[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4083045B2 - Center wavelength control method of wavelength filter for series coupled ring resonator - Google Patents

Center wavelength control method of wavelength filter for series coupled ring resonator Download PDF

Info

Publication number
JP4083045B2
JP4083045B2 JP2003074540A JP2003074540A JP4083045B2 JP 4083045 B2 JP4083045 B2 JP 4083045B2 JP 2003074540 A JP2003074540 A JP 2003074540A JP 2003074540 A JP2003074540 A JP 2003074540A JP 4083045 B2 JP4083045 B2 JP 4083045B2
Authority
JP
Japan
Prior art keywords
wavelength
ring resonator
optical waveguide
center wavelength
side optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003074540A
Other languages
Japanese (ja)
Other versions
JP2004279982A (en
Inventor
泰雄 國分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003074540A priority Critical patent/JP4083045B2/en
Publication of JP2004279982A publication Critical patent/JP2004279982A/en
Application granted granted Critical
Publication of JP4083045B2 publication Critical patent/JP4083045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、直列結合リング共振器波長フィルタの中心波長制御方法に関するものである。
【0002】
【従来の技術】
従来、たとえば図1に例示したような、add/dropフィルタの一種である、入力側光導波路(1)と出力側光導波路(2)との間に光結合部の役割を担うリング共振器(「リング導波路」とも呼ぶ)(3)を配置した構造を持つマイクロリング共振器波長フィルタが知られている(特許文献1参照)。
【0003】
またこの波長フィルタでは、リング共振器(3)の等価屈折率を熱光学効果、電気光学効果、磁気光学効果等を用いて外部から制御することにより、チューナブル波長フィルタが実現可能である。具体的には、たとえば熱光学効果を用いる場合では、図2に例示したように、フィルタ上にヒーター(4)となる電極を形成し、そのヒーター(4)でリング共振器(3)を加熱して中心波長制御を行う。なお中心波長はλ=(2πR・neq)/N[R=リング半径、neq=等価屈折率、N=共振次数]で求められる。
【0004】
【特許文献1】
特開2000−298215号公報
【0005】
【発明が解決しようとする課題】
しかしながら、ある波長のチャネルから別の波長のチャネルにフィルタの中心波長を移動させる場合、図3に例示したように移動途中のチャネルの光信号が一時的に出力側光導波路(2)に透過してしまうという問題が生じる。
【0006】
そこで、この出願の発明は、以上のとおりの事情に鑑み、波長移動途中の信号透過を防ぐことのできる直列結合リング共振器波長フィルタの中心波長制御方法を提供する。
【0007】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、入力側光導波路と出力側光導波路との間に2つ以上のリング共振器が互いに結合してなる直列結合リング共振器波長フィルタにおいて、入力側光導波路と出力側光導波路との間に2つ以上のリング共振器が互いに結合してなる直列結合リング共振器波長フィルタにおいて、各リング共振器の中心波長をあるチャネルの中心波長から目的とする別のチャネルの中心波長に移動させるにあたり、中心波長の移動中に各リング共振器の中心波長が同じ時刻においてはそれぞれ異なるように各リング共振器の中心波長をそれぞれ個別に移動させることにより、目的とするチャネルの中心波長以外の波長チャネルの出力側光導波路への出力を阻止させ、移動の最終段階において各リング共振器の全ての中心波長を一致させ、目的とする別のチャネルの中心波長を持つ波長チャネルを出力側光導波路に出力させることを特徴とする直列結合リング共振器波長フィルタの中心波長制御方法を提供する。
【0008】
また、第2には、前記直列結合リング共振器波長フィルタとして、前記入力側光導波路と前記出力側光導波路が互いに交差し、その交差部にて前記各リング共振器が積層されているものを用いる、ことを特徴とする直列結合リング共振器波長フィルタの中心波長制御方法を提供する。
【0009】
【発明の実施の形態】
上記のとおりの特徴を有するこの出願の発明によれば、たとえば図4に例示したように、入力側光導波路(1)と出力側光導波路(2)との間に2つ以上のリング共振器(3)を互いに結合してなる直列結合リング共振器波長フィルタを構成し、それにおいて、出力側光導波路(2)に出力されるドロップ波長を各リング共振器(3)の中心波長を別々に移動させて消失させ、その波長制御の過程において出力を目的としない他の波長チャネルを出力側光導波路(2)に出力させることなく、出力を目的とする別の波長チャネルを出力側光導波路(2)に新たに出力させるようにすることで、波長移動途中のフィルタ透過率を無視できる程に低減することができる。すなわち、中心波長を移動させる前に各リング共振器(3)のフィルタ特性を消し、中心波長が移動してから再びフィルタ特性を出すようなスイッチング特性を持たせられるのである。これにより、それぞれの中心波長が一致している時にだけフィルタ特性を出させて、波長移動途中の信号透過を抑制でき、波長λnからλn+2への変更をλn+1を通さずに直接行えるようになる。
【0010】
図4の一実施形態では、より具体的には、入力ポートとスルーポートを有する入力側光導波路(1)およびaddポートとdropポートを有する出力側光導波路(2)が下層クラッドに互いに交差して埋め込まれ、その交差部にて3つのリング共振器(3)(#1、#2、#3)が配設されており、入力側光導波路(1)上に#1リング共振器(3)、出力側光導波路(2)上に#3リング共振器(3)が積層され、それら#1および#3の間にて#2リング共振器(3)が積層された3段直列結合となっている。なお図4では、#2の上方に#1および#3が重なり合った積層構造となっているが、たとえばその逆に#2が上側に位置していてもよく、リング共振器(3)同士および入力側光導波路(1)と出力側光導波路(2)の積層位置は特に限定されない。ここでは、このように3段直列結合したリング共振器(3)を「トリプルリング共振器」と呼ぶこととする。
【0011】
そして、このトリプルリング共振器の中心波長つまり共振波長を別々に移動させればよい。このとき、たとえば#1から#3へ、つまり入力側からdrop側へと順に移動させる。このような移動は、たとえば熱光学効果、電気光学効果、磁気光学効果等を利用した外部からの制御で可能となる。
【0012】
もちろんリング共振器(3)は、3つに限定されず、2つ以上の複数直列結合構造であればよい。
【0013】
【実施例】
[実施例1]
この出願の発明に従って、最初にチャネル1にドロップしているフィルタ中心波長をチャネル12に移動させるシミュレーションを行った。図5は、その解析結果を示したものであり、図5中の右側のグラフが本シミュレーションで用いた各リングの中心波長の移動パターンを示し、左側のグラフがシミュレーション結果としての透過スペクトルの変化を示している。
【0014】
本シミュレーションでは、より具体的には、チャネル1の帯域で各中心波長が一致しているトリプルリング共振器があると仮定し、その中心波長をチャネル12の帯域へ移動させる際に、その間にある領域でのクロストークを減少させるべく、#1リングから#3リングへと順に中心波長をチャネル12の帯域へ移動させている。
【0015】
図5から明らかなように、チャネル1とチャネル12との間の帯域ではフィルタ透過率が−30dB以下に抑えられていることがわかる。
【0016】
したがって、ノンブロッキング型のチューナブル波長フィルタを実現することができる。
【0017】
[実施例2]
同じ条件でチャネル1からチャネル3に移動させるシミュレーションを行ったところ、図6に示したように、やはりその間のクロストークが−30dB以下に抑えられたノンブロッキング型チューナブル波長フィルタを実現できることがわかった。
【0018】
もちろん、この出願の発明は以上の実施形態・実施例に限定されるものではなく、細部については様々な態様が可能である。
【0019】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、波長移動途中の信号透過を防ぐことのできる直列結合リング共振器波長フィルタの中心波長制御方法が提供される
【図面の簡単な説明】
【図1】 従来の積層マイクロリング共振器波長フィルタを例示した斜視図である。
【図2】 従来の積層マイクロリング共振器波長フィルタにて熱光学効果により中心波長制御する場合のチューナブル波長フィルタを例示した斜視図である。
【図3】 従来の問題点を説明するための図であり、波長移動途中の信号透過を示している。
【図4】 この出願の発明の一実施形態を示した斜視図である。
【図5】 この出願の発明の一実施例を示した図である。
【図6】 この出願の発明の別の一実施例を示した図である。
【符号の説明】
1 入力側光導波路
2 出力側光導波路
3 リング共振器
4 ヒーター
[0001]
BACKGROUND OF THE INVENTION
The invention of this application is intended to relate to the central wavelength control method of the series coupled ring resonators wavelength filter.
[0002]
[Prior art]
Conventionally, for example, as shown in FIG. 1, a ring resonator (a kind of add / drop filter) serving as an optical coupling portion between an input side optical waveguide (1) and an output side optical waveguide (2) ( A micro-ring resonator wavelength filter having a structure in which (3) is arranged (also referred to as “ring waveguide”) is known (see Patent Document 1).
[0003]
In this wavelength filter, a tunable wavelength filter can be realized by controlling the equivalent refractive index of the ring resonator (3) from the outside using a thermo-optic effect, an electro-optic effect, a magneto-optic effect, and the like. Specifically, for example, when the thermo-optic effect is used, as illustrated in FIG. 2, an electrode to be a heater (4) is formed on the filter, and the ring resonator (3) is heated by the heater (4). Then, central wavelength control is performed. The center wavelength is obtained by λ = (2πR · n eq ) / N [R = ring radius, n eq = equivalent refractive index, N = resonance order].
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-298215
[Problems to be solved by the invention]
However, when the center wavelength of the filter is moved from one wavelength channel to another wavelength channel, the optical signal of the moving channel is temporarily transmitted to the output side optical waveguide (2) as illustrated in FIG. Problem arises.
[0006]
Therefore, in view of the circumstances as described above, the invention of this application provides a center wavelength control method for a series coupled ring resonator wavelength filter capable of preventing signal transmission during wavelength shift.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application is firstly a series-coupled ring resonance in which two or more ring resonators are coupled to each other between an input-side optical waveguide and an output-side optical waveguide. In the case of a series coupled ring resonator wavelength filter in which two or more ring resonators are coupled to each other between an input side optical waveguide and an output side optical waveguide , the center wavelength of each ring resonator is set to a certain channel. When moving from the center wavelength of the ring resonator to the center wavelength of another desired channel, the center wavelength of each ring resonator is individually set so that the center wavelength of each ring resonator is different at the same time during the movement of the center wavelength. To block the output to the output side optical waveguide of the wavelength channel other than the center wavelength of the target channel, and each ring in the final stage of movement All of the center wavelength of the acoustic transducer to match the center wavelength control method of the series coupled ring resonators wavelength filter, characterized in that for outputting a wavelength channels having center wavelengths of other channels of interest to an output side optical waveguide provide.
[0008]
Second, as the series coupled ring resonator wavelength filter, the input-side optical waveguide and the output-side optical waveguide intersect each other, and the ring resonators are stacked at the intersection. A center wavelength control method for a series coupled ring resonator wavelength filter is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the invention of this application having the above-described features, for example, as illustrated in FIG. 4, two or more ring resonators are provided between the input-side optical waveguide (1) and the output-side optical waveguide (2). (3) are coupled to each other to form a series coupled ring resonator wavelength filter, in which the drop wavelength output to the output side optical waveguide (2) is set separately from the center wavelength of each ring resonator (3). In the process of wavelength control, another wavelength channel that is not intended for output is output to the output-side optical waveguide (2) without being output to the output-side optical waveguide (2). By newly outputting in 2), it is possible to reduce the filter transmittance in the middle of the wavelength shift to a negligible level. In other words, the filter characteristics of the ring resonators (3) are erased before the center wavelength is moved, and a switching characteristic is obtained such that the filter characteristics are output again after the center wavelength is moved. As a result, filter characteristics can be produced only when the center wavelengths match, and signal transmission during wavelength shift can be suppressed, and the change from wavelength λ n to λ n + 2 does not pass through λ n + 1. Will be able to do directly.
[0010]
In one embodiment of FIG. 4, more specifically, an input side optical waveguide (1) having an input port and a through port and an output side optical waveguide (2) having an add port and a drop port intersect with each other in the lower cladding. The three ring resonators (3) (# 1, # 2, # 3) are arranged at the intersection, and the # 1 ring resonator (3) is provided on the input side optical waveguide (1). ), A three-stage series coupling in which a # 3 ring resonator (3) is stacked on the output side optical waveguide (2), and a # 2 ring resonator (3) is stacked between the # 1 and # 3 It has become. In FIG. 4, the stacked structure is such that # 1 and # 3 overlap each other above # 2, but, for example, # 2 may be positioned on the upper side, and the ring resonators (3) and The lamination position of the input side optical waveguide (1) and the output side optical waveguide (2) is not particularly limited. Here, the ring resonator (3) coupled in three stages in this way is referred to as a “triple ring resonator”.
[0011]
Then, the center wavelength of the triple ring resonator, that is, the resonance wavelength may be moved separately. At this time, for example, it is moved sequentially from # 1 to # 3, that is, from the input side to the drop side. Such movement is possible by external control using, for example, a thermo-optic effect, an electro-optic effect, a magneto-optic effect, or the like.
[0012]
Needless to say, the number of ring resonators (3) is not limited to three, but may be two or more multiple series coupling structures.
[0013]
【Example】
[Example 1]
In accordance with the invention of this application, a simulation was performed in which the filter center wavelength initially dropped on channel 1 was moved to channel 12. FIG. 5 shows the analysis result. The graph on the right side of FIG. 5 shows the movement pattern of the center wavelength of each ring used in this simulation, and the graph on the left side shows the change in the transmission spectrum as the simulation result. Is shown.
[0014]
More specifically, in this simulation, it is assumed that there is a triple ring resonator in which each center wavelength is matched in the channel 1 band, and when the center wavelength is moved to the channel 12 band, it is between them. In order to reduce crosstalk in the region, the center wavelength is moved to the band of the channel 12 in order from the # 1 ring to the # 3 ring.
[0015]
As can be seen from FIG. 5, the filter transmittance is suppressed to −30 dB or less in the band between the channel 1 and the channel 12.
[0016]
Therefore, a non-blocking type tunable wavelength filter can be realized.
[0017]
[Example 2]
As a result of a simulation of moving from channel 1 to channel 3 under the same conditions, it was found that a non-blocking tunable wavelength filter in which the crosstalk between them was suppressed to -30 dB or less as shown in FIG. .
[0018]
Of course, the invention of this application is not limited to the above-described embodiments and examples, and various aspects are possible for details.
[0019]
【The invention's effect】
As described above in detail, the invention of this application provides a center wavelength control method for a series coupled ring resonator wavelength filter capable of preventing signal transmission during wavelength shift.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating a conventional multilayer microring resonator wavelength filter.
FIG. 2 is a perspective view exemplifying a tunable wavelength filter when the center wavelength is controlled by a thermo-optic effect in a conventional multilayer microring resonator wavelength filter.
FIG. 3 is a diagram for explaining a conventional problem and shows signal transmission during wavelength shift.
FIG. 4 is a perspective view showing an embodiment of the invention of this application.
FIG. 5 is a diagram showing an embodiment of the invention of this application.
FIG. 6 is a diagram showing another embodiment of the invention of this application.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input side optical waveguide 2 Output side optical waveguide 3 Ring resonator 4 Heater

Claims (2)

入力側光導波路と出力側光導波路との間に2つ以上のリング共振器が互いに結合してなる直列結合リング共振器波長フィルタにおいて、各リング共振器の中心波長をあるチャネルの中心波長から目的とする別のチャネルの中心波長に移動させるにあたり、中心波長の移動中に各リング共振器の中心波長が同じ時刻においてはそれぞれ異なるように各リング共振器の中心波長をそれぞれ個別に移動させることにより、目的とするチャネルの中心波長以外の波長チャネルの出力側光導波路への出力を阻止させ、移動の最終段階において各リング共振器の全ての中心波長を一致させ、目的とする別のチャネルの中心波長を持つ波長チャネルを出力側光導波路に出力させることを特徴とする直列結合リング共振器波長フィルタの中心波長制御方法。In a series-coupled ring resonator wavelength filter in which two or more ring resonators are coupled to each other between an input side optical waveguide and an output side optical waveguide , the center wavelength of each ring resonator is determined from the center wavelength of a certain channel. By moving the center wavelength of each ring resonator individually so that the center wavelength of each ring resonator is different at the same time during the movement of the center wavelength. , Blocking the output of the wavelength channel other than the center wavelength of the target channel to the output side optical waveguide, and matching all the center wavelengths of each ring resonator in the final stage of movement, and the center of another target channel A center wavelength control method for a series coupled ring resonator wavelength filter , wherein a wavelength channel having a wavelength is output to an output optical waveguide . 前記直列結合リング共振器波長フィルタとして、前記入力側光導波路と前記出力側光導波路が互いに交差し、その交差部にて前記各リング共振器が積層されているものを用いる、ことを特徴とする請求項1記載の直列結合リング共振器波長フィルタの中心波長制御方法 The series-coupled ring resonator wavelength filter is characterized in that the input-side optical waveguide and the output-side optical waveguide intersect with each other, and the ring resonators are stacked at the intersection. The center wavelength control method of the series coupled ring resonator wavelength filter according to claim 1 .
JP2003074540A 2003-03-18 2003-03-18 Center wavelength control method of wavelength filter for series coupled ring resonator Expired - Fee Related JP4083045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074540A JP4083045B2 (en) 2003-03-18 2003-03-18 Center wavelength control method of wavelength filter for series coupled ring resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074540A JP4083045B2 (en) 2003-03-18 2003-03-18 Center wavelength control method of wavelength filter for series coupled ring resonator

Publications (2)

Publication Number Publication Date
JP2004279982A JP2004279982A (en) 2004-10-07
JP4083045B2 true JP4083045B2 (en) 2008-04-30

Family

ID=33290140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074540A Expired - Fee Related JP4083045B2 (en) 2003-03-18 2003-03-18 Center wavelength control method of wavelength filter for series coupled ring resonator

Country Status (1)

Country Link
JP (1) JP4083045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733099A (en) * 2011-05-27 2014-04-16 美光科技公司 Optical waveguide with cascaded modulator circuits

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774761B2 (en) 2005-03-03 2011-09-14 日本電気株式会社 Wavelength tunable resonator, wavelength tunable laser, optical module, and control method thereof
JP4470782B2 (en) * 2005-03-28 2010-06-02 日本電信電話株式会社 Optical logic circuit
KR100927652B1 (en) 2008-03-26 2009-11-20 한국전자통신연구원 Wavelength Division Multiplexing Device
CN105452921B (en) 2014-07-18 2019-03-08 华为技术有限公司 The method of wavelength-selective switches and selection wavelength
JP7211017B2 (en) 2018-11-02 2023-01-24 株式会社デンソー Optical filter, laser light source and optical transmitter/receiver using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733099A (en) * 2011-05-27 2014-04-16 美光科技公司 Optical waveguide with cascaded modulator circuits

Also Published As

Publication number Publication date
JP2004279982A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US8655114B2 (en) Hitless tuning and switching of optical resonator amplitude and phase responses
EP0681195B1 (en) Frequency routing device having a wide and substantially flat passband
CA2506387C (en) Interferometer optical switch and variable optical attenuator
WO2020210288A1 (en) Wavelength division multiplexing filter for multiplexing or demultiplexing using cascaded frequency shaping
JP6484128B2 (en) Optical wavelength filter and manufacturing method thereof
EP1176438A1 (en) OPTICAL WAVEGUIDE WAVELENGTH FILTER WITH RING RESONATOR AND 1xN OPTICAL WAVEGUIDE WAVELENGTH FILTER
JP2009530970A (en) Wavelength channel insertion and branching
Saeung et al. Generalized analysis of multiple ring resonator filters: modeling by using graphical approach
JP4083045B2 (en) Center wavelength control method of wavelength filter for series coupled ring resonator
Soref et al. Reconfigurable optical-microwave filter banks using thermo-optically tuned Bragg Mach-Zehnder devices
JP4022766B2 (en) Chromatic dispersion device
CA2719875C (en) Method and device for tunable optical filtering using vernier effect
JPH1062733A (en) Two-staged sound-optical waveguide device
US8699834B2 (en) Bandwidth adjustable bandpass filter
JP3681995B2 (en) Optical multiplexer / demultiplexer
WO2007074485A1 (en) Method and device for tunable optical filtering
CN114924357B (en) Wavelength division multiplexing optical delay line based on cascade Mach-Zehnder interferometer structure
CA2207343C (en) Polarization-independent, tunable, acousto-optical waveguide device for the wavelength selection of an optical signal
JP4909528B2 (en) Light control element
Schwelb Microring resonator based photonic circuits: analysis and design
WO2020031865A1 (en) Optical multiplexer and rgb coupler
JPH08195720A (en) Wavelength selection filter for pill box type optical resonator
JP3535042B2 (en) Half-band optical signal processor
WO2020145257A1 (en) Optical signal processing device
US20050180683A1 (en) Tuneable filter arrangement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080212

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees