[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4082803B2 - Method for producing silicon nitride powder - Google Patents

Method for producing silicon nitride powder Download PDF

Info

Publication number
JP4082803B2
JP4082803B2 JP30710198A JP30710198A JP4082803B2 JP 4082803 B2 JP4082803 B2 JP 4082803B2 JP 30710198 A JP30710198 A JP 30710198A JP 30710198 A JP30710198 A JP 30710198A JP 4082803 B2 JP4082803 B2 JP 4082803B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
nitride powder
dry
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30710198A
Other languages
Japanese (ja)
Other versions
JP2000128511A (en
Inventor
佳孝 谷口
秀雄 塚本
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP30710198A priority Critical patent/JP4082803B2/en
Publication of JP2000128511A publication Critical patent/JP2000128511A/en
Application granted granted Critical
Publication of JP4082803B2 publication Critical patent/JP4082803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、スラリー粘度を低くできるので成形性に優れ、もって高強度の焼結体を得ることができる窒化ケイ素粉末の製造方法に関する。
【0002】
【従来の技術】
窒化ケイ素の焼結体は、窒化ケイ素粉末にAlやY ような焼結助剤等を添加し、有機溶媒や水等によりスラリー化し、乾燥、成形、焼成の工程を経て製造される。この場合、スラリー濃度スラリー粘度が重要であり、一般にスラリー濃度が高く、スラリー粘度が低いほど成形性に優れ成形密度向上するので、焼結体高強度となる。
【0003】
そこで、特開平7−267614号公報にはスラリーのHを調整する方法が、また特開平8−2970号公報には特定の解膠剤を添加する方法が提案されている。しかし、それだけでは高濃度かつ低粘度のスラリーを調製することは困難であった。すなわち、窒化ケイ素粉末を媒体中に分散させたとき、スラリーの固形分濃度を高くすると、スラリーが高粘度化し成形性に劣るという問題があった。
0004
【発明が解決しようとする課題】
本発明者らは、種々の粒度構成を持つ窒化ケイ素粉末を用いてスラリーを調製し、その固形分濃度と粘性の関係を調べたところ、ある特定の粒度構成を取ることにより、高濃度で低粘度のスラリーを得ることができので焼結体高強度となること、そしてこのような窒化ケイ素粉末は金属シリコン粉末と窒化ケイ素粉末骨材との特定割合の混合原料を容器に充填し、窒素−水素−アルゴンの雰囲気で窒化反応させて得られた窒化ケイ素インゴットを粗砕した後、乾式の微粉砕をし、粒度調整をすれば容易に製造することができることを見いだし、本発明を完成するに到った。
【0005】
【課題を解決するための手段】
本発明は、金属シリコン粉末100重量部に対し、窒化ケイ素粉末骨材の割合が30〜50重量部である混合原料を、緩め嵩密度を1.2g/cm 以下にして容器に充填し、窒素と水素とアルゴンを含むガス雰囲気中で窒化させて窒化ケイ素インゴットを製造し粗粉砕した後、以下の(イ)、(ロ)又は(ハ)のいずれかの乾式の微粉砕を伴う操作を行って、平均粒子径が0.5〜1.5μmであり、ロジン・ランムラー線図上において、篩下10%点と50%点を結ぶ直線の頻度因子n1が1.1〜1.9で、篩下50%点と90%点を結ぶ直線の頻度因子n2が0.2〜1.1で、しかもn2がn1の0.7倍以下 ある粉末にすることを特徴とする窒化ケイ素粉末の製造方法である。
(イ)乾式の微粉砕を行う。
(ロ)乾式の微粉砕を行ってから分級する。得られた微粉末粗粉末の割合を調整する。
(ハ)乾式の微粉砕を行ってから分級する。得られた粗粉末を再粉砕する。得られた再粉砕物と分級で得られた微粉末を乾式混合する。
0006
【発明の実施形態】
窒化ケイ素の焼結体を得る上で、単に焼結性が優れるだけでなく、成形性に優れた窒化ケイ素粉末が要求されている。そこで、本発明者らは種々検討した結果、ある特定の粒度分布を有する粉末が焼結性成形性のバランスに優れ、スラリー化した時に高充填で低粘度を示すことを見いだした。またこのような粒度特性を示す粉末はプラスチック、金属等の充填材として用いる時にも高充填可能であり、複合材の剛性の与、高熱伝導化に有利であることを併せて見いだした。
0007
本発明の窒化ケイ素粉末の製造方法は、金属シリコン粉末を窒素ガス等で窒化する金属シリコン直接窒化法を基本技術とする。この方法は、シリカ粉末を窒素ガスと炭素で還元窒化するシリカ還元窒化法、四塩化ケイ素とアンモニアを反応させるハロゲン化ケイ素法等に比べて、安価であり、各種粒度の粉末を作り分けできる利点がある。
0008
本発明で製造される窒化ケイ素粉末の粒子形状は粒状又は球状が好ましく、針状又は柱状の形状の粒子は可能な限り少ない方が好ましい。また、窒化ケイ素粉末のα率は、焼結用には高温強度の点から60%以上が好ましく、特に80%以上が好ましく、90%以上が更に好ましい。一方、高熱伝導を期待した樹脂又は金属の充填用としては、α率が低いほど良く、α率が30%以下が好ましく、10%以下が更に好ましい。
0009
窒化ケイ素粉末の粒度分布は、それをロジン・ランムラー線図上で表現したとき、篩下10%点と50%点を結ぶ直線の頻度因子n1が1.1〜1.9の範囲である。1.9より大きいと焼結性が阻害され、1.1より低いと、充填性が低く、スラリー化したときの粘度が上昇する。好ましくは1.3〜1.7であり、更に好ましくは1.4〜1.6である。
0010
また、篩下50%点と90%点を結ぶ直線の頻度因子n2が0.2〜1.1である。1.1より大きいと、焼結性が阻害され、0.2より低いと充填性が低下する、すなわち成形性が低下する。好ましくは0.4〜0.9である。また、頻度因子n2がn1の0.7倍以下である。好ましくは0.2〜0.6倍、特に好ましくは0.3〜0.5倍である。
0011
頻度因子n1およびn2とは、ロジン・ランムラー線上で、篩下10%点、50%点および90%点の粒子径を各々D10、D50およびD90μmとすると、次式によって求めた値である。
0012
【式1】
0013
また、窒化ケイ素粉末の平均粒子径は0.5〜1.5μmである。1.5μmより大きいと、焼結が阻害され、収縮が不足し、また0.4μmより小さいと充填性が低く焼結時の収縮率が大きくなり、焼結歪みが大きくなる。その結果、何れの場合も焼結体の強度は低下する傾向となる。
0014
なお、粒度分布はレーザー法によって測定された値である。
0015
本発明で製造される窒化ケイ素粉末の特性スラリー特性で示せば以下のとおりとなる。すなわち、窒化ケイ素粉末とエタノールを1/0.85の重量比で5分間攪拌混合してスラリーを調製し、その粘度をB形粘度計(株式会社東京計器製)を用いて、温度23℃、ローターNo.4回転数を20rpmで30秒間撹拌した後に測定した場合に、100〜1,000Pa・sとなる窒化ケイ素粉末である。好ましくは150〜700Pa・s、更に好ましくは180〜50Pa・sとなる窒化ケイ素粉末である。粘度が1,000Pa・s以上を示す窒化ケイ素粉末は成形性に劣るので成型時に高圧を必要とし、成形歪みが残存するか、低嵩比重の成形体しか得られない。何れの場合も焼結時に変形しやすくなり、焼結歩留まりが低くなる。一方、粘度が100Pa・sより低いスラリー特性を示す窒化ケイ素粉末は40μm以上の粗粉を5%以上含むことが多いので、焼結体中にボイド粗大結晶を生成させる原因となる。
0016
窒化ケイ素粉末のスラリーは、テープ成形、スリップキャスト成形又は高圧鋳込み法に好適であり、高嵩比重の成形体無理な加圧を必要とせず得ることができる。その結果、焼結収縮率が小さく焼結時の変形も少な、高強度の焼結体を製造することができる。
0017
本発明の窒化ケイ素粉末の製造方法は以下のとおりである。
0018
金属シリコン粉末平均粒子径5〜20μm、特に5〜15μmであることが好ましく、これによって微細な窒化ケイ素粒子が形成されやすい。平均粒子径が20μmより大きくなると、粗大な1次粒子や2次粒子や柱状粒子を形成しやすく、成形性および強度の面で不利である。一方、5μmより小さいと、微細な金属シリコン粉末が増加し、微細なウィスカーや1次粒子を生成し、粉砕して得られた窒化ケイ素粉末の微粉量が多くなることにより頻度因子n1が大きくなり、緩め嵩密度およびスラリー粘度の面で不利となる。
0019
金属シリコン粉末が窒化する際、生成した窒化ケイ素粒子同士の焼結を防ぐために、骨材として窒化ケイ素粉末を添加する。骨材となる窒化ケイ素粉末は、低酸素、高比表面積、高純度であることが好ましく、添加量は金属シリコン粉末100重量部に対して30〜50重量部である。骨材の添加量が30重量部より少ないと、窒化ケイ素粒子同士の焼結が起こりやすくなり、粉砕性の悪い粗大な2次粒子(塊状粒子)を形成し粉砕時の頻度因子n2が小さくなり強度低下を招く。一方、50重量部より多いと微細な粒子を形成するが、頻度因子n1が大きくなり緩め嵩密度が低下し、スラリー粘度が高くなる。
0020
金属シリコン粉末と窒化ケイ素粉末骨材との混合方法は、両者を別々に粉砕してから混合してもよく、また粉砕と混合を同時に行うこともできる。いずれの場合においても、粉砕・混合時の不純物の混入、特にメディアの摩耗による不純物の混入と金属シリコンの酸化には充分留意すべきであり、特に高純度を必要とする場合には、窒化ケイ素製のメディアを使用し、非酸化性雰囲気下で粉砕・混合を行うことが好ましい。
0021
金属シリコン粉末が気相反応により円滑に窒化反応をするのに必要な反応空間を確保するために、金属シリコン粉末と窒化ケイ素粉末骨材の混合原料は、その緩め嵩密度を1.2g/cm以下(気孔率で55%以上)好ましくは1.0g/cm(気孔率で60%以上)にして容器に充填する必要がある。自然充填(成形なし)することが好ましい。これ以外の緩め嵩密度では、気−固反応が主体となるため、反応が大きな発熱を伴い暴走的に進みやすくなり、金属シリコン粉末が溶融したり、生成した窒化ケイ素粉末同士が焼結したりして、不純物の多い、粉砕性のよくない、大きな塊状の窒化ケイ素インゴットが生成する。
0022
金属シリコンと窒素ガスとの反応は、主に気−固反応によって進むものと考えられている。この反応は、1150〜1450℃の温度範囲で行われる固体の不均一反応であり、大きな発熱を伴うため反応を厳密に制御することが困難である。そこで、通常はあまり急激に反応させないよう長時間をかけて反応を行わせる。
0023
反応制御がうまくいかないと、窒化ケイ素の粗大な1次粒子や2次粒子を形成することで粉砕性が悪くなり、また粗大な柱状粒子を形成するため粉砕後に得られた窒化ケイ素粉末の緩め嵩密度が0.6g/cm未満と低くなるため、スラリー粘度が1,000Pa・sより大きくなる。本発明では、金属シリコン粉末の粒度と窒化ケイ素粉末骨材の添加および窒化反応時の反応速度を調整することで、気相反応を促進させ、微細な構造をもつ窒化ケイ素インゴットを製造することが特徴である。
0024
窒化雰囲気の窒化反応ガスの例としては、窒素および/またはアンモニアがある。窒化反応ガスは反応制御のため不活性ガスや水素ガス等と併用することもできる。本発明では窒素−水素−アルゴンを含むガス雰囲気中で窒化させる。窒化率1〜80%の範囲においては、水素とアルゴンガスの合計が15〜85容積%であることが好ましい。
0025
窒化(昇温)に際しては、温度1100〜1450℃特に1150〜1350℃の範囲における窒化率が80%以上制御することが好ましい。窒化時間については、窒化反応が開始してから窒化率30%程度になるまでに20時間以上かけることが好ましく、完全窒化するまでの最大反応速度を3%/hr以下特に2%/hr以下にしてゆっくりと窒化させることが好ましい。これ以上の反応速度になると、粗大な粒子や柱状粒子を形成しやすくなる。
0026
窒化反応終了後、窒素ガスを流しながら室温まで冷却し、生成した窒化ケイ素インゴットを取り出す。インゴットは、ジョークラッシャーやロールクラッシャーなどにより粗粉砕される。粗粉砕された窒化ケイ素粉末には粗大な粒子を多く含むため、頻度因子n2が0.4未満と小さくなる。その結果、緩め嵩密度が0.6g/cm3未満と低くなり、焼結体の密度が低く強度低下を招く。
0027
ついで、窒化ケイ素インゴットの粗砕物について以下の(イ)、(ロ)又は(ハ)のいずれかの乾式の微粉砕を伴う操作を行って、平均粒子径が0.5〜1.5μmであり、ロジン・ランムラー線図上において、篩下10%点と50%点を結ぶ直線の頻度因子n1が1.1〜1.9で、篩下50%点と90%点を結ぶ直線の頻度因子n2が0.2〜1.1で 、しかもn2がn1の0.7倍以下である窒化ケイ素粉末を製造する。
(イ)乾式の微粉砕を行う。
(ロ)乾式の微粉砕を行ってから分級する。得られた微粉末粗粉末の割合を調整する。
(ハ)乾式の微粉砕を行ってから分級する。得られた粗粉末を再粉砕する。得られた再粉砕物と分級で得られた微粉末を乾式混合する。
0028
微粉砕機の様式については、大まかに乾式粉砕と湿式粉砕とに分けられる。しかし、湿式粉砕では、窒化ケイ素粉末の過粉砕が進みやすいので、2次粒子がほぼ1次粒子になるまで粉砕され、粉砕物の頻度因子n1が1.3未満と小さくなる。その結果、緩め嵩密度が小さくスラリー粘度が増加する。しかも、粉砕後の乾燥や粉砕メディアとして鉄系ボール等を使用した場合、脱鉄や酸処理が必要となるため、コスト面で不利である。
0029
したがって、本発明の窒化ケイ素粉末を得るためには、乾式のボールミル、振動ミルまたは攪拌粉砕機等の媒体式粉砕機や、ジェットミル等の衝撃式粉砕機で乾式の微粉砕を行うことが必要となる。また、乾式の微粉砕を乾式の気流分級機にて分級し、微粉末と粗粉末を得た後、粒度調整を行うことや、更に分級で得られた粗粉末のみを乾式で再度微粉砕し、この再粉砕物と分級で得られた微粉末とを乾式混合することが必要となる。乾式の微粉砕の際には、粉砕メディアについても摩耗による不純物の混入に留意すべきであり、高純度を目的とする場合には窒化ケイ素製のボール等を使用する。
0030
【実施例】
実施例1〜3
市販の高純度金属シリコン粉末(粒径200〜2000μm程度)を窒化ケイ素製ボールを用いた振動ミルにより粉砕し、平均粒子径を10〜15μmとした。得られた金属シリコン粉末100重量部に窒化ケイ素粉末骨材(電気化学工業株式会社社製窒化ケイ素粉末:商品名「SN−9FW」)40〜50重量部を加え振動ミルで粉砕・混合し、窒化ケイ素または炭化ケイ素を主成分とする焼結体容器に嵩密度が1.1〜1.2g/cmとなるように自然充填し、バッチ式の反応炉に充填した。
0031
炉内の酸素濃度が500ppm以下になるように窒素ガス置換した後、アルゴンガスと水素ガスを加えて昇温を開始し、1100〜1450℃にて窒化反応が開始してから窒化率が30%に達するまでに30時間かけ、最大反応速度を2.5%/hr以下にして窒化反応を行った。その際、水素およびアルゴンガスの合計は20〜80容積%で推移させた。
0032
このようにして得られた窒化ケイ素インゴットをジョークラッシャーおよびロールクラッシャーにより粗粉砕した。粗粉砕された窒化ケイ素粉末は、α化率90%以上、酸素量1.2%、未反応Si量0.2%以下、緩め嵩密度0.4〜0.5g/cm3であった。
0033
粗粉砕された窒化ケイ素粉末を窒化ケイ素製ボールを粉砕メディアとした乾式のボールミル(2Lポリエチポット)を用いて、窒化ケイ素量200g、粉砕ボール径20mmφ、ボール充填量60容積%、粉砕時間8hrの条件で乾式の微粉砕を行って窒化ケイ素粉末を製造した(実施例1)。
0034
つぎに、実施例1で得られた窒化ケイ素粉末を乾式の気流分級機にて分級したところ、得られた微粉末は、酸素量1.5%、比表面積11m/gであり、分級収率は50%であった。分級で得られた粗粉末75重量部と微粉末25重量部とを乾式混合して窒化ケイ素粉末を製造した(実施例3)。
0035
さらに、上記実施例3の分級で得られた粗粉末を窒化ケイ素製ボールを粉砕メディアとした乾式のボールミル(2Lポリエチポット)を用いて、窒化ケイ素量200g、粉砕ボール径20mmφ、ボール充填量60容積%、粉砕時間4hrの条件で微粉砕を行ったのち、先の分級で得られた微粉末と乾式混合して窒化ケイ素粉末を製造した(実施例2)。
0036
比較例1〜
微粉砕に湿式アトライターミルを使用したものを比較例1、窒化ケイ素粉末骨材の添加量を金属シリコン粉末100重量部に対して60重量部としたものを比較例2、ボールミルによる粉砕時間を4hrとしたものを比較例3としたこと以外は、実施例1と同様にして窒化ケイ素粉末を製造した。
0037
得られた窒化ケイ素粉末の緩め嵩密度を測定した。緩め嵩密度の測定は、メスシリンダーに窒化ケイ素粉末を入れ、タッピングすることなく嵩体積を計ることで行った。
0038
窒化ケイ素粉末の粒度分布は、レーザー散乱式粒度測定計(LEDSandNORTHRUP社製マイクロトラックSPA7997型)により測定し求めた。
0039
また、スラリー粘度は、500mlビーカーに窒化ケイ素粉末とエタノールを1/0.85の重量比で入れてから5分間混合し、B形粘度計を用いて、温度23℃、ローターNo.4回転数を20rpmで30秒間撹拌した後に測定した。
0040
焼結体の密度および強度は、窒化ケイ素粉末90重量部、Al粉末3重量部、Y粉末5重量部及び有機バインダー15重量%を加え湿式混合した後、吸引濾過・乾燥・解砕し、金型プレス成形後2.0トン/cmの圧力でCIP成形してから、温度1800℃で6時間焼成して窒化ケイ素焼結体を製造した。この焼結体の密度をアルキメデス法にて測定し理論密度に対する相対密度を算出した後、JIS R1601に準拠して室温における4点曲げ強度を測定した。
0041
【表1】
0042】
【発明の効果】
本発明によれば、成形性、スラリー粘度に優れ、高密度かつ高強度の焼結体を得ることができる窒化ケイ素粉末の製造方法が提供される。また、樹脂充填材として用いたとき高充填が可能となる窒化ケイ素粉末の製造方法が提供される。
[0001]
[Industrial application fields]
The present invention, since the slurry viscosity can be lowered excellent moldability, have been directed to the manufacturing method of the silicon nitride powder can be obtained sintered bodies of high strength.
[0002]
[Prior art]
Sintered silicon nitride, the addition of Al 2 O 3 and Y 2 O sintering aid, such as 3, such as silicon nitride powder, was slurried with an organic solvent or water, drying, molding and sintering steps It is manufactured after . In this case, it is important the slurry concentration and the slurry viscosity, generally higher slurry concentration, since the molding density is excellent in moldability as slurries lower viscosity is improved, the sintered body has a higher strength.
[0003]
Therefore, Japanese Patent Laid-Open No. 7-267614 a method for adjusting the p H of the slurry, and a method of adding a specific peptizer is proposed in JP-A-8-2970. However, it has been difficult to prepare a slurry having a high concentration and a low viscosity . That is, when the silicon nitride powder is dispersed in the medium, there is a problem that if the solid content concentration of the slurry is increased, the slurry becomes highly viscous and has poor moldability.
[ 0004 ]
[Problems to be solved by the invention]
The present inventors to prepare a slurry by using a silicon nitride powder having various particle size configuration was examined the solid concentration and viscosity of the relationship, by taking a specific particle size configuration, low in high concentrations it sintered body becomes high strength since it is possible to obtain a slurry viscosity, and such silicon nitride powder fills the mixed raw material of a specific ratio of the metal silicon powder and silicon nitride powder aggregate in a container, nitrogen -After pulverizing a silicon nitride ingot obtained by a nitriding reaction in a hydrogen-argon atmosphere, it is found that the silicon nitride ingot can be easily manufactured by finely pulverizing and adjusting the particle size, thereby completing the present invention. It reached.
[0005]
[Means for Solving the Problems]
The present invention loosens a mixed raw material in which the proportion of the silicon nitride powder aggregate is 30 to 50 parts by weight relative to 100 parts by weight of the metal silicon powder , and fills the container with a bulk density of 1.2 g / cm 3 or less, After nitriding in a gas atmosphere containing nitrogen, hydrogen and argon to produce a silicon nitride ingot and coarsely pulverizing, the following operations (a), (b) or (c) with dry fine pulverization are performed. go and an average particle diameter of 0.5 to 1.5 [mu] m, in diagram rosin Ranmura line, frequency factor n1 of a straight line connecting the lower 10% points sieve and 50% points at 1.1 to 1.9 The silicon nitride is characterized in that the powder has a frequency factor n2 of a straight line connecting the 50% point and the 90% point under the sieve of 0.2 to 1.1 and n2 is 0.7 times or less of n1. It is a manufacturing method of powder.
(B) intends row finely ground dry.
(B) Classification after dry pulverization . The ratio of the fine powder and coarse powder obtained is adjusted .
(C) Classification is performed after dry pulverization. The coarse powder obtained is reground . The repulverized product obtained and the fine powder obtained by classification are dry mixed.
[ 0006 ]
DETAILED DESCRIPTION OF THE INVENTION
In order to obtain a sintered body of silicon nitride, there is a demand for a silicon nitride powder not only having excellent sinterability but also excellent moldability. As a result of various studies , the present inventors have found that a powder having a specific particle size distribution has an excellent balance between sinterability and formability, and exhibits high filling and low viscosity when slurried. Also, powder exhibiting such particle size characteristics of the plastic, but may be also high loading when used as a filler such as metal, granted stiffness of the composite was found together that it is advantageous for high thermal conductivity of .
[ 0007 ]
The silicon nitride powder production method of the present invention is based on the metal silicon direct nitriding method in which the metal silicon powder is nitrided with nitrogen gas or the like . This method is less expensive and can produce powders of various particle sizes separately compared to the silica reduction nitriding method in which silica powder is reduced and nitrided with nitrogen gas and carbon and the silicon halide method in which silicon tetrachloride and ammonia are reacted. There are advantages.
[ 0008 ]
The particle shape of the silicon nitride powder produced in the present invention is preferably granular or spherical, and the number of needle-shaped or columnar particles is preferably as small as possible. Also, alpha factor of the silicon nitride powder is preferably 60% or more in terms of high temperature strength for sintering, particularly preferably at least 80%, more preferably 90% or more. On the other hand, as a filling of resin or metal to expect high thermal conductivity, rather good as α ratio is low, is preferably 30% or less α ratio, more preferably 10% or less.
[ 0009 ]
When the particle size distribution of the silicon nitride powder is expressed on the Rosin-Rammler diagram, the frequency factor n1 of the straight line connecting the 10% point and the 50% point under the sieve is in the range of 1.1 to 1.9 . When it is larger than 1.9, the sinterability is inhibited, and when it is lower than 1.1, the filling property is low, and the viscosity when slurried is increased . Preferably it is 1.3-1.7, More preferably, it is 1.4-1.6.
[ 0010 ]
The frequency factor n2 of the straight line connecting the 50% point and the 90% point under the sieve is 0.2 to 1.1 . When it is larger than 1.1, the sinterability is inhibited, and when it is lower than 0.2, the filling property is lowered, that is, the moldability is lowered. Preferably it is 0.4-0.9 . Moreover, the frequency factor n2 is 0.7 times or less of n1 . Preferably it is 0.2 to 0.6 times, and particularly preferably 0.3 to 0.5 times .
[ 0011 ]
The frequency factors n1 and n2 are values obtained by the following formula, assuming that the particle sizes at the 10% point, 50% point, and 90% point under the sieve are D10, D50, and D90 μm on the rosin-Rammler line, respectively.
[ 0012 ]
[Formula 1]
[ 0013 ]
The average particle size of the silicon nitride powder is 0.5 to 1.5 μm . And 1.5μm greater than the sintering is inhibited, shrinkage is insufficient, also 0.4μm smaller and the filling is low sintering time of shrinkage becomes large, sintering distortion is increased. As a result, in any case, the strength of the sintered body tends to decrease .
[ 0014 ]
The particle size distribution is a value measured by a laser method.
[ 0015 ]
The characteristics of the silicon nitride powder produced according to the present invention can be expressed as slurry characteristics as follows. That is, silicon nitride powder and ethanol were stirred and mixed at a weight ratio of 1 / 0.85 for 5 minutes to prepare a slurry, and its viscosity was measured at a temperature of 23 ° C. using a B-type viscometer (manufactured by Tokyo Keiki Co., Ltd.) Rotor No. 4 of the rotational speed as measured after stirring for 30 seconds at 20 rpm, a silicon nitride powder serving as 100~1,000Pa · s. Good Mashiku is 150~700Pa · s, more preferably from silicon nitride powder which is a 180~50Pa · s. Viscosity silicon nitride powder showing the above 1,000 Pa · s requires high pressure during molding so poor moldability, or molding strain remains, only be obtained molded bodies of a low bulk density. In any case tends to be deformed during sintering, the sintering yield is that a low. On the other hand, the viscosity is silicon nitride powder having a small slurry properties than 100 Pa · s than INO multi may contain more coarse particles 40 [mu] m 5% or more, causing to generate voids and coarse crystals in the sintered body.
[ 0016 ]
Silicon powder slurry nitride, tape casting, is suitable for slip casting or high pressure casting method, it is possible to obtain without requiring excessive pressure to molding of high bulk density. As a result, small sintering shrinkage, yet little deformation during sintering, it is possible to produce a sintered body of high strength.
[ 0017 ]
Production method of the present onset Ming silicon nitride powder are as follows.
[ 0018 ]
The average particle diameter of the metal silicon powder is preferably 5 to 20 μm, and particularly preferably 5 to 15 μm , whereby fine silicon nitride particles are easily formed . When the average particle diameter is larger than 20 μm, coarse primary particles, secondary particles and columnar particles are easily formed, which is disadvantageous in terms of moldability and strength. On the other hand, if it is smaller than 5 μm, the fine metal silicon powder increases, the fine factor of the silicon nitride powder obtained by pulverizing the fine whiskers and primary particles is increased, and the frequency factor n1 is increased. , It is disadvantageous in terms of loose bulk density and slurry viscosity.
[ 0019 ]
When the metal silicon powder is nitrided, the silicon nitride powder is added as an aggregate to prevent sintering of the generated silicon nitride particles. The silicon nitride powder as the aggregate is preferably low oxygen, high specific surface area, and high purity, and the addition amount is 30 to 50 parts by weight with respect to 100 parts by weight of the metal silicon powder . When the added amount of the aggregate is less than 30 parts by weight, the silicon nitride particles are easily sintered with each other, forming coarse secondary particles (lumped particles) with poor grindability, and the frequency factor n2 during grinding is reduced. It causes a decrease in strength. On the other hand, when the amount is more than 50 parts by weight, fine particles are formed, but the frequency factor n1 becomes large and loosens, the bulk density is lowered, and the slurry viscosity is increased.
[ 0020 ]
As for the method of mixing the metal silicon powder and the silicon nitride powder aggregate , they may be mixed after being separately pulverized, or pulverization and mixing may be performed simultaneously. In any case, attention should be paid to the contamination of impurities during grinding and mixing, especially the contamination of media due to abrasion of the media and the oxidation of metallic silicon. Silicon nitride is particularly necessary when high purity is required. It is preferable to pulverize and mix in a non-oxidizing atmosphere using a manufactured medium.
[ 0021 ]
In order to secure a reaction space necessary for the metal silicon powder to smoothly undergo a nitriding reaction by a gas phase reaction , the mixed raw material of the metal silicon powder and the silicon nitride powder aggregate has a loose bulk density of 1.2 g / cm. It is necessary to fill the container with 3 or less (55% or more in terms of porosity) , preferably 1.0 g / cm 3 (60% or more in terms of porosity). Natural filling (without molding) is preferred. At other loose bulk densities , a gas-solid reaction is the main component, so the reaction tends to run away with a large exotherm, and the metal silicon powder melts or the generated silicon nitride powder sinters. As a result, a large lump of silicon nitride ingot with many impurities and poor grindability is produced.
[ 0022 ]
The reaction between metallic silicon and nitrogen gas is considered to proceed mainly by gas-solid reaction. This reaction is a solid heterogeneous reaction performed in a temperature range of 1150 to 1450 ° C., and is accompanied by a large exotherm, and it is difficult to strictly control the reaction. Therefore, the reaction is usually performed over a long period of time so as not to react so rapidly.
[ 0023 ]
When the reaction control is not successful, loosen the bulk density of the silicon nitride powder obtained after milling for pulverization is deteriorated by forming a coarse primary particles or secondary particles of silicon nitride, also to form a coarse columnar grains Is less than 0.6 g / cm 3 , the slurry viscosity is greater than 1,000 Pa · s . In the present invention, it is possible to produce a silicon nitride ingot having a fine structure by promoting the gas phase reaction by adjusting the particle size of the metal silicon powder, the addition of the silicon nitride powder aggregate , and the reaction speed during the nitriding reaction. It is a feature.
[ 0024 ]
Examples of the nitriding reaction gas in the nitriding atmosphere include nitrogen and / or ammonia. The nitriding reaction gas can be used in combination with an inert gas or hydrogen gas for reaction control. In the present invention, nitriding is performed in a gas atmosphere containing nitrogen-hydrogen-argon . In the range of 1 to 80% nitriding rate, the total of hydrogen and argon gas is preferably 15 to 85% by volume.
[ 0025 ]
In nitriding (heating), it is preferable to control the nitriding rate within the range of 1100 to 1450 ° C. , particularly 1150 to 1350 ° C. , to 80% or more. As for the nitriding time, it is preferable to take 20 hours or more from the start of the nitriding reaction until the nitriding rate reaches about 30%, and the maximum reaction rate until complete nitriding is 3% / hr or less , particularly 2% / hr or less. And slowly nitriding. When the reaction rate is higher than this, coarse particles and columnar particles are easily formed.
[ 0026 ]
After completion of the nitriding reaction, the resultant is cooled to room temperature while flowing nitrogen gas, and the generated silicon nitride ingot is taken out. The ingot is coarsely pulverized by a jaw crusher or a roll crusher. Because the coarse milled silicon nitride powder containing a large amount of coarse large particles, the frequency factor n2 is small and less than 0.4. As a result, the loose bulk density is as low as less than 0.6 g / cm 3, and the density of the sintered body is low, leading to a decrease in strength.
[ 0027 ]
Next, an operation involving dry pulverization of any one of the following (A), (B), or (C) is performed on the coarsely divided silicon nitride ingot, and the average particle size is 0.5 to 1.5 μm. On the Rosin-Rammler diagram, the frequency factor n1 of the straight line connecting the 10% point and the 50% point under the sieve is 1.1 to 1.9, and the frequency factor of the straight line connecting the 50% point and the 90% point under the sieve A silicon nitride powder having n2 of 0.2 to 1.1 and n2 of 0.7 or less of n1 is produced.
(B) intends row finely ground dry.
(B) Classification after dry pulverization . The ratio of the fine powder and coarse powder obtained is adjusted .
(C) Classification is performed after dry pulverization. The coarse powder obtained is reground . The repulverized product obtained and the fine powder obtained by classification are dry mixed.
[ 0028 ]
For the style of the mill, Ru is divided into a roughly dry grinding and wet grinding. However, in the wet grinding, since the advances easily over-grinding of the silicon nitride powder, secondary particles are pulverized to near primary particle, frequency factor n1 of pulverized material may turn as small as less than 1.3. As a result, loosening bulk density increase small slurry viscosity. In addition, when iron balls or the like are used as drying media after grinding or grinding media, iron removal and acid treatment are required, which is disadvantageous in terms of cost.
[ 0029 ]
Therefore, in order to obtain the silicon nitride powder of the present invention, it is necessary to carry out dry pulverization with a dry pulverizer such as a dry ball mill, a vibration mill or a stirring pulverizer, or an impact pulverizer such as a jet mill. It becomes. In addition, dry finely pulverized product is classified with a dry airflow classifier to obtain fine powder and coarse powder, and then the particle size is adjusted, and only the coarse powder obtained by classification is finely pulverized again by dry method. However, it is necessary to dry-mix the repulverized product and the fine powder obtained by classification . At the time of dry pulverization, attention should be paid to the contamination of the pulverization media due to wear. For high purity purposes, silicon nitride balls or the like are used.
[ 0030 ]
【Example】
Examples 1-3
Commercially available high-purity metal silicon powder (particle size of about 200 to 2000 μm) was pulverized by a vibration mill using silicon nitride balls to make the average particle size 10 to 15 μm. 40 to 50 parts by weight of silicon nitride powder aggregate (silicon nitride powder manufactured by Denki Kagaku Kogyo Co., Ltd .: trade name “SN-9FW”) was added to 100 parts by weight of the obtained metal silicon powder, and pulverized and mixed with a vibration mill. The sintered body container containing silicon nitride or silicon carbide as a main component was naturally filled so that the bulk density was 1.1 to 1.2 g / cm 3, and filled into a batch type reaction furnace.
[ 0031 ]
After substituting nitrogen gas so that the oxygen concentration in the furnace becomes 500 ppm or less, argon gas and hydrogen gas were added to start the temperature rise, and the nitriding rate started at 1100 to 1450 ° C., and the nitriding rate was 30% The nitriding reaction was carried out at a maximum reaction rate of 2.5% / hr or less, taking 30 hours to reach the value. At that time, the total of hydrogen and argon gas was changed at 20 to 80% by volume.
[ 0032 ]
The silicon nitride ingot thus obtained was coarsely pulverized with a jaw crusher and a roll crusher. The coarsely pulverized silicon nitride powder had a pregelatinization rate of 90% or more, an oxygen content of 1.2%, an unreacted Si content of 0.2% or less, and a loose bulk density of 0.4 to 0.5 g / cm 3 .
[ 0033 ]
Using a dry ball mill (2L polyethylene pot) with coarsely pulverized silicon nitride powder and silicon nitride balls as pulverization media, the amount of silicon nitride was 200 g, the pulverized ball diameter was 20 mmφ, the ball filling amount was 60 vol%, and the pulverization time was 8 hours. A silicon nitride powder was produced by dry pulverization under conditions (Example 1).
[ 0034 ]
Next, when the silicon nitride powder obtained in Example 1 was classified by a dry air classifier, the obtained fine powder had an oxygen content of 1.5% and a specific surface area of 11 m 2 / g, and was classified. The rate was 50%. 75 parts by weight of the coarse powder obtained by classification and 25 parts by weight of the fine powder were dry mixed to produce a silicon nitride powder (Example 3).
[ 0035 ]
Furthermore, using a dry ball mill (2L polyethylene pot) in which the coarse powder obtained in the classification in Example 3 was ground with silicon nitride balls, the silicon nitride amount was 200 g, the pulverized ball diameter was 20 mmφ, and the ball filling amount was 60. After fine pulverization under the conditions of volume% and pulverization time of 4 hours, silicon nitride powder was produced by dry-mixing with the fine powder obtained in the previous classification (Example 2).
[ 0036 ]
Comparative Examples 1 to 3
Comparative Example 1 using a wet attritor mill for fine grinding, Comparative Example 2 using 60 parts by weight of the silicon nitride powder aggregate added to 100 parts by weight of metal silicon powder, A silicon nitride powder was produced in the same manner as in Example 1 except that Comparative Example 3 was used instead of 4 hours .
[ 0037 ]
The loose bulk density of the obtained silicon nitride powder was measured. The loose bulk density was measured by putting silicon nitride powder in a graduated cylinder and measuring the bulk volume without tapping.
[ 0038 ]
The particle size distribution of the silicon nitride powder was determined by measuring with a laser scattering particle size meter (Microtrac SPA7997 manufactured by LED Sand NORTH UP).
[ 0039 ]
The slurry viscosity was measured by adding silicon nitride powder and ethanol at a weight ratio of 1 / 0.85 in a 500 ml beaker for 5 minutes, using a B-type viscometer, at a temperature of 23 ° C., rotor No. The number of revolutions of 4 was measured after stirring for 30 seconds at 20 rpm.
[ 0040 ]
Density and strength of the sintered body were 90 parts by weight of silicon nitride powder, 3 parts by weight of Al 2 O 3 powder, 5 parts by weight of Y 2 O 3 powder, and 15% by weight of organic binder, wet mixed, and then suction filtered and dried. Crushing and CIP molding at a pressure of 2.0 ton / cm 2 after die press molding, followed by firing at a temperature of 1800 ° C. for 6 hours to produce a silicon nitride sintered body. The density of this sintered body was measured by the Archimedes method and the relative density with respect to the theoretical density was calculated, and then the four-point bending strength at room temperature was measured according to JIS R1601.
[ 0041 ]
[Table 1]
[ 0042]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention , the manufacturing method of the silicon nitride powder which is excellent in a moldability and slurry viscosity, and can obtain the sintered compact of a high density and high intensity | strength is provided. Moreover , the manufacturing method of the silicon nitride powder which enables high filling when used as a resin filler is provided.

Claims (1)

金属シリコン粉末100重量部に対し、窒化ケイ素粉末骨材の割合が30〜50重量部である混合原料を、緩め嵩密度を1.2g/cm 以下にして容器に充填し、窒素と水素とアルゴンを含むガス雰囲気中で窒化させて窒化ケイ素インゴットを製造し粗粉砕した後、以下の(イ)、(ロ)又は(ハ)のいずれかの乾式の微粉砕を伴う操作を行って、平均粒子径が0.5〜1.5μmであり、ロジン・ランムラー線図上において、篩下10%点と50%点を結ぶ直線の頻度因子n1が1.1〜1.9で、篩下50%点と90%点を結ぶ直線の頻度因子n2が0.2〜1.1で、しかもn2がn1の0.7倍以下である粉末にすることを特徴とする窒化ケイ素粉末の製造方法。
(イ)乾式の微粉砕を行う。
(ロ)乾式の微粉砕を行ってから分級する。得られた微粉末粗粉末の割合を調整する。
(ハ)乾式の微粉砕を行ってから分級する。得られた粗粉末を再粉砕する。得られた再粉砕物と分級で得られた微粉末を乾式混合する。
A mixed raw material in which the proportion of the silicon nitride powder aggregate is 30 to 50 parts by weight with respect to 100 parts by weight of the metal silicon powder is loosened and filled in a container with a bulk density of 1.2 g / cm 3 or less, and nitrogen, hydrogen, After nitriding in a gas atmosphere containing argon to produce a silicon nitride ingot and coarsely pulverizing it, the following operations (a), (b) or (c) are performed with dry pulverization, and the average a particle diameter of 0.5 to 1.5 [mu] m, in diagram rosin Ranmura line, frequency factor n1 of a straight line connecting the lower 10% points sieve and 50% points at 1.1 to 1.9, a sieve bottom 50 A method for producing a silicon nitride powder, characterized in that a powder having a frequency factor n2 of a straight line connecting the% point and the 90% point of 0.2 to 1.1 and n 2 of 0.7 or less of n1 is used. .
(B) intends row finely ground dry.
(B) Classification after dry pulverization . The ratio of the fine powder and coarse powder obtained is adjusted .
(C) Classification is performed after dry pulverization. The coarse powder obtained is reground . The repulverized product obtained and the fine powder obtained by classification are dry mixed.
JP30710198A 1998-10-28 1998-10-28 Method for producing silicon nitride powder Expired - Lifetime JP4082803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30710198A JP4082803B2 (en) 1998-10-28 1998-10-28 Method for producing silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30710198A JP4082803B2 (en) 1998-10-28 1998-10-28 Method for producing silicon nitride powder

Publications (2)

Publication Number Publication Date
JP2000128511A JP2000128511A (en) 2000-05-09
JP4082803B2 true JP4082803B2 (en) 2008-04-30

Family

ID=17965050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30710198A Expired - Lifetime JP4082803B2 (en) 1998-10-28 1998-10-28 Method for producing silicon nitride powder

Country Status (1)

Country Link
JP (1) JP4082803B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040679A (en) * 2001-07-31 2003-02-13 Kyocera Corp Method of manufacturing silicon nitride sintered compact
EP4071110A4 (en) * 2019-12-05 2024-01-03 Tokuyama Corporation Metal nitride prodcution method
CN117120397A (en) * 2021-03-25 2023-11-24 电化株式会社 Silicon nitride powder and method for producing same, and silicon nitride sintered body and method for producing same

Also Published As

Publication number Publication date
JP2000128511A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
US7417002B2 (en) Boron carbide based sintered compact and method for preparation thereof
CN112846170A (en) (Ti, W) C solid solution powder and preparation method thereof
JP3827459B2 (en) Silicon nitride powder and method for producing the same
JP4082803B2 (en) Method for producing silicon nitride powder
JP3698664B2 (en) Method for producing high purity silicon nitride powder
JP2008031016A (en) Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method
JP3686029B2 (en) Boron carbide-titanium diboride sintered body and manufacturing method thereof
US5348919A (en) High-packing silicon nitride powder and method for making
JPS6117403A (en) Metallic boride, carbide, nitride, silicide and oxide group substance and manufacture thereof
US7314593B2 (en) Process for preparing improved silicon carbide powder
JP3672476B2 (en) Silicon iron nitride powder and refractory
JP3342753B2 (en) Method for producing silicon nitride
JP3827360B2 (en) Manufacturing method of silicon nitride
JP3348798B2 (en) Method for producing silicon nitride
JP3838691B2 (en) Silicon nitride grinding aid and its use
JP7171973B1 (en) Method for producing silicon nitride powder, slurry, and silicon nitride sintered body
JP3342756B2 (en) Silicon nitride powder and method for producing the same
JP3348797B2 (en) Silicon nitride grinding aid and silicon nitride powder
JPH05279002A (en) Production of al nitride powder
JP3344663B2 (en) Method for producing high α-type silicon nitride
JPH05147909A (en) Production of aluminum nitride powder
JPH11322311A (en) Silicon nitride powder
JP4112108B2 (en) Silicon nitride powder
KR100546040B1 (en) Method for manufacturing titanium carbide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

EXPY Cancellation because of completion of term