JP4084007B2 - Manufacturing method of magnetic material - Google Patents
Manufacturing method of magnetic material Download PDFInfo
- Publication number
- JP4084007B2 JP4084007B2 JP2001222314A JP2001222314A JP4084007B2 JP 4084007 B2 JP4084007 B2 JP 4084007B2 JP 2001222314 A JP2001222314 A JP 2001222314A JP 2001222314 A JP2001222314 A JP 2001222314A JP 4084007 B2 JP4084007 B2 JP 4084007B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- powder
- metal
- magnetic material
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、磁性材料の製造方法、防錆層付き磁性材料粉末及びそれを用いたボンド磁石に関する。
【0002】
【従来の技術】
近年、Nd−Fe−B系磁石材料あるいはSm−Fe−N系磁石材料など、Feを主成分とする高性能希土類永久磁石材料(以下、Fe系希土類磁石材料といい、それによって構成された永久磁石部材をFe系希土類磁石という)が開発されており、特にNd−Fe−B系磁石材料は優れた磁気特性を有することから、各種電気機器や自動車用のモータ、あるいはコンピュータ用のボイスコイルモータ等に広く使用されている。Nd−Fe−B系磁石材料は、その製法により、焼結磁石、熱間加工磁石及びボンド磁石(樹脂結合磁石)の3種類に大別される。このうちボンド磁石は、所定量の合金成分を配合・溶解後、溶湯を単ロール法等により急冷凝固させて得られる急冷薄帯を粉砕して原料磁石粉末を作り、その粉末をエポキシ樹脂、あるいはナイロン樹脂等の樹脂バインダとともに成形して所望の形状の磁石とするものである。上記磁石粉末は、主要な硬磁性相であるNd2Fe14B型正方晶金属間化合物相(以下2−14−1相という)が単磁区粒子径以下となった微細結晶粒組織を有し、粉末の状態で高い保磁力を示す。このようなボンド磁石は、焼結磁石及び圧延磁石と異なり成形後の加工がほとんど不要で寸法精度が高く形状自由度に優れ、しかも生産性が高いことから、特に小型モータ用のリング磁石などに大量に使用されている。一方、Sm−Fe−N系磁石材料は、磁性の主役を担うSm−Fe−N系化合物相が高温で分解しやすいため、もっぱらボンド磁石としての用途が模索されている状況である。
【0003】
例えば、上記のようなFe系希土類磁石材料はFeを主成分としている上、化学的に活性な希土類元素を比較的多く含んでいることから、使用環境によっては、具体的には湿度や温度の上がりやすい環境下では腐食が問題となる場合がある。一般にFe系希土類磁石材料は、安定した磁気特性を確保するために、磁性相を形成する金属間化合物(例えば前記の2−14−1相である)の化学量論比よりも過剰な希土類成分を含有するように組成調整されることが多く、その過剰な希土類成分が希土類リッチ相となって磁性相とともに多相構造を形成する形となる。このような場合、異相間の局部電池反応も関係して腐食はより進行しやすい状況にあるといえる。このような腐食が進行すれば、該Fe系希土類磁石を励磁媒体とするモータ等の電子機器自体の性能劣化につながるばかりでなく、腐食反応物の飛散により周辺回路等にも悪影響を及ぼすことがある。
【0004】
また、上記のような腐食が発生しやすい状況は原料粉末段階にても事情は変わらず、例えば粉末が長時間大気(特に高湿度のもの)にさらされたりすると、粉末の酸化劣化等により保磁力や最大エネルギー積などの磁気特性低下は避けがたくなる。
【0005】
そこで、上記のような合金及び金属間化合物系磁性材料に対する防錆処理においては、しかるべき防錆処理が必要となる。従来、その具体的な方法として、蒸着法及び電解メッキ法が用いられてきた。しかし、前者の手法では磁性材料表面に対して被膜の形成が蒸発源方向からのみ進行するため立体形状をもつ磁性材料、特に粒径の小さい磁性材料粉末の表面を均一に隈なく被覆することは非常に困難である。また、積層した被覆金属が粉末間の凝集を引き起こすことが考えられ、多量の磁性粉末に対して被覆処理を行なうことは難しい。他方、後者では、被膜形成に使用する電解液により、磁性材料、とりわけ原料粉末が重大な損傷を受けると共に、電気伝導率の低い磁性粉末の表面酸化物層に均一な被膜を形成させるためには前処理として導電率の高いCu等で予備被覆する多段階処理が必要となること等の問題があった。
【0006】
さらに、合金及び金属間化合物磁性粉末、特に希土類−Fe系磁性材料では、雰囲気中に存在する酸素源と希土類金属成分との反応性が高く、これに伴う磁気特性の低下が重要な問題となることから、被覆技術としては磁性材料粉末表面を完全に被覆できることが必要となる。このためには、前者の手法では完全な皮膜を形成するには多量の金属(通常非磁性の金属を用いる)を析出させければならず、この非磁性金属により希釈効果が生じ磁化の低下を招く。他方、後者では、均一な被膜は形成できる反面メッキ時に生じた磁性材料表面の酸化被膜中の酸素がボンド磁石作製時の熱処理工程で磁性粉末内部に拡散・浸透し、これにより酸化が進行し更に磁気特性は低下する。
【0007】
加えて、合金及び金属間化合物磁性粉末がSm−Fe−N系である場合、被膜として形成される金属が熱処理により磁性粉末表面を改質し、磁気特性、特に保磁力Hcjを向上させることが知られている。この熱処理では、被覆金属と磁性材料の構成成分との相互拡散及び反応を効率よく進行させるために高温(〜600℃)で加熱する(例えば、特開平05−234729に開示されている)か、もしくは、低温(380〜400℃)で長時間(30時間以上)する必要がある(K. Makita, S. Hirosawa, J. Alloys Compd., 260 (1997) 236-241参照)。
【0008】
【発明が解決しようとする課題】
合金及び金属間化合物系磁性材料に対して行われている現行の蒸着法及び電解メッキ法による表面被覆では、微細に粉砕され、化学的に不安定な当該磁性材料微粉末に対して、前者では金属が蒸着源からの方向に沿ってのみ析出し成膜が起こり被膜に斑が生じる。また、ドライプロセスであることから粉末間で凝集が起こりやすいため、防錆能力の劣る表面又は被膜が形成されていない表面が部分的に残存し、その結果この領域から酸化が進行し磁気特性の劣化を依然として招くことになる。さらに、酸素が磁性材料内部へ拡散する経路となり易いクラック、粒界などの内表面に対しても保護膜を形成することは蒸着法では困難であった。
【0009】
また、電解メッキ法では使用する電解液が活性な磁性材料自体に酸化等の損傷を与えるため、防錆処理に伴い磁気特性が大幅に低下し、更に磁性粉末表面に形成される導電率の低い酸化物層が電界メッキを阻害し、均一な被膜を作製するためには前処理が必要であるという欠点があった。
【0010】
従って、合金及び金属間化合物系磁性材料に関して、保存並びに使用する雰囲気に依存せず、長期間高い磁気特性を維持できる優れた耐食性を有する磁性材料を作製するためには、磁性材料それ自身に損傷を与えることなく表面への均一な防錆被膜の新しい形成技術の確立が必要となる。
【0011】
従来の蒸着法による成膜技術では、合金及び金属間化合物系磁性材料の個々の表面を均一に被覆しにくいことから、必要以上に多量の金属で被覆することで所望の耐食性を達成してきた。そして、これに伴い多量に被覆した金属(多くの場合非磁性のものが使用される)により希釈効果が生じ磁性材料の磁気特性に低下を招くという欠点を有している。従って、このような磁気特性の低下を避けるため、磁性材料の表面上に形成させる防錆被膜をより均一なものとし、可能な限り被膜金属として用いる金属の量を少なくすることが望ましい。
【0012】
一方、合金及び金属間化合物系磁性材料の表面に金属を被覆した後、不活性ガス雰囲気下又は真空中で加熱によりその金属を磁性材料の表面近傍で構成成分との相互拡散を促すことで、金属被膜と磁性材料表面との密着性を高め防食性を向上させると共に、磁性材料の更なる耐環境性並びに磁気特性を向上させることが可能な場合がある。しかしながら、この加熱処理は被膜として用いた金属の融点以上の高温(〜600℃)で行われてきたため、特に磁性材料の微粉末では酸化の進行により却って本来の磁気特性の低下が避けられなかった。これは加熱処理により被膜を形成する工程で生じる酸化物層が磁性粉末の表面近傍に存在する磁性相を改質することによって生じると考えられる。従って、このような熱処理後において磁性材料本来の高い磁気特性を維持あるいは向上させるためには、金属被覆時に磁性材料に対して酸化などの劣化を起こさせないようにすることと、加熱処理温度が低温でも効果的に耐食性並びに磁気特性の向上に作用せしめる手法の確立が必要である。
【0013】
本発明の課題は、各種モータ、アクチュエータ等の磁気回路に用いられている永久磁石の材料であり、希土類系に代表される合金及び金属間化合物系磁性材料に関し、磁気特性の永続的低下の主たる原因となる保存並びに使用雰囲気中に存在する酸素、水等から被る酸化による磁気特性の低下を、密着性が強く均一な防錆被膜を効率よく磁性粉末表面に形成させることで効果的に抑制し、これにより当該磁性材料の磁気特性の安定性を確保できる磁性材料の製造方法と、それにより得られる防錆層付き磁性材料粉末、さらにはそれを用いたボンド磁石を提供することにある。より詳しくは、合金及び金属間化合物系磁性材料表面に反応活性の高い金属を被覆金属として供給することで、これと磁性材料の構成成分との反応親和性を利用し粉末表面に金属を隈なく析出させ、均一な防錆被膜の形成を促すことで耐酸化性を付与し、さらに供給された金属を磁性材料の表面近傍の構成成分と相互拡散及び反応させることで密着性の強い防錆被膜を形成させると同時に、磁性材料の耐環境性と磁気特性を更に向上せしめる技術、及び得られた表面被覆磁性粉末を原料とするボンド磁石の安定性、耐久性の向上に寄与する技術を提供するものである。
【0014】
【課題を解決するための手段及び作用・効果】
上記の課題を解決するために、本発明の防錆層付き磁性材料粉末は、磁性合金又は磁性金属間化合物からなり、粒子内に結晶粒界を有する磁性材料粉末の、粒子表層部と粒子内部における前記結晶粒界及に沿う領域とに、前記磁性材料粉末に対する防錆作用を有した防錆金属成分を主体とする防錆層が形成されたことを特徴とする。
【0015】
また、本発明のボンド磁石は、上記本発明の防錆層付き磁性材料粉末を樹脂結合したことを特徴とする。
【0016】
さらに、本発明の磁性材料の製造方法は、
磁性合金又は磁性金属間化合物からなり、粉末粒子内に磁性材料相の結晶粒界を有する磁性材料粉末と、Zn供給源とを混合状態で密封容器内に入れ、
その状態で前記密封容器内を真空排気して非酸化性雰囲気に維持しつつ前記密封容器全体を加熱することにより、その密封容器内の温度を300〜500℃に昇温して、
前記Zn供給源からZnを気化させてそのZn蒸気を前記磁性材料粉末の粒子表面に供給することにより、粒子表面にZnを主体とするZn防錆層を形成し、
また、粉末粒子内部の前記結晶粒界に沿う領域には、前記Zn防錆層から浸透したZnを主体とするZn防錆層を形成して、Zn防錆層付き磁性材料粉末を得ることを特徴とする。
なお、本発明において「主成分」あるいは「主体とする」とは、対象物質中にて着目している成分が最も重量含有率の高い成分であることを意味する。
【0017】
合金及び金属間化合物系磁性材料への防錆処理工程において、磁性材料表面に斑なく均一な被膜を形成させるには、立体形状を有する磁性材料の表面に対して3次元的に均等に防錆金属供給源を供給し、さらに被覆金属量を必要な限り少量で防錆被膜を形成することが必要となる。このように磁性粉末表面を均一に被覆させることは、被膜金属を気体状態とし積み重なった磁性粉末の隙間に進入させ、磁性材料との反応親和性により表面に吸着させ析出させる、あるいは磁性粉末を、防錆金属供給源を含有する分散媒中に分散させ、この分散状態で供給源から活性な金属を生成し磁性材料との反応親和性により粉末表面に析出させることにより可能となる。そのため、本発明では、当該磁性材料表面に均一に防錆金属供給源を供給するために被覆に用いる金属源と磁性材料粉末とを混合し、密封容器中で加熱することで、発生する活性の高い金属成分(例えば金属蒸気あるいは有機金属化合物)と磁性材料の構成成分との反応親和性を利用して表面に析出させることで、磁性材料表面を隈なく均一に被覆することに加え、磁性材料表面の被覆金属量を低減することができ、これにより希釈効果が抑制され高磁化の磁性材料を作製することが可能となる。さらに、酸素源を含まない条件下で被覆を行なうため、磁性材料の酸化による劣化を抑制することができ、優れた磁気特性と耐環境性を両立させた合金及び金属間化合物系の磁性粉末を作製することができる。
【0018】
さらに、上記製法により実現可能な本発明の防錆層付き磁性材料粉末は、粉末粒子内部の結晶粒界に沿う領域にも、防錆金属成分を主体とする防錆層(以下、粒界防錆層という)が形成されるから、酸化劣化の成分拡散経路となる結晶粒界領域が強固に保護され、磁性材料の酸化による特性劣化を図る上で一層有利となる。特に、後述するNd−Fe−B系あるいはSm−Fe−N系金属間化合物を用いたニュークリエーション型の硬磁性材料の場合は、上記のような粒界防錆層の形成が、硬磁性材料の保磁力向上に有効に寄与する。
【0019】
この場合、粒子表面から一定深さまでの粒子表層部に防錆金属成分を浸透させることにより、酸化進行が進みやすい粒子表層部に存在する結晶粒界に沿って防錆層を形成することが、高い磁気特性を維持しつつ防錆性の向上を図る観点において望ましい。このようにして得られる防錆層付き磁性材料粉末は、結晶粒界に沿って形成される防錆層の量が、粒子表層部において粒子内部よりも多くされてなるものとなる。結晶粒界に沿って形成される防錆層の、粒子表面からの浸透深さは、例えば1μm〜10μmの範囲に調整されていることが望ましい。浸透深さが1μm以下では、防錆性の付与効果が不十分となる場合があり、10μmを超えると磁気特性等に及ぼす悪影響が避けがたくなる。防錆金属成分の浸透は、例えば結晶粒界に沿った成分拡散や、あるいは結晶粒界に沿って形成されたクラック内空間への金属蒸気の供給・析出によりなされる。
【0020】
磁性材料粉末粒子の表層部においては、厚さが5nm〜50μmとなるように防錆層が形成されてなることが望ましい。粒子の表層部の防錆層厚さが5nm以下では防錆性が不十分となり、50μmを超えると硬磁性相比率の減少により残留磁束密度を十分に確保できなくなる。また、結晶粒界に沿って形成される防錆層の厚さは、同様の理由により1〜100nmであることが望ましい。
【0021】
合金及び金属間化合物系磁性材料の表面を均一に被覆する際、磁性材料を加熱する温度を制御することで、磁性材料表面では被膜を形成すると同時に、磁性材料の表面近傍で供給される金属と構成成分との相互拡散及び反応がスムーズに起こる。この相互拡散及び反応は、供給される金属が原子状、分子状又はクラスター状態であるため活性が高く、これにより従来の手法より低温の熱処理でも効果的に耐環境性並びに磁気特性の改善がなされる。
【0022】
合金及び金属間化合物系磁性材料は、樹脂と混合し成形・磁石化されることでボンド磁石へと応用される。このボンド磁石、特に高性能磁石として重要視されている圧縮成形型のボンド磁石に関しては、ボンド磁石の成形過程も考慮すると原料となる磁性材料粉末に対して耐酸化処理を施すことにより効果的に酸化劣化が抑制されるため、本発明において磁性材料粉末表面上に均一な防錆被膜を形成させることで磁石成形工程並びに磁石の使用雰囲気から被る酸化劣化を抑制することが可能となり、磁石の高性能化、並びに磁石性能の耐久性を改善がなされる。
【0023】
具体的には、合金及び金属間化合物系磁性材料に対する防錆処理として、磁性材料と防錆被膜の防錆金属供給源となる物質とを混合状態で耐熱密封容器内に封入後、酸素又は水等の酸素源を数十ppm以上含まない雰囲気下で均一に加熱することにより原子状又はクラスター状の金属を生成させ、これを目的とする磁性材料粉末表面に供給し、磁性材料又はこれを構成する成分と当該金属との反応親和性を利用して磁性材料表面に当該金属を均一に析出させ、かつ、引き続く粉末内部の粒界界面を経由して浸透させることで、金属、合金あるいは金属間化合物から構成される防錆被膜を形成せしめること(以下、収着法とも称する)ができる。これにより、高い磁気特性並びに耐環境性を有する合金及び金属間化合物系磁性材料が実現可能である。
【0024】
防錆金属成分は金属蒸気の形で磁性材料粉末の粒子表面に供給することができる。金属蒸気の粉末粒子表面への析出、及び粒界を介した拡散により前記した防錆層を均一に形成することができる。この場合、具体的には、防錆金属供給源を、防錆金属成分を含有した金属インゴット又は粉末とし、密封容器内を減圧並びに昇温して、金属インゴット又は粉末からの防錆金属成分の気化を促進するようにすることが、均一な防錆層を簡単に形成できるので好適である。金属蒸気を効率よく発生させるためには、密封容器内を、防錆金属のインゴット又は粉末の融点以上、望ましくは沸点以上に加熱することが望ましい。
【0025】
防錆金属成分としては、例えばAl、Ga、In、Si、Ge、Sn、Ti及びZnを使用することができる。これらの防錆金属成分は、特に金属状態のFeを主成分とする磁性材料粉末に対して防錆効果の点で優れており、特にはZnは防錆効果が大きい上、防錆層の形成温度を比較的低温化できるので、コスト上のメリットも大きい。Znを使用する場合は、密封容器内の温度を300〜500℃に昇温することが望ましい。温度が300℃未満ではZn蒸気の発生が不十分となる場合があり、500℃を超えると、温度上昇による磁性材料粉末へのZnの収着促進効果の向上が、それ以上は見込めなくなるのでエネルギー的な無駄が大きくなる。また、Sm−Fe−N系磁性材料のように、温度が高くなりすぎると、磁性相バルク中へのZn金属の拡散等により残留磁化等の磁気特性の低下を招く場合もある。この場合、防錆層をなす防錆金属成分は、当然にAl、In及びZnの1種又は2種以上を主体とするものとなる。
【0026】
例えば、防錆金属供給源を金属インゴット又は金属粉末とし、これと目的とする磁性粉末とを耐熱密封容器内に混合状態で封入した後、減圧下で当該金属が気化するのに十分な温度で均一に加熱することで原子状又はクラスター状の金属蒸気として磁性粉末表面に供給することができる。そして、磁性材料と当該金属との反応親和性を利用して磁性材料粉末表面並びに粒界界面に、均一な金属、合金又は金属間化合物から構成される防錆被膜を形成せしめることが可能となる。この場合、防錆被膜源となる金属として低沸点金属であるZnを用い、これと目的とする磁性粉末との混合物をガラス又は金属製容器内に真空封入後、300℃から500℃で数分から数時間、均一に加熱処理することで、原子状又はクラスター状のZn金属蒸気を磁性粉末表面並びに粒界界面に供給することができる。その結果、Zn又はZnと磁性粉末との合金もしくは金属間化合物から構成される厚さ5nmから50μmまでの被膜を形成せしめることが可能となる。
【0027】
他方、防錆金属供給源として、防錆金属成分の有機金属化合物を使用することも可能である。この方法によると、気相あるいは液相(あるいは両者が均一に混合・共存した臨界相)からの有機金属化合物の分解により、磁性粉末に均一な防錆層を形成することが可能となる。具体的には、密封容器内において、有機金属化合物を含有した有機溶媒中に磁性材料粉末を分散させた状態で昇温することにより有機金属化合物を分解・還元し、生成する防錆金属を磁性材料粉末の粒子表面に供給することで、前記防錆層の形成を行なうことができる。
【0028】
有機金属化合物に含有される防錆金属成分としては、Al、Ga、In、Si、Ge、Sn、Ti及びZnの1種又は2種以上を主体とするものを使用できる。いずれも比較的低温で分解可能であり、防錆性に優れた防錆層を均一に形成できる利点がある。この場合、有機金属化合物は、Al、Ga、In、Si、Ge、Sn、Ti及びZnの1種又は2種以上からなる防錆金属原子Mに有機鎖CmHnが結合したものであり、その有機鎖CmHnに含まれる炭素原子数mが1以上(望ましくは3以上)のものを使用することが、分解温度の低温化を効果的に図ることができ、防錆層の製造コスト低減に寄与する。この場合、防錆層をなす防錆金属成分は、当然にAl、Ga、In、Si、Ge、Sn、Ti及びZnの1種又は2種以上を主体とするものとなる。
【0029】
例えば、磁性粉末表面に被膜を形成する防錆金属供給源として低沸点の有機金属化合物(MRx;M=金属元素、R=CmHn)を用い、ステンレス製オートクレーブ等の密封容器中で当該有機金属化合物を含有する有機溶媒中に磁性粉末を分散させ熱処理を施すことができる。そして、有機金属化合物を分解・還元し、生成する金属を磁性粉末表面並びに粒界界面に収着させることにより、金属、合金又は金属間化合物より構成される防錆層を形成することができる。その結果、高い磁気特性並びに耐環境性を有する合金及び金属間化合物系磁性材料を作製することができる。
【0030】
磁性粉末表面を被覆する金属の供給源を有機金属化合物とする場合、そのなかでも比較的分解温度の低いM=Al、Ga、In、Si、Ge、Sn、Ti及びZnを含有する有機金属化合物を用いれば、150℃から500℃で数分から数時間、加熱することで磁性粉末表面並びに粒界界面に金属、合金又は金属間化合物より構成される防錆被膜を形成することができる。特に、磁性粉末表面を被覆する金属の前駆体としてAl、Ga、In、Si、Ge、Sn、Ti及びZnを含有していることに加え、有機鎖を有し(m≧1;望ましくはm≧3)熱分解がより低温で促進される有機金属化合物を用いることが有効である。このようにすると、50℃から500℃で数分から数時間、加熱することで、より高い耐環境性を付与せしめた、高い磁気特性を示す合金及び金属間化合物磁性材料を作製することができる。
【0031】
金属インゴットないし粉末を用いる場合も、あるいは有機金属化合物を用いる場合でも、密封容器内において、第一温度に昇温することにより防錆層を形成した後、第一温度よりも高温の第二温度に昇温して引き続き熱処理を行なうことが、欠陥の少ない均一な防錆層を形成する観点において有利である。第一温度と第二温度は、それぞれ一定の温度範囲内にて連続的あるいは段階的に変化する形で設定されていてもよい。
【0032】
例えば、合金及び金属間化合物系磁性材料粉末表面並びに粒界界面に金属を供給し被膜を形成させた後、そのまま耐熱密封容器内の温度を上昇させ、成膜温度より高温で熱処理を行なう2段階もしくはそれ以上の複数の段階で処理を施すことができる。これにより、表面に析出した金属を磁性材料の表面近傍並びに粒界界面で更に拡散及び反応を促進させることができ、ひいては磁気特性並びに耐環境性をより向上せしることが可能となる。
【0033】
磁性材料粉としては、前述の通り、Sm−Fe−N系金属間化合物又はNd−Fe−TM(遷移金属)−N系金属間化合物を主体とするものを使用することができる。
【0034】
また、磁性材料粉末は、Nd−Fe−B系金属間化合物を主体とするものを採用することもできる。Nd−Fe−B系金属間化合物を主体とするボンド磁石用の磁石粉末(磁性材料粉末)は、以下のような急冷薄帯を粉砕することにより得られる。この急冷薄帯は、所定量の合金成分を含む溶湯を急冷して得られるもので、その平均結晶粒径が1μm以下であり、一般組成式をRxFe100−x−yByで表すことができる。ここで、RはNdを主成分(少なくとも全希土類中に原子含有率が50%以上)とし、その一部がDyないしPrの少なくとも一方によって置換可能な希土類成分であり、9≦x≦15、4≦y≦10である。なお、目的に応じて、RxFe100−x−y−vByMvの形で、Feのさらに一部を別の金属元素(例えば、Coなど:複数種類でもよい)Mにて置換することも可能である。その置換量vは磁気特性の大幅な低下をきたさない範囲にて、例えば0.1≦v<50程度の範囲にて適宜設定される。
【0035】
上記急冷薄帯は、溶湯からの急冷により、飽和磁束密度及び結晶磁気異方性がいずれも大きいR2Fe14B型正方晶金属間化合物相(以下2−14−1相という)が平均粒径1μm以下の微細結晶粒となった組織を生じ、急冷直後の状態で高い保磁力と残留磁束密度を示すので、これを所定の粒子径の粉末に粉砕すればそのまま高性能のボンド磁石用粉末として使用できる。なお、上記平均粒径が1μmを超えると、薄帯の保磁力ないし減磁曲線の角形性が損なわれて充分な磁石性能が得られなくなるので、その平均粒径は上記範囲のものとされ、望ましくは0.5μm以下、さらに望ましくは0.1μm以下とされる。
【0036】
また、前記したFeの置換元素Mとしては、v<30の範囲にてCoにより置換することができる。上記組成範囲内でCoを含有させることにより、2−14−1相のキュリー温度が上昇するとともに残留磁束密度の温度係数が改善され、自動車用モータのような高温の使用環境においても、安定かつ優れた磁気特性が確保されるボンド磁石用急冷薄帯を得ることができる。また、Coの添加により急冷薄帯の化学的安定性が向上し、高温多湿の環境下でも、その薄帯を用いたボンド磁石が腐食されたり磁気特性が低下したりすることが抑制される。しかしながら、その含有量が30原子%を超えると2−14−1相の飽和磁束密度が低下し、最大エネルギー積の低下につながるので好ましくない。なお、Coの含有量は、望ましくは2.5〜20原子%、さらに望ましくは5〜10原子%の範囲内で設定するのがよい。
【0037】
次に、上記以外の成分であるが、希土類成分Rは急冷薄帯の優れた磁気特性を担う2−14−1相の主要構成成分であって、Ndを主体とし、合計の含有量が9〜15原子%の範囲に設定される(すなわち9≦x≦15)。希土類成分Rの含有量が9原子%未満になると、軟磁性相であるα−Fe相の比率が増大し、保磁力の低下を招く。一方、15原子%を超えると希土類成分を主体とする非磁性相の比率が増大し、飽和磁束密度の低下を招く。これらはいずれも最大エネルギー積の低下につながるので、希土類成分Rの含有量は上記範囲のものとされ、望ましくは10〜13原子%、さらに望ましくは11〜12原子%の範囲内で設定するのがよい。
【0038】
また、Ndを主体とする希土類成分Rの一部をDy又はPrで置換することができる。Dyを添加することにより、2−14−1相の異方性磁界が高められ、急冷薄帯の保磁力を大幅に向上させることができる。これにより、例えばコンピュータのハードディスクドライブや自動車用のモータなど、温度が上昇しやすい環境で磁石が使用される場合、高温での保磁力の低下分が補われるので、厳しい温度環境での使用に耐える磁石を得ることができる。その添加量は、例えば0.1〜5原子%の範囲内で適宜選択できる。ただし、添加量が5原子%を超えると2−14−1相の飽和磁束密度が低下し、最大エネルギー積の低下を招くほか、Dyは高価であるため磁石の原料コスト上昇を招くので好ましくない。なお、TbはDyよりもさらに高価であるが、Dyとほぼ同等あるいはそれ以上の保磁力向上効果を有しているので、目的によっては使用可能である。
【0039】
一方、Prは2−14−1相中のNdを置換した場合に、その飽和磁束密度及び異方性磁界の値をそれほど変化させないため、急冷薄帯のNd成分の相当量、場合によってはその全量をPrで置換することも可能であるが、Prの分離希土はNdのそれよりも高価であり、その分離希土の形での配合は原料コストの上昇を招くため好ましくない。しかしながら、Prは希土類原料の分離精製工程においてNdとともに分離抽出され、NdとPrの非分離希土であるジジムはNd及びPrの分離希土よりも安価であるので、これらをジジム(例えばジジムメタル)の形で配合すれば原料コストを低減することができるので好都合である。この場合、最終的に得られる急冷薄帯中のPrの含有量は、使用されるジジム中のPr含有比率により定まることとなる。
【0040】
なお、上記した以外の希土類元素は、いずれもエネルギー積の上昇に寄与しないか逆にこれを低下させるものであり、できるだけ含有されないことが望ましいが、上記Nd、Dy、Pr等の希土類成分とともに、例えばその総量が1原子%以下の範囲内で不可避的に混入するものは含有されていても差しつかえない。
【0041】
次に、Bは、希土類成分Rと同様に2−14−1相の必須構成成分であり、その含有量は4〜10原子%の範囲内(すなわち4≦y≦10)で設定される。Bの含有量が4原子%未満となると、軟磁性のNd2Fe17型相が生成して保磁力の低下を招き、含有量が10原子%を超えると非磁性のNdFe4B4型相が生成して飽和磁束密度が低下する。いずれの場合も、最大エネルギー積を低下させることにつながるので、B含有量は上記範囲のものとされる。Bの含有量は、望ましくは4〜8原子%、さらに望ましくは5〜7原子%の範囲内で設定するのがよい。
【0042】
Feは、2−14−1相の必須構成成分として、その大きな飽和磁化の主要部を担うものである。
【0043】
このような急冷薄帯は、その平均粒子径が500μm以下となるように粉砕してボンド磁石用粉末とすることができる。そして、その粉末に後述の通りコーティング被膜を形成し、さらにエポキシ樹脂、フェノール樹脂、ナイロン樹脂等の樹脂により結合することにより、ボンド磁石とすることができる。ここで、上記ボンド磁石粉末の平均粒子径が500μm以上であると、ボンド磁石内における磁石粉末及び樹脂の分布が不均一となり、ボンド磁石の表面磁束分布のばらつきを生ずる原因となるので、平均粒子径は上記以下のものとされる。一方、平均粒子径が細かくなりすぎると、例えば圧縮成形によりボンド磁石を製造する場合、磁石粉末の流れ性が低下し、その金型へのスムーズな充填が困難になり生産性の低下を引き起こすので、所定の平均粒径以上に設定される。なお、磁石粉末の平均粒子径は、望ましくは50〜400μm、さらに望ましくは100〜300μmの範囲内で設定するのがよい。
【0044】
以下、ボンド磁石用急冷薄帯、それを用いたボンド磁石粉末及びボンド磁石の製造方法について説明する。まず、所定量の合金成分を配合し、次に不活性ガス雰囲気あるいは真空雰囲気等、所定の雰囲気中でその合金成分を溶解する。配合される合金成分は、それぞれの成分を単独で配合しても、Nd−Fe合金やフェロボロン等の母合金の形で配合してもいずれでもよい。また、溶解は、例えば高周波誘導溶解、アーク溶解等公知の溶解方法を用いることができる。
【0045】
次に、その溶湯を急冷凝固させることにより、薄帯状ないしフレーク状の急冷薄帯が製造される。急冷の雰囲気は例えばアルゴン等の不活性ガス雰囲気が用いられ、急冷の方法としては、単ロール法を始め、双ロール法、スプラットクエンチ法、遠心急冷法、ガスアトマイズ法等、各種方法が適用できる。これらのうち、特に単ロール法は、溶湯の冷却効率が高く、またロール周速による冷却速度の調整が容易で、均質で高性能の急冷薄帯を大量生産するのに好適である。この場合、ロール周速を5〜35m/秒、望ましくは10〜30m/秒とすることが、微細で均一な結晶粒を有し、磁気特性に優れた急冷薄帯を得る上で望ましい。
【0046】
得られた急冷薄帯は、スタンプミル、フェザーミル、ディスクミル等を用いる公知の粉砕方法により、前述の平均粒子径となるように粉砕され、ボンド磁石用粉末とされる。なお、粗粉砕した後にさらに微粉砕する二段階(あるいはそれ以上の多段階)により粉砕を行ってもよい。なお、粉砕後の粉末は、適宜メッシュ等により整粒して粒度調整することが望ましい。
【0047】
ここで、上記急冷凝固により得られる急冷薄帯は、その粉砕前又は粉砕後に400〜1000℃の温度範囲において熱処理することができる。急冷直後の薄帯は、例えば急冷ロールとの接触部付近等、冷却速度の特に大きくなる部分に非晶質部を生じる場合がある。この非晶質部は軟磁性であり、保磁力、減磁曲線の角型性、エネルギー積の低下等を引き起こす場合がある。そこで、急冷薄帯に対し上記熱処理を行なうことにより、急冷直後に生じていた上記非晶質部を結晶化することができ、エネルギー積の低下等を防止することができる。熱処理温度が400℃より低い場合は、上記非晶質部の結晶化が充分進まず、上述の効果が充分得られない。一方、熱処理温度が1000℃を超えると、結晶粒が成長して粗大化し、保磁力ないしエネルギー積が却って低下する。従って、熱処理温度は上述の範囲内で設定され、望ましくは500〜800℃、さらに望ましくは600〜700℃の範囲内で設定される。
【0048】
以上の方法により得られるボンド磁石用粉末に本発明の方法により前記した防錆層を形成し、その後樹脂成分と混合し、加圧成形又は射出成形することによりボンド磁石が製造される。加圧成形による場合は、上記磁石粉末に、エポキシ樹脂等の粉末状の熱硬化性樹脂を所定量、例えば1〜5重量%程度混合し、例えばダイ及びパンを有した金型によるプレス成形等により、例えば5〜10t/cm2程度の加圧力で圧縮成形する。成形後、得られた成形体を所定温度、例えば80〜180℃程度に加熱することにより樹脂を硬化させ、ボンド磁石を得る。なお、樹脂硬化のための加熱は、上記加圧成形中に行ってもよい。この方法によれば、得られるボンド磁石中の磁石粉末の密度を高くでき、小型モータ用の高性能リング磁石等を製造するのに適している。
【0049】
一方、射出成形による場合は、まず、ナイロン樹脂等の熱可塑性樹脂を磁石粉末に対し、圧縮成形の場合よりやや多い量、例えば10〜30重量%程度添加し、これを混練して成形用のコンパウンドを作製する。そして、このコンパウンドを加熱軟化させ、所定の成形機を用いて金型のキャビティに射出成形することにより、所望の形状のボンド磁石を得る。この方法により得られるボンド磁石は、磁石粉末密度がやや低いため、性能は圧縮成形によるものに及ばないが、多様で複雑な形状の磁石を容易に製造できる利点があり、モータスピンドル等の付属部品を上記コンパウンドとともに一体成形(インサート成形)することもできる。例えばリング状ボンド磁石は、ラジアル着磁されてモータロータあるいはステータとして利用される。
【0050】
【発明の実施の形態】
以下、本発明の実施の形態を、図面及び実験データに基づき説明する。
(実施の形態1)
本発明の収着法を用いて希土類磁性材料のSm−Fe−N系に対して防錆金属供給源をZn粉末とし、実施した例を以下に示す。ここで用いているのは、防錆金属供給源を金属インゴット又は金属粉末とし、これと目的とする磁性粉末とを耐熱密封容器内に混合状態で封入した後、減圧下で当該金属が気化するのに十分な温度で均一に加熱することで原子状又はクラスター状の金属蒸気として磁性粉末表面に供給し、磁性材料と当該金属との反応親和性を利用して磁性材料粉末表面並びに粒界界面に、均一な金属、合金又は金属間化合物から構成される防錆被膜を形成せしめる方法である(以下、第一法という)。
【0051】
Sm−Fe−N系磁性材料を、界面活性剤を添加した非極性有機溶媒中で湿式ボールミル粉砕することで、雰囲気中の酸素もしくは水に由来する酸化を受けにくく均一な粉砕が可能となり、酸素含有量が少なく粒度分布の小さい微粉末を作製することができる。
【0052】
作製したSm−Fe−N系微粉末に対して5重量%以下のZn金属を混合し、ガラス容器に導入する。また、これら混合粉末と共に鋼球をガラス容器内に導入することで収着処理過程に生じる粉末間の凝集を効果的に抑制することが可能となり、均一な斑のない被膜が形成できる。ガラス容器内は1×10−6Torr程度まで真空排気した後封管する(図1,2参照)。
【0053】
真空封管したガラス容器全体を、300から500℃の種々の温度で、2時間均一に加熱することでZn金属を気化させ、このZn蒸気中に磁性微粉末を曝すことでその表面へのZn収着を促進する。
【0054】
収着処理を施した磁性微粉末の残留磁束密度Br並びに保磁力Hcjの収着処理温度に対する依存性を図3に示す。従来、保磁力Hcjの増大は、Zn金属の融点(419.6℃)付近での加熱処理によりみられ、十分な保磁力Hcjを得るためには蒸着あるいはメッキさせるZn金属量は磁性粉末に対して10重量%以上必要であったが、本発明では、保磁力Hcjの向上は従来の手法より低温の350℃における収着処理からでも顕著となり、そのときのZn金属量も磁性粉末に対して4重量%程度と少量で十分な保磁力の向上がみられた。また、収着処理を施した磁性粉末では、残留磁束密度Brも0.8Tを示し、蒸着法及び電解メッキ法で得られ、高保磁力化のための熱処理を施した磁性粉末と同等あるいはそれ以上の高残留磁束密度Br値が得られた。
【0055】
次に、図5に、収着温度を350℃と固定し、収着処理時間を変化させた時の保磁力Hcjの値を示す。また、比較として蒸着法により作製された被覆粉末の保磁力変化も同時に示す。
【0056】
蒸着法により作製された被覆粉末では1MA/m程度の保磁力を得るためには蒸着被覆処理後、380℃、30時間程度の追加の熱処理が必要であることに対して、今回開発した収着法を用いて作製したZn/Sm−Fe−N系粉末は、350℃、2時間という低温及び短時間という条件で十分に大きな保磁力が得られ、1段階の処理でも効率よく磁気特性の向上が可能であることが明らかとなった。これは、粉末表面上への高活性な金属の収着が3次元的に均一に進行するためであり、かつ磁性粉末表層部の活性なクラック並びに結晶粒界等からも収着金属の浸透・拡散が進行するため、より容易に反応が進行するものと考えられる。
【0057】
図4に、第一法に係る収着法を用いて被覆したZn/Sm−Fe−N系被覆粉末の保磁力のZn金属量依存性を示す。また比較として蒸着法により作製した被覆粉末の保磁力のZn金属量依存性を示す。
【0058】
蒸着法では、保磁力の値を向上させるためには5〜6重量%のZn金属が最低限必要であると考えられるが、本発明による収着法では、Zn金属量は3重量%程度で十分であることがわかる。これにより、非磁性金属の存在による磁束密度の低下が抑制され、かつ被膜供給源として磁性粉末と混合する金属量を少なくすることが可能となる。
【0059】
図6に、前記第一法に係る収着作用を利用した手法を用いてZn金属を表面に収着した磁性微粉末の走査型電子顕微鏡(SEM)写真である。表1には、電子プローブX線マイクロアナライザ(EPMA)による磁性微粉末表面の被覆金属Znの存在比をSmと比較して示す。なお、表1における磁性材料の測定表面は、図6中に示されている磁性材料の表面に対応する。これより、磁性微粉末の表面にはほぼ均一にZn金属が被膜を形成していることがわかる。
【0060】
【表1】
【0061】
図7には、前記第一法において、加熱温度を350℃又は500℃としたときの、Zn金属を表面に収着被覆したSm−Fe−N系磁性微粉末の薄膜X線パターンを示す。比較として、防錆処理を施していないSm−Fe−N系磁性微粉末の薄膜X線パターンも併せて示す。防錆処理を施していない磁性微粉末は、大気中で表面が酸化されアモルファス相を形成しているが、350℃で収着処理を施した磁性微粉末は若干のα−Feの析出はみられるもののTh2Zn17型の母構造が残存し、酸化を効果的に抑制していることがわかる。
【0062】
図8には、前記第一法により防錆処理を施したSm−Fe−N系磁性微粉末の大気中における保磁力Hcjの経時変化を示す。比較として、特開平08−143913号に開示されている有機金属化合物の一つであるジエチル亜鉛(Zn(C2H5)2)を紫外光により分解し、被膜金属を生成する手法を用いてZn金属を表面被覆したSm−Fe−N系磁性微粉末の保磁力Hcjの経時変化も併せて示す。特開平08−143913号による被覆方法で防錆処理を施したSm−Fe−N系磁性微粉末の保磁力Hcjは、大気中、50℃ではその値を維持することはできずに徐々に低下した。これに対して、本発明による防錆処理を施したSm−Fe−N系磁性微粉末の保磁力Hcjは、大気中、50℃で600時間放置してもその値に変化はなく、高い値を維持していたことから、収着法により形成された被膜は防錆効果により優れることが明らかとなった。
【0063】
(実施の形態2)
実施の形態1と類似の第一法により、前記希土類磁性材料のNd−Fe−B系に対し防錆金属供給源を、Zn粉末を用いて実施した例を以下に示す。まず、異方化処理として水素化−不均化−脱水素化−再結合法(HDDR法として周知である)を施したNd−Fe−B系磁性粉末に対して5重量%以下のZn金属を混合し、ガラス容器に導入した後、このガラス容器は1×10−6Torr程度まで真空排気した後封管する。また、Nd−Fe−B系磁性粉末とZn金属粉末との混合粉末と共に鋼球等の混合媒体をガラス容器に導入することで、収着処理時に効果的に凝集を抑制できる(図1、2参照)。
【0064】
真空封管したガラス容器全体を、300から450℃の種々の温度で、2時間均一に加熱することでZn金属を気化させ、このZn蒸気中にNd−Fe−B系磁性微粉末を曝すことで粉末の表面並びに粒界界面への収着を促進する。HDDR法によりえられる粒子の表層部には、Nd2Fe14B結晶粒子間に多数のクラックが形成されることから、粒界界面へのZnの収着を行なう上で有利であると考えられる。
【0065】
図9はFE−SEM 組成の組成像を、粉末粒子全体について撮影倍率1500倍で示したものである。また、図10はFE−SEM 組成の組成像を、粉末粒子の表面部分について撮影倍率5000倍で示したものである。これらの図より、粉末表面には厚さ3〜4μmの表面層が存在し、この層が粒子全体を均一に取り囲んでいることがわかる。同様の表面層は、Sm−Fe−N系並びにSm−Fe−TM−N系粉末粒子でも行なうことができる。
【0066】
一方、これらの表面層をFE−SEM並びにTEMで観察した結果を図11及び12に示す。図より、表面層は微細なNd2Fe14B結晶粒子より構成され、さらにそれらの結晶粒界は幅5−40nmの粒界相で被われていることが明らかとなった。なお、これらの粒界層は、EDXによる組成分析からZn金属だけではなく、ZnとNd又はFeとの合金あるいは化合物相から構成されていることが確認できた。ただし、Znの含有量が50質量%以上であり、Znを主成分とするものであることもわかった。
【0067】
次に、収着処理を施した異方性Nd−Fe−B系磁性粉末の磁気特性を表2に示す。
【0068】
【表2】
【0069】
第一法に係る収着法を用いて防錆処理を施したNd−Fe−B系磁性粉末の磁気特性は、収着処理温度を上昇させることで、原料磁性粉末の磁気特性と比較して低下した。300℃における収着処理では、磁性粉末と混合したZn金属粉末が気化せず残存した。
【0070】
また、350℃で収着処理を施したところ、収着時間を長くするとともに磁気特性は低下した。しかし、収着処理を施した後でも非磁性のZn金属を被覆したことによる希釈効果が生じ若干の低下はみられたが依然1.3T程度の高い残留磁束密度Brを維持し、最大エネルギー積(BH)maxも300kJ/m3と非常に高い特性を示すことが明らかとなった(図13参照)。
【0071】
図14並びに図15には、第一法に係る収着法により防錆処理を施したNd−Fe−B系磁性粉末を原料とした圧縮成形樹脂ボンド磁石を大気中、80℃並びに120℃に放置した時の磁束密度の経時変化をそれぞれ示す。
【0072】
第一法に係る収着法により防錆処理を施したNd−Fe−B系磁性粉末を用いて作製した圧縮成形樹脂ボンド磁石の減磁率は、80℃及び120℃のどちらにおいても、未処理のNd−Fe−B系磁性粉末を用いたボンド磁石より小さく、更に1000時間後最着磁し永久減磁率を求めた結果を表3に示す。本発明による収着法で表面被覆を施したZn/Nd−Fe−B系磁性粉末を用いて作製したボンド磁石の永久減磁率は、80℃並びに120℃ではそれぞれ−3.9%並びに−3.6%と、未処理の粉末を用いたボンド磁石のそれら(−8.1%及び−10.9%)に比べ絶対値が小さく、大気中における耐久性が大幅に改善されることが明らかとなった。
【0073】
【表3】
【0074】
次に、本発明における収着法を用いて表面被覆を施したZn/Nd−Fe−B系磁性粉末を原料として作製した樹脂ボンド磁石の残留磁束密度Br並びに保磁力Hcjの120℃における温度係数α(Br)並びにβ(Hcj)をそれぞれ表4に示す。
【0075】
【表4】
【0076】
表4より、本発明における収着処理を施したZn/Nd−Fe−B系磁性粉末を原料とする樹脂ボンド磁石の保磁力Hcjの温度係数β(Hcj)は未処理の粉末を用いたボンド磁石並びに市販の異方性ボンド磁石MQA−Tのそれと比較しても同等の値であったのに対し、残留磁束密度Brの温度係数α(Br)では大幅な向上がみられ、Nd−Fe−B系ボンド磁石の耐熱性を改善することが可能であった。
【0077】
種々の条件により収着処理を施したNd−Fe−B系磁性粉末を原料として作製した樹脂ボンド磁石の保磁力Hcj並びに残留磁束密度Brの150℃における温度係数α(Br)並びに(Hcj)を表5にそれぞれ示す。
【0078】
【表5】
【0079】
表から、収着処理を施したNd−Fe−B系磁性粉末を原料とする樹脂ボンド磁石では、残留磁束密度Br並びに保磁力Hcjの温度係数α(Br)並びに(Hcj)が収着処理時間を長くすることで改善されることがわかる。また、Nd−Fe−B系磁性粉末の粒径を小さくしても、同等の温度係数を有する樹脂ボンド磁石を作製することが可能である。
【0080】
(実施の形態3)
本実施形態で用いているのは、磁性粉末表面に被膜を形成する防錆金属供給源として低沸点の有機金属化合物(MRx;M=金属元素、R=CmHn)を用い、ステンレス製オートクレーブ等の密封容器中で当該有機金属化合物を含有する有機溶媒中に磁性粉末を分散させ熱処理を施すことで、有機金属化合物を分解、還元し、生成する金属を磁性粉末表面並びに粒界界面に収着させることにより金属、合金又は金属間化合物より構成される防錆被膜を形成せしめる方法である(以下、第二法という)。以下、有機金属化合物の熱分解による防錆処理を、希土類磁性材料のSm−Fe−N系に対してジエチル亜鉛(Zn(C2H5)2)を用いて実施した例を以下に示す。なお、有機金属化合物としては、これ以外にも、Al(C2H5)3、Ga(C2H5)3、In(C2H5)3、Si(CH3)4、Ge(CH3)4、Sn(CH3)4、Ti(CH3)4等を用いることが可能である。
【0081】
Sm−Fe−N系磁性材料を、界面活性剤を添加した非極性有機溶媒中で湿式ボールミル粉砕することで、雰囲気中からの酸化を受けにくく均一な粉砕が可能となり、酸素含有量が少なく粒度分布の狭い微粉末を作製することができる。作製したSm−Fe−N系磁性微粉末、分散媒としてジエチル亜鉛を含有する非極性有機溶媒を不活性ガスの充填されたグローブボックス中でそれぞれオートクレーブ中に導入し、密封する。密封したオートクレーブを、ジエチル亜鉛の熱分解温度以上で、種々の時間振とうしながら均一に加熱することでジエチル亜鉛を熱分解させ、Sm−Fe−N磁性粉末表面の被覆を行なう(図16参照)。ここで、ジエチル亜鉛(Zn(C2H5)2)の熱分解温度は170℃から230℃であることが報告されている(Applied Organometallic Chemistry, 5, 337 (1991))。
【0082】
表6に、0.15gのジエチル亜鉛を添加し熱分解温度より高い種々の加熱温度で行い表面被覆を施したZn/Sm−Fe−N系磁性粉末の残留磁束密度Br、保磁力Hcj並びに酸素量を、原料粉末のそれらと併せて示す。ここで、ジエチル亜鉛の添加量0.15gは、加熱処理により全て熱分解すると仮定すると磁性粉末に対して3重量%の被膜金属を生成することができる。
【0083】
【表6】
【0084】
表6より、本発明による有機金属化合物の一つであるジエチル亜鉛の熱分解を利用して金属被覆を施したZn/Sm−Fe−N系磁性微粉末において、熱分解被覆処理を350℃で行なうことにより保磁力Hcjの向上がみられた。このような保磁力Hcjの増加は、前述したようにZn金属の融点(419.6℃)付近又はそれ以上の温度で加熱処理することでみられ、十分な保磁力Hcjを得るためには蒸着法あるいは電界メッキ法ではSm−Fe−N磁性粉末に対して約10重量%以上のZn金属量が必要であったが、本発明における収着法と同様、有機金属化合物の熱分解により活性な金属を磁性粉末表面に供給することで、従来の熱処理温度より低温の350℃から保磁力Hcjの向上がみられ、さらに被覆する金属量に関しても約2.5重量%程度と非常に少量のZn金属量でも保磁力Hcjの増加に効果がみられた。
【0085】
一方、本発明における有機金属化合物としてジエチル亜鉛の熱分解により生成する金属を用いて防錆処理を施したZn/Sm−Fe−N系磁性微粉末の残留磁束密度Brは、前述した収着処理を施したZn/Sm−Fe−N系磁性微粉末のそれと同程度の0.8Tであり、蒸着法及び電界メッキ法で被覆処理を施し、引き続き高保磁力化処理を行った磁性粉末の残留磁束密度Brと同等あるいはそれ以上の値が得られた。
【0086】
また、表6より、本発明による有機金属化合物の熱分解の手法を用いて作製したZn/Sm−Fe−N系磁性粉末は、被膜形成処理工程において大幅な酸素含有量の増加は起こらず、分散媒として用いた有機溶媒が磁性粉末を分散させると同時に、酸素源から磁性粉末を遮蔽することで酸化を効果的に抑制することが可能となる。
【0087】
図17に、本発明による有機金属化合物の熱分解により防錆処理を施したZn/Sm−Fe−N磁性粉末の保磁力Hcjの大気中、50℃における経時変化を示す。被覆粉末の比較として、特開平08−143913号に開示されている有機金属化合物を、光分解を用いて金属を生成し、これを用いて表面に被膜を形成させる手法によりZn金属被覆を施したSm−Fe−N磁性粉末の保磁力Hcjの経時変化も併せて示す。特開平08−143913による手法で被覆を施したZn/Sm−Fe−N系磁性粉末の保磁力Hcjは、大気中、50℃では初期値を維持することはできず、徐々に低下した。これに対して、本発明による有機金属化合物の熱分解による防錆処理を施したZn/Sm−Fe−N磁性不末の保磁力Hcjは、大気中、50℃で放置しても高い値を維持し、優れた耐環境性を有することが明らかとなった。
【0088】
(実施の形態4)
実施の形態3と類似の第二法に係る有機金属化合物の熱分解により防錆処理を施した、希土類磁性材料のNd−Fe−B系に対して実施した例を以下に示す。表7に、本発明によるジエチル亜鉛の熱分解により生成する金属を用いて表面被覆を行ったNd−Fe−B系磁性粉末の磁気特性を、比較試料として特開平08−143913に開示の手法を用いて表面被覆したNd−Fe−B系磁性粉末の磁気特性を併せて示す。
【0089】
【表7】
【0090】
表より、本発明による被覆法を用いて防錆処理を施したNd−Fe−B磁性粉末は残留磁束密度Br、保磁力Hcj並びに最大エネルギー積(BH)max値は、依然高い値を保持していたが、原料粉末並びに特開平08−143913の手法による被覆粉末の値と比較して有機金属化合物の熱分解温度での加熱処理のため若干低い値を示した。しかし、特開平08−143913の手法でNd−Fe−B磁性粉末の表面を被覆したZn金属量は0.02重量%であった。これに対して、本発明によるジエチル亜鉛の熱分解で表面被覆を行ったZn/Nd−Fe−B磁性粉末のZn金属量は0.58重量%と、特開平08−143913の手法と比較して大幅に被覆量が向上し、高い磁気特性を保持したまま多量のZn金属で表面を被覆することが可能であった。
【0091】
図18に、本発明による有機金属化合物の熱分解で表面被覆を施したZn/Nd−Fe−B磁性粉末の断面の走査型電子顕微鏡(SEM)写真を示す。図19並びに表8は、図18の磁性粉末表面から内部方向へのネオジウムNd並びにZnの存在比を電子プローブX線マイクロアナライザ(EPMA)により測定した結果である。これより、ジエチル亜鉛の熱分解により生成し、磁性粉末表面に析出したZnは、熱分解処理温度で表面から内部に拡散しており、一方、磁性材料の構成成分であるNdは表面へ拡散していることから、有機金属化合物であるジエチル亜鉛の熱分解により表面に析出したZn金属は、熱分解処理温度において磁性材料の構成成分と相互拡散し、より密着性の高い防錆被膜を形成していることがわかる。
【0092】
【表8】
【0093】
本発明による有機金属化合物の熱分解を利用した収着法を用いて防錆処理を施したZn/Nd−Fe−B磁性粉末を原料とした異方性樹脂ボンド磁石を試作し、これの大気中、80℃における磁束密度の経時変化を追跡し減磁率を計測した。その結果を、未処理のNd−Fe−B磁性粉末を原料とした樹脂ボンド磁石の同じ条件における減磁率を併せて図20に示す。これより、本発明による被覆法で表面被覆したNd−Fe−B磁性粉末を用いたボンド磁石は、長期間高い磁束密度を維持し、高い耐環境性を有することがわかった。
【0094】
【発明の効果】
本発明では、合金及び金属間化合物系磁性材料の表面防錆処理として従来用いられてきた手法では、粉末表面に対して平面(2次元)的に被膜金属の析出が進行するため斑が生じ、表面を完全に覆うためには多量の被覆金属が必要であったことに対して、希土類磁性材料の表面処理を3次元的に金属を析出させることで行なうことにより、均一で耐食性に優れた防錆被膜の作製が可能であると共に、被覆金属量の低減化がなされ非磁性金属の引き起こす希釈効果による磁化の低下も避けることができ高磁化の磁性材料が作製される。さらに、表面近傍における被覆金属と構成成分との相互拡散も従来の手法と比較して低温で進行するため、高温での熱処理を施すことなく密着性の高い被膜が形成され大幅な磁気特性の低下が避けられることに加えて、一段階で磁気特性が向上するため多段階での複雑なプロセスが不要となる。
【0095】
すなわち、本発明では、酸化により磁気特性の劣化が生じる合金及び金属間化合物系磁性材料に対して、密封容器中で加熱により活性の高い金属を粉末表面に供給することで、材料の複雑な立体部位表面に隈なく金属が析出し、均一な防錆被膜を形成することができることに加え、従来の手法に比べ低温でも下地となる磁性材料の構成成分との相互拡散及び反応が進行し、磁気特性の向上が可能となる。さらに、このように生成した金属防錆被膜は、対象とする磁性材料の不可避的な酸化を効果的に抑制し、それら本来の高い磁気特性を大気中でも維持することに有効である。これにより、磁性材料の応用分野として近年その需要を拡大してきているボンド磁石の高性能化並びに高耐食性化に大きく貢献することが期待できる。
【図面の簡単な説明】
【図1】本発明における収着法に用いた装置の概要図である。
【図2】本発明における収着法の密封容器の断面図である。
【図3】Zn金属蒸気を、収着法を用いることで表面処理を施したSm−Fe−N系磁性微粉末の残留磁束密度Br並びに保磁力Hcjの処理温度に対する依存性である。
【図4】本発明による収着法を用いて被覆したZn/Sm−Fe−N系被覆粉末の保磁力のZn金属量依存性である。
【図5】本発明の収着法で、処理温度を350℃と固定し、収着処理時間を変化させた時のZn/Sm−Fe−N系磁性粉末の保磁力Hcjの変化である。
【図6】本発明による収着法を用いて表面にZn金属の被膜を形成させた磁性微粉末の走査型電子顕微鏡写真である。
【図7】本発明による収着法を用いて防錆処理を施したSm−Fe−N系磁性微粉末と防錆処理を施さないSm−Fe−N系磁性微粉末の薄膜X線パターンである。
【図8】本発明によるZn金属蒸気の収着法を用いて表面処理を施したSm−Fe−N系磁性微粉末並びに特開平08−143913号に開示されている手法で被覆を施したSm−Fe−N系磁性微粉末の大気中、50℃における保磁力Hcjの経時変化である。
【図9】本発明によるZn金属蒸気の収着法を用いて表面処理を施したNd−Fe−B系磁性微粉末の撮影倍率1500倍のFE−SEM組成像である。
【図10】本発明によるZn金属蒸気の収着法を用いて表面処理を施したNd−Fe−B系磁性微粉末の撮影倍率5000倍のFE−SEM組成像である。
【図11】本発明によるZn金属蒸気の収着法を用いて表面処理を施したNd−Fe−B系磁性微粉末の撮影倍率35000倍のFE−SEM組成像である。
【図12】本発明によるZn金属蒸気の収着法を用いて表面処理を施したNd−Fe−B系磁性微粉末の撮影倍率25000倍のTEM明視野像である。
【図13】本発明の収着法により被覆したZn/Nd−Fe−B系磁性粉末と、原料として用いたNd−Fe−B系磁性粉末の減磁曲線である。
【図14】本発明の収着法で防錆処理を施したNd−Fe−B系磁性粉末を原料とした圧縮成形樹脂ボンド磁石の大気中、80℃における磁束密度(減磁率)の経時変化である。
【図15】本発明の収着法で防錆処理を施したNd−Fe−B系磁性粉末を原料とした圧縮成形樹脂ボンド磁石の大気中、120℃における磁束密度(減磁率)の経時変化である。
【図16】本発明における有機金属化合物の熱分解に用いるオートクレーブ容器内での防錆処理スキームである。
【図17】本発明による有機金属化合物の熱分解により防錆処理を施したZn/Sm−Fe−N磁性粉末の保磁力Hcjの大気中、50℃における経時変化である。
【図18】本発明による有機金属化合物の熱分解で被覆を施したZn/Nd−Fe−B磁性粉末の断面の走査型電子顕微鏡(SEM)写真である。
【図19】図3のZn/Nd−Fe−B磁性粉末表面から内部方向へのネオジウムNd並びにZnの存在比を電子プローブX線マイクロアナライザ(EPMA)により測定した結果である。
【図20】本発明による有機金属化合物の熱分解を用いて防錆処理を施したZn/Nd−Fe−B磁性粉末を原料とした異方性樹脂ボンド磁石の大気中、80℃における磁束密度の経時変化である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a magnetic material, a magnetic material powder with a rust prevention layer, and a bonded magnet using the same.
[0002]
[Prior art]
In recent years, high-performance rare earth permanent magnet materials mainly composed of Fe, such as Nd—Fe—B based magnet materials or Sm—Fe—N based magnet materials (hereinafter referred to as Fe based rare earth magnet materials, and permanent elements formed thereby) In particular, Nd-Fe-B magnet materials have excellent magnetic properties, and therefore various electric devices, motors for automobiles, and voice coil motors for computers have been developed. Widely used in etc. Nd—Fe—B magnet materials are roughly classified into three types, sintered magnets, hot-worked magnets, and bonded magnets (resin bonded magnets), depending on the manufacturing method. Among these, the bond magnet is prepared by mixing and melting a predetermined amount of alloy components, and then pulverizing a quenched ribbon obtained by rapidly solidifying the molten metal by a single roll method or the like to produce a raw magnet powder, and the powder is epoxy resin, or It is molded together with a resin binder such as nylon resin to obtain a magnet having a desired shape. The magnet powder is Nd, which is the main hard magnetic phase.2Fe14The B-type tetragonal intermetallic compound phase (hereinafter referred to as 2-14-1 phase) has a fine grain structure with a single domain particle diameter or less, and exhibits a high coercive force in a powder state. Unlike sintered magnets and rolled magnets, such bonded magnets require almost no post-molding processing, have high dimensional accuracy, excellent shape flexibility, and high productivity. Used in large quantities. On the other hand, the Sm—Fe—N-based magnet material is in a situation where its use as a bonded magnet is being sought because the Sm—Fe—N-based compound phase, which plays a major role in magnetism, is easily decomposed at high temperatures.
[0003]
For example, the Fe-based rare earth magnet material as described above contains Fe as a main component and contains a relatively large amount of chemically active rare earth elements. Corrosion may be a problem in an environment that tends to rise. In general, an Fe-based rare earth magnet material has a rare earth component in excess of the stoichiometric ratio of an intermetallic compound that forms a magnetic phase (for example, the 2-14-1 phase described above) in order to ensure stable magnetic properties. In many cases, the composition is adjusted so as to contain a rare earth component, and the excess rare earth component becomes a rare earth-rich phase to form a multiphase structure together with the magnetic phase. In such a case, it can be said that corrosion is more likely to proceed due to the local battery reaction between different phases. If such corrosion progresses, not only will the performance of the electronic equipment itself such as a motor using the Fe-based rare earth magnet as an excitation medium be deteriorated, but it may also adversely affect peripheral circuits and the like due to the scattering of corrosion reaction products. is there.
[0004]
In addition, the situation in which corrosion is likely to occur does not change even at the raw material powder stage. For example, if the powder is exposed to the atmosphere for a long time (particularly in high humidity), it is maintained due to oxidative degradation of the powder. Degradation of magnetic properties such as magnetic force and maximum energy product is unavoidable.
[0005]
Therefore, in the rust prevention treatment for the above alloy and intermetallic compound magnetic material, appropriate rust prevention treatment is required. Conventionally, vapor deposition and electrolytic plating have been used as specific methods. However, in the former method, the formation of the coating on the surface of the magnetic material proceeds only from the direction of the evaporation source. It is very difficult. In addition, it is conceivable that the laminated coated metal causes aggregation between the powders, and it is difficult to perform a coating process on a large amount of magnetic powder. On the other hand, in the latter case, in order to form a uniform film on the surface oxide layer of the magnetic powder having low electrical conductivity, the electrolyte used for forming the film may seriously damage the magnetic material, especially the raw material powder. There existed problems, such as requiring the multistep process pre-coated with Cu etc. with high electrical conductivity as pre-processing.
[0006]
In addition, alloys and intermetallic compound magnetic powders, particularly rare earth-Fe-based magnetic materials, have high reactivity between the oxygen source present in the atmosphere and the rare earth metal component, and the accompanying deterioration in magnetic properties becomes an important issue. Therefore, the coating technique requires that the surface of the magnetic material powder can be completely coated. For this purpose, in the former method, in order to form a complete film, a large amount of metal (usually using a non-magnetic metal) must be deposited, and this non-magnetic metal causes a dilution effect and reduces the magnetization. Invite. On the other hand, in the latter case, a uniform film can be formed. On the other hand, oxygen in the oxide film on the surface of the magnetic material generated during plating diffuses and permeates into the magnetic powder during the heat treatment process at the time of manufacturing the bonded magnet. Magnetic properties are degraded.
[0007]
In addition, when the alloy and the intermetallic compound magnetic powder are Sm-Fe-N-based, the metal formed as a film can modify the surface of the magnetic powder by heat treatment to improve the magnetic properties, particularly the coercive force Hcj. Are known. In this heat treatment, heating is performed at a high temperature (˜600 ° C.) in order to efficiently promote the mutual diffusion and reaction between the coated metal and the constituents of the magnetic material (for example, disclosed in JP-A-05-234729), Or it is necessary to carry out for a long time (30 hours or more) at low temperature (380-400 degreeC) (refer K. Makita, S. Hirosawa, J. Alloys Compd., 260 (1997) 236-241).
[0008]
[Problems to be solved by the invention]
In the surface coating by the current vapor deposition method and electrolytic plating method currently used for alloys and intermetallic magnetic materials, the former is finely pulverized and chemically unstable. Metal deposits only along the direction from the vapor deposition source, film formation occurs, and spots are formed on the film. In addition, since it is a dry process, it tends to agglomerate between powders, so that a surface with inferior rust prevention ability or a surface with no coating formed partially remains, and as a result, oxidation proceeds from this region and the magnetic properties are reduced. It will still cause degradation. Furthermore, it has been difficult to form a protective film on the inner surfaces such as cracks and grain boundaries that tend to be a path for oxygen to diffuse into the magnetic material.
[0009]
Also, in the electroplating method, the electrolytic solution used causes damage such as oxidation to the active magnetic material itself, so that the magnetic properties are significantly lowered along with the rust prevention treatment, and the conductivity formed on the surface of the magnetic powder is low. The oxide layer hinders electroplating, and has a drawback that pretreatment is required to produce a uniform film.
[0010]
Therefore, in order to produce a magnetic material having excellent corrosion resistance that can maintain high magnetic properties for a long period of time without depending on the storage and use atmosphere, the magnetic material itself is damaged. Therefore, it is necessary to establish a new technique for forming a uniform rust-proof coating on the surface without imparting rust.
[0011]
In the conventional film-forming technique by the vapor deposition method, it is difficult to uniformly coat the individual surfaces of the alloy and the intermetallic compound-based magnetic material, and thus desired corrosion resistance has been achieved by coating with an excessive amount of metal. Along with this, there is a disadvantage that a dilution effect is caused by a large amount of coated metal (in many cases, non-magnetic metal is used) and the magnetic properties of the magnetic material are lowered. Therefore, in order to avoid such deterioration of the magnetic properties, it is desirable to make the rust preventive coating formed on the surface of the magnetic material more uniform and to reduce the amount of metal used as the coating metal as much as possible.
[0012]
On the other hand, by coating the metal on the surface of the alloy and intermetallic compound-based magnetic material, by promoting the mutual diffusion of the metal in the vicinity of the surface of the magnetic material by heating the metal in an inert gas atmosphere or in a vacuum, In some cases, the adhesion between the metal coating and the surface of the magnetic material can be increased to improve the anticorrosion property, and further the environmental resistance and magnetic properties of the magnetic material can be improved. However, since this heat treatment has been performed at a high temperature (˜600 ° C.) that is higher than the melting point of the metal used as the coating, it is inevitable that the original magnetic properties will be deteriorated due to the progress of oxidation, especially in the case of fine powder of magnetic material. . This is considered to be caused by modifying the magnetic phase in which the oxide layer produced in the step of forming a film by heat treatment exists in the vicinity of the surface of the magnetic powder. Therefore, in order to maintain or improve the high magnetic properties inherent to the magnetic material after such heat treatment, it is necessary to prevent the magnetic material from being deteriorated such as oxidation during the metal coating, and the heat treatment temperature is low. However, it is necessary to establish a method for effectively improving the corrosion resistance and magnetic properties.
[0013]
An object of the present invention is a material of a permanent magnet used in a magnetic circuit of various motors, actuators, etc., and relates to an alloy typified by a rare earth-based material and an intermetallic compound-based magnetic material. Effectively suppresses the deterioration of magnetic properties due to oxidation caused by oxygen, water, etc. existing in the storage and use atmosphere, which is the cause, and effectively forms a uniform anti-corrosion coating with strong adhesion on the magnetic powder surface. Thus, an object of the present invention is to provide a method for producing a magnetic material capable of ensuring the stability of the magnetic properties of the magnetic material, a magnetic material powder with a rust prevention layer obtained thereby, and a bond magnet using the same. More specifically, by supplying a highly reactive metal as a coated metal to the surface of the alloy and intermetallic compound-based magnetic material, it is possible to reduce the amount of metal on the powder surface by utilizing the reaction affinity between this and the components of the magnetic material. Precipitates and promotes the formation of a uniform rust-preventive coating, thereby providing oxidation resistance, and by allowing the supplied metal to interdiffusion and react with components near the surface of the magnetic material to provide strong adhesion Technology to further improve the environmental resistance and magnetic properties of magnetic materials, and to contribute to improving the stability and durability of bonded magnets using the obtained surface-coated magnetic powder as a raw material Is.
[0014]
[Means for solving the problems and actions / effects]
In order to solve the above-mentioned problems, the magnetic material powder with a rust-preventing layer of the present invention is composed of a magnetic alloy or a magnetic intermetallic compound, and the magnetic material powder having crystal grain boundaries in the particles, the particle surface layer portion and the particles inside A rust preventive layer mainly composed of a rust preventive metal component having a rust preventive action on the magnetic material powder is formed in a region along the crystal grain boundary.
[0015]
The bonded magnet of the present invention is characterized in that the magnetic material powder with a rust preventive layer of the present invention is resin-bonded.
[0016]
Furthermore, the manufacturing method of the magnetic material of the present invention includes:
Made of magnetic alloy or magnetic intermetallic compound, put magnetic material powder having crystal grain boundary of magnetic material phase in powder particles, and Zn supply source in a sealed state in a sealed container,
In that state inside the sealed containerVacuum exhaustThe sealed container while maintaining a non-oxidizing atmosphereThe entireBy heatingThe temperature in the sealed containerRaise the temperature to 300-500 ° C,
Zn from the Zn sourceVaporize the Zn vaporBy supplying to the particle surface of the magnetic material powder, Zn mainly composed of Zn on the particle surfaceRust preventionForming a layer,
In addition, in the region along the grain boundary inside the powder particles, the ZnRust preventionZn mainly composed of Zn penetrated from the layerRust preventionForming a layer, ZnRust preventionA layered magnetic material powder is obtained.
In the present invention, “main component” or “main component” means that the component of interest in the target substance is the component with the highest weight content.
[0017]
In the rust-proofing process for alloys and intermetallic magnetic materials, in order to form a uniform coating on the surface of the magnetic material without unevenness, the surface of the magnetic material having a three-dimensional shape is evenly rusted in three dimensions. It is necessary to supply a metal supply source and to form a rust preventive film with a coating metal amount as small as necessary. In order to uniformly coat the surface of the magnetic powder in this way, the coating metal enters the gap between the stacked magnetic powders in a gaseous state, and is adsorbed and deposited on the surface by the reaction affinity with the magnetic material, or the magnetic powder is This can be achieved by dispersing in a dispersion medium containing a rust preventive metal supply source, generating active metal from the supply source in this dispersed state, and precipitating it on the powder surface due to reaction affinity with the magnetic material. Therefore, in the present invention, the metal source used for coating and the magnetic material powder are mixed in order to uniformly supply the rust-preventive metal supply source to the surface of the magnetic material, and heated in a sealed container to generate the active activity. In addition to covering the surface of the magnetic material uniformly and uniformly by depositing it on the surface by utilizing the reaction affinity between the high metal component (for example, metal vapor or organometallic compound) and the component of the magnetic material, the magnetic material The amount of metal coated on the surface can be reduced, whereby the dilution effect is suppressed and a highly magnetized magnetic material can be produced. Furthermore, since the coating is performed under conditions that do not contain an oxygen source, it is possible to suppress deterioration due to oxidation of the magnetic material, and to provide an alloy and intermetallic magnetic powder that have both excellent magnetic properties and environmental resistance. Can be produced.
[0018]
Furthermore, the magnetic material powder with a rust-preventing layer of the present invention that can be realized by the above-described manufacturing method has a rust-preventing layer mainly composed of a rust-preventing metal component (hereinafter referred to as grain boundary prevention) in the region along the crystal grain boundary inside the powder particle. (Referred to as a rust layer), the grain boundary region serving as a component diffusion path for oxidative degradation is firmly protected, which is more advantageous in degrading characteristics due to oxidation of the magnetic material. In particular, in the case of a nucleation type hard magnetic material using an Nd-Fe-B-based or Sm-Fe-N-based intermetallic compound, which will be described later, the formation of the above-mentioned grain boundary rust preventive layer is a hard magnetic material. Contributes effectively to improving the coercive force.
[0019]
In this case, by impregnating the rust preventive metal component into the particle surface layer part from the particle surface to a certain depth, it is possible to form a rust preventive layer along the crystal grain boundary existing in the particle surface layer part where oxidation progresses easily. This is desirable from the viewpoint of improving rust prevention while maintaining high magnetic properties. The magnetic material powder with a rust preventive layer obtained in this manner is such that the amount of the rust preventive layer formed along the crystal grain boundary is larger than the inside of the particle in the particle surface layer portion. The penetration depth from the particle surface of the rust preventive layer formed along the crystal grain boundary is desirably adjusted to a range of 1 μm to 10 μm, for example. When the penetration depth is 1 μm or less, the effect of imparting rust prevention may be insufficient, and when it exceeds 10 μm, it is difficult to avoid adverse effects on magnetic properties and the like. The penetration of the rust-preventive metal component is achieved, for example, by component diffusion along the crystal grain boundary or supply / precipitation of metal vapor to the space in the crack formed along the crystal grain boundary.
[0020]
In the surface layer portion of the magnetic material powder particles, it is desirable that a rust prevention layer is formed so as to have a thickness of 5 nm to 50 μm. When the thickness of the rust preventive layer on the surface layer of the particles is 5 nm or less, the rust preventive property is insufficient. Further, the thickness of the rust preventive layer formed along the crystal grain boundary is desirably 1 to 100 nm for the same reason.
[0021]
When the surface of the alloy and intermetallic magnetic material is uniformly coated, by controlling the temperature at which the magnetic material is heated, a film is formed on the surface of the magnetic material and at the same time the metal supplied near the surface of the magnetic material Interdiffusion and reaction with the constituents occurs smoothly. This interdiffusion and reaction is highly active because the supplied metal is in an atomic, molecular or cluster state, which effectively improves environmental resistance and magnetic properties even at lower temperature than conventional methods. The
[0022]
Alloys and intermetallic magnetic materials are applied to bonded magnets by mixing with resin and forming and magnetizing. With regard to these bonded magnets, especially compression-molded bonded magnets that are regarded as important as high-performance magnets, it is possible to effectively treat the magnetic material powder used as a raw material by subjecting it to oxidation resistance in consideration of the molding process of the bonded magnets. Since oxidative degradation is suppressed, in the present invention, it is possible to suppress oxidative degradation from the magnet forming process and the atmosphere in which the magnet is used by forming a uniform rust preventive coating on the surface of the magnetic material powder. The performance and the durability of the magnet performance are improved.
[0023]
Specifically, as a rust preventive treatment for alloys and intermetallic compound magnetic materials, the magnetic material and a substance that becomes a rust preventive metal supply source of the rust preventive coating are sealed in a heat-resistant sealed container and then mixed with oxygen or water. By uniformly heating in an atmosphere that does not contain several tens of ppm or more of an oxygen source such as an atomic or cluster metal, and supplying this to the target magnetic material powder surface to form the magnetic material or this The metal is uniformly deposited on the surface of the magnetic material by utilizing the reaction affinity between the component to be used and the metal, and is then permeated through the grain boundary interface inside the powder, so that the metal, alloy or metal It is possible to form a rust-proof coating composed of a compound (hereinafter also referred to as a sorption method). Thereby, an alloy and an intermetallic compound-based magnetic material having high magnetic properties and environmental resistance can be realized.
[0024]
The rust preventive metal component can be supplied to the particle surface of the magnetic material powder in the form of metal vapor. The above-mentioned rust preventive layer can be uniformly formed by deposition of metal vapor on the powder particle surface and diffusion through the grain boundary. In this case, specifically, the rust preventive metal supply source is a metal ingot or powder containing a rust preventive metal component, and the inside of the sealed container is depressurized and heated to reduce the rust preventive metal component from the metal ingot or powder. It is preferable to promote vaporization because a uniform antirust layer can be easily formed. In order to efficiently generate metal vapor, it is desirable to heat the inside of the sealed container above the melting point of the rust-proof metal ingot or powder, preferably above the boiling point.
[0025]
As the rust-proof metal component, for example, Al, Ga, In, Si, Ge, Sn, Ti, and Zn can be used. These rust-preventive metal components are superior in terms of rust-prevention effect, especially for magnetic material powders that are mainly composed of Fe in the metal state. Since the temperature can be lowered relatively, there is a great cost advantage. When using Zn, it is desirable to raise the temperature in the sealed container to 300 to 500 ° C. If the temperature is lower than 300 ° C, the generation of Zn vapor may be insufficient. If the temperature exceeds 500 ° C, the effect of promoting the sorption of Zn to the magnetic material powder due to the temperature rise cannot be expected any more, so energy Wastefulness increases. In addition, if the temperature becomes too high, as in the case of Sm—Fe—N based magnetic material, the magnetic properties such as remanent magnetization may be lowered due to the diffusion of Zn metal into the bulk of the magnetic phase. In this case, the rust preventive metal component forming the rust preventive layer is naturally composed mainly of one or more of Al, In and Zn.
[0026]
For example, the rust-proof metal supply source is a metal ingot or metal powder, and this and the target magnetic powder are sealed in a heat-resistant sealed container at a temperature sufficient to vaporize the metal under reduced pressure. By heating uniformly, it can be supplied to the magnetic powder surface as an atomic or cluster metal vapor. And it becomes possible to form a rust preventive film composed of a uniform metal, alloy or intermetallic compound on the magnetic material powder surface and grain boundary interface by utilizing the reaction affinity between the magnetic material and the metal. . In this case, Zn, which is a low-boiling point metal, is used as a metal to be a rust-preventive coating source, and a mixture of this and a target magnetic powder is vacuum sealed in a glass or metal container, and then from 300 ° C. to 500 ° C. for several minutes. By uniformly heat-treating for several hours, atomic or cluster Zn metal vapor can be supplied to the magnetic powder surface and the grain boundary interface. As a result, it is possible to form a coating having a thickness of 5 nm to 50 μm composed of Zn or an alloy of Zn and magnetic powder or an intermetallic compound.
[0027]
On the other hand, it is also possible to use an organometallic compound as a rust preventive metal component as a rust preventive metal supply source. According to this method, it is possible to form a uniform rust preventive layer on the magnetic powder by decomposition of the organometallic compound from the gas phase or the liquid phase (or the critical phase in which both are uniformly mixed and coexisted). Specifically, in a sealed container, the organic metal compound is decomposed and reduced by raising the temperature in a state where the magnetic material powder is dispersed in an organic solvent containing the organometallic compound, and the generated rust-preventing metal is made magnetic. The rust preventive layer can be formed by supplying to the particle surface of the material powder.
[0028]
As the anticorrosive metal component contained in the organometallic compound, one mainly composed of one or more of Al, Ga, In, Si, Ge, Sn, Ti and Zn can be used. Both can be decomposed at a relatively low temperature and have the advantage that a rust-preventing layer having excellent rust-preventing properties can be formed uniformly. In this case, the organometallic compound is an organic chain CmHn bonded to a rust-proof metal atom M composed of one or more of Al, Ga, In, Si, Ge, Sn, Ti and Zn. Use of the chain CmHn having 1 or more carbon atoms (preferably 3 or more) can effectively reduce the decomposition temperature and contribute to the production cost reduction of the rust prevention layer. . In this case, the rust preventive metal component forming the rust preventive layer is naturally composed mainly of one or more of Al, Ga, In, Si, Ge, Sn, Ti and Zn.
[0029]
For example, a low boiling point organometallic compound (MRx; M = metal element, R = CmHn) is used as a rust preventive metal source for forming a coating on the surface of magnetic powder, and the organometallic compound is sealed in a sealed container such as a stainless steel autoclave. The magnetic powder can be dispersed in an organic solvent containing a heat treatment. Then, by decomposing / reducing the organometallic compound and sorbing the produced metal on the magnetic powder surface and the grain boundary interface, a rust-preventing layer composed of a metal, an alloy or an intermetallic compound can be formed. As a result, an alloy and an intermetallic compound magnetic material having high magnetic properties and environmental resistance can be produced.
[0030]
When the metal source for coating the surface of the magnetic powder is an organometallic compound, an organometallic compound containing M = Al, Ga, In, Si, Ge, Sn, Ti and Zn having a relatively low decomposition temperature. Can be used to form a rust preventive film composed of a metal, an alloy or an intermetallic compound on the magnetic powder surface and the grain boundary interface by heating at 150 to 500 ° C. for several minutes to several hours. In particular, in addition to containing Al, Ga, In, Si, Ge, Sn, Ti and Zn as a metal precursor covering the surface of the magnetic powder, it has an organic chain (m ≧ 1; preferably m ≧ 3) It is effective to use an organometallic compound whose thermal decomposition is promoted at a lower temperature. In this way, by heating at 50 ° C. to 500 ° C. for several minutes to several hours, it is possible to produce an alloy and an intermetallic compound magnetic material having higher magnetic properties that are given higher environmental resistance.
[0031]
Whether a metal ingot or powder is used or an organometallic compound is used, a second temperature higher than the first temperature is formed after forming the rust prevention layer by raising the temperature to the first temperature in a sealed container. It is advantageous from the viewpoint of forming a uniform rust-preventing layer with few defects to be heated to a subsequent temperature and subsequently heat-treated. The first temperature and the second temperature may be set so as to change continuously or stepwise within a certain temperature range.
[0032]
For example, after supplying a metal to the alloy and intermetallic compound magnetic material powder surface and the grain boundary interface to form a film, the temperature in the heat-resistant sealed container is raised as it is, and the heat treatment is performed at a temperature higher than the film forming temperature. Alternatively, processing can be performed in a plurality of stages beyond that. Thereby, it is possible to further promote the diffusion and reaction of the metal deposited on the surface in the vicinity of the surface of the magnetic material and at the grain boundary interface, thereby further improving the magnetic properties and the environmental resistance.
[0033]
As described above, as the magnetic material powder, a powder mainly composed of an Sm—Fe—N intermetallic compound or an Nd—Fe—TM (transition metal) —N intermetallic compound can be used.
[0034]
Further, as the magnetic material powder, a powder mainly composed of an Nd—Fe—B intermetallic compound may be employed. A magnet powder (magnetic material powder) for a bond magnet mainly composed of an Nd—Fe—B intermetallic compound can be obtained by pulverizing a quenched ribbon as follows. This quenching ribbon is obtained by quenching a molten metal containing a predetermined amount of alloy components, the average crystal grain size is 1 μm or less, and the general composition formula is RxFe100-xyByCan be expressed as Here, R is a rare earth component having Nd as a main component (at least the atomic content of at least 50% in all rare earths), and a part of which can be substituted by at least one of Dy or Pr, 9 ≦ x ≦ 15, 4 ≦ y ≦ 10. Depending on the purpose, RxFe100-x-y-vByMvIn this form, a part of Fe may be replaced with another metal element (for example, Co or the like: plural types may be used) M. The substitution amount v is appropriately set within a range where the magnetic characteristics are not significantly lowered, for example, within a range of about 0.1 ≦ v <50.
[0035]
The quenching ribbon has a large saturation magnetic flux density and large magnetocrystalline anisotropy due to quenching from the molten metal.2Fe14B-type tetragonal intermetallic compound phase (hereinafter referred to as 2-14-1 phase) produces a fine crystal grain with an average grain size of 1 μm or less, and exhibits high coercive force and residual magnetic flux density immediately after quenching. If this is pulverized into a powder having a predetermined particle diameter, it can be used as it is as a high-performance bonded magnet powder. If the average particle diameter exceeds 1 μm, the coercive force of the ribbon or the squareness of the demagnetization curve is impaired and sufficient magnet performance cannot be obtained, so the average particle diameter is in the above range, The thickness is desirably 0.5 μm or less, and more desirably 0.1 μm or less.
[0036]
Further, the above-described substitution element M of Fe can be substituted by Co in the range of v <30. By including Co within the above composition range, the temperature coefficient of the residual magnetic flux density is improved while the Curie temperature of the 2-14-1 phase is increased, and it is stable and stable even in a high temperature use environment such as an automobile motor. It is possible to obtain a quenched ribbon for a bonded magnet that ensures excellent magnetic properties. Moreover, the chemical stability of the quenched ribbon is improved by the addition of Co, and even in a high temperature and high humidity environment, the bond magnet using the ribbon is prevented from being corroded or deteriorating in magnetic properties. However, if the content exceeds 30 atomic%, the saturation magnetic flux density of the 2-14-1 phase is lowered, leading to a reduction in the maximum energy product, which is not preferable. The Co content is desirably set within the range of 2.5 to 20 atomic%, and more desirably within the range of 5 to 10 atomic%.
[0037]
Next, although it is a component other than the above, the rare earth component R is a main component of the 2-14-1 phase responsible for the excellent magnetic properties of the quenched ribbon, and is mainly composed of Nd and has a total content of 9 It is set in the range of ˜15 atomic% (that is, 9 ≦ x ≦ 15). When the content of the rare earth component R is less than 9 atomic%, the ratio of the α-Fe phase that is a soft magnetic phase increases, leading to a decrease in coercive force. On the other hand, when it exceeds 15 atomic%, the ratio of the nonmagnetic phase mainly composed of rare earth components increases, and the saturation magnetic flux density is lowered. Since these all lead to a decrease in the maximum energy product, the content of the rare earth component R is in the above range, preferably 10-13 atomic%, more preferably 11-12 atomic%. Is good.
[0038]
Further, a part of the rare earth component R mainly composed of Nd can be substituted with Dy or Pr. By adding Dy, the anisotropic magnetic field of the 2-14-1 phase is increased, and the coercive force of the quenched ribbon can be greatly improved. As a result, when a magnet is used in an environment where the temperature is likely to rise, such as a hard disk drive for a computer or a motor for an automobile, the decrease in coercive force at a high temperature is compensated, so that it can withstand use in a severe temperature environment. A magnet can be obtained. The addition amount can be appropriately selected within a range of, for example, 0.1 to 5 atomic%. However, if the addition amount exceeds 5 atomic%, the saturation magnetic flux density of the 2-14-1 phase is lowered and the maximum energy product is lowered. In addition, since Dy is expensive, it causes an increase in the raw material cost of the magnet, which is not preferable. . Although Tb is more expensive than Dy, it has a coercive force improving effect substantially equal to or higher than Dy and can be used depending on the purpose.
[0039]
On the other hand, when replacing Nd in the 2-14-1 phase, Pr does not change the saturation magnetic flux density and the anisotropic magnetic field so much. Although it is possible to replace the entire amount with Pr, the separated rare earth of Pr is more expensive than that of Nd, and the blending in the form of the separated rare earth causes an increase in raw material cost, which is not preferable. However, since Pr is separated and extracted together with Nd in the separation and purification process of the rare earth raw material, didymium, which is a non-separated rare earth of Nd and Pr, is cheaper than the separated rare earth of Nd and Pr. Since it can reduce raw material cost if it mix | blends in the form of this, it is convenient. In this case, the Pr content in the finally obtained quenched ribbon is determined by the Pr content ratio in the didymium used.
[0040]
In addition, rare earth elements other than those described above do not contribute to the increase in energy product, or conversely reduce them, and are preferably not contained as much as possible, but together with the rare earth components such as Nd, Dy, Pr, For example, it may be contained if the total amount is inevitably mixed within the range of 1 atomic% or less.
[0041]
Next, B is an essential component of the 2-14-1 phase like the rare earth component R, and its content is set within a range of 4 to 10 atomic% (that is, 4 ≦ y ≦ 10). When the content of B is less than 4 atomic%, soft magnetic Nd2Fe17When the mold phase is generated and the coercive force is lowered, and the content exceeds 10 atomic%, non-magnetic NdFe4B4The mold phase is generated and the saturation magnetic flux density is lowered. In either case, the maximum energy product is reduced, so the B content is in the above range. The content of B is desirably set in the range of 4 to 8 atomic%, more desirably 5 to 7 atomic%.
[0042]
Fe is an essential component of the 2-14-1 phase and plays a major part in its large saturation magnetization.
[0043]
Such a quenched ribbon can be pulverized so as to have an average particle diameter of 500 μm or less to form a bonded magnet powder. Then, as described later, a coating film is formed on the powder, and further bonded with a resin such as an epoxy resin, a phenol resin, or a nylon resin, whereby a bonded magnet can be obtained. Here, if the average particle diameter of the bonded magnet powder is 500 μm or more, the distribution of the magnetic powder and the resin in the bonded magnet becomes non-uniform, causing variations in the surface magnetic flux distribution of the bonded magnet. The diameter is as described above. On the other hand, if the average particle size becomes too fine, for example, when producing a bonded magnet by compression molding, the flowability of the magnet powder is reduced, and smooth filling of the mold becomes difficult, resulting in a decrease in productivity. , Set to a predetermined average particle size or more. The average particle size of the magnet powder is desirably set within a range of 50 to 400 μm, and more desirably within a range of 100 to 300 μm.
[0044]
Hereinafter, the quenched thin ribbon for bonded magnet, the bonded magnet powder using the same, and the manufacturing method of the bonded magnet will be described. First, a predetermined amount of an alloy component is blended, and then the alloy component is dissolved in a predetermined atmosphere such as an inert gas atmosphere or a vacuum atmosphere. The alloy components to be blended may be blended individually or in the form of a master alloy such as an Nd—Fe alloy or ferroboron. For the melting, a known melting method such as high-frequency induction melting or arc melting can be used.
[0045]
Next, the molten metal is rapidly solidified to produce a ribbon-like or flake-like quenching ribbon. As the quenching atmosphere, for example, an inert gas atmosphere such as argon is used. As the quenching method, various methods such as a single roll method, a twin roll method, a splat quench method, a centrifugal quenching method, and a gas atomizing method can be applied. Among these, the single roll method is particularly suitable for mass production of a homogeneous and high-performance quenching ribbon with high cooling efficiency of the molten metal and easy adjustment of the cooling rate by the roll peripheral speed. In this case, the roll peripheral speed is preferably 5 to 35 m / second, more preferably 10 to 30 m / second, in order to obtain a quenched ribbon having fine and uniform crystal grains and excellent magnetic properties.
[0046]
The obtained rapidly cooled ribbon is pulverized by the known pulverization method using a stamp mill, a feather mill, a disk mill or the like so as to have the above-mentioned average particle diameter, and is used as a bond magnet powder. In addition, you may grind | pulverize by the two steps (or more multistage) further finely pulverized after coarse pulverization. In addition, it is desirable to adjust the particle size of the pulverized powder by appropriately sizing with a mesh or the like.
[0047]
Here, the quenched ribbon obtained by the rapid solidification can be heat-treated in the temperature range of 400 to 1000 ° C. before or after pulverization. The ribbon immediately after quenching may produce an amorphous part in a portion where the cooling rate is particularly high, for example, in the vicinity of the contact part with the quenching roll. This amorphous part is soft magnetic and may cause coercive force, squareness of a demagnetization curve, a decrease in energy product, and the like. Therefore, by performing the heat treatment on the rapidly cooled ribbon, the amorphous portion generated immediately after the rapid cooling can be crystallized, and a reduction in energy product and the like can be prevented. When the heat treatment temperature is lower than 400 ° C., the amorphous part is not sufficiently crystallized, and the above-described effects cannot be obtained sufficiently. On the other hand, when the heat treatment temperature exceeds 1000 ° C., the crystal grains grow and become coarse, and the coercive force or energy product decreases. Accordingly, the heat treatment temperature is set within the above range, preferably 500 to 800 ° C., more preferably 600 to 700 ° C.
[0048]
The bonded magnet is manufactured by forming the rust-preventing layer as described above by the method of the present invention on the bonded magnet powder obtained by the above method, and then mixing with the resin component, followed by pressure molding or injection molding. In the case of pressure molding, the magnet powder is mixed with a predetermined amount, for example, about 1 to 5% by weight of a powdered thermosetting resin such as an epoxy resin, for example, press molding with a die having a die and a pan, etc. For example, 5 to 10 t / cm2Compression molding with moderate pressure. After molding, the resulting molded body is heated to a predetermined temperature, for example, about 80 to 180 ° C. to cure the resin and obtain a bonded magnet. In addition, you may perform the heating for resin hardening during the said pressure molding. According to this method, the density of the magnet powder in the obtained bonded magnet can be increased, which is suitable for manufacturing a high-performance ring magnet for a small motor or the like.
[0049]
On the other hand, in the case of injection molding, first, a thermoplastic resin such as nylon resin is added to the magnet powder in a slightly larger amount than in the case of compression molding, for example, about 10 to 30% by weight, and this is kneaded for molding. Make a compound. Then, the compound is heated and softened and injection molded into a mold cavity using a predetermined molding machine to obtain a bond magnet having a desired shape. The bond magnet obtained by this method has a slightly lower magnet powder density, so its performance is not as good as that of compression molding, but it has the advantage of being able to easily manufacture magnets with various and complex shapes. Can be integrally formed (insert molding) together with the above compound. For example, a ring-shaped bonded magnet is radially magnetized and used as a motor rotor or a stator.
[0050]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on the drawings and experimental data.
(Embodiment 1)
An example in which the rust preventive metal supply source was Zn powder for the rare earth magnetic material Sm—Fe—N based on the sorption method of the present invention is shown below. What is used here is a metal ingot or metal powder as a rust preventive metal supply source, and after encapsulating this and the desired magnetic powder in a heat-resistant sealed container, the metal vaporizes under reduced pressure. Is uniformly heated at a sufficient temperature to be supplied to the surface of the magnetic powder as atomic or cluster metal vapor, and the magnetic material powder surface and grain boundary interface are utilized by utilizing the reaction affinity between the magnetic material and the metal. And a method of forming a rust-preventing film composed of a uniform metal, alloy or intermetallic compound (hereinafter referred to as the first method).
[0051]
By wet-milling a Sm—Fe—N-based magnetic material in a nonpolar organic solvent to which a surfactant is added, uniform pulverization is possible due to less oxidation due to oxygen or water in the atmosphere. A fine powder having a small content and a small particle size distribution can be produced.
[0052]
5 wt% or less of Zn metal is mixed with the produced Sm-Fe-N fine powder and introduced into a glass container. Moreover, by introducing the steel balls into the glass container together with these mixed powders, it becomes possible to effectively suppress aggregation between the powders generated in the sorption treatment process, and a uniform coating with no spots can be formed. 1 × 10 in glass container-6The tube is evacuated to about Torr and then sealed (see FIGS. 1 and 2).
[0053]
The entire vacuum-sealed glass container is uniformly heated at various temperatures from 300 to 500 ° C. for 2 hours to vaporize Zn metal, and by exposing the magnetic fine powder to this Zn vapor, Zn on its surface Promote sorption.
[0054]
FIG. 3 shows the dependence of the residual magnetic flux density Br and the coercive force Hcj of the magnetic fine powder subjected to the sorption treatment on the sorption treatment temperature. Conventionally, the coercive force Hcj is increased by heat treatment near the melting point (419.6 ° C.) of the Zn metal. In order to obtain a sufficient coercive force Hcj, the amount of Zn metal to be deposited or plated is larger than that of the magnetic powder. However, in the present invention, the improvement of the coercive force Hcj becomes significant even after the sorption treatment at 350 ° C., which is lower than the conventional method, and the amount of Zn metal at that time is also larger than that of the magnetic powder. The coercive force was sufficiently improved with a small amount of about 4% by weight. In addition, the magnetic powder subjected to the sorption treatment has a residual magnetic flux density Br of 0.8T, which is obtained by vapor deposition and electrolytic plating, and is equal to or higher than the magnetic powder subjected to heat treatment for increasing the coercive force. The high residual magnetic flux density Br was obtained.
[0055]
Next, FIG. 5 shows the value of the coercive force Hcj when the sorption temperature is fixed at 350 ° C. and the sorption processing time is changed. For comparison, the coercive force change of the coating powder prepared by the vapor deposition method is also shown.
[0056]
The coating powder produced by the vapor deposition method requires an additional heat treatment of about 380 ° C. for about 30 hours after the vapor deposition coating process in order to obtain a coercive force of about 1 MA / m. Zn / Sm-Fe-N-based powders produced using this method have a sufficiently large coercive force at 350 ° C. for 2 hours at low temperatures and for short periods of time. It became clear that this is possible. This is because the sorption of the highly active metal on the powder surface proceeds three-dimensionally and uniformly, and the penetration of the sorbed metal from the active cracks and crystal grain boundaries of the magnetic powder surface layer is also possible. It is considered that the reaction proceeds more easily because the diffusion proceeds.
[0057]
FIG. 4 shows the dependence of the coercive force of the Zn / Sm—Fe—N-based powder coated by the sorption method according to the first method on the amount of Zn metal. For comparison, the dependency of the coercive force of the coating powder produced by the vapor deposition method on the amount of Zn metal is also shown.
[0058]
In the vapor deposition method, 5 to 6% by weight of Zn metal is considered to be the minimum to improve the coercive force, but in the sorption method according to the present invention, the amount of Zn metal is about 3% by weight. It turns out that it is enough. Thereby, the fall of the magnetic flux density by presence of a nonmagnetic metal is suppressed, and it becomes possible to reduce the metal amount mixed with magnetic powder as a film supply source.
[0059]
FIG. 6 is a scanning electron microscope (SEM) photograph of magnetic fine powder in which Zn metal is sorbed on the surface using the method utilizing the sorption action according to the first method. Table 1 shows the abundance ratio of the coated metal Zn on the surface of the magnetic fine powder by an electron probe X-ray microanalyzer (EPMA) in comparison with Sm. Note that the measurement surface of the magnetic material in Table 1 corresponds to the surface of the magnetic material shown in FIG. From this, it can be seen that the surface of the magnetic fine powder is substantially uniformly formed of the Zn metal film.
[0060]
[Table 1]
[0061]
FIG. 7 shows a thin film X-ray pattern of an Sm—Fe—N magnetic fine powder having a surface coated with Zn metal when the heating temperature is 350 ° C. or 500 ° C. in the first method. As a comparison, a thin film X-ray pattern of Sm—Fe—N magnetic fine powder not subjected to rust prevention treatment is also shown. Magnetic fine powder not subjected to rust prevention treatment is oxidized in the atmosphere to form an amorphous phase, but magnetic fine powder subjected to sorption treatment at 350 ° C. shows slight precipitation of α-Fe. Th of what can be2Zn17It can be seen that the base structure of the mold remains and effectively suppresses oxidation.
[0062]
FIG. 8 shows the change with time of the coercive force Hcj in the atmosphere of the Sm—Fe—N magnetic fine powder subjected to the rust prevention treatment by the first method. For comparison, diethyl zinc (Zn (C), one of the organometallic compounds disclosed in Japanese Patent Application Laid-Open No. 08-143913.2H5)2) Is decomposed with ultraviolet light, and the change with time of the coercive force Hcj of the Sm—Fe—N-based magnetic fine powder whose surface is coated with Zn metal using a method of generating a coating metal is also shown. The coercive force Hcj of the Sm—Fe—N magnetic fine powder subjected to rust prevention by the coating method according to JP-A-08-143913 cannot be maintained at 50 ° C. in the atmosphere and gradually decreases. did. On the other hand, the coercive force Hcj of the Sm—Fe—N magnetic fine powder subjected to the rust prevention treatment according to the present invention does not change even when left at 50 ° C. for 600 hours in the atmosphere, and is a high value. Thus, it was revealed that the coating formed by the sorption method is superior in rust prevention effect.
[0063]
(Embodiment 2)
An example in which a rust-preventive metal supply source is implemented using Zn powder for the Nd—Fe—B system of the rare earth magnetic material by the first method similar to that of the first embodiment will be described below. First, 5 wt% or less of Zn metal with respect to Nd—Fe—B magnetic powder subjected to hydrogenation-disproportionation-dehydrogenation-recombination method (known as HDDR method) as an anisotropic treatment After mixing and introducing into a glass container, this glass container is 1 × 10-6After vacuum evacuation to about Torr, seal. Further, by introducing a mixed medium such as a steel ball together with a mixed powder of Nd—Fe—B magnetic powder and Zn metal powder into a glass container, aggregation can be effectively suppressed during the sorption process (FIGS. 1 and 2). reference).
[0064]
The entire vacuum-sealed glass container is uniformly heated at various temperatures of 300 to 450 ° C. for 2 hours to vaporize Zn metal and expose the Nd—Fe—B magnetic fine powder to this Zn vapor. This promotes sorption at the powder surface and at the grain boundary interface. In the surface layer portion of particles obtained by the HDDR method, Nd2Fe14Since many cracks are formed between the B crystal grains, it is considered advantageous for sorption of Zn to the grain boundary interface.
[0065]
FIG. 9 shows a composition image of the FE-SEM composition at the photographing magnification of 1500 times for the whole powder particles. FIG. 10 shows a composition image of the FE-SEM composition at a photographing magnification of 5000 with respect to the surface portion of the powder particles. From these figures, it can be seen that a surface layer having a thickness of 3 to 4 μm exists on the powder surface, and this layer uniformly surrounds the entire particle. A similar surface layer can be formed with Sm—Fe—N and Sm—Fe—TM—N powder particles.
[0066]
On the other hand, the results of observing these surface layers with FE-SEM and TEM are shown in FIGS. From the figure, the surface layer is fine Nd2Fe14It was clarified that the crystal grain boundaries are composed of B crystal grains and are covered with a grain boundary phase having a width of 5 to 40 nm. These grain boundary layers were confirmed to be composed of not only Zn metal but also an alloy or compound phase of Zn and Nd or Fe from composition analysis by EDX. However, it was also found that the Zn content was 50% by mass or more and the main component was Zn.
[0067]
Next, Table 2 shows the magnetic characteristics of the anisotropic Nd—Fe—B magnetic powder subjected to the sorption treatment.
[0068]
[Table 2]
[0069]
The magnetic properties of the Nd-Fe-B magnetic powder subjected to the rust prevention treatment using the sorption method according to the first method are compared with the magnetic properties of the raw magnetic powder by increasing the sorption treatment temperature. Declined. In the sorption treatment at 300 ° C., the Zn metal powder mixed with the magnetic powder remained without being vaporized.
[0070]
Further, when the sorption treatment was performed at 350 ° C., the sorption time was lengthened and the magnetic properties were lowered. However, even after the sorption treatment, a dilution effect due to the coating of nonmagnetic Zn metal was produced and a slight decrease was observed, but the high residual magnetic flux density Br of about 1.3 T was still maintained and the maximum energy product was maintained. (BH) max is also 300 kJ / m3It became clear that very high characteristics were exhibited (see FIG. 13).
[0071]
14 and 15 show compression molded resin bonded magnets made of Nd—Fe—B magnetic powder subjected to rust prevention by the sorption method according to the first method as raw materials at 80 ° C. and 120 ° C. in the atmosphere. Changes over time in the magnetic flux density when left untreated are shown.
[0072]
The demagnetization factor of the compression molded resin bonded magnet produced using the Nd—Fe—B magnetic powder subjected to the rust prevention treatment by the sorption method according to the first method is untreated at both 80 ° C. and 120 ° C. Table 3 shows the results obtained by determining the permanent demagnetization factor by further magnetizing after 1000 hours and smaller than the bonded magnet using the Nd—Fe—B based magnetic powder. The permanent demagnetization factor of the bonded magnet produced using the Zn / Nd-Fe-B magnetic powder surface-coated by the sorption method according to the present invention is -3.9% and -3 at 80 ° C and 120 ° C, respectively. .6%, the absolute value is smaller than those of bonded magnets using untreated powder (-8.1% and -10.9%), and it is clear that the durability in the atmosphere is greatly improved It became.
[0073]
[Table 3]
[0074]
Next, the temperature coefficient at 120 ° C. of the residual magnetic flux density Br and the coercive force Hcj of the resin bonded magnet produced using the Zn / Nd—Fe—B based magnetic powder coated with the surface by the sorption method in the present invention as a raw material. Table 4 shows α (Br) and β (Hcj), respectively.
[0075]
[Table 4]
[0076]
From Table 4, the temperature coefficient β (Hcj) of the coercive force Hcj of the resin bonded magnet made from the Zn / Nd—Fe—B based magnetic powder subjected to the sorption treatment in the present invention is a bond using untreated powder. Compared to that of the magnet and the commercially available anisotropic bonded magnet MQA-T, the temperature coefficient α (Br) of the residual magnetic flux density Br is greatly improved, and Nd—Fe It was possible to improve the heat resistance of the -B based bonded magnet.
[0077]
The coercive force Hcj and the temperature coefficient α (Br) and (Hcj) at 150 ° C. of the residual magnetic flux density Br of a resin bonded magnet produced using Nd—Fe—B magnetic powder subjected to sorption treatment under various conditions as raw materials. Each is shown in Table 5.
[0078]
[Table 5]
[0079]
From the table, in the resin bonded magnet made of the Nd—Fe—B magnetic powder subjected to the sorption process, the residual magnetic flux density Br and the temperature coefficients α (Br) and (Hcj) of the coercive force Hcj are the sorption process time. It can be seen that it is improved by increasing the length. Moreover, even if the particle size of the Nd—Fe—B magnetic powder is reduced, it is possible to produce a resin bonded magnet having an equivalent temperature coefficient.
[0080]
(Embodiment 3)
In this embodiment, a low boiling point organometallic compound (MRx; M = metal element, R = CmHn) is used as a rust preventive metal supply source for forming a film on the surface of the magnetic powder, and a stainless steel autoclave or the like is used. Disperse the magnetic powder in an organic solvent containing the organometallic compound in a sealed container and apply heat treatment to decompose and reduce the organometallic compound and sorb the resulting metal on the magnetic powder surface and grain boundary interface. This is a method for forming a rust preventive film composed of a metal, an alloy or an intermetallic compound (hereinafter referred to as the second method). Hereinafter, rust prevention treatment by pyrolysis of an organometallic compound is performed on diethyl zinc (Zn (C2H5)2An example implemented using In addition, as the organometallic compound, Al (C2H5)3, Ga (C2H5)3, In (C2H5)3, Si (CH3)4, Ge (CH3)4, Sn (CH3)4, Ti (CH3)4Etc. can be used.
[0081]
Sm-Fe-N magnetic materials are wet ball milled in a non-polar organic solvent to which a surfactant is added, so that they are less susceptible to oxidation from the atmosphere and can be uniformly crushed. A fine powder with a narrow distribution can be produced. The produced Sm—Fe—N magnetic fine powder and a nonpolar organic solvent containing diethyl zinc as a dispersion medium are introduced into an autoclave in a glove box filled with an inert gas, and sealed. The sealed autoclave is heated at a temperature equal to or higher than the pyrolysis temperature of diethyl zinc and uniformly heated while shaking for various times to thermally decompose diethyl zinc and coat the surface of the Sm—Fe—N magnetic powder (see FIG. 16). ). Here, diethyl zinc (Zn (C2H5)2) Is reported to be from 170 ° C. to 230 ° C. (Applied Organometallic Chemistry, 5, 337 (1991)).
[0082]
Table 6 shows the residual magnetic flux density Br, coercive force Hcj and oxygen of Zn / Sm—Fe—N based magnetic powder added with 0.15 g of diethylzinc and subjected to surface coating at various heating temperatures higher than the thermal decomposition temperature. The amounts are shown together with those of the raw powder. Here, assuming that the addition amount of 0.15 g of diethyl zinc is all thermally decomposed by heat treatment, 3 wt% of the coating metal can be generated with respect to the magnetic powder.
[0083]
[Table 6]
[0084]
Table 6 shows that the thermal decomposition coating treatment was performed at 350 ° C. in the Zn / Sm—Fe—N magnetic fine powder coated with metal using the thermal decomposition of diethyl zinc which is one of the organometallic compounds according to the present invention. As a result, the coercive force Hcj was improved. Such an increase in the coercive force Hcj is observed by heating at a temperature near or higher than the melting point (419.6 ° C.) of the Zn metal as described above, and in order to obtain a sufficient coercive force Hcj, vapor deposition is performed. In the electroplating method or the electroplating method, an amount of Zn metal of about 10% by weight or more with respect to the Sm—Fe—N magnetic powder is necessary. However, like the sorption method in the present invention, it is active by thermal decomposition of the organometallic compound. By supplying metal to the surface of the magnetic powder, the coercive force Hcj is improved from 350 ° C. lower than the conventional heat treatment temperature, and the amount of metal to be coated is about 2.5% by weight, which is a very small amount of Zn. The effect of increasing the coercive force Hcj was seen even with the amount of metal.
[0085]
On the other hand, the residual magnetic flux density Br of the Zn / Sm—Fe—N magnetic fine powder subjected to rust prevention treatment using a metal produced by pyrolysis of diethyl zinc as the organometallic compound in the present invention is the sorption treatment described above. The residual magnetic flux of the magnetic powder is 0.8T, which is about the same as that of the Zn / Sm—Fe—N magnetic fine powder subjected to the coating, coated by the vapor deposition method and the electroplating method, and subsequently subjected to the high coercive force treatment. A value equivalent to or higher than the density Br was obtained.
[0086]
Further, from Table 6, the Zn / Sm-Fe-N magnetic powder produced by using the pyrolysis method of the organometallic compound according to the present invention does not cause a significant increase in oxygen content in the film forming treatment step. The organic solvent used as the dispersion medium disperses the magnetic powder, and at the same time, the magnetic powder is shielded from the oxygen source, so that oxidation can be effectively suppressed.
[0087]
FIG. 17 shows the change with time of the coercive force Hcj of Zn / Sm—Fe—N magnetic powder subjected to rust prevention by thermal decomposition of the organometallic compound according to the present invention at 50 ° C. in the atmosphere. As a comparison of the coating powder, an organometallic compound disclosed in Japanese Patent Application Laid-Open No. 08-143913 was subjected to Zn metal coating by a method in which a metal was generated by photolysis and a film was formed on the surface using this metal. The change with time of the coercive force Hcj of the Sm—Fe—N magnetic powder is also shown. The coercive force Hcj of the Zn / Sm—Fe—N based magnetic powder coated by the method of JP-A-08-143913 could not maintain the initial value at 50 ° C. in the atmosphere and gradually decreased. On the other hand, the coercive force Hcj of the Zn / Sm—Fe—N magnetic powder subjected to rust prevention treatment by pyrolysis of the organometallic compound according to the present invention is high even when left at 50 ° C. in the atmosphere. It has been shown that it has excellent environmental resistance.
[0088]
(Embodiment 4)
An example carried out on an Nd—Fe—B system of rare earth magnetic material, which has been subjected to rust prevention treatment by thermal decomposition of an organometallic compound according to the second method similar to that of Embodiment 3, is shown below. Table 7 shows the magnetic properties of Nd—Fe—B based magnetic powders that are surface-coated with a metal produced by pyrolysis of diethyl zinc according to the present invention, and the method disclosed in Japanese Patent Application Laid-Open No. 08-143913 as a comparative sample. The magnetic characteristics of the Nd—Fe—B based magnetic powder coated on the surface are also shown.
[0089]
[Table 7]
[0090]
From the table, the Nd—Fe—B magnetic powder subjected to the rust prevention treatment using the coating method according to the present invention still has a high residual magnetic flux density Br, coercive force Hcj and maximum energy product (BH) max value. However, it was slightly lower than the values of the raw material powder and the coating powder obtained by the method of JP-A-08-143913 due to the heat treatment at the pyrolysis temperature of the organometallic compound. However, the amount of Zn metal coated on the surface of the Nd—Fe—B magnetic powder by the method of JP-A-08-143913 was 0.02% by weight. On the other hand, the Zn metal content of the Zn / Nd—Fe—B magnetic powder surface-coated by pyrolysis of diethyl zinc according to the present invention was 0.58% by weight, which is compared with the method of Japanese Patent Application Laid-Open No. 08-143913. Thus, the coating amount was greatly improved, and it was possible to coat the surface with a large amount of Zn metal while maintaining high magnetic properties.
[0091]
FIG. 18 shows a scanning electron microscope (SEM) photograph of a cross section of a Zn / Nd—Fe—B magnetic powder surface-coated by pyrolysis of an organometallic compound according to the present invention. 19 and Table 8 show the results of measuring the abundance ratios of neodymium Nd and Zn from the surface of the magnetic powder in FIG. 18 toward the inside using an electron probe X-ray microanalyzer (EPMA). As a result, Zn produced by pyrolysis of diethyl zinc and deposited on the surface of the magnetic powder diffuses from the surface to the interior at the pyrolysis temperature, while Nd, which is a component of the magnetic material, diffuses to the surface. Therefore, Zn metal deposited on the surface by pyrolysis of diethylzinc, an organometallic compound, interdiffuses with the components of the magnetic material at the pyrolysis temperature, and forms a rust-proof coating with higher adhesion. You can see that
[0092]
[Table 8]
[0093]
An anisotropic resin bonded magnet made of Zn / Nd—Fe—B magnetic powder subjected to rust prevention treatment using a sorption method utilizing pyrolysis of an organometallic compound according to the present invention as a raw material was experimentally produced. In the middle, the change in magnetic flux density with time at 80 ° C. was followed to measure the demagnetization factor. The results are shown in FIG. 20 together with the demagnetization factor under the same conditions of the resin-bonded magnet made from raw Nd—Fe—B magnetic powder. From this, it was found that the bonded magnet using the Nd—Fe—B magnetic powder surface-coated by the coating method according to the present invention maintains a high magnetic flux density for a long period and has high environmental resistance.
[0094]
【The invention's effect】
In the present invention, in the technique conventionally used as the surface rust prevention treatment of the alloy and intermetallic compound-based magnetic material, spots occur because the deposition of the coating metal proceeds in a plane (two-dimensional) with respect to the powder surface, In order to completely cover the surface, a large amount of coating metal is required. On the other hand, the surface treatment of the rare earth magnetic material is performed by depositing the metal three-dimensionally, thereby preventing uniform and excellent corrosion resistance. A rust coating can be produced, and the amount of coated metal can be reduced to avoid a decrease in magnetization due to a dilution effect caused by a nonmagnetic metal, thereby producing a highly magnetized magnetic material. In addition, the interdiffusion between the coated metal and components in the vicinity of the surface also proceeds at a low temperature compared to conventional methods, so a highly adhesive film is formed without heat treatment at a high temperature, resulting in a significant decrease in magnetic properties. In addition to the fact that the magnetic characteristics are improved in one stage, a complicated process in multiple stages becomes unnecessary.
[0095]
That is, in the present invention, a highly active metal is supplied to the powder surface by heating in an airtight container to an alloy and an intermetallic magnetic material whose magnetic properties are deteriorated by oxidation. In addition to being able to form a uniform rust-preventive coating without depositing metal on the surface of the part, mutual diffusion and reaction with the constituent components of the underlying magnetic material proceed even at low temperatures compared to conventional methods, and magnetic The characteristics can be improved. Furthermore, the metal rust preventive film thus produced is effective in effectively suppressing the inevitable oxidation of the target magnetic material and maintaining the original high magnetic properties even in the atmosphere. As a result, it can be expected to greatly contribute to the enhancement of performance and corrosion resistance of bonded magnets, which have been increasing in demand in recent years as an application field of magnetic materials.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus used for a sorption method in the present invention.
FIG. 2 is a cross-sectional view of a sealed container according to the sorption method of the present invention.
FIG. 3 shows the dependence of the residual magnetic flux density Br and the coercive force Hcj of the Sm—Fe—N magnetic fine powder surface-treated with Zn metal vapor using a sorption method on the processing temperature.
FIG. 4 shows the dependency of the coercive force of Zn / Sm—Fe—N-based powder coated by the sorption method according to the present invention on the amount of Zn metal.
FIG. 5 shows the change in coercive force Hcj of Zn / Sm—Fe—N based magnetic powder when the treatment temperature is fixed at 350 ° C. and the sorption treatment time is changed in the sorption method of the present invention.
FIG. 6 is a scanning electron micrograph of a fine magnetic powder having a Zn metal film formed on the surface using the sorption method according to the present invention.
FIG. 7 is a thin film X-ray pattern of Sm—Fe—N magnetic fine powder subjected to rust prevention treatment using the sorption method according to the present invention and Sm—Fe—N magnetic fine powder not subjected to rust prevention treatment. is there.
FIG. 8 shows an Sm—Fe—N magnetic fine powder surface-treated using a Zn metal vapor sorption method according to the present invention and Sm coated with the technique disclosed in Japanese Patent Application Laid-Open No. 08-143913. It is a time-dependent change of the coercive force Hcj at 50 ° C. in the atmosphere of the —Fe—N magnetic fine powder.
FIG. 9 is an FE-SEM composition image at a photographing magnification of 1500 times of Nd—Fe—B magnetic fine powder subjected to surface treatment using a Zn metal vapor sorption method according to the present invention.
FIG. 10 is an FE-SEM composition image at an imaging magnification of 5000 times of Nd—Fe—B magnetic fine powder subjected to surface treatment using a Zn metal vapor sorption method according to the present invention.
FIG. 11 is an FE-SEM composition image at a photographing magnification of 35,000 times of Nd—Fe—B magnetic fine powder subjected to surface treatment using a Zn metal vapor sorption method according to the present invention.
FIG. 12 is a TEM bright-field image of an Nd—Fe—B-based magnetic fine powder subjected to surface treatment using a Zn metal vapor sorption method according to the present invention at an imaging magnification of 25,000 times.
FIG. 13 is a demagnetization curve of a Zn / Nd—Fe—B based magnetic powder coated by the sorption method of the present invention and an Nd—Fe—B based magnetic powder used as a raw material.
FIG. 14 shows time-dependent changes in magnetic flux density (demagnetization factor) at 80 ° C. in the air of a compression molded resin bonded magnet made from Nd—Fe—B magnetic powder subjected to rust prevention by the sorption method of the present invention. It is.
FIG. 15 shows the time-dependent change in magnetic flux density (demagnetization factor) at 120 ° C. in the atmosphere of a compression-molded resin-bonded magnet made from Nd—Fe—B magnetic powder subjected to rust prevention by the sorption method of the present invention. It is.
FIG. 16 is a rust prevention treatment scheme in an autoclave container used for thermal decomposition of an organometallic compound in the present invention.
FIG. 17 is a time-dependent change at 50 ° C. in the atmosphere of the coercive force Hcj of Zn / Sm—Fe—N magnetic powder subjected to rust prevention treatment by thermal decomposition of an organometallic compound according to the present invention.
FIG. 18 is a scanning electron microscope (SEM) photograph of a cross section of a Zn / Nd—Fe—B magnetic powder coated with pyrolysis of an organometallic compound according to the present invention.
19 is a result of measuring the abundance ratio of neodymium Nd and Zn from the surface of the Zn / Nd—Fe—B magnetic powder in FIG. 3 to the inside by an electron probe X-ray microanalyzer (EPMA).
FIG. 20 shows the magnetic flux density at 80 ° C. in the atmosphere of an anisotropic resin bonded magnet made of Zn / Nd—Fe—B magnetic powder subjected to rust prevention by thermal decomposition of an organometallic compound according to the present invention. Is a change with time.
Claims (3)
その状態で前記密封容器内を真空排気して非酸化性雰囲気に維持しつつ前記密封容器全体を加熱することにより、その密封容器内の温度を300〜500℃に昇温して、
前記Zn供給源からZnを気化させてそのZn蒸気を前記磁性材料粉末の粒子表面に供給することにより、粒子表面にZnを主体とするZn防錆層を形成し、
また、粉末粒子内部の前記結晶粒界に沿う領域には、前記Zn防錆層から浸透したZnを主体とするZn防錆層を形成して、Zn防錆層付き磁性材料粉末を得ることを特徴とする磁性材料の製造方法。Made of magnetic alloy or magnetic intermetallic compound, put magnetic material powder having crystal grain boundary of magnetic material phase in powder particles, and Zn supply source in a sealed state in a sealed container,
In that state, the temperature inside the sealed container is increased to 300 to 500 ° C. by heating the entire sealed container while evacuating the inside of the sealed container and maintaining a non-oxidizing atmosphere.
By vaporizing Zn from the Zn supply source and supplying the Zn vapor to the particle surface of the magnetic material powder, a Zn rust prevention layer mainly composed of Zn is formed on the particle surface,
Further, in a region along the grain boundaries of the internal powder particles, wherein by forming a Zn anticorrosive layer consisting mainly of permeated Zn from Zn anticorrosive layer, to obtain a magnetic material powder with Zn anticorrosive layer A method for producing a magnetic material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001222314A JP4084007B2 (en) | 2000-07-24 | 2001-07-23 | Manufacturing method of magnetic material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000221689 | 2000-07-24 | ||
JP2000-221689 | 2000-07-24 | ||
JP2001222314A JP4084007B2 (en) | 2000-07-24 | 2001-07-23 | Manufacturing method of magnetic material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005157379A Division JP2005325450A (en) | 2000-07-24 | 2005-05-30 | Method for producing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002105503A JP2002105503A (en) | 2002-04-10 |
JP4084007B2 true JP4084007B2 (en) | 2008-04-30 |
Family
ID=26596497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001222314A Expired - Fee Related JP4084007B2 (en) | 2000-07-24 | 2001-07-23 | Manufacturing method of magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4084007B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60328506D1 (en) | 2002-09-19 | 2009-09-03 | Nec Tokin Corp | METHOD FOR PRODUCING A BONDED MAGNET AND METHOD FOR PRODUCING A MAGNETIC DEVICE WITH BONDED MAGNET |
DE10255604B4 (en) * | 2002-11-28 | 2006-06-14 | Vacuumschmelze Gmbh & Co. Kg | A method of making an anisotropic magnetic powder and a bonded anisotropic magnet therefrom |
JP4374874B2 (en) * | 2003-03-14 | 2009-12-02 | 日立金属株式会社 | Method for producing magnetically anisotropic rare earth bonded magnet |
JP4525072B2 (en) | 2003-12-22 | 2010-08-18 | 日産自動車株式会社 | Rare earth magnet and manufacturing method thereof |
TWI302712B (en) * | 2004-12-16 | 2008-11-01 | Japan Science & Tech Agency | Nd-fe-b base magnet including modified grain boundaries and method for manufacturing the same |
JP4650218B2 (en) * | 2005-11-07 | 2011-03-16 | 日立金属株式会社 | Method for producing rare earth magnet powder |
US8375891B2 (en) | 2006-09-11 | 2013-02-19 | Ulvac, Inc. | Vacuum vapor processing apparatus |
JP2009149916A (en) | 2006-09-14 | 2009-07-09 | Ulvac Japan Ltd | Vacuum vapor processing apparatus |
JP5288277B2 (en) * | 2009-08-28 | 2013-09-11 | 日立金属株式会社 | Manufacturing method of RTB-based permanent magnet |
JP5739093B2 (en) * | 2009-09-10 | 2015-06-24 | 株式会社豊田中央研究所 | Rare earth magnet, manufacturing method thereof, and magnet composite member |
CN102768891B (en) * | 2011-05-06 | 2015-11-04 | 有研稀土新材料股份有限公司 | The product of the nitrogenous magnetic preparation technology of rare earth and equipment and preparation |
CN103192084B (en) * | 2013-05-05 | 2015-11-25 | 沈阳中北真空磁电科技有限公司 | A kind of Rotary vacuum heat treatment equipment |
CN103205543B (en) * | 2013-05-05 | 2014-12-03 | 沈阳中北真空磁电科技有限公司 | Vacuum heat treatment method and equipment for permanent NdFeB rare earth magnet device |
CN113897581B (en) * | 2021-12-08 | 2022-04-15 | 天津三环乐喜新材料有限公司 | Anti-corrosion treatment method for sintered neodymium-iron-boron permanent magnet |
-
2001
- 2001-07-23 JP JP2001222314A patent/JP4084007B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002105503A (en) | 2002-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11024448B2 (en) | Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor | |
CN110168674B (en) | Magnet powder containing Sm-Fe-N crystal grains, sintered magnet produced from the magnet powder, and method for producing the magnet powder and the sintered magnet | |
TWI673730B (en) | R-Fe-B based sintered magnet and manufacturing method thereof | |
JP5515539B2 (en) | Magnet molded body and method for producing the same | |
JP5206834B2 (en) | R-Fe-B rare earth sintered magnet and method for producing the same | |
JP4748163B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
US20150187494A1 (en) | Process for preparing rare earth magnets | |
JP3960966B2 (en) | Method for producing heat-resistant rare earth magnet | |
EP2484464B1 (en) | Powder for magnetic member, powder compact, and magnetic member | |
JP4677942B2 (en) | Method for producing R-Fe-B rare earth sintered magnet | |
WO2016133071A1 (en) | Method for producing r-t-b system sintered magnet | |
JP4084007B2 (en) | Manufacturing method of magnetic material | |
JP2014132628A (en) | Rare earth-transition metal-boron-based rare earth sintered magnet, and manufacturing method thereof | |
JP2000223306A (en) | R-t-b rare-earth sintered magnet having improved squarene shape ratio and its manufacturing method | |
JP5209349B2 (en) | Manufacturing method of NdFeB sintered magnet | |
JP5643355B2 (en) | Manufacturing method of NdFeB sintered magnet | |
JP2001254168A (en) | Surface rust prevention and performance improving treatment of magnetic material | |
JP2005325450A (en) | Method for producing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it | |
JP5613856B1 (en) | R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor | |
JP3904415B2 (en) | Manufacturing method of bonded magnet | |
JP4784173B2 (en) | Rare earth magnet and manufacturing method thereof | |
JP5359382B2 (en) | Magnet molded body and manufacturing method thereof | |
JP7143605B2 (en) | RTB system sintered magnet | |
JP2024136167A (en) | RTB series permanent magnet | |
JP2001152201A (en) | Surface rust prevention and high capacitating treatment of magnetic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050221 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050411 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050511 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050805 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20051202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080214 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |