[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4086575B2 - Heat transfer device and operation method thereof - Google Patents

Heat transfer device and operation method thereof Download PDF

Info

Publication number
JP4086575B2
JP4086575B2 JP2002218029A JP2002218029A JP4086575B2 JP 4086575 B2 JP4086575 B2 JP 4086575B2 JP 2002218029 A JP2002218029 A JP 2002218029A JP 2002218029 A JP2002218029 A JP 2002218029A JP 4086575 B2 JP4086575 B2 JP 4086575B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
control valve
heat transfer
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002218029A
Other languages
Japanese (ja)
Other versions
JP2004060956A (en
Inventor
公二 永江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002218029A priority Critical patent/JP4086575B2/en
Publication of JP2004060956A publication Critical patent/JP2004060956A/en
Application granted granted Critical
Publication of JP4086575B2 publication Critical patent/JP4086575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒自然循環式の熱移動装置及び運転方法に関する。
【0002】
【従来の技術】
一般に、冷媒をサイクル内で気液相変化させることにより自然循環させるヒートパイプ方式を用いた熱移動装置が知られている。この種のものは、例えば1台の凝縮器を備えると共に、この凝縮器よりも低位置に1台の蒸発器を備え、これらの間が液相冷媒の流下する冷媒液管と気相冷媒の上昇する冷媒ガス管とにより連結されて自然循環サイクルが形成される。この自然循環サイクル内には冷媒が封入されている。上記蒸発器は室内機に収納され、この室内機は室内を冷房する。上記構成では、近年、凝縮器と、複数の蒸発器とを備え、これら蒸発器を別々に複数の室内機に設置したものが提案されている。
【0003】
【発明が解決しようとする課題】
しかし、複数の室内機に別々に蒸発器を設置した場合、運転を停止した蒸発器に冷媒が寝込んで、運転中の蒸発器にいわゆるガス欠が発生するという問題がある。また、冷媒液管側の冷媒量が不足すると、各蒸発器に冷媒をほぼ均等に分流させることができなくなるという問題がある。
【0004】
そこで、本発明の目的は、上述した従来技術が有する課題を解消し、運転中の蒸発器にガス欠が発生することがなく、各蒸発器に冷媒をほぼ均等に分流させることができる熱移動装置及び運転方法を提供することにある。
【0005】
【課題を解決するための手段】
請求項1記載の発明は、凝縮器と複数の蒸発器とを備え、これらの間を冷媒液管及び冷媒ガス管で接続して自然循環サイクルを形成し、この自然循環サイクル内に冷媒を封入した熱移動装置において、複数の蒸発器の上流に夫々制御弁を備え、運転開始時に各制御弁を制御する制御手段を備え、前記制御手段は、運転開始する蒸発器の制御弁を全閉し、送風機を駆動することを特徴とする。
【0007】
請求項記載の発明は、請求項記載のものにおいて、前記制御手段は、運転開始する蒸発器の制御弁を全閉し、送風機を駆動し、吸込み空気温度と、冷媒入口温度と、冷媒出口温度とを用いた比較温度差が所定温度以内に達した場合、当該制御弁を徐々に開放することを特徴とする。
【0008】
請求項記載の発明は、請求項1または2記載のものにおいて、前記制御手段は、運転停止中の蒸発器が存在した場合、いずれかの蒸発器が運転開始した後、所定時間の間、運転停止中の蒸発器の制御弁を全閉して、運転停止中の送風機を駆動することを特徴とする。
【0009】
請求項記載の発明は、請求項1乃至のいずれか一項記載のものにおいて、建屋の天井、或いは床部分に設置され、建屋の空調を行うことを特徴とする。
【0010】
請求項記載の発明は、凝縮器と複数の蒸発器とを備え、これらの間を冷媒液管及び冷媒ガス管で接続して自然循環サイクルを形成し、この自然循環サイクル内に冷媒を封入した熱移動装置の運転方法において、複数の蒸発器の上流に夫々制御弁を備え、運転開始時に各制御弁を制御するとともに、運転開始する蒸発器の制御弁を全閉し、送風機を駆動することを特徴とする。
【0012】
請求項記載の発明は、請求項記載のものにおいて、運転開始する蒸発器の制御弁を全閉し、送風機を駆動し、吸込み空気温度と、冷媒入口温度と、冷媒出口温度とを用いた比較温度差が所定温度以内に達した場合、当該制御弁を徐々に開放することを特徴とする。
【0013】
請求項記載の発明は、請求項5または6記載のものにおいて、運転停止中の蒸発器が存在した場合、いずれかの蒸発器が運転開始した後、所定時間の間、運転停止中の蒸発器の制御弁を全閉して、運転停止中の送風機を駆動することを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の一実施の形態を図面に基づいて説明する。
【0015】
図1において、1は熱移動装置を示している。この熱移動装置1は、水を冷却する冷凍機3と、凝縮器として機能する冷媒対水熱交換器5と、複数の室内機7とを有して構成される。この室内機7には蒸発器9、冷媒調整弁(制御弁)11及び室内へ送風する送風機13が収納されている。冷媒対水熱交換器5は、例えばビルの屋上などの高所に設置される。室内機7は、蒸発器9の吸込口が略同一の高さになるように、冷媒対水熱交換器5よりも低所であるビル室内の天井板8の天井裏10に設置される。この天井板8には各室内機7に対応した吐出口12を有してなる。冷凍機3は例えば吸収式の冷凍機であり、この冷凍機3と冷媒対水熱交換器5とは水配管15によってループ状に接続される。
【0016】
この冷媒対水熱交換器5には冷媒液管17及び冷媒ガス管19によって室内機7が接続され、自然循環サイクルが形成されている。そして、この自然循環サイクルの内部には、冷媒が封入されている。
【0017】
上記冷媒液管17は、冷媒液本管17Aと、この冷媒液本管17Aに接続される複数の冷媒液支管17Bとで構成される。また、上記冷媒ガス管19は、冷媒ガス本管19Aと、この冷媒ガス本管19Aに接続される複数の冷媒ガス管19Bとで構成される。冷媒液本管17A及び冷媒ガス本管19Aは冷媒対水熱交換器5に接続され、各冷媒液支管17B及び各冷媒ガス支管19Bは、各室内機7の蒸発器9に接続される。これら接続関係によって蒸発器9は互いに並列となる。冷媒調整弁11は冷媒液支管17Bに接続される。また、冷媒を強制循環させるブースタポンプ21が冷媒液本管17Aに接続される。
【0018】
ここで、冷媒液本管17Aと冷媒液支管17Bとの冷媒液管接続点R、および冷媒ガス本管19Aと冷媒ガス管19Bとの冷媒ガス管接続点Sは蒸発器18よりも高所に位置する。なお、少なくとも冷媒ガス管接続点Sが、蒸発器18よりも高所に位置すればよい。
【0019】
次に、熱移動装置1の動作を説明する。
【0020】
冷凍機3が運転することにより、冷媒対水熱交換器5には例えば5℃の冷水が与えられる。すると冷媒対水熱交換器5では冷媒が凝縮し、比重の大きい液冷媒となって、冷媒液管17の冷媒液本管17Aを流れる。この冷媒液本管17Aの各冷媒液管接続点Rに至った液冷媒は、自重により高所から低所に各冷媒液支管17Bを流れて各室内機7に流れる。
【0021】
室内機7の冷媒調整弁11で冷媒量を適正に調整された液冷媒は、蒸発器9に流入し、この蒸発器9では液冷媒が例えば蒸発温度12℃で蒸発する。この過程では、液冷媒は比重の極めて小さなガス冷媒となり、このガス冷媒は自重の軽さゆえに、低所から高所に各冷媒ガス支管19Bを流れ、各冷媒ガス管接続点Sを通過して冷媒ガス本管19Aに流れて冷媒対水熱交換器5に戻される。すなわちこのシステムでは、冷媒が自然循環サイクル内で気液相変化することにより、自然循環することになる。
【0022】
室内の空気は、天井板8に設けられた通風口23を通過し、各室内機7に吸い込まれ、蒸発器9により冷却されて、送風機13により吐出口12から室内に送風され、室内が冷房される。
【0023】
このような自然循環システムでは、液冷媒とガス冷媒との比重の差に従ってサイクル内における冷媒を自然循環させる。従って、本来であれば循環用ポンプなどは不要である。しかし、この自然循環システムを施工するに当たり、冷媒対水熱交換器5と蒸発器9との間に落差をとりにくい場合に、一例として、ブースタポンプ21が用いられる。
【0024】
本実施形態では、上述したように複数の蒸発器9の上流に夫々冷媒調整弁(制御弁)11が設けられ、システムの運転開始時に、各冷媒調整弁11を制御するコントローラ(制御手段)31が設けられる。
【0025】
図2は、コントローラ31による制御フローを示す。
【0026】
この制御フローは、一つの蒸発器9に着目したフローである。システムの運転開始に際し、まず、運転開始する蒸発器9の冷媒調整弁11を全閉にし、対応した送風機13を駆動する(S1)。ここでの処理は、蒸発器9に寝込んだ液冷媒を気化し、この蒸発器9から冷媒ガス支管19B側にガス冷媒を追い出す処理である。この処理が一定時間継続して行われたか否かが判定され(S2)、一定時間経過した場合、S3に移行する。
【0027】
このS3では、運転開始する蒸発器9に寝込んだ冷媒が、冷媒ガス支管19B側に追い出されたか否かが判定される。
【0028】
冷媒調整弁11を全閉にして、冷媒を流さずに、送風機13を駆動した場合、蒸発器9に寝込んだ冷媒は、送風機13の放熱作用によりガス化して、冷媒ガス支管19B側に完全に追い出される。この場合、最終的には、吸込み空気温度Taと、冷媒入口温度E1と、冷媒出口温度E3とがすべて等しくなる。吸込み空気温度TaはセンサT1で検出され、冷媒入口温度E1はセンサT3で検出され、冷媒出口温度E3はセンサT4で検出される。
【0029】
このS3では、S1、S2の過程で、吸込み空気温度Ta、冷媒入口温度E1、冷媒出口温度E3を常時検出し、この検出された吸込み空気温度Ta、冷媒入口温度E1、冷媒出口温度E3の内のいずれかの最大値Max(Ta、E1、E3)と、いずれかの最小値Min(Ta、E1、E3)とを比較し、その温度差が、一定値α以内となった場合、すなわち、吸込み空気温度Taと、冷媒入口温度E1と、冷媒出口温度E3とを用いた比較温度差が所定温度α以内に達して、つぎの(1)式が成立した場合、

Figure 0004086575
蒸発器9に寝込んだ冷媒が追い出されたと推定し(S3)、冷媒調整弁11を徐々に開放する(S5)。(1)式が成立しない場合、冷媒調整弁11は全閉に維持される(S4)。冷媒調整弁11が開放されると(S5)、この冷媒調整弁11の弁開度は、E3−E1≧3℃を保つように制御される(S6)。
【0030】
この冷媒調整弁11は、吹出し空気温度Tbと、予め設定された吹出し目標空気温度との温度差によって開閉される。具体的には、吹出し空気温度Tbが予め設定された吹出し目標空気温度を下回った後、一定時間が経過したか否かが判定され(S7)、一定時間が経過した場合、冷媒調整弁11が全閉にされる(S8)。吹出し空気温度TbはセンサT2によって検出される。
【0031】
冷媒調整弁11が全閉にされた後(S8)、蒸発器9を再起動させる場合には、図2の各ステップが繰り返される。
【0032】
いずれかの蒸発器9の運転が開始される場合、運転を停止中の蒸発器9が存在すれば、この停止中の蒸発器9に対しても冷媒追い出し制御が実行される。この場合、冷媒調整弁11を全閉にした状態で、対応した送風機13を一定時間の間、駆動することにより行われる。
【0033】
本実施形態では、いずれかの蒸発器9の運転が開始される場合、停止中の蒸発器9を含めて、すべての蒸発器9内に滞留する冷媒が冷媒ガス本管19A内に追い出されるため、いわゆるガス欠状態が解消される。
【0034】
また、冷媒液管の冷媒量が充足し、各蒸発器9に冷媒をほぼ均等に分流させることができる等の効果が得られる。
【0035】
上記の構成によれば、大型の冷媒対水熱交換器5が必要な場合であっても、この1台の冷媒対水熱交換器5に対して複数の室内機7を備えたことから、室内機7を小型化でき、狭い天井裏10にも設置可能となる。さらに、室内機7が小型化されたことで、エレベータでの搬入が可能となり、ビルの室内への室内機7の搬入が容易になる。
【0036】
また、夫々の室内機7は、室内機7内の蒸発器9の吸込口が略同一の高さになるように設置されたことから、夫々の室内機7に流れ込む液冷媒の量が略均等になり、いずれの室内機7においても熱交換(冷房)能力が均等になるので、室内を均等に冷房できる。
【0037】
以上、一実施形態に基づいて本発明を説明したが、本発明はこれに限定されるものではない。
【0038】
上記実施形態において、夫々の室内機7は、天井裏10に略同一の高さに設置された場合を説明したが、図示しないが例えば図1において、左側の室内機7が同一室内の熱負荷の大きい側に設置される室内機であり、他の室内機7が熱負荷の小さい側に設置される室内機であって、熱負荷の大きい側に設置される室内機は、熱負荷の小さい側に設置される室内機よりも低い位置で且つ凝縮器として機能する冷媒対水熱交換器5寄りに据え付けるようにすれば、熱負荷の大きい側の室内機に多量の液冷媒が流れ、冷房能力が上昇するため、理想的な冷房状態を得ることができる。
【0039】
上記実施形態では、室内機7を、建屋の天井裏10に設置しているが、これに限定されず、例えば、「フリーアクセスフロア」タイプの建屋にあっては、床下の空間内に室内機7を設置し、この室内機7の吹出口を、床面に形成された吹出口に接続し、この床面の吹出口を通じて、調温空気を被調和室内に吹き出すように構成してもよい。
【0040】
【発明の効果】
本発明では、蒸発器の運転が開始される場合、蒸発器内に滞留する冷媒が冷媒ガス管内に追い出されるため、いわゆるガス欠状態が解消されると共に、冷媒液管の冷媒量が充足するため、各蒸発器に冷媒をほぼ均等に分流させることができる、等の効果が得られる。
【図面の簡単な説明】
【図1】本発明に係る熱移動装置の一実施の形態を示す回路図である。
【図2】本発明に係る熱移動装置の一実施の形態を示す制御フロー図である。
【符号の説明】
1 熱移動装置
5 冷媒対水熱交換器(凝縮器)
7 室内機
9 蒸発器
11 冷媒調整弁(制御弁)
17 冷媒液管
19 冷媒ガス管
31 コントローラ(制御手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant natural circulation heat transfer device and an operation method.
[0002]
[Prior art]
In general, a heat transfer device using a heat pipe system in which a refrigerant is naturally circulated by changing a gas-liquid phase in a cycle is known. This type includes, for example, one condenser and one evaporator at a lower position than the condenser, and the refrigerant liquid pipe and the gas-phase refrigerant flow between them. A natural circulation cycle is formed by connecting with the rising refrigerant gas pipe. A refrigerant is enclosed in the natural circulation cycle. The evaporator is housed in an indoor unit, which cools the room. In the above configuration, in recent years, it has been proposed that a condenser and a plurality of evaporators are provided and these evaporators are separately installed in a plurality of indoor units.
[0003]
[Problems to be solved by the invention]
However, when the evaporators are separately installed in the plurality of indoor units, there is a problem that the refrigerant stagnates in the evaporator that has stopped operating, and a so-called gas shortage occurs in the operating evaporator. In addition, if the amount of refrigerant on the refrigerant liquid pipe side is insufficient, there is a problem that the refrigerant cannot be divided almost uniformly into each evaporator.
[0004]
Accordingly, an object of the present invention is to solve the problems of the prior art described above, heat transfer that does not cause out of gas in the operating evaporator, and allows the refrigerant to be divided almost evenly into each evaporator. It is to provide an apparatus and an operation method.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 includes a condenser and a plurality of evaporators, and a natural liquid circulation cycle is formed by connecting a refrigerant liquid pipe and a refrigerant gas pipe therebetween, and the refrigerant is enclosed in the natural circulation cycle. The heat transfer device is provided with a control valve upstream of the plurality of evaporators, and has a control means for controlling each control valve at the start of operation. The control means fully closes the control valve of the evaporator to start operation. The fan is driven .
[0007]
According to a second aspect of the present invention, in the first aspect of the present invention, the control means fully closes the control valve of the evaporator to start operation, drives the blower, sucks the air temperature, the refrigerant inlet temperature, and the refrigerant When the comparison temperature difference using the outlet temperature reaches within a predetermined temperature, the control valve is gradually opened.
[0008]
According to a third aspect of the present invention, in the apparatus according to the first or second aspect , when there is an evaporator whose operation is stopped, the control means is configured to perform a predetermined time after any of the evaporators starts operating. The control valve of the evaporator during operation stop is fully closed to drive the blower during operation stop.
[0009]
According to a fourth aspect of the present invention, in the apparatus according to any one of the first to third aspects, the air conditioning of the building is performed by being installed on a ceiling or a floor portion of the building.
[0010]
The invention according to claim 5 includes a condenser and a plurality of evaporators, and a natural circulation cycle is formed by connecting a refrigerant liquid pipe and a refrigerant gas pipe therebetween, and the refrigerant is enclosed in the natural circulation cycle. In the operation method of the heat transfer apparatus, a control valve is provided upstream of the plurality of evaporators , each control valve is controlled at the start of operation, the control valve of the evaporator to be started is fully closed, and the blower is driven. It is characterized by that.
[0012]
The invention according to claim 6 is the apparatus according to claim 5 , wherein the control valve of the evaporator to be started is fully closed, the blower is driven, and the intake air temperature, the refrigerant inlet temperature, and the refrigerant outlet temperature are used. The control valve is gradually opened when the comparison temperature difference reaches within a predetermined temperature.
[0013]
The invention according to claim 7 is the invention according to claim 5 or 6 , wherein when there is an evaporator whose operation is stopped, the evaporation during operation is stopped for a predetermined time after any evaporator starts operation. The control valve of the fan is fully closed to drive the blower that is stopped.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0015]
In FIG. 1, reference numeral 1 denotes a heat transfer device. The heat transfer device 1 includes a refrigerator 3 that cools water, a refrigerant-to-water heat exchanger 5 that functions as a condenser, and a plurality of indoor units 7. The indoor unit 7 houses an evaporator 9, a refrigerant adjustment valve (control valve) 11, and a blower 13 for blowing air into the room. The refrigerant | coolant versus water heat exchanger 5 is installed in high places, such as the rooftop of a building, for example. The indoor unit 7 is installed on the ceiling 10 of the ceiling board 8 in the building room, which is lower than the refrigerant-to-water heat exchanger 5, so that the suction ports of the evaporator 9 have substantially the same height. The ceiling plate 8 has a discharge port 12 corresponding to each indoor unit 7. The refrigerator 3 is, for example, an absorption refrigerator, and the refrigerator 3 and the refrigerant-to-water heat exchanger 5 are connected in a loop by a water pipe 15.
[0016]
The indoor unit 7 is connected to the refrigerant-to-water heat exchanger 5 through a refrigerant liquid pipe 17 and a refrigerant gas pipe 19 to form a natural circulation cycle. And the refrigerant | coolant is enclosed inside this natural circulation cycle.
[0017]
The refrigerant liquid pipe 17 includes a refrigerant liquid main pipe 17A and a plurality of refrigerant liquid branch pipes 17B connected to the refrigerant liquid main pipe 17A. The refrigerant gas pipe 19 includes a refrigerant gas main pipe 19A and a plurality of refrigerant gas pipes 19B connected to the refrigerant gas main pipe 19A. The refrigerant liquid main pipe 17A and the refrigerant gas main pipe 19A are connected to the refrigerant-to-water heat exchanger 5, and each refrigerant liquid branch pipe 17B and each refrigerant gas branch pipe 19B are connected to the evaporator 9 of each indoor unit 7. Due to these connection relationships, the evaporators 9 are parallel to each other. The refrigerant adjustment valve 11 is connected to the refrigerant liquid branch pipe 17B. Further, a booster pump 21 for forcibly circulating the refrigerant is connected to the refrigerant liquid main pipe 17A.
[0018]
Here, the refrigerant liquid pipe connection point R between the refrigerant liquid main pipe 17A and the refrigerant liquid branch pipe 17B and the refrigerant gas pipe connection point S between the refrigerant gas main pipe 19A and the refrigerant gas pipe 19B are located higher than the evaporator 18. To position. It is sufficient that at least the refrigerant gas pipe connection point S is located higher than the evaporator 18.
[0019]
Next, the operation of the heat transfer apparatus 1 will be described.
[0020]
When the refrigerator 3 is operated, cold water at 5 ° C., for example, is given to the refrigerant-to-water heat exchanger 5. Then, the refrigerant condenses in the refrigerant-to-water heat exchanger 5, becomes a liquid refrigerant having a large specific gravity, and flows through the refrigerant liquid main pipe 17 </ b> A of the refrigerant liquid pipe 17. The liquid refrigerant reaching the refrigerant liquid pipe connection point R of the refrigerant liquid main pipe 17A flows through the refrigerant liquid branch pipes 17B from the high place to the low place by its own weight, and then flows into the indoor units 7.
[0021]
The liquid refrigerant whose refrigerant amount is appropriately adjusted by the refrigerant adjustment valve 11 of the indoor unit 7 flows into the evaporator 9, where the liquid refrigerant evaporates at an evaporation temperature of 12 ° C., for example. In this process, the liquid refrigerant becomes a gas refrigerant having an extremely small specific gravity. Because of the light weight of the gas refrigerant, the refrigerant flows through each refrigerant gas branch pipe 19B from the low place to the high place and passes through each refrigerant gas pipe connection point S. It flows into the refrigerant gas main pipe 19 </ b> A and is returned to the refrigerant-to-water heat exchanger 5. That is, in this system, the refrigerant is naturally circulated by changing the gas-liquid phase within the natural circulation cycle.
[0022]
The indoor air passes through the ventilation openings 23 provided in the ceiling plate 8, is sucked into each indoor unit 7, is cooled by the evaporator 9, and is blown into the room from the discharge port 12 by the blower 13. Is done.
[0023]
In such a natural circulation system, the refrigerant in the cycle is naturally circulated according to the difference in specific gravity between the liquid refrigerant and the gas refrigerant. Therefore, a circulation pump or the like is unnecessary in the original case. However, when constructing this natural circulation system, a booster pump 21 is used as an example when it is difficult to make a drop between the refrigerant-to-water heat exchanger 5 and the evaporator 9.
[0024]
In the present embodiment, as described above, the refrigerant adjustment valves (control valves) 11 are provided upstream of the plurality of evaporators 9, respectively, and a controller (control means) 31 that controls each refrigerant adjustment valve 11 at the start of system operation. Is provided.
[0025]
FIG. 2 shows a control flow by the controller 31.
[0026]
This control flow is a flow focusing on one evaporator 9. When starting the operation of the system, first, the refrigerant adjustment valve 11 of the evaporator 9 to be started is fully closed, and the corresponding blower 13 is driven (S1). The process here is a process in which the liquid refrigerant that has fallen into the evaporator 9 is vaporized and the gas refrigerant is expelled from the evaporator 9 to the refrigerant gas branch 19B side. It is determined whether or not this process has been performed for a certain period of time (S2).
[0027]
In S <b> 3, it is determined whether or not the refrigerant stagnated in the evaporator 9 that starts operation has been driven out to the refrigerant gas branch 19 </ b> B side.
[0028]
When the refrigerant adjusting valve 11 is fully closed and the blower 13 is driven without flowing the refrigerant, the refrigerant that has fallen into the evaporator 9 is gasified by the heat radiation action of the blower 13 and is completely transferred to the refrigerant gas branch 19B side. Get kicked out. In this case, finally, the intake air temperature Ta, the refrigerant inlet temperature E1, and the refrigerant outlet temperature E3 all become equal. The intake air temperature Ta is detected by the sensor T1, the refrigerant inlet temperature E1 is detected by the sensor T3, and the refrigerant outlet temperature E3 is detected by the sensor T4.
[0029]
In S3, the intake air temperature Ta, the refrigerant inlet temperature E1, and the refrigerant outlet temperature E3 are always detected in the processes of S1 and S2, and the detected intake air temperature Ta, refrigerant inlet temperature E1, and refrigerant outlet temperature E3 are detected. When the maximum value Max (Ta, E1, E3) is compared with any minimum value Min (Ta, E1, E3), and the temperature difference is within a certain value α, When the comparison temperature difference using the intake air temperature Ta, the refrigerant inlet temperature E1, and the refrigerant outlet temperature E3 reaches within a predetermined temperature α, and the following equation (1) is satisfied:
Figure 0004086575
It is estimated that the refrigerant that has fallen into the evaporator 9 has been expelled (S3), and the refrigerant adjustment valve 11 is gradually opened (S5). If the expression (1) is not satisfied, the refrigerant adjustment valve 11 is kept fully closed (S4). When the refrigerant adjustment valve 11 is opened (S5), the opening degree of the refrigerant adjustment valve 11 is controlled so as to maintain E3-E1 ≧ 3 ° C. (S6).
[0030]
The refrigerant regulating valve 11 is opened and closed by a temperature difference between the blown air temperature Tb and a preset blow target air temperature. Specifically, after the blown air temperature Tb falls below the preset blow target air temperature, it is determined whether or not a certain time has passed (S7). Fully closed (S8). The blown air temperature Tb is detected by the sensor T2.
[0031]
After the refrigerant regulating valve 11 is fully closed (S8), when the evaporator 9 is restarted, each step of FIG. 2 is repeated.
[0032]
When the operation of any of the evaporators 9 is started, if there is an evaporator 9 whose operation is stopped, the refrigerant discharge control is also executed for the stopped evaporator 9. In this case, it is performed by driving the corresponding blower 13 for a certain period of time with the refrigerant adjustment valve 11 fully closed.
[0033]
In the present embodiment, when any of the evaporators 9 is started, the refrigerant staying in all the evaporators 9 including the stopped evaporators 9 is expelled into the refrigerant gas main pipe 19A. The so-called out-of-gas condition is eliminated.
[0034]
Further, the refrigerant amount in the refrigerant liquid pipe is satisfied, and an effect that the refrigerant can be divided into the respective evaporators 9 almost uniformly is obtained.
[0035]
According to the above configuration, even when a large refrigerant-to-water heat exchanger 5 is required, a plurality of indoor units 7 are provided for the one refrigerant-to-water heat exchanger 5, The indoor unit 7 can be reduced in size and can be installed in a narrow ceiling 10. Furthermore, since the indoor unit 7 is downsized, it can be carried in by an elevator, and the indoor unit 7 can be easily carried into the building.
[0036]
In addition, since each indoor unit 7 is installed so that the suction ports of the evaporator 9 in the indoor unit 7 have substantially the same height, the amount of liquid refrigerant flowing into each indoor unit 7 is substantially equal. Thus, since the heat exchange (cooling) capacity is equalized in any of the indoor units 7, the room can be evenly cooled.
[0037]
As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this.
[0038]
In the above embodiment, the case where each indoor unit 7 is installed at substantially the same height on the ceiling 10 has been described. However, although not illustrated, for example, in FIG. Indoor unit installed on the side with a large heat load, the other indoor unit 7 is installed on the side with a small heat load, and the indoor unit installed on the side with a large heat load has a small heat load If the refrigerant is installed at a position lower than the indoor unit installed on the side and close to the refrigerant-to-water heat exchanger 5 functioning as a condenser, a large amount of liquid refrigerant flows into the indoor unit on the side with a large heat load, Since the capacity increases, an ideal cooling state can be obtained.
[0039]
In the above embodiment, the indoor unit 7 is installed on the ceiling 10 of the building. However, the present invention is not limited to this. For example, in a “free access floor” type building, the indoor unit 7 is located in the space under the floor. 7 may be installed, and the outlet of the indoor unit 7 may be connected to the outlet formed on the floor, and the temperature-controlled air may be blown out into the conditioned room through the outlet on the floor. .
[0040]
【The invention's effect】
In the present invention, when the operation of the evaporator is started, the refrigerant staying in the evaporator is expelled into the refrigerant gas pipe, so that the so-called out-of-gas condition is eliminated and the refrigerant amount in the refrigerant liquid pipe is satisfied. Thus, it is possible to obtain an effect such that the refrigerant can be divided almost uniformly into each evaporator.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of a heat transfer device according to the present invention.
FIG. 2 is a control flow diagram showing an embodiment of a heat transfer device according to the present invention.
[Explanation of symbols]
1 Heat transfer device 5 Refrigerant to water heat exchanger (condenser)
7 Indoor unit 9 Evaporator 11 Refrigerant adjustment valve (control valve)
17 Refrigerant liquid pipe 19 Refrigerant gas pipe 31 Controller (control means)

Claims (7)

凝縮器と複数の蒸発器とを備え、これらの間を冷媒液管及び冷媒ガス管で接続して自然循環サイクルを形成し、この自然循環サイクル内に冷媒を封入した熱移動装置において、
複数の蒸発器の上流に夫々制御弁を備え、運転開始時に各制御弁を制御する制御手段を備え、前記制御手段は、運転開始する蒸発器の制御弁を全閉し、送風機を駆動することを特徴とする熱移動装置。
In a heat transfer device that includes a condenser and a plurality of evaporators, connects between them by a refrigerant liquid pipe and a refrigerant gas pipe to form a natural circulation cycle, and encloses the refrigerant in the natural circulation cycle,
A control valve is provided upstream of each of the plurality of evaporators, and control means for controlling each control valve at the start of operation is provided . The control means fully closes the control valve of the evaporator to start operation and drives the blower. A heat transfer device characterized by the above.
前記制御手段は、運転開始する蒸発器の制御弁を全閉し、送風機を駆動し、吸込み空気温度と、冷媒入口温度と、冷媒出口温度とを用いた比較温度差が所定温度以内に達した場合、当該制御弁を徐々に開放することを特徴とする請求項1記載の熱移動装置。The control means fully closes the control valve of the evaporator to start operation, drives the blower, and the comparison temperature difference using the intake air temperature, the refrigerant inlet temperature, and the refrigerant outlet temperature has reached within a predetermined temperature. The heat transfer device according to claim 1 , wherein the control valve is gradually opened . 前記制御手段は、運転停止中の蒸発器が存在した場合、いずれかの蒸発器が運転開始した後、所定時間の間、運転停止中の蒸発器の制御弁を全閉して、運転停止中の送風機を駆動することを特徴とする請求項1または2記載の熱移動装置。When there is an evaporator whose operation is stopped, the control means fully closes the control valve of the evaporator whose operation has been stopped for a predetermined time after any of the evaporators has started operation. The heat transfer device according to claim 1 or 2 , wherein the blower is driven . 建屋の天井、或いは床部分に設置され、建屋の空調を行うことを特徴とする請求項1乃至3のいずれか一項記載の熱移動装置。The heat transfer device according to any one of claims 1 to 3, wherein the heat transfer device is installed on a ceiling or a floor portion of the building and performs air conditioning of the building . 凝縮器と複数の蒸発器とを備え、これらの間を冷媒液管及び冷媒ガス管で接続して自然循環サイクルを形成し、この自然循環サイクル内に冷媒を封入した熱移動装置の運転方法において、
複数の蒸発器の上流に夫々制御弁を備え、運転開始時に各制御弁を制御するとともに、運転開始する蒸発器の制御弁を全閉し、送風機を駆動することを特徴とする熱移動装置の運転方法。
In a method of operating a heat transfer apparatus comprising a condenser and a plurality of evaporators, connecting a refrigerant liquid pipe and a refrigerant gas pipe between them to form a natural circulation cycle, and enclosing the refrigerant in the natural circulation cycle ,
A heat transfer device comprising a control valve upstream of each of the plurality of evaporators, controlling each control valve at the start of operation, fully closing the control valve of the evaporator to start operation, and driving a blower how to drive.
運転開始する蒸発器の制御弁を全閉し、送風機を駆動し、吸込み空気温度と、冷媒入口温度と、冷媒出口温度とを用いた比較温度差が所定温度以内に達した場合、当該制御弁を徐々に開放することを特徴とする請求項5記載の運転方法。 When the control valve of the evaporator to be started is fully closed, the blower is driven, and the comparison temperature difference using the intake air temperature, the refrigerant inlet temperature, and the refrigerant outlet temperature reaches within a predetermined temperature, the control valve 6. The operation method according to claim 5 , wherein the is gradually opened . 運転停止中の蒸発器が存在した場合、いずれかの蒸発器が運転開始した後、所定時間の間、運転停止中の蒸発器の制御弁を全閉して、運転停止中の送風機を駆動することを特徴とする請求項5または6記載の運転方法。When there is a stopped evaporator, after any of the evaporators starts operation, the control valve of the stopped evaporator is fully closed for a predetermined time, and the stopped blower is driven. The operation method according to claim 5 or 6, wherein
JP2002218029A 2002-07-26 2002-07-26 Heat transfer device and operation method thereof Expired - Fee Related JP4086575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218029A JP4086575B2 (en) 2002-07-26 2002-07-26 Heat transfer device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218029A JP4086575B2 (en) 2002-07-26 2002-07-26 Heat transfer device and operation method thereof

Publications (2)

Publication Number Publication Date
JP2004060956A JP2004060956A (en) 2004-02-26
JP4086575B2 true JP4086575B2 (en) 2008-05-14

Family

ID=31939336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218029A Expired - Fee Related JP4086575B2 (en) 2002-07-26 2002-07-26 Heat transfer device and operation method thereof

Country Status (1)

Country Link
JP (1) JP4086575B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405015B2 (en) 2007-12-19 2014-02-05 ホシザキ電機株式会社 Cooling system
JP4941676B2 (en) * 2008-03-18 2012-05-30 株式会社日立プラントテクノロジー Air conditioning system
JPWO2009133643A1 (en) * 2008-04-30 2011-08-25 三菱電機株式会社 Air conditioner
JP5188571B2 (en) * 2008-04-30 2013-04-24 三菱電機株式会社 Air conditioner
JP5188572B2 (en) * 2008-04-30 2013-04-24 三菱電機株式会社 Air conditioner
WO2010128557A1 (en) 2009-05-08 2010-11-11 三菱電機株式会社 Air conditioner
WO2012160605A1 (en) * 2011-05-26 2012-11-29 三菱電機株式会社 Air conditioning device
WO2013027233A1 (en) * 2011-08-19 2013-02-28 三菱電機株式会社 Air conditioner
JP5988244B2 (en) * 2012-11-19 2016-09-07 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2016071999A1 (en) * 2014-11-06 2016-05-12 日立アプライアンス株式会社 Air conditioning apparatus
WO2017026025A1 (en) * 2015-08-10 2017-02-16 三菱電機株式会社 Multiple-type air conditioner

Also Published As

Publication number Publication date
JP2004060956A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP4086575B2 (en) Heat transfer device and operation method thereof
KR20180076397A (en) Automotive air conditioning system
US10480837B2 (en) Refrigeration apparatus
EP1813888A2 (en) Heat pump type air conditioner
JP2009216357A (en) Temperature controlled bath
KR101596671B1 (en) Method for controlling air conditioner
JP2021004724A (en) Air conditioning system
JP2009264718A (en) Heat pump hot water system
JPH0814389B2 (en) Clean room with direct expansion heat exchanger
JP2006162173A (en) Air conditioner
JP4409316B2 (en) Cooling system
KR100655382B1 (en) Air conditioning system
JP2000329415A (en) Method of controlling degree of superheat of refrigerator unit, refrigerator unit and air conditioner
JP4074422B2 (en) Air conditioner and its control method
JP2014126336A (en) Air conditioner
WO2016113937A1 (en) Thermal storage air conditioning system
JP6745895B2 (en) Air conditioning system
JP3703594B2 (en) Temperature controller for combined hot water heating system
JP3480869B2 (en) Air conditioner
JP2002122334A (en) Heat-pump type floor-heating equipment
JP2006183928A (en) Dehumidifier
JPH062920A (en) Controller for air conditioner
JP3402440B2 (en) Air conditioner and air conditioner method
JP2002286309A (en) Refrigerator
JP2002195676A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees