[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4081037B2 - Propulsion and shield combination method - Google Patents

Propulsion and shield combination method Download PDF

Info

Publication number
JP4081037B2
JP4081037B2 JP2004106327A JP2004106327A JP4081037B2 JP 4081037 B2 JP4081037 B2 JP 4081037B2 JP 2004106327 A JP2004106327 A JP 2004106327A JP 2004106327 A JP2004106327 A JP 2004106327A JP 4081037 B2 JP4081037 B2 JP 4081037B2
Authority
JP
Japan
Prior art keywords
propulsion
shield
pipe
segment
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004106327A
Other languages
Japanese (ja)
Other versions
JP2005290797A (en
Inventor
強 宮原
脩 野辺
Original Assignee
栗本コンクリート工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗本コンクリート工業株式会社 filed Critical 栗本コンクリート工業株式会社
Priority to JP2004106327A priority Critical patent/JP4081037B2/en
Publication of JP2005290797A publication Critical patent/JP2005290797A/en
Application granted granted Critical
Publication of JP4081037B2 publication Critical patent/JP4081037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

この発明は、推進およびシールド併用工法に係り、詳しくは、市街地における下水道施工などに利用され、地盤を開削することなくシールド掘進機と推進管とを地盤内に推進させて推進管を敷設していく推進工法と、鋼セグメントを組み立てて覆工するシールド工法とを組合わせて実施する推進およびシールド併用工法に関するものである。   The present invention relates to a propulsion and shield combined construction method, and more particularly, is used for construction of sewerage in an urban area, and a propulsion pipe is laid by propelling a shield machine and a propulsion pipe in the ground without excavating the ground. The present invention relates to a propulsion method and a shield combined method that are implemented in combination with a conventional propulsion method and a shield method in which a steel segment is assembled and covered.

推進およびシールド併用工法は、トンネルの構築技術として何れも良く知られている推進工法とシールド工法とを組合わせることで、両工法の欠点を補い利点を効果的に発揮させることができる。具体的には、施工を開始する立坑から一定距離までは推進工法を適用し、その後はシールド工法を適用する。   The propulsion and shield combined construction method can combine the propulsion construction method and the shield construction method, both well known as tunnel construction techniques, to make up for the disadvantages of both construction methods and to exhibit the advantages effectively. Specifically, the propulsion method is applied up to a certain distance from the shaft where construction starts, and the shield method is applied thereafter.

推進工法では、推進管列の最後尾に元押しジャッキで推進力を加えて、推進管列およびシールド掘進機の全体を地盤内に推進させていく。そのため、推進管列が長くなるほど、大きな推進力が必要となる。この大きな推進力を発生させるためには、元押しジャッキなどの設備が大掛かりになる。また、大きな推進力が推進管の接続部に加わると、推進管、たとえばヒューム管である場合は損傷や変形を起す場合がある。したがって、推進工法では、あまり長距離の推進作業を一度に実施するのは難しい。推進距離を短くするために、短い間隔で立坑を配置すると、開削による地上交通などへの影響が大きくなり、施工時間および施工コストも増大する。   In the propulsion method, propulsive force is applied to the end of the propulsion pipe row with a push jack to propel the entire propulsion pipe row and shield machine into the ground. For this reason, the longer the propelling tube row, the greater the propulsive force required. In order to generate this large propulsive force, equipment such as a push jack becomes large. Further, when a large propulsive force is applied to the connection portion of the propulsion pipe, the propulsion pipe, for example, a fume pipe, may cause damage or deformation. Therefore, with the propulsion method, it is difficult to carry out the long-distance propulsion work at once. If shafts are arranged at short intervals in order to shorten the propulsion distance, the influence on ground traffic and the like due to excavation increases, and the construction time and construction cost also increase.

一方、シールド工法は、シールド掘進機の内部でコンクリートセグメントを組み立ててセグメント筒を構築した後、シールド掘進機内に備えた掘進ジャッキでセグメント筒を後方に押し出し、押し出されたセグメント筒からの反力でシールド掘進機を前進させる。したがって、施工距離が長くなっても掘進ジャッキはシールド掘進機を前進させる程度の能力があれば充分であり、セグメント筒に加わる力は過大にならない。但し、上記セグメント筒を形成するため、予め製造された推進管を最後尾に連結していく推進工法に比べると施工能率が劣る。
そこで、施工開始の段階では、能率的に施工できる推進工法を適用し、施工距離が長くなって推進工法が難しくなった段階でシールド工法に切り換えることによって、長距離にわたるトンネル施工を能率的に行えるようにした利点がある。
On the other hand, in the shield method, after assembling concrete segments inside the shield machine, the segment cylinder is constructed, and then the segment cylinder is pushed backward with the excavation jack provided in the shield machine, and the reaction force from the extruded segment cylinder is used. Advance the shield machine. Therefore, even if the construction distance becomes long, it is sufficient that the excavation jack has an ability to advance the shield excavator, and the force applied to the segment cylinder does not become excessive. However, since the segment tube is formed, the construction efficiency is inferior compared to the propulsion method in which a propulsion pipe manufactured in advance is connected at the end.
Therefore, the tunnel construction over a long distance can be efficiently performed by applying a propulsion method that can be efficiently constructed at the start of construction, and switching to the shield method when the construction distance becomes long and the propulsion method becomes difficult. There is an advantage of doing so.

上記工法として、例えば、特開平7−54577号公報を挙げることができる。
この公報のものは、図9に示すように、筒状外殻基体bの前端に掘削部cを設け、かつ後端にセグメントsをリング体(セグメント筒)rに組み立てるためのテール部dを具え、前進のための掘進ジャッキfを具えたシールド掘進機aと、このシールド掘進機aから発進した前進位置との間でこのシールド掘進機aにより形成された掘削孔内に、上記発進位置に設けた元押しジャッキ(図示省略)を用いてシールド掘進機aの前進とともにヒューム管pを推進埋設することにより掘削孔を形成し、かつ、この掘削孔に続いて、上記シールド掘進機aによる掘削に伴う前進により生じる上記テール部d内の空所で、エレクタeにより上記セグメントsを持ち上げて組み立てられる上記リング体rを、前進のための上記掘進ジャッキfの伸長力によりシールド掘進機aから押し出すことにより、リング体rが連続するシールド孔を形成するとともに、上記シールド掘進機aは、テール部d前方に配され、上記セグメントsを組み立てたリング体rと、一体な筒状をなし上記ヒューム管pと上記リング体rとに結合される接続リングgを予め収容した構成からなる。これによって、上記した利点がある(特許文献1参照)。
An example of the construction method is JP-A-7-54577.
In this publication, as shown in FIG. 9, an excavation part c is provided at the front end of the cylindrical outer shell base b, and a tail part d for assembling the segment s into a ring body (segment cylinder) r at the rear end. In the excavation hole formed by the shield machine a between the shield machine a provided with the forward jack f for advance and the forward position started from the shield machine a, the start position is An excavation hole is formed by propelling and embedding the fume pipe p with the advancement of the shield machine a using the provided push jack (not shown), and the excavation by the shield machine a following the excavation hole. The ring body r assembled by lifting the segment s by the erector e in the space in the tail portion d generated by the forward movement accompanying the forward movement of the digging jack f for the forward movement. By pushing out from the shield machine a, the ring body r forms a continuous shield hole, and the shield machine a is arranged in front of the tail part d and integrated with the ring body r assembled with the segment s. It has a configuration in which a connecting ring g that is formed in a cylindrical shape and is coupled to the fume tube p and the ring body r is previously stored. This has the above-described advantages (see Patent Document 1).

一方、鋼製セグメントによるセグメント管路内の隙間を空けて内装管を挿入して内装管路を形成し、上記隙間に軽量モルタルを充填してシールド管路を敷設するものもある(特許文献2参照)。
特開平07−54577号公報 特開平08−189050号公報
On the other hand, there is also a type in which an inner pipe is formed by inserting a gap in a segment pipe line by a steel segment to form an inner pipe line, and a lightweight mortar is filled in the gap to lay a shield pipe line (Patent Document 2). reference).
JP 07-54577 A Japanese Patent Laid-Open No. 08-189050

しかし、特許文献1の技術は、セグメントsがテール部d内で組み立てられ、組み立てられたリング体rの内径がヒューム管pの内径と同一であることから、セグメントsの板厚が厚肉となる。このため、セグメントsの重量が重くなって、その取り扱いが面倒となることから、(円周方向における)セグメントsの分割個数が多くなり、その組み立て施工が煩雑となって作業性が低下する。
また、鋼管製の接続リングgを別途用意し、この接続リングgの前後端のフランジにより、上記リング体rと前端のヒューム管pとを植え込みボルトにより一体に結合するための取付作業が煩雑となる。
However, in the technique of Patent Document 1, the segment s is assembled in the tail portion d, and the inner diameter of the assembled ring body r is the same as the inner diameter of the fume tube p. Become. For this reason, since the weight of the segment s becomes heavy and the handling thereof becomes troublesome, the number of divisions of the segment s (in the circumferential direction) increases, and the assembling work becomes complicated and workability is lowered.
Further, a connecting pipe g made of a steel pipe is prepared separately, and the mounting work for integrally connecting the ring body r and the front end fume pipe p with the stud bolt by the flanges at the front and rear ends of the connecting ring g is complicated. Become.

また、上記特許文献1のシールド管路に代えて上記特許文献2におけるシールド管路を採用することができたとしても、推進管路と上記シールド管路の上記内装管との接合は両管路間に配設した接続リングgを介して植え込みボルトにより結合する方式となるため、上記両管路の芯出し作業が容易ではない。   Moreover, even if it can employ | adopt the shield pipeline in the said patent document 2 instead of the shield pipeline of the said patent document 1, joining of a propulsion pipeline and the said interior pipe of the said shield pipeline is both pipe lines Since it becomes a system which couple | bonds with a planting bolt via the connection ring g arrange | positioned between, the centering operation | work of the said both pipe lines is not easy.

この発明は、セグメントの分割個数を可及的に少なくして施工を容易にすると共に、上記両管路の接合作業および芯出し作業が容易であり、さらに長期に亘る止水性能を維持することを課題とする。   The present invention facilitates construction by reducing the number of segment divisions as much as possible, and also facilitates the joining and centering operations of the two pipe lines, and further maintains the waterproof performance over a long period of time. Is an issue.

上記の課題を達成するために、この発明は、発進立坑からシールド掘進機の後方に連結された推進管を地盤内に推進させて推進管を敷設させていく推進工程と、上記推進工程に続いて、上記シールド掘進機内の組立空間で鋼セグメントによるセグメント筒を組立てこのセグメント筒を反力部材として、上記シールド掘進機を地盤内に推進させて上記シールド筒を到達立孔まで敷設させていくシールド工程とからなる推進およびシールド併用工法であって、上記推進工程が、上記シールド掘進機の組立空間の後端に推力受けリングを設け、上記推力受けリングの後端に上記推進管を嵌合当接させ、上記推進管から上記推力受けリングを介して上記シールド掘進機に推進力を加える工程と、上記シールド工程が、上記先頭のセグメント筒を推進管に接続する工程と、上記到達立孔から上記セグメント筒内に所定の隙間をあけて内装管を押込み敷設するとともに上記先頭の内装管を上記推進管に接続する工程と、上記隙間に充填材を充填する工程と、からなる構成を採用する。   In order to achieve the above object, the present invention includes a propulsion process in which a propulsion pipe connected from a start shaft to the rear of a shield machine is propelled in the ground and the propulsion pipe is laid, and the propulsion process is followed. A shield that assembles a segment tube made of steel segments in the assembly space inside the shield machine and uses the segment tube as a reaction member to propel the shield machine into the ground and lay the shield tube up to the reaching vertical hole. The propulsion and shield combined construction method comprises the steps of: the propulsion step is provided with a thrust receiving ring at the rear end of the assembly space of the shield machine, and the propulsion pipe is fitted to the rear end of the thrust receiving ring. And a step of applying a propulsive force from the propulsion pipe to the shield machine through the thrust receiving ring, and the shielding step includes the step of connecting the head segment tube to the propulsion pipe A step of connecting, a step of laying an interior pipe by pushing a predetermined gap into the segment cylinder from the reaching vertical hole, and a step of connecting the leading interior pipe to the propulsion pipe, and filling the gap with a filler. And adopting a configuration comprising:

上記のように、上記推進工程が、上記シールド掘進機に有する上記鋼セグメントの組立空間の後端に推力受けリングを設け、この推力受けリングの後端に、推進管を嵌合当接させ、上記推進管から上記推力受けリングを介して上記シールド掘進機に推進力を加えることにより、上記鋼セグメントと先頭推進管の接続に際し、何等接続部材を介しないから、接続が容易である。   As described above, the propulsion step is provided with a thrust receiving ring at the rear end of the assembly space of the steel segment included in the shield machine, and the propulsion pipe is fitted and brought into contact with the rear end of the thrust receiving ring, By applying a propulsive force from the propulsion pipe to the shield machine through the thrust receiving ring, no connection member is used when connecting the steel segment and the leading propulsion pipe, so that the connection is easy.

また、先頭の推進管の切込み凹部に、先頭の内装管の挿し口を止水材を介して接続することにより、その芯合わせが容易である。   Moreover, the centering is easy by connecting the insertion opening of the top interior pipe to the notch recess of the top propulsion pipe via a water stop material.

また、先頭の推進管の前端部に内周側が開放されたナット取付室を形成したので、ナット取付室は上記切込み凹部により、上記取付室の半径方向の深さが浅くなってセグメント筒と先頭の推進管との結合が容易に行なえる。
また、ナット取付室の内周側が内装管(GRC管)で塞がれるので、この取付室へのモルタルの充填作業が不要となる。
In addition, since the nut mounting chamber with the inner peripheral side opened is formed at the front end portion of the leading propulsion pipe, the nut mounting chamber has a small depth in the radial direction of the mounting chamber due to the notch recess, and the segment cylinder and the top Can be easily connected to the propulsion pipe.
Further, since the inner peripheral side of the nut mounting chamber is closed by the interior pipe (GRC pipe), the mortar filling operation into the mounting chamber is not necessary.

この発明は、以上のように、シールド施工を一層向上することができる。
また、鋼セグメントと先頭の推進管の接続に際し、何等部材を介して接続するものがないから、接続が容易であるとともに、ナット取付室は切込み凹部により、半径方向の深さが短く浅いので、容易に行なえる。
また、先頭推進管の切込み凹部に内装管の挿し口を嵌合接続するので、その芯合わせが容易である。
As described above, the present invention can further improve the shield construction.
In addition, when connecting the steel segment and the leading propulsion pipe, there is nothing to connect through any member, so the connection is easy, and the nut mounting chamber has a short depth in the radial direction due to the cut recess, so It can be done easily.
Further, since the insertion opening of the interior pipe is fitted and connected to the cut recess of the leading propelling pipe, the centering is easy.

この発明の実施形態を図1〜図8に基づいて説明すると、1は発進立坑、2は到達立坑、3は元押しジャッキ、5は掘削と推進機能を備えたシールド掘進機で、鋼製外筒6の先端に回転自在なカッタ7が取付けられて回転駆動機8で駆動される。鋼製外筒6内後端部のテール部6aには後述する鋼セグメントを組み立てるためのセグメント組立空間9が設けられている。この組立空間9の近傍には、上記鋼セグメントを所定の組み立て位置に取付けるためのエレクタ10が設置されている。11はセグメント組立空間9と受け部材12との間に配設した掘進ジャッキである。   The embodiment of the present invention will be described with reference to FIGS. 1 to 8. Reference numeral 1 is a start shaft, 2 is a reach shaft, 3 is a main push jack, 5 is a shield machine having excavation and propulsion functions, A rotatable cutter 7 is attached to the tip of the cylinder 6 and is driven by a rotary driving machine 8. A segment assembly space 9 for assembling a steel segment, which will be described later, is provided in the tail portion 6a at the rear end of the steel outer cylinder 6. In the vicinity of the assembly space 9, an erector 10 for installing the steel segment at a predetermined assembly position is installed. Reference numeral 11 denotes an excavation jack disposed between the segment assembly space 9 and the receiving member 12.

13は鋼製外筒6の上記セグメント組立空間9の後端に着脱自在に固定した推力受けリングで、固定ボルト14により固定される。鋼製外筒6の推力受けリング13位置より端部(後部)側を受け口6bとする。この受け口6bに先頭の推進管20の挿し口21を接続して推力受けリング13に当接させて、上記推進管20から推力受けリング13を介してシールド掘進機5に推進力を伝達する。
先頭の推進管20の挿し口21は、凹入段部22により形成され、この段部22の周溝22aに止水ゴム29が装着される。なお、先頭の推進管20の後方には従来とほぼ同様の通常の推進管20が順次接続される。上記先頭の推進管20の後端部と後続の推進管20との接続は、通常の推進管の接続と同様に、先頭の推進管20の受け口に後続の推進管の挿し口を止水ゴムを介して行なう(図示省略)。
A thrust receiving ring 13 is detachably fixed to the rear end of the segment assembly space 9 of the steel outer cylinder 6 and is fixed by a fixing bolt 14. The end (rear part) side from the thrust receiving ring 13 position of the steel outer cylinder 6 is defined as a receiving port 6b. The insertion port 21 of the leading propulsion pipe 20 is connected to the receptacle 6b and brought into contact with the thrust receiving ring 13, and the propulsive force is transmitted from the propulsion pipe 20 to the shield machine 5 through the thrust receiving ring 13.
The insertion port 21 of the leading propulsion pipe 20 is formed by a recessed step 22, and a water stop rubber 29 is attached to the circumferential groove 22 a of the step 22. A normal propulsion pipe 20 that is substantially the same as the conventional one is sequentially connected to the rear of the leading propulsion pipe 20. The connection between the rear end portion of the leading propulsion pipe 20 and the subsequent propulsion pipe 20 is similar to a normal propulsion pipe connection. (Not shown).

23は挿し口21の凹入段部22内面側に設けたナット取付室で、端板24と適宜の間隔で埋設した側板25により形成され、この間の円周方向に適宜の間隔で補強リブ26が配設される。27はボルト孔である。
28は先頭の推進管20のナット取付室23の内側、および先頭の推進管20の端部を一部切り欠いて形成した切込み凹部である。
Reference numeral 23 denotes a nut mounting chamber provided on the inner surface side of the recessed step portion 22 of the insertion opening 21, which is formed by the side plate 25 embedded at an appropriate interval from the end plate 24, and the reinforcing rib 26 at an appropriate interval in the circumferential direction therebetween. Is disposed. Reference numeral 27 denotes a bolt hole.
Reference numeral 28 denotes a notch recess formed by cutting out a part of the inside of the nut mounting chamber 23 of the leading propulsion pipe 20 and an end of the leading propulsion pipe 20.

30は鋼セグメントで、所定の内面に形成した曲板の4辺に端部フランジ31、側面フランジ32を有する箱形のもので、端部フランジ31にボルト孔33を設ける。側部フランジ32にも図示省略のボルト孔を形成する。   A steel segment 30 has a box shape having end flanges 31 and side flanges 32 on four sides of a curved plate formed on a predetermined inner surface. Bolt holes 33 are provided in the end flanges 31. Bolt holes (not shown) are also formed in the side flange 32.

40は先頭の内装管で、例えば、耐アルカリガラス繊維強化セメント(GRC)製のもので、その一端に凹周溝42によって形成した挿し口41、他端にカラー形の受け口43を有するものである。44はモルタル注入口、45は凹周溝42に装着した止水ゴムである。
46は後続の内装管で、これも上記GRC製のもので、その一端に凹入り段部により形成した挿し口47、他端にカラー形の受け口48を有するものである。49は凹入り段部に装着した止水ゴムである。
Reference numeral 40 denotes a leading interior pipe made of, for example, alkali-resistant glass fiber reinforced cement (GRC), which has an insertion port 41 formed by a concave groove 42 at one end and a collar-shaped receiving port 43 at the other end. is there. Reference numeral 44 denotes a mortar inlet, and 45 is a waterproof rubber mounted in the concave circumferential groove 42.
46 is a following interior pipe, which is also made of the above-mentioned GRC, and has an insertion port 47 formed by a recessed step at one end and a collar-shaped receiving port 48 at the other end. Reference numeral 49 denotes a waterproof rubber attached to the recessed step.

次に、この発明の推進およびシールド工法を説明する。
先ず、発進立坑1内にシールド掘進機5を発進口1aに位置させ、このシールド掘進機5と発進立坑1の後壁の間に介装した元押しジャッキ3のロッド3aを前進させてシールド掘進機5を押し込むと同時に、このシールド掘進機5を起動して地盤を掘削して掘削孔を形成する。シールド掘進機5を所定量前進させた後、元押しジャッキ3のロッド3aを一旦後退させ、推進管20の先端部をシールド掘進機5の鋼製外筒6後部内に嵌装して推力受けリング13を当接させる。推進管20の後端部を押圧板4を介して上記ロッド3aの前面に位置させ、このロッド3aを前進させて推進管20を押し込むと同時にシールド掘進機5を起動して推進する。そして上記前方側の推進管20に後続の推進管20を接続しながら、到達立坑2に向けて所定距離推進する。
すなわち、上記シールド掘進機5の鋼製外筒6に形成した上記セグメント組立空間9の後端の受け口6bに推進管20を接続し、上記推進管20から推力受けリング13を介してシールド掘進機5に推進力を加えるのである。
このようして、シールド掘進機5と推進管20を発進立坑1内に設ける後方壁に作用する元押しジャッキ3の反力とシールド掘進機5の堀進作用によって、所定長の推進管路を形成する(図1、2及び7参照)。
Next, the propulsion and shielding method of the present invention will be described.
First, the shield machine 5 is positioned at the start port 1a in the start shaft 1, and the rod 3a of the main jack 3 interposed between the shield machine 5 and the rear wall of the start shaft 1 is moved forward to shield. At the same time as the machine 5 is pushed in, the shield machine 5 is activated to excavate the ground to form an excavation hole. After the shield machine 5 is moved forward by a predetermined amount, the rod 3a of the main push jack 3 is once retracted, and the tip of the propulsion pipe 20 is fitted into the rear part of the steel outer cylinder 6 of the shield machine 5 to receive thrust. The ring 13 is brought into contact. The rear end portion of the propulsion pipe 20 is positioned on the front surface of the rod 3a via the pressing plate 4, and the rod 3a is advanced to push the propulsion pipe 20 and at the same time, the shield machine 5 is activated and propelled. Then, while a succeeding propulsion pipe 20 is connected to the propulsion pipe 20 on the front side, the propulsion is propelled a predetermined distance toward the reaching shaft 2.
That is, the propulsion pipe 20 is connected to the receiving port 6b at the rear end of the segment assembly space 9 formed in the steel outer cylinder 6 of the shield machine 5, and the shield machine is connected from the propulsion pipe 20 through the thrust receiving ring 13. A driving force is added to 5.
Thus, the propulsion pipe having a predetermined length is formed by the reaction force of the main jack 3 acting on the rear wall provided with the shield machine 5 and the propulsion pipe 20 in the start shaft 1 and the excavation action of the shield machine 5. Formed (see FIGS. 1, 2 and 7).

次に、推進管20による推進がこれ以上困難になった時や、推進管路の先方に超曲線カーブが必要となった時、シールド工法により、セグメント管路を構築する。すなわち、推力受けリング13を鋼製外筒6から外した後、鋼製外筒6のセグメント組立空間9に円周方向に分割されて製造された鋼セグメント30を用いてリング状に組み立ててセグメント筒35を形成する。
推進管20の挿し口21の端板24と鋼セグメント30の一側の端部フランジ31とを止水材36を挟んでボルトとナット34により連結する。一方、他側の端部フランジ31と受け部材12との間に掘進ジャッキ11を取り付け、この掘進ジャッキ11のロッド11aを作動するとともに、シールド堀進機5を起動すると、セグメント筒35からの反力で(反力部材として)、鋼製外筒6とともにシールド堀進機5が地盤内を前進する。上記シールド堀進機5の前進によって、鋼製外筒6にセグメント組立空間9ができ、その空間9で鋼セグメント30を組み立ててセグメント筒35を形成し、この繰り返しにより、連続したセグメント筒35が形成される。
Next, when the propulsion by the propulsion pipe 20 becomes more difficult or when a hypercurved curve is required at the tip of the propulsion pipe, the segment pipe is constructed by the shield method. That is, after the thrust receiving ring 13 is removed from the steel outer cylinder 6, the segments are assembled in a ring shape using the steel segments 30 that are manufactured by being divided in the segment assembly space 9 of the steel outer cylinder 6 in the circumferential direction. A cylinder 35 is formed.
The end plate 24 of the insertion opening 21 of the propulsion pipe 20 and the end flange 31 on one side of the steel segment 30 are connected by a bolt and a nut 34 with a water stop material 36 interposed therebetween. On the other hand, when the excavation jack 11 is attached between the end flange 31 on the other side and the receiving member 12 and the rod 11a of the excavation jack 11 is operated and the shield excavation machine 5 is started, the reaction from the segment cylinder 35 occurs. With force (as a reaction force member), the shield mowing machine 5 moves forward in the ground together with the steel outer cylinder 6. By advancement of the shield machine 5, a segment assembly space 9 is formed in the steel outer cylinder 6, and a segment cylinder 35 is formed by assembling a steel segment 30 in the space 9. By repeating this, a continuous segment cylinder 35 is formed. It is formed.

上記セグメント筒35を掘進ジャッキ11の伸長によって後方に押し出すと同時に、シールド掘進機5が前進して掘削作用を行う。このときのシールド掘進機5前進動時の反力支持は、セグメント筒35と地盤、推進管20と地盤との摩擦力にて行う。このシールド工法では、1リング毎の鋼セグメント30の組み立て作業が済む毎にシールド掘進機5を伸長させて、シールド掘進機5と推進管20の間にセグメント管路を敷設していく(図2及び3参照)。(なお、リング体の組み立て毎に地盤との隙間に裏込め材を注入する。)   The segment cylinder 35 is pushed backward by the extension of the excavating jack 11, and at the same time, the shield excavator 5 moves forward to perform excavation. The reaction force support during the forward movement of the shield machine 5 at this time is performed by the friction force between the segment cylinder 35 and the ground, and the propulsion pipe 20 and the ground. In this shield method, the shield machine 5 is extended every time the assembly of the steel segments 30 for each ring is completed, and a segment pipe line is laid between the shield machine 5 and the propulsion pipe 20 (FIG. 2). And 3). (In addition, every time the ring body is assembled, the backfill material is injected into the gap with the ground.)

上記急曲線カーブの場合、鋼製外筒6を長手方向に2分割し、両外筒内面に、かつ両外筒跨いで複数以上の油圧シリンダを配設するとともに嵌合接続した構成にして、上記油圧シリンダの進退量を調節して両外筒間に角度を付けるようにする。   In the case of the sharp curve, the steel outer cylinder 6 is divided into two in the longitudinal direction, and a plurality of hydraulic cylinders are arranged on both inner cylinder inner surfaces and straddling both outer cylinders, and are fitted and connected. The advance and retreat amount of the hydraulic cylinder is adjusted so that an angle is provided between the outer cylinders.

上記セグメント管路の敷設が終わると、シールド掘進機5を取り外し、上記セグメント管路内の二次覆工を行なう。この二次覆工は、到達立坑2側の到達口2aからセグメント管路内にGRC管40を到達口2aに位置させ、このGRC管40と到達立坑2の後壁の間に設置した押し込みジャッキ50のロッド50aを前進させて、押圧板51を介し、隙間Sを空けて押し込む。GRC管40を所定量前進させた後、ロッド50aを一旦後退させる。後続のGRC管46の先端部(挿し口)47をGRC管40の受け口43に止水ゴム49を介して水密接続し、その後端部を上記ロッド50aの前面に位置させ、このロッド50aを前進させて後続内装管46を押し込む。そして、このように押込みと接続を繰り返す。先頭のGRC管40の挿し口41を、上記推進管20の切込み凹部28に嵌合すれば、GRC管40、46の押し込みが完了し、GRC管路が形成される(図4、6及び8参照)。   When the laying of the segment pipe is completed, the shield machine 5 is removed, and secondary lining in the segment pipe is performed. This secondary lining is a push-in jack installed between the GRC pipe 40 and the rear wall of the reaching shaft 2 by positioning the GRC pipe 40 at the reaching port 2a in the segment pipe line from the reaching port 2a on the reaching shaft 2 side. The 50 rods 50a are advanced and pushed through the pressing plate 51 with a gap S therebetween. After the GRC tube 40 is moved forward by a predetermined amount, the rod 50a is once moved backward. The distal end portion (insertion opening) 47 of the subsequent GRC tube 46 is watertightly connected to the receiving port 43 of the GRC tube 40 through a water stop rubber 49, and the rear end portion thereof is positioned on the front surface of the rod 50a. The subsequent interior pipe 46 is pushed in. And pushing and connection are repeated in this way. When the insertion opening 41 of the leading GRC pipe 40 is fitted into the cut recess 28 of the propulsion pipe 20, the pushing of the GRC pipes 40 and 46 is completed, and the GRC pipe line is formed (FIGS. 4, 6 and 8). reference).

セグメント管路の内径とGRC管路の外径との間の所定の隙間Sに、GRC管40の注入口44から充填材、例えばエアモルタル53を充填してモルタル充填層を形成する(図5参照)。   A predetermined gap S between the inner diameter of the segment pipe and the outer diameter of the GRC pipe is filled with a filler, for example, air mortar 53, from the inlet 44 of the GRC pipe 40 to form a mortar packed layer (FIG. 5). reference).

以上によって、外側がセグメント管路、中間がモルタル充填層および内側がGRC管路 の三者が一体化したシールド管路となる。   As described above, the shield pipe is formed by integrating the segment pipe on the outside, the mortar packed bed on the middle, and the GRC pipe on the inside.

上記GRC管40、46と上記推進管20との接続は、GRC管40の挿し口41が推進管20の切込み凹部(内周側受け口)28に止水材45を介して嵌合することによる。このようにシールド管路の内側をGRC管40で形成するので、従来の様な型枠を用いた二次覆工による仕上げ処理に比べて大幅に施工時間が短縮される。
また、GRC管40、46同士を止水ゴム49で接続することで、止水性が高められるとともにその作業も容易である。
The connection between the GRC pipes 40 and 46 and the propulsion pipe 20 is made by fitting the insertion port 41 of the GRC pipe 40 into the cut recess (inner peripheral side receiving port) 28 of the propulsion pipe 20 via the water stop material 45. . Thus, since the inside of the shield pipe line is formed by the GRC pipe 40, the construction time is significantly reduced as compared with the finishing process by the secondary lining using the conventional formwork.
Moreover, by connecting the GRC pipes 40 and 46 with the water stop rubber 49, the water stop is improved and the operation is also easy.

セグメント筒35の円筒外径は、推進管20のそれとほぼ同径とする。また、GRC管40、46の内径は推進管20のそれとほぼ同径、かつ、その外径は鋼セグメント筒35で組み立てた筒内径より小径とする。   The cylindrical outer diameter of the segment cylinder 35 is approximately the same as that of the propulsion pipe 20. The inner diameters of the GRC pipes 40 and 46 are substantially the same as that of the propulsion pipe 20, and the outer diameter is smaller than the inner diameter of the cylinder assembled by the steel segment cylinder 35.

本発明の実施形態に係る推進状態の部分拡大断面図Partial enlarged sectional view of a propulsion state according to an embodiment of the present invention 本発明の実施形態に係る推進終了後の部分拡大断面図Partial enlarged sectional view after completion of propulsion according to an embodiment of the present invention 本発明の実施形態に係る鋼セグメントの掘進状態を示す部分拡大断面図The partial expanded sectional view which shows the excavation state of the steel segment which concerns on embodiment of this invention 本発明の実施形態に係る内装管の押し込み状態を示す部分拡大断面図The partial expanded sectional view which shows the pushing state of the interior pipe which concerns on embodiment of this invention 本発明の実施形態に係るシールド終了後状態を示す部分拡大断面図The partial expanded sectional view which shows the state after completion | finish of the shield which concerns on embodiment of this invention 図4の部分拡大断面図Partial enlarged sectional view of FIG. 本発明の実施形態に係る鋼セグメントの掘進状態を示す断面図Sectional drawing which shows the excavation state of the steel segment which concerns on embodiment of this invention 本発明の実施形態に係る内装管の鋼セグメントの押し込み状態を示す断面図Sectional drawing which shows the pushing state of the steel segment of the interior pipe which concerns on embodiment of this invention 従来技術の概略断面図Schematic sectional view of the prior art

符号の説明Explanation of symbols

1 発進立坑
1a 発進口
2 到達立坑
2a 到達口
3 元押しジャッキ
3a ロッド
4 押圧板
5 シールド掘進機
6 鋼製外筒
6a テール部
6b 受け口
7 カッタ
8 回転駆動機
9 セグメント組立空間
10 エレクタ
11 掘進ジャッキ
11a ロッド
12 受け部材
13 推力受けリング
14 固定ボルト
20 先頭推進管
21 挿し口
22 凹入段部
22a 周溝
23 ナット取付室
24 端板
25 側板
26 補強リブ
27 ボルト孔
28 切込み凹部
29 止水ゴム
30 鋼セグメント
31 端部フランジ
32 側部フランジ
33 ボルト孔
34 ボルトとナット
35 セグメント筒
36 止水材
40 先頭内装管(GRC管)
41 挿し口
42 周溝
43 受け口
44 エアモルタル注入口
45 止水材
46 後続内装管
47 挿し口
48 受け口
49 止水ゴム
50 押込みジャッキ
51 押圧板
53 エアモルタル
DESCRIPTION OF SYMBOLS 1 Start shaft 1a Start port 2 Arrival shaft 2a Arrival port 3 Former push jack 3a Rod 4 Pressing plate 5 Shield engraving machine 6 Steel outer cylinder 6a Tail part 6b Receiving port 7 Cutter 8 Rotating drive 9 Segment assembly space 10 Elector 11 Excavation jack 11a Rod 12 Receiving member 13 Thrust receiving ring 14 Fixing bolt 20 Leading propulsion tube 21 Insert port 22 Recessed stepped portion 22a Circumferential groove 23 Nut mounting chamber 24 End plate 25 Side plate 26 Reinforcement rib 27 Bolt hole 28 Notch recess 29 Water stop rubber 30 Steel segment 31 End flange 32 Side flange 33 Bolt hole 34 Bolt and nut 35 Segment tube 36 Water stop material 40 Leading interior pipe (GRC pipe)
41 Insertion opening 42 Circumferential groove 43 Reception opening 44 Air mortar injection opening 45 Water stop material 46 Subsequent interior pipe 47 Insertion opening 48 Reception opening 49 Water stop rubber 50 Push-in jack 51 Press plate 53 Air mortar

Claims (3)

発進立坑1からシールド掘進機5とこのシールド掘進機5の後方に連結された推進管20とを地盤内に推進させて推進管20を敷設させていく推進工程と、上記推進工程に続いて、上記シールド掘進機5内の組立空間9で鋼セグメント30によるセグメント筒35を組立てこのセグメント筒35を反力部材として、上記シールド掘進機5を地盤内に推進させて上記シールド筒35を到達立孔2まで敷設させていくシールド工程とからなる推進およびシールド併用工法において、
上記推進工程が、上記シールド掘進機5の組立空間9の後端に推力受けリング13を設け、上記推力受けリング13の後端に上記推進管20を嵌合当接させ、上記推進管20から上記推力受けリング13を介して上記シールド掘進機5に推進力を加える工程と、上記シールド工程が、上記先頭のセグメント筒35を推進管20に接続する工程と、上記到達立孔2から上記セグメント筒35内に所定の隙間Sをあけて内装管40を押込み敷設するとともに上記先頭の内装管40を上記推進管20に接続する工程と、上記隙間Sに充填材53を充填する工程と、からなることを特徴とする推進およびシールド併用工法。
Following the propulsion process in which the propulsion pipe 20 is laid in the ground by propelling the propulsion pipe 20 connected to the back of the shield excavation machine 5 from the start shaft 1 and the shield excavation machine 5, A segment cylinder 35 made of a steel segment 30 is assembled in the assembly space 9 in the shield machine 5 and the shield cylinder 5 is propelled into the ground by using the segment cylinder 35 as a reaction member so that the shield cylinder 35 reaches a vertical hole. In the propulsion and shield combined construction method, which consists of a shield process that lays up to 2
In the propulsion step, a thrust receiving ring 13 is provided at the rear end of the assembly space 9 of the shield machine 5, and the propulsion pipe 20 is fitted and brought into contact with the rear end of the thrust receiving ring 13. A step of applying a propulsive force to the shield machine 5 via the thrust receiving ring 13; a step of connecting the leading segment cylinder 35 to the propulsion pipe 20; A step of pushing and laying the inner pipe 40 with a predetermined gap S in the cylinder 35 and connecting the leading inner pipe 40 to the propulsion pipe 20; and a step of filling the gap S with the filler 53; A propulsion and shield combined construction method characterized by
先頭の推進管20の切込み凹部28に、先頭の内装管40の挿し口41を止水材45を介して接続することを特徴とする請求項1記載の推進およびシールド併用工法。   The propulsion and shield combined construction method according to claim 1, wherein the insertion opening 41 of the leading inner pipe 40 is connected to the cut recess 28 of the leading propulsion pipe 20 via a water stop material 45. 先頭の推進管20の前端部に内周側が開放されたナット取付室23を形成した請求項1又は2に記載の推進およびシールド併用工法。   The propulsion and shield combined construction method according to claim 1 or 2, wherein a nut mounting chamber (23) whose inner peripheral side is open is formed at a front end portion of the leading propulsion pipe (20).
JP2004106327A 2004-03-31 2004-03-31 Propulsion and shield combination method Expired - Lifetime JP4081037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106327A JP4081037B2 (en) 2004-03-31 2004-03-31 Propulsion and shield combination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106327A JP4081037B2 (en) 2004-03-31 2004-03-31 Propulsion and shield combination method

Publications (2)

Publication Number Publication Date
JP2005290797A JP2005290797A (en) 2005-10-20
JP4081037B2 true JP4081037B2 (en) 2008-04-23

Family

ID=35324046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106327A Expired - Lifetime JP4081037B2 (en) 2004-03-31 2004-03-31 Propulsion and shield combination method

Country Status (1)

Country Link
JP (1) JP4081037B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036597A (en) * 2010-08-05 2012-02-23 Nishimatsu Constr Co Ltd Jacking pipe direction variable structure
JP2020153175A (en) * 2019-03-22 2020-09-24 株式会社奥村組 Tunnel construction method

Also Published As

Publication number Publication date
JP2005290797A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP5479989B2 (en) Tunnel construction method and shield machine
JP4081037B2 (en) Propulsion and shield combination method
JP2008266996A (en) Tunnel excavator and tunnel excavation method
JP5806186B2 (en) Propulsion transmission mechanism and pipeline construction method
JP5384223B2 (en) How to install pipes on natural ground
JP2004324256A (en) Shield machine
JP3863888B2 (en) Two-stage propulsion method and coupler
JP3721488B2 (en) Removal backfill shield machine and shield method
JP3616898B2 (en) Method for joining underground structures using propulsion device
JP2003155888A (en) Drilling rod buried type non-widening long-sized forepoling construction method
JP3473686B2 (en) Buried pipe laying device and its laying method
JP7130105B2 (en) Connection structure and connection method of pipe roof and departure side tunnel
JP4139350B2 (en) Two-stage propulsion method
JPH1163299A (en) Execution method of multi-conduit pipe and multi-conduit pipe
JP2019124048A (en) Connection structure and connection method between pipe roof and start side tunnel
JPH04258495A (en) Lining work of shield tunnel
JP3640805B2 (en) Pipe propulsion machine
JPH01121423A (en) Method of burying branch pipe
JP3393545B2 (en) Method of connecting buried pipe in excavation propulsion device and propulsion device
JP3703638B2 (en) Construction method of multi-strip pipes for underground cables such as electric power
JP3875230B2 (en) Shield excavator for branch tunnel construction
JP2863492B2 (en) Propulsion method, excavation device and propulsion device
JP2005090038A (en) Method and device for widening underground space
JP2007205072A (en) Tunnel excavator
JP4368763B2 (en) Segment assembly device and tunnel construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4081037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6