射を行うと、アンモニア分子を構成する窒素原子が被処理部材1表面と反応し、窒化鉄(Fe4N)を主成分とする表面層が形成されることが分かった。
また、ホウ酸水中でパルスレーザ3の照射を行うと、ホウ素原子が被処理部材1表面と反応し、ホウ化鉄(Fe2BおよびFeB)を主成分とする表面層が形成されることが分かった。
It is understood that when the pulse laser 3 is irradiated in the ammonia water, nitrogen atoms constituting the ammonia molecules react with the surface of the member 1 to be processed, and a surface layer mainly composed of iron nitride (Fe 4 N) is formed. It was.
Further, when the pulse laser 3 is irradiated in boric acid water, boron atoms react with the surface of the member 1 to be processed, and a surface layer mainly composed of iron boride (Fe 2 B and FeB) is formed. I understood.

これらの四三酸化鉄(Fe3O4)、浸炭層、窒化鉄(Fe4N)、ホウ化鉄(Fe2BおよびFeB)を被処理部材1表面に形成すると、被処理部材1の耐久性能が向上することが知られているが、通常は熱化学的な平衡状態を利用した拡散浸透法により形成されるため、数百度から一千度を超える処理温度が必要となり、バッチ処理とならざるを得ない。
また、このような高温処理を行うと、金属組織の粗粒化を初めとする悪影響が生じることが多く、好ましくない。
When these triiron tetroxides (Fe 3 O 4 ), carburized layers, iron nitride (Fe 4 N), and iron borides (Fe 2 B and FeB) are formed on the surface of the member to be treated 1, the durability of the member to be treated 1 Although it is known that the performance is improved, it is usually formed by the diffusion permeation method using the thermochemical equilibrium state, so a processing temperature exceeding several hundred degrees to one thousand degrees is required. I must.
Further, such a high temperature treatment is not preferable because it often causes adverse effects such as coarsening of the metal structure.

以上のように本発明によるパルスレーザの照射による表面処理方法によれば、高温容器が不要で、連続処理も可能なため、機械要素や部材の耐久性能の向上、寿命の延長に寄与するところが大きい。   As described above, according to the surface treatment method by pulse laser irradiation according to the present invention, a high-temperature container is unnecessary and continuous treatment is possible, which greatly contributes to improvement in durability performance and extension of life of machine elements and members. .

本発明の第1の実施の形態によるパルスレーザ表面処理方法を説明するための正面図。The front view for demonstrating the pulse laser surface treatment method by the 1st Embodiment of this invention. 本発明の第1の実施の形態によるパルスレーザ表面処理方法における衝撃波の圧力、被処理部材の降伏応力、塑性変形が及ぶ範囲の関係を示す説明図。Explanatory drawing which shows the relationship between the range of the pressure of the shock wave, the yield stress of a to-be-processed member, and plastic deformation in the pulse laser surface treatment method by the 1st Embodiment of this invention. 本発明の第1の実施の形態によるパルスレーザ表面処理方法における部材の降伏応力が一定でない場合の塑性変形範囲を示す説明図。Explanatory drawing which shows the plastic deformation range in case the yield stress of the member in the pulse laser surface treatment method by the 1st Embodiment of this invention is not constant. 本発明の他の実施の形態におけるSUS304に水中でパルスレーザを照射したときの残留応力の変化を示す説明図。Explanatory drawing which shows the change of a residual stress when SUS304 in other embodiment of this invention is irradiated with a pulse laser in water. 本発明の他の実施の形態におけるSUS304に水中でパルスレーザを照射したときの硬さの変化を示す説明図。Explanatory drawing which shows the change of hardness when SUS304 in other embodiment of this invention is irradiated with a pulse laser in water. 本発明の他の実施の形態におけるSKD61軟窒化処理材に水中でパルスレーザを照射したときの硬さの変化を示す説明図。Explanatory drawing which shows the change of the hardness when the SKD61 nitrocarburizing material in other embodiment of this invention is irradiated with a pulse laser in water. 本発明の他の実施の形態におけるSNCM420Hショットピーニング材に水中でパルスレーザを照射したときの残留応力変化を示す説明図。Explanatory drawing which shows the residual stress change when the pulse laser is irradiated to the SNCM420H shot peening material in other embodiment of this invention in water. 本発明の他の実施の形態におけるSKH51のTiNコーティング材に水中でパルスレーザを照射したときの残留応力変化を示す説明図。Explanatory drawing which shows the residual stress change when the TiN coating material of SKH51 in other embodiment of this invention is irradiated with a pulse laser in water.

符号の説明Explanation of symbols

1…部材、2…液体、3…パルスレーザ、4…光学集光装置、5…プラズマ、6…衝撃波、7…レーザ照射前の残留応力分布(SUS304)、8…レーザ照射前の硬さ分布(SUS304)、9…レーザ照射後の残留応力分布(SUS304)、10…レーザ照射後の硬さ分布(SUS304)、11…レーザ照射前の硬さ分布(SKD61)、12…レーザ照射後の硬さ分布(SKD61)、13…レーザ照射前の残留応力分布(SNCM420H)、14…レーザ照射後の残留応力分布(SNCM420H、条件(1))、15…レーザ照射後の残留応力分布(SNCM420H、条件(2))、16…レーザ照射前の残留応力(TiN)、17…レーザ照射後の残留応力(TiN、条件(1))、18…レーザ照射後の残留応力(TiN、条件(2))、19…レーザ照射前の残留応力分布(SKH51)、20…レーザ照射後の残留応力分布(SKH51、条件(1))、21…レーザ照射後の残留応力分布(SKH51、条件(2))。

DESCRIPTION OF SYMBOLS 1 ... Member, 2 ... Liquid, 3 ... Pulse laser, 4 ... Optical condensing device, 5 ... Plasma, 6 ... Shock wave, 7 ... Residual stress distribution (SUS304) before laser irradiation, 8 ... Hardness distribution before laser irradiation (SUS304), 9 ... Residual stress distribution after laser irradiation (SUS304), 10 ... Hardness distribution after laser irradiation (SUS304), 11 ... Hardness distribution before laser irradiation (SKD61), 12 ... Hardness after laser irradiation Distribution of thickness (SKD61), 13 ... Residual stress distribution before laser irradiation (SNCM420H), 14 ... Residual stress distribution after laser irradiation (SNCM420H, condition (1)), 15 ... Residual stress distribution after laser irradiation (SNCM420H, condition) (2)), 16 ... residual stress before laser irradiation (TiN), 17 ... residual stress after laser irradiation (TiN, condition (1)), 18 ... residual stress after laser irradiation (TiN, condition (2)) 19 ... Residual stress distribution before laser irradiation (SKH51), 20 ... Residual stress after laser irradiation Cloth (SKH51, condition (1)), 21 ... residual stress distribution after laser irradiation (SKH51, condition (2)).

Claims (2)

液体雰囲気中に配置された被表面処理部材に対してパルスレーザを照射して材料特性を調整するパルスレーザ表面処理方法であって、
金属部材の表面にコーティング法によってチタンを含有しかつ前記金属部材よりも硬度が高い硬質膜を成膜することで被表面処理部材を構成し、
この被表面処理部材を、パルスレーザに対して透明な性質を有する液体雰囲気中に配置し、
この被表面処理部材に照射するパルスレーザの出力を、パルスレーザ照射によって発生させる衝撃波の圧力が前記硬質膜の降伏応力よりも小さくかつ前記金属部材の降伏応力よりも大きくるように制御したうえで、パルスレーザを照射することを特徴とするパルスレーザ表面処理方法。
A pulse laser surface treatment method for adjusting a material property by irradiating a surface treatment member disposed in a liquid atmosphere with a pulse laser,
A surface-treated member is formed by forming a hard film containing titanium by a coating method on the surface of the metal member and having a hardness higher than that of the metal member,
This surface-treated member is disposed in a liquid atmosphere having a property transparent to the pulse laser,
The output of the pulse laser is irradiated to the object to be surface treated member, the pressure of the shock wave to be generated is controlled in so that Do greater than the yield stress of the small and the metal member than the yield stress of the hard film by elevation Parusure The irradiation after, the pulse laser surface treatment method, which comprises irradiating a pulsed laser.
前記液体雰囲気が、水、油、アルコール、アンモニア水、ホウ酸水の少なくともいずれか一つにより形成されていることを特徴とする請求項1に記載のパルスレーザ表面処理方法。   The pulse laser surface treatment method according to claim 1, wherein the liquid atmosphere is formed of at least one of water, oil, alcohol, ammonia water, and boric acid water.
JP2004092319A 2004-03-26 2004-03-26 Pulse laser surface treatment method Expired - Fee Related JP4087349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092319A JP4087349B2 (en) 2004-03-26 2004-03-26 Pulse laser surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092319A JP4087349B2 (en) 2004-03-26 2004-03-26 Pulse laser surface treatment method

Publications (2)

Publication Number Publication Date
JP2005272989A JP2005272989A (en) 2005-10-06
JP4087349B2 true JP4087349B2 (en) 2008-05-21

Family

ID=35172967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092319A Expired - Fee Related JP4087349B2 (en) 2004-03-26 2004-03-26 Pulse laser surface treatment method

Country Status (1)

Country Link
JP (1) JP4087349B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118324B2 (en) * 2006-10-02 2013-01-16 富士重工業株式会社 Laser peening equipment
JP5172191B2 (en) * 2007-03-29 2013-03-27 株式会社東芝 Laser shock hardening processing method and laser shock hardening processing apparatus
JP5439750B2 (en) * 2008-06-09 2014-03-12 株式会社豊田中央研究所 Method for manufacturing covering member and covering member
JP5559768B2 (en) * 2011-12-26 2014-07-23 富士重工業株式会社 Laser peening equipment
NL2018981B1 (en) * 2017-05-26 2018-12-07 Univ Johannesburg Witwatersrand Method and system for improving the surface fracture toughness of brittle materials, and a cutting tool produced by such method
CN109317555A (en) * 2018-08-23 2019-02-12 江苏大学 It is a kind of to utilize the molding apparatus and method of induced with laser compound punching
CN109048033B (en) * 2018-08-24 2020-12-18 江苏大学 Device and method for underwater impact welding of metal and ceramic under laser loading
CN109048034B (en) * 2018-08-24 2020-11-20 江苏大学 Device and method for laser shock welding of metal foil plate with automatic middle layer spraying function
US20220298644A1 (en) 2019-08-30 2022-09-22 Ab Sandvik Coromant Method of treating a coated cutting tool
JP6973672B2 (en) * 2020-02-05 2021-12-01 三菱マテリアル株式会社 How to manufacture cutting tools
CN115052700A (en) * 2020-02-05 2022-09-13 三菱综合材料株式会社 Method for manufacturing cutting tool

Also Published As

Publication number Publication date
JP2005272989A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
Peyre et al. Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour
JP4087349B2 (en) Pulse laser surface treatment method
Maawad et al. Investigation on the surface and near-surface characteristics of Ti–2.5 Cu after various mechanical surface treatments
Peyre et al. Current trends in laser shock processing
Neves et al. Efficiency of the laser texturing on the adhesion of the coated twist drills
Courbon et al. Near surface transformations of stainless steel cold spray and laser cladding deposits after turning and ball-burnishing
JP6084996B2 (en) Strengthening adhesion of low temperature ceramic coating
Zlatanović Deposition of (Ti, Al) N coatings on plasma nitrided steel
Parkansky et al. Development and application of pulsed-air-arc deposition
CN112647083A (en) Alloy steel surface composite strengthening process
CN115176039A (en) Method for producing a nitrided steel component
Scherpereel et al. Modifications of mechanical and electrochemical properties of stainless steel surfaces by laser shock processing
Peyre et al. Laser shock processing of materials: characterization and application of the process
Kertscher et al. First results of cavitation erosion behavior of plasma nitrided niobium: surface modification
Peyre et al. New trends in laser shock wave physics and applications
WO2018038151A1 (en) Multilayer structure and machine component having multilayer structure
JP2011147946A (en) Warm/hot forging die and method of manufacturing the same
Valentino et al. An Approach to Predict the Residual Stress-Depth-Profile of Thin Sheet Metal Processed by Laser Shock Peening Without Coating
JP2021122935A (en) Manufacturing method of cutting tool
RU2779075C1 (en) Method for hardening the surface of a part made of structural steels
Ahmed Obeidi Laser processing of metallic surfaces for controlled micro-texturing and metallic bonding
Valentino et al. Reducing scatter in bent angle by a laser shock peening pretreatment
Sahil et al. Surface Modification Techniques to Enhance Tool Life in Hot Forging: A Review
Weigel et al. Investigations of Electron Beam Hardening on TiAlN Coated Heat-Â „Treatable Steel
Bel et al. Energy beams in second generation surface engineering of aluminium and titanium alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees