JP4084615B2 - 電磁誘導加熱調理器 - Google Patents
電磁誘導加熱調理器 Download PDFInfo
- Publication number
- JP4084615B2 JP4084615B2 JP2002231162A JP2002231162A JP4084615B2 JP 4084615 B2 JP4084615 B2 JP 4084615B2 JP 2002231162 A JP2002231162 A JP 2002231162A JP 2002231162 A JP2002231162 A JP 2002231162A JP 4084615 B2 JP4084615 B2 JP 4084615B2
- Authority
- JP
- Japan
- Prior art keywords
- phase difference
- output
- potential
- inverter
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Induction Heating Cooking Devices (AREA)
Description
【発明の属する技術分野】
この発明は、インバータを使用して加熱コイルに高周波電流を供給し電磁誘導で調理鍋を加熱する電磁誘導加熱調理器に係り、特に、上記インバータが進み位相で運転されることを防止する技術に関するものである。
【0002】
【従来の技術および発明が解決しようとする課題】
電磁誘導加熱調理器は、火種を使用せず安全であること、また燃費が安いこと等から外食産業分野や家庭への普及が進んでいる。
図15は、よく知られたこの種電磁誘導加熱調理器の主回路構成図である。図において、DR1は商用周波数の交流電源(U、V、W)を直流に整流する整流器、C1は平滑コンデンサ、SW1、SW2はハーフブリッジ形のインバータを構成するスイッチング素子で、例えば、MOSFETやIGBTが使用される。Lは共振コンデンサC2、C3とでシングルエンドプッシュプル方式の直列共振回路を形成する加熱コイルで、この加熱コイルLの上に調理鍋を置いて電磁誘導により加熱を行う訳である。
【0003】
ところで、この種のインバータにあっては、その出力電流が出力電圧に対して進み位相の領域で動作すると、貫通電流が流れたりサージ電圧が発生してスイッチング素子が故障する可能性が高い。以下この不具合の現象を簡単に説明する。 図16はインバータの出力電流が出力電圧に対して位相差γだけ遅れている場合の波形、図17は逆にインバータの出力電流が出力電圧に対して位相差γだけ進んでいる場合の波形を示す。両図から、上アーム(SW1)、下アーム(SW2)に流れる電流波形は、遅れ位相および進み位相においてそれぞれ図18の(a)および(b)に示すようになる。図の零基線より下の部分の電流は、スイッチング素子であるMOSFETやIGBTに内蔵されている逆並列ダイオード(図19参照)を流れることになる。
【0004】
従って、電流の極性がマイナスからプラスに変わるとき、遅れ位相の場合は、内蔵ダイオードの電流から同じMOSFETの順方向電流に移るので特に問題は生じない。これに対し、進み位相の場合は、内蔵ダイオードの電流から他方のMOSFETの順方向電流に移るので、ダイオードの逆回復時間が存在しその逆漏れ電流により上下アームを貫通する電流が流れ短絡状態となる。
また、逆漏れ電流のピーク値から0に戻るときの電流変化率di/dtが大きいことからサージ電圧が発生する。
【0005】
このため、従来の電磁誘導加熱調理器においては、位相差γを検出し、予め設定した位相差の下限値γ0と比較し、γ=γ0になった時点でインバータの出力周波数を低下させる動作を停止させるようにしていた。しかし、この方法では、負荷の変化(鍋の位置・材質・大きさ等の変化)による共振周波数の変化に追従できず、過渡的に進み位相で動作してしまう可能性がある。従って、進み位相での動作を確実に防止するためには、位相差の下限値γ0の値を十分大きい値に設定せざるを得ず、結果として、運転力率の低下により効率が悪く、最大出力が大幅に制限されるという問題点があった。
【0006】
この発明は以上のような問題点を解消するためになされたもので、制御動作により積極的に遅れ位相の領域での運転を実現することで、効率の良い、また最大出力を増大できる電磁誘導加熱調理器を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係る電磁誘導加熱調理器は、コンデンサ、このコンデンサとともに直列共振回路を形成する加熱コイル、この加熱コイルに高周波電流を供給するインバータ、このインバータの入力電力を演算する電力演算回路、上記インバータの出力電圧と上記加熱コイルに流れる電流との位相差を検出する位相差検出回路、上記電力演算値と手動設定による電力設定値とを入力し上記両入力値の差を増幅すると共に上記電力演算値が上記電力設定値を越えると出力電位の極性が正となるように設定された電力制御用差動増幅器、上記位相差検出値と上記インバータの出力電圧の位相に対して上記加熱コイルに流れる電流の位相が遅れとなる遅れ位相の範囲内で設定された位相差下限設定値とを入力し上記両入力値の差を増幅すると共に上記位相差検出値が上記位相差下限設定値未満になると出力電位の極性が正となるように設定された位相差制御用差動増幅器、および抵抗接地された入力端にそれぞれダイオードを介して上記両差動増幅器の出力端が接続され上記入力端の電位が増大するにつれて上記インバータの出力周波数が増大するように制御し、上記入力端の電位が零(接地)電位のとき上記インバータを最低周波数で制御するための周波数指令信号を出力するよう入力電位を周波数指令信号に変換するV/fコンバータを備えたものである。
【0008】
また、この発明に係る電磁誘導加熱調理器は、上記インバータの運転開始時における電力設定を自動的に行うため該運転開始時に最大で以降所定の勾配で零に漸減する電位を出力するソフトスタート回路を備え、このソフトスタート回路の出力端をダイオードを介して上記V/fコンバータに接続し、上記V/fコンバータは、その入力端の電位が上記最大電位のとき上記インバータを最高周波数で制御するための周波数指令信号を出力するものである。
【0009】
また、この発明に係る電磁誘導加熱調理器は、上記位相差検出値が、上記遅れ位相の範囲内であって上記位相差下限設定値より更に小さい値に設定された位相差最下限設定値以下となったとき上記最大電位を出力し以降所定の勾配で零に漸減する電位を出力する位相差回復回路を備え、この位相差回復回路の出力端をダイオードを介して上記V/fコンバータに接続したものである。
【0010】
また、この発明に係る電磁誘導加熱調理器の位相差回復回路は、上記位相差検出値が上記位相差最下限設定値以下となったとき上記最大電位の単パルスを出力するとともに、上記単パルスの出力で上記ソフトスタート回路を起動させる比較器で構成したものである。
【0011】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1における電磁誘導加熱調理器の全体を示す回路構成図、図2はその内、本願発明の主要部となるインバータの出力周波数制御機構を示す図である。主回路構成については先に説明したものと同様であるので、以下、制御回路の構成を中心に説明する。図において、1は平滑コンデンサC1の電圧(インバータの入力電圧)を検出する電圧検出器PT1からの信号とインバータの入力端の電流を検出する電流検出器CT1からの信号とを入力してインバータの入力電力Wを演算する電力演算回路、2は後述する駆動回路3からの信号と加熱コイルLに流れる電流を検出する電流検出器CT2からの信号とを入力してインバータの出力電圧と電流との位相差γを検出する位相差検出回路、3はスイッチング素子SW1、SW2をオンオフする駆動信号を生成する駆動回路で、この駆動信号はインバータの出力電圧の位相を示すことから既述した位相差検出回路2にも送出され電圧位相の検出に利用される。
なお、後段でも触れるが、図1の位相差検出回路2においては、その出力位相差γは、遅れ位相差が小さくなるにつれてその電位が大きくなる信号としている。
【0012】
4は電力制御用の差動増幅器で、その非反転入力端に電力演算回路1からの入力電力信号Wが、その反転入力端に電力設定器7からの電力設定値WAがそれぞれ入力される。従って、差動増幅器4は、入力電力Wが電力設定値WAより小さいときは両者の偏差分を増幅した負の電位を出力し、入力電力Wが電力設定値WAより大きくなると両者の偏差分を増幅した正の電位を出力する。
なお、電力設定器7は、調理者が調理内容に応じて適宜調整するボリュームに連動している。
5は位相差制御用の差動増幅器で、その非反転入力端に位相差検出回路2からの位相差信号γが、その反転入力端に位相差設定器8からの位相差下限設定値γAがそれぞれ入力される。従って、差動増幅器5は、位相差信号γが下限設定値γAより小さい(実際は、位相差検出値が設定値より大きい場合に相当する)ときは両者の偏差分を増幅した負の電位を出力し、位相差信号γが下限設定値γAより大きく(実際は、位相差検出値が設定値より小さい場合に相当する)なると両者の偏差分を増幅した正の電位を出力する。
【0013】
6はダイオードD1を介して差動増幅器4と、またダイオードD2を介して差動増幅器5とそれぞれ接続されたV/fコンバータで、その入力端の電位に応じて変化する周波数指令信号を駆動回路3に送出してインバータの出力周波数を決定する。
なお、図2に示すように、V/fコンバータ6の入力端は抵抗R1を介して接地されている。従って、差動増幅器5の出力電位a、差動増幅器4の出力電位bおよび後述するソフトスタート回路10の出力電位dのいずれかが正の値とならない限りV/fコンバータ6の入力端の電位cは零電位に保たれ、V/fコンバータ6はその入力電位が零のときインバータを最低周波数で制御するための周波数信号を出力する。ここで、インバータの最低周波数は、載置される調理鍋を含む加熱コイルLと共振コンデンサC2、C3とからなる直列共振回路の共振周波数より若干高い値に設定される。
【0014】
V/fコンバータ6の入力端には、差動増幅器4、5に加えてソフトスタート回路10がダイオードD3を介して接続されている。調理者が調理器の電源をONにし、電力設定器7でいきなり高い電力値を設定すると、適正な調理鍋が適正な位置にセットされていないような場合、過大な電流が流れて装置が停止する可能性がある。ソフトスタート回路10はこのような状況を想定して設けられるもので、運転開始時、たとえ、急に高い電力値が設定されても、ソフトスタート回路10の動作により小電力から緩やかに電力を増大させる。
図3はこのソフトスタート回路10の内部構成を示す。運転指令回路9から単パルスのON信号が入力されると、スイッチング素子(MOSFET)SW3がオンし、コンデンサC4が電源Eにより充電される。抵抗R2を小としてコンデンサC4の電圧を急速に立ち上げる。運転指令回路9からの単パルスが立ち下がるとSW3はオフし、コンデンサC4の電圧は、C4と抵抗R3とで決まる時定数で徐々に下がっていく。
【0015】
次に、典型的な状況下での動作例をタイミングチャートを参照して説明する。先ず、図4は、運転開始後、ソフトスタートで電力が次第に増大していくが、電力Wがその設定値WAに達するまでに位相差γがその下限設定値γAに達し、以後、インバータの出力周波数がこの位相差に基づき制御される様子を示す。
時間t=t0で運転指令回路9からONの指令が出されソフトスタート回路10に単パルスが入力されると、ソフトスタート回路10の出力電位dが急峻に立ち上がり、V/fコンバータ6の入力電位cは上記電位dと等しくなって立ち上がる。上記単パルスが立ち下がるタイミング(t=t1)でソフトスタート回路10の出力電位dが最高値となり、このタイミングでインバータの運転がONされ最高周波数での出力を開始する。そして、出力電位dの垂下特性に応じて出力周波数が低減していく。
なお、上記タイミングまでの両差動増幅器4、5の出力電位b、aは、入力電力Wおよび位相差γが共にそれぞれの設定値に対して十分低いため、負極性で飽和しており、インバータがONした後、速やかに立ち上がる。
【0016】
インバータの周波数が下降するにつれて位相差γおよび入力電力Wが共に上昇する。この図4のケースでは、位相差信号γの上昇割合がより早く、t=t2でγ=γAとなって差動増幅器5の出力電位aが零になる。更に、t=t3に至ると、差動増幅器5の出力電位aの値と下降しつつあるソフトスタート回路10の出力電位dの値が等しくなり、以降、差動増幅器5の出力電位aがV/fコンバータ6の入力電位cとなる。
そして、位相差信号γが設定値γAを越えると、インバータはその出力周波数を増大させて位相差信号γを下降させるように作用する。位相差信号γが下降すると差動増幅器5の出力電位aが減少してインバータの出力周波数が下降し位相差信号γが上昇する。従って、t=t3以降は、一定の変化幅の範囲内で位相差γおよび入力電力Wが共にほぼ一定値を保つことになる。
なお、図では、t=t3以降の脈動の様子を強調して図示しており、現実にはもっと小さい脈動であり、また、差動増幅器4、5は、数十倍の増幅度を有しており、特に、位相差γはほぼその設定値γAの値に正確に保たれることになる。
【0017】
図5も同じく位相差に基づき制御されるケースであるが、位相差信号γの上昇割合が更に大きい場合である。即ち、インバータの出力周波数の低減に伴い、位相差信号γが急速に上昇し、図4の場合よりも早いタイミングのt=t4で、従って、V/fコンバータ6の入力電位cがより高い時点でγ=γAとなり、その後、t=t5で差動増幅器5の出力電位aがソフトスタート回路10の出力電位dと等しくなっている。
この結果、図4の場合に比べ、位相差γがその設定値γAに保たれる点は同じであるが、インバータの出力周波数はより高く、従って、入力電力Wはより低い値に留まっている。
【0018】
次に図6は、入力電力Wが設定値WAに保たれている状態から、調理者が急に電力設定ツマミを最大設定値まで操作したところ、電力の上昇過程で位相差信号γがその設定値γAに達し、以降そのときの電力値に制限される場合の動作を示す。
図において、設定変化が開始される時刻t=t6までは、差動増幅器4の出力電位bが正の値を維持しており入力電力Wはそのときの設定値WAに保たれている。また、位相差信号γはその設定値γAより十分低く、差動増幅器5の出力電位aは負の値となっている。
t=t6から電力設定値が上昇すると、差動増幅器4の出力電位bが下降を始めるとともに、インバータの出力周波数が低下して入力電力が増大する。これに伴って、位相差信号γが上昇(前述のとおり、実際の位相差は減少)を始め差動増幅器5の出力電位aも上昇し、γ=γAとなる時刻t=t7で零線を越え、更に、t=t8に至ると、差動増幅器5の出力電位aの値と下降しつつある差動増幅器4の出力電位bの値が等しくなり、以降、差動増幅器5の出力電位aがV/fコンバータ6の入力電位cとなる。
この結果、入力電力Wは設定変更後の値にまでは達せず、γ=γAとなった時点で決まる電力に留まり、勿論、位相差もほぼ設定値γAに保たれる。
【0019】
以上説明したように、この発明の実施の形態1では、制御電力の如何に拘わらず、位相差信号γが設定値γAに達すると、電力制御に優先して位相差信号γを設定値γAに維持する位相差制御に自動的に切り替わる。従って、設定値γAを遅れ位相の範囲内において進相領域となる手前の適当な小さな値に設定することでインバータの進相領域での運転を確実に防止することが出来、効率が向上し、インバータも最大出力が増大してその利用率が高まる。
【0020】
実施の形態2.
調理器の操作中、加熱コイルの負荷が急変する場合がある。例えば、調理鍋がステンレス(ステン鍋)からアルミ(アルミ鍋)に置き換えられたような場合、その置き換えが極めて急激に行われると、位相差γが設定値γAを越え、一時的にしろインバータの動作が進相領域に進入する可能性がありスイッチング素子の故障発生が懸念される。
実施の形態2は、この急激な負荷変動時にもインバータの進相運転を防止することができる対策を施したものである。
【0021】
先ず、この急激な負荷変動が生じる現象を図7、図8により説明する。図7は調理器のプレート上の調理鍋が置き換えられる様子を示している。即ち、ステン鍋で加熱動作中に、図中、矢印に沿ってアルミ鍋に順次置き換えられる。
図8はステンレスとアルミにつき、インバータの出力周波数(kHz)と位相差(゜)との関係を示す特性図である。今、出力周波数30kHzでステン鍋を加熱している場合を想定し、この状態から図7に示すように順次アルミ鍋に置き換えたとすると、加熱コイルから見た鍋の材質は図8のステンレスからアルミに連続的に変化し位相差γが急減する。図9はこのような位相差の急減に対処したものである。
【0022】
以下、図9につき、実施の形態1の図1と異なる部分を中心に説明する。11は位相差検出回路2からの位相差信号γと位相差設定器12からの位相差最下限設定値γBとの比較結果に応じて出力する比較器である。ここで、設定値γBは、遅れ位相の範囲内であって設定値γAより更に小さい値に設定される。もっとも、前述したとおり、位相差検出回路2の検出出力である位相差信号γは、実際の位相差が小さいほど大きくなる信号であるので、後述する回路動作上では、γB>γAの関係に設定されている。そして、比較器11は、位相差信号γが設定値γBに達すると、所定幅(例えば、1秒程度)の単パルス出力電位を、ダイオードD4を介してV/fコンバータ6に、かつ、ソフトスタート回路10に、更に、後述するフリップフロップ回路15に送出する。
13は位相差検出回路2からの位相差信号γと位相差設定器14からの位相差下限設定値γAとを比較する比較器で、γ≧γAのときはHレベルの信号を、γ<γAのときはLレベルの信号をフリップフロップ回路15に送出する。
フリップフロップ回路15は、比較器11からの単パルス信号の立ち下がりエッジを検出しそのときの比較器13からの出力信号がHレベルのままであれば運転指令回路9にインバータ停止の信号を送出する。
図10は、図9の回路から出力周波数制御に係る部分を抽出して図示したものである。
【0023】
次に動作として、図9および図10に示す出力周波数制御機構における負荷変動時の全体的な動作について図11のフローチャートを参照して説明する。
負荷変動が生じ(ステップS1)、位相差信号γがその設定値γAを越えようとすると差動増幅器5の出力電位aが正に反転してγ=γAを保つようインバータの出力周波数を制御する(ステップS2)。比較器11で位相差の比較演算を行い、位相差信号γがその状態を保持して位相差設定値γBを越えない場合は(ステップS3でNO)そのまま運転を継続するが(ステップS4)、γがγBを越えると(ステップS3でYES)、比較器11は単パルスを出力し、ダイオードD4がONしてV/fコンバータ6の入力電位cが上記単パルスのレベルとなりインバータは出力周波数を最高周波数に引き上げる(ステップS5)。比較器11からの単パルスはソフトスタート回路10にも送出されソフトスタート回路10は上記単パルスの立ち上がりでコンデンサC4の充電を開始する(図3参照)。
【0024】
別途、比較器13は位相差信号γと設定値γAとの大小を比較演算しており、所定の時間が経過、即ち、比較器11からの単パルスが立ち下がると、フリップフロップ回路15がこのタイミングを検知し、その時点の位相差信号γと設定値γAとの比較出力を比較器13から入力する(ステップS6)。γがγAを越えていると(ステップS7でYES)、フリップフロップ回路15から運転指令回路9に停止指令信号を送出してインバータを停止する(ステップS8)。進み位相領域に進入する可能性が有り、スイッチング素子の故障を未然に防止するためである。γがγAを越えていなければ(ステップS7でNO)、ソフトスタート回路10の出力電位dの垂下特性に従いインバータの出力周波数は徐々に下降していき(ステップS9)元の動作に戻る。
【0025】
なお、図9、図10では、比較器11の出力をダイオードD4を介してV/fコンバータ6に送出する構成としているが、これは、ソフトスタート回路10におけるコンデンサC4(図3参照)の充電に要する時間遅れに拘わらずインバータの出力周波数を直ちに最高値に引き上げるためである。従って、ソフトスタート回路10における電圧発生機構を電圧の瞬時立ち上げが可能なものにできれば、比較器11の出力はソフトスタート回路10に送出すれば足り、別途V/fコンバータ6へ送る必要はない。
また、ソフトスタート回路10を利用せず、比較器11でγがγBを越えたことを判別すると、その判別出力に基づき瞬時に最大値に立ち上がり以後所定の勾配で漸減する電位を発生する位相差回復回路を別途備え、この位相差回復回路の出力をダイオードを介してV/fコンバータ6に送出する構成としてもよい。スタート時の電力上昇特性と関係なく、負荷急変が発生した後の運転回復時に最適な電力上昇特性を設定できる利点がある。
【0026】
次に、負荷の急変により図11のステップS3でYESとなる、即ち、位相差信号γが設定値γBを越える場合を想定した一連の動作を図12のタイミングチャートを参照して説明する。
入力電力Wがその設定値WAにバランスしている状態から、時刻t=t9で負荷変動が発生し、位相差信号γが急増し入力電力Wは下降する。この変化に応じて差動増幅器5の出力電位aも上昇するが差動増幅器の入出力間の遅れから位相差信号γの急増を抑制する効果が出るまでに位相差信号γが設定値γBに達する(t=t10)。
γ=γBとなると、比較器11がこれを判定して単パルスの出力電位eを発生する。この急峻に立ち上がる出力電位eがそのままV/fコンバータ6の入力電位cとなり、インバータの出力周波数は直ちに最高周波数まで上昇し位相差信号γおよび入力電力Wが共に急減する。ソフトスタート回路10では比較器11からのパルス出力を受けて急速に電位を立ち上げる。
【0027】
時刻t=t11で、比較器11からのパルス出力が立ち下がると、V/fコンバータ6の入力電位cは、それまでのダイオードD4を経た比較器11の出力電位eからダイオードD3を経たソフトスタート回路10の出力電位dに切り替わり、以後、この電位dに沿ってインバータの出力周波数は下降し、入力電力Wは増大していく。この事例では、電位eが立ち下がるt=t11のタイミングで位相差信号γは設定値γAを越えていないので、図11ステップS8で示すインバータの停止動作はない。
インバータの出力周波数の下降と共に位相差信号γが次第に増加し、t=t12で設定値γAに達し、その直後、t=t13で差動増幅器5の出力電位aの値がソフトスタート回路10の出力電位dの値に等しくなると、以降、先の図4で説明したと同様、ほぼγ=γAを維持する定常運転に移行する。
【0028】
以上のように、この発明の実施の形態2においては、負荷が急変して位相差が急減しインバータの運転が進み位相領域に進入する可能性が発生しても直ちに出力周波数を最高周波数に引き上げ進み位相領域への進入を未然に防止することが出来る。また、最高周波数に引き上げた後も位相差が下限設定値以下に留まる場合はインバータを自動的に停止させるようにしたので、このような異常な負荷急変時においてもスイッチング素子の故障が防止され運転の信頼性が向上する。
【0029】
実施の形態3.
図13は、この発明の実施の形態3における電磁誘導加熱調理器を示す回路構成図、図14はその動作を説明するフローチャートである。実施の形態2と異なるのは、タイマ回路16を追加した点のみである。即ち、この実施の形態3では、フリップフロップ回路15が運転指令回路9にインバータ停止指令信号を出力すると同時にタイマ回路16にも指令信号を送出してタイマ回路16はそのカウント動作を開始する。所定時間(例えば、数秒程度に設定する)が経過してカウントアップすると、タイマ回路16は運転指令回路9に指令信号を送出してインバータを最高周波数でソフトスタートさせる(図14のステップS10)。そして、そのときの位相差信号γと設定値γAとの比較演算を行い、γAを越えていない場合は(ステップS7でNO)、徐々に出力周波数を下降して通常の運転に復帰する(ステップS9)。勿論、γAを越えている場合は(ステップS7でYES)、再びインバータを停止して(ステップS8)、ステップS10以降の動作を繰り返す。
【0030】
以上のように、この発明の実施の形態3においては、例えば、調理鍋が突然置き換わるなどして負荷が急変しインバータが停止した後も、適正な調理鍋が調理器上に戻された場合は、これを検知して自動的に本来の調理加熱動作に復帰するので、調理器としての利便性が更に向上する。
【0031】
なお、上記各実施の形態での位相差検出回路2は、その出力を使用した後段の制御回路との関係で実際の遅れ位相差が小さくなるにつれてその出力電位が大きくなる位相差信号γを出力する特性のものとしたが、この発明の適用上、上記出力特性に限られるものではないことは勿論である。
また、上記各実施の形態では、いずれもソフトスタート回路10を設けているが、この発明の適用例によっては必ずしも必要とせず、入力電力の調整は、もっぱら電力設定器7の操作に基づく構成としてもよい。
【0032】
【発明の効果】
以上のように、この発明に係る電磁誘導加熱調理器は、コンデンサ、このコンデンサとともに直列共振回路を形成する加熱コイル、この加熱コイルに高周波電流を供給するインバータ、このインバータの入力電力を演算する電力演算回路、上記インバータの出力電圧と上記加熱コイルに流れる電流との位相差を検出する位相差検出回路、上記電力演算値と手動設定による電力設定値とを入力し上記両入力値の差を増幅すると共に上記電力演算値が上記電力設定値を越えると出力電位の極性が正となるように設定された電力制御用差動増幅器、上記位相差検出値と上記インバータの出力電圧の位相に対して上記加熱コイルに流れる電流の位相が遅れとなる遅れ位相の範囲内で設定された位相差下限設定値とを入力し上記両入力値の差を増幅すると共に上記位相差検出値が上記位相差下限設定値未満になると出力電位の極性が正となるように設定された位相差制御用差動増幅器、および抵抗接地された入力端にそれぞれダイオードを介して上記両差動増幅器の出力端が接続され上記入力端の電位が増大するにつれて上記インバータの出力周波数が増大するように制御し、上記入力端の電位が零(接地)電位のとき上記インバータを最低周波数で制御するための周波数指令信号を出力するよう入力電位を周波数指令信号に変換するV/fコンバータを備えたので、上記位相差下限設定値を遅れ位相の範囲内において進相領域となる手前の適当な小さな値に設定してもインバータを確実に遅れ位相の範囲で運転できて信頼性を確保できるとともに、効率が向上しインバータの最大出力が増大してその利用率が高まる。
【0033】
また、この発明に係る電磁誘導加熱調理器は、上記インバータの運転開始時における電力設定を自動的に行うため該運転開始時に最大で以降所定の勾配で零に漸減する電位を出力するソフトスタート回路を備え、このソフトスタート回路の出力端をダイオードを介して上記V/fコンバータに接続し、上記V/fコンバータは、その入力端の電位が上記最大電位のとき上記インバータを最高周波数で制御するための周波数指令信号を出力するので、調理者がいきなり高い電力値を設定しても電力がスムーズに上昇する円滑な動作開始特性が得られる。
【0034】
また、この発明に係る電磁誘導加熱調理器は、上記位相差検出値が、上記遅れ位相の範囲内であって上記位相差下限設定値より更に小さい値に設定された位相差最下限設定値以下となったとき上記最大電位を出力し以降所定の勾配で零に漸減する電位を出力する位相差回復回路を備え、この位相差回復回路の出力端をダイオードを介して上記V/fコンバータに接続したので、負荷の急変時にもインバータは遅れ位相運転を保持する。
【0035】
また、この発明に係る電磁誘導加熱調理器の位相差回復回路は、上記位相差検出値が上記位相差最下限設定値以下となったとき上記最大電位の単パルスを出力するとともに、上記単パルスの出力で上記ソフトスタート回路を起動させる比較器で構成したので、ソフトスタート回路を利用した円滑な位相差回復動作が実現する。
【図面の簡単な説明】
【図1】 この発明の実施の形態1における電磁誘導加熱調理器を示す回路構成図である。
【図2】 図1の内、インバータの出力周波数制御機構を示す図である。
【図3】 図1のソフトスタート回路10の内部構成を示す図である。
【図4】 実施の形態1の制御動作の一例を示すタイミングチャートである。
【図5】 図4とは異なる状況下での制御動作の一例を示すタイミングチャートである。
【図6】 図4、図5とは異なる状況下での制御動作の一例を示すタイミングチャートである。
【図7】 この発明の実施の形態2における負荷変動の具体的事例を説明する図である。
【図8】 調理鍋の材質として、ステンレスとアルミの場合における、周波数と位相差との関係を示す図である。
【図9】 この発明の実施の形態2における電磁誘導加熱調理器を示す回路構成図である。
【図10】 図10の内、インバータの出力周波数制御機構を示す図である。
【図11】 実施の形態2の制御動作を説明するフローチャートである。
【図12】 実施の形態2の制御動作の一例を示すタイミングチャートである。
【図13】 この発明の実施の形態3における電磁誘導加熱調理器を示す回路構成図である。
【図14】 実施の形態3の制御動作を説明するフローチャートである。
【図15】 電磁誘導加熱調理器の主回路構成を示す図である。
【図16】 遅れ位相の場合の、インバータの電圧、電流波形を示す図である。
【図17】 進み位相の場合の、インバータの電圧、電流波形を示す図である。
【図18】 インバータの上下アームに流れる電流波形を示す図である。
【図19】 インバータのスイッチング素子の構成を示す図である。
【符号の説明】
1 電力演算回路、2 位相差検出回路、3 駆動回路、4 電力制御用差動増幅器、5 位相差制御用差動増幅器、6 V/fコンバータ、7 電力設定器、
8,12,14 位相差設定器、9 運転指令回路、10 ソフトスタート回路、
11,13 比較器、15 フリップフロップ回路、16 タイマ回路、
SW1,SW2 スイッチング素子(MOSFET)、L 加熱コイル、
C2,C3 共振コンデンサ。
Claims (4)
- コンデンサ、このコンデンサとともに直列共振回路を形成する加熱コイル、この加熱コイルに高周波電流を供給するインバータ、このインバータの入力電力を演算する電力演算回路、上記インバータの出力電圧と上記加熱コイルに流れる電流との位相差を検出する位相差検出回路、上記電力演算値と手動設定による電力設定値とを入力し上記両入力値の差を増幅すると共に上記電力演算値が上記電力設定値を越えると出力電位の極性が正となるように設定された電力制御用差動増幅器、上記位相差検出値と上記インバータの出力電圧の位相に対して上記加熱コイルに流れる電流の位相が遅れとなる遅れ位相の範囲内で設定された位相差下限設定値とを入力し上記両入力値の差を増幅すると共に上記位相差検出値が上記位相差下限設定値未満になると出力電位の極性が正となるように設定された位相差制御用差動増幅器、および抵抗接地された入力端にそれぞれダイオードを介して上記両差動増幅器の出力端が接続され上記入力端の電位が増大するにつれて上記インバータの出力周波数が増大するように制御し、上記入力端の電位が零(接地)電位のとき上記インバータを最低周波数で制御するための周波数指令信号を出力するよう入力電位を周波数指令信号に変換するV/fコンバータを備えた電磁誘導加熱調理器。
- 上記インバータの運転開始時における電力設定を自動的に行うため該運転開始時に最大で以降所定の勾配で零に漸減する電位を出力するソフトスタート回路を備え、このソフトスタート回路の出力端をダイオードを介して上記V/fコンバータに接続し、上記V/fコンバータは、その入力端の電位が上記最大電位のとき上記インバータを最高周波数で制御するための周波数指令信号を出力するものとしたことを特徴とする請求項1記載の電磁誘導加熱調理器。
- 上記位相差検出値が、上記遅れ位相の範囲内であって上記位相差下限設定値より更に小さい値に設定された位相差最下限設定値以下となったとき上記最大電位を出力し以降所定の勾配で零に漸減する電位を出力する位相差回復回路を備え、この位相差回復回路の出力端をダイオードを介して上記V/fコンバータに接続したことを特徴とする請求項2記載の電磁誘導加熱調理器。
- 上記位相差回復回路は、上記位相差検出値が上記位相差最下限設定値以下となったとき上記最大電位の単パルスを出力するとともに、上記単パルスの出力で上記ソフトスタート回路を起動させる比較器で構成したことを特徴とする請求項3記載の電磁誘導加熱調理器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002231162A JP4084615B2 (ja) | 2002-08-08 | 2002-08-08 | 電磁誘導加熱調理器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002231162A JP4084615B2 (ja) | 2002-08-08 | 2002-08-08 | 電磁誘導加熱調理器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004071444A JP2004071444A (ja) | 2004-03-04 |
JP4084615B2 true JP4084615B2 (ja) | 2008-04-30 |
Family
ID=32017009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002231162A Expired - Fee Related JP4084615B2 (ja) | 2002-08-08 | 2002-08-08 | 電磁誘導加熱調理器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4084615B2 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4748356B2 (ja) * | 2005-10-13 | 2011-08-17 | サンケン電気株式会社 | 誘導加熱装置 |
JP4868952B2 (ja) * | 2006-06-16 | 2012-02-01 | 三菱電機株式会社 | 誘導加熱調理器 |
JP5045143B2 (ja) * | 2007-02-22 | 2012-10-10 | パナソニック株式会社 | 誘導加熱装置 |
JP4866938B2 (ja) * | 2009-06-12 | 2012-02-01 | 三井造船株式会社 | 誘導加熱装置、誘導加熱方法、及びプログラム |
JP2011029127A (ja) * | 2009-07-29 | 2011-02-10 | Fuji Electric Systems Co Ltd | コンタクト式電縫管溶接電源装置における負荷開放検出方法 |
JP2011134644A (ja) * | 2009-12-25 | 2011-07-07 | Panasonic Corp | 誘導加熱調理器 |
JP2011150827A (ja) * | 2010-01-20 | 2011-08-04 | Panasonic Corp | 誘導加熱調理器 |
JP2011171206A (ja) * | 2010-02-22 | 2011-09-01 | Panasonic Corp | 誘導加熱調理器 |
JP5708988B2 (ja) * | 2010-03-30 | 2015-04-30 | 株式会社ダイヘン | 高周波電源装置 |
JP5020360B2 (ja) * | 2010-09-03 | 2012-09-05 | 三菱電機株式会社 | 誘導加熱調理器 |
WO2012073379A1 (ja) * | 2010-12-03 | 2012-06-07 | 三井造船株式会社 | 誘導加熱装置、誘導加熱方法、及びプログラム |
JP5231614B2 (ja) * | 2011-09-20 | 2013-07-10 | 北芝電機株式会社 | 誘導溶解炉の制御装置 |
-
2002
- 2002-08-08 JP JP2002231162A patent/JP4084615B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004071444A (ja) | 2004-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2862569B2 (ja) | 電磁調理器 | |
JP4865699B2 (ja) | 誘導加熱装置 | |
JP4084615B2 (ja) | 電磁誘導加熱調理器 | |
WO2006135056A1 (ja) | 誘導加熱装置 | |
JP2004014218A (ja) | 電磁誘導加熱装置 | |
JP3376227B2 (ja) | インバータ装置 | |
JP5383526B2 (ja) | 誘導加熱調理器 | |
JP2020064719A (ja) | 電磁誘導加熱装置 | |
JP4074206B2 (ja) | 電磁誘導加熱調理器 | |
KR102171316B1 (ko) | 열처리용 인버터-고주파 변압기형 전력 변환 장치 | |
JP4887681B2 (ja) | 誘導加熱装置 | |
KR102175634B1 (ko) | 동작 안정성을 향상한 조리 기기 및 그 동작방법 | |
JP2004327104A (ja) | 誘導加熱調理器 | |
JPH0765943A (ja) | 電磁調理器 | |
JP3854752B2 (ja) | 誘導加熱調理器 | |
JP3625784B2 (ja) | インバータ装置 | |
JP3997897B2 (ja) | 誘導加熱装置 | |
JP5892842B2 (ja) | 誘導加熱調理器 | |
JPH08148266A (ja) | 電磁調理器 | |
JP4048928B2 (ja) | 誘導加熱装置 | |
JP2004171934A (ja) | 誘導加熱装置 | |
JP2003257613A (ja) | 電子レンジのインバータ装置 | |
JPH0591733A (ja) | 電源装置 | |
JP3304200B2 (ja) | 誘導加熱調理器 | |
KR20210014375A (ko) | 유도 가열 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050622 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070710 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4084615 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140222 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |